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Hill Equations with Coexisting Periodic Solutions, II.

by H. GUGGENHEIMER1)

There is a certain interest in finding ail Hill équations with coexisting periodic
solutions, Le., Hill équations ail whose solutions are periodic, cf. [4], Chap. VIL
Recently, I gave a differential géométrie method for the construction of second order
linear differential équations with coexisting periodic solutions [2]. The same problem
has been solved by F. Neuman with the tools of the theory of dispersions [5]. In the

présent paper, we construct directly ail Sturm-Liouville équations x" + Qx 0 with
continuous, periodic coefficients and coexisting periodic solutions. The formulae
were found by an interprétation of the theory of dispersions [1] in differential ge-
ometry. However, in the présent formulation we need only the most elementary tools
of calculus and analytic geometry. On the way, we give a géométrie dérivation of some
results of H. A. Schwarz that contain the solution of our problem.

1. Polar coordinates in an (xl9 jc2)-plane are defined by

xt r cosa, x2 r sina.

For a continuous curve x(t)=(xi(t), x2(t)), we détermine oc(t) as a continuous func-
tion by an appropriate choice of the branch of arctan x2/x1. The déterminant of two
vectors a, b in the plane is denoted by [a, b].

Let Q(t) be a continuous function for — oo < t< + oo. We consider the differential
équation

x" + Q(t)x 0 (1)

on the real number Une. We choose two linearly independent solutions jct(f), x2(t) of
unit Wronskian. For the vector x(t) this means that [x, jc']=1. The parameter t is
twice the area A covered by the vector x since

to t0

This means that t is connected with the polar coordinates of x(t) by

t

-to jr2(t)dx(t),

l) Research supportée partially by NSF Grant GP-8176.
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or
r (a')"1/2 (2a)

and a is a strictly monotone function of t. In fact, r(t)>0 since the Wronskian never
vanishes.

We introduce the two unit vectors

c (a) (cos a, sin a), n (a) — sin a, cos a).

Then x(t) r(t)c(<x), x'(t) r'c(<x) + r~ln((x) and

x»(t) (r" - r"3) c(a) - r~4(l - r"r3) x(f).

A comparison with (1) shows that (see also [1], (5) p. 32)

We see that for any continuous function Q(t) there exist nonzero C2-functions r{t)
such that (3) holds. Before we show that (3) solves our problem, we note that, by

(2a), (3) is équivalent to ([1], p. 35)

The Schwarzian derivative of a function s(t) is

/\2

An easy vérification shows that (4) is équivalent to Schwarz's formula [6]

Schwarz also noted that the knowledge of a solution s- tan a of {s, t}-2Q(t) is

sufficient for the détermination ofa pair of solutions of (1) with unit Wronskian since

sf=0Lf cos~2ol=xî2. Hence,

Xi-/'1'2, x2-s'-l/2s, (5)

and

LEMMA 1 : The function a(t) uniquely détermines x(t).



Hill Equations with Coexisting Periodic Solutions, II 383

Similarly, r(t) and a(0) détermine x{t) via

2. We assume now that Q(t) is a periodic function of period co.

LEMMA2: Ail solutions of (1) are periodic (x(t + co) x(t)) or semi-periodic
(x(t + œ)= -x(t)) if and only if

i.e.

tana(r + co) tana(f),

a(t + œ) (x(t) + kn, k integer. (7)

The necessity follows from the définition of a and the sufficiency from lemma 1.

If (7) holds, r{t) is periodic of period co and

VJ

/
0

r~2 dt kn.

The solution of our problem is immédiate:

THEOREM : Ail solutions of(l) are periodic or semi-periodic if and only if

where

reC\r(t)>O,r(t
and

VJ

r~2(t)dt kn.

The solutions are periodic for k even, semi-periodic for k odd.
We note that the condition (7) implies that the problem

has a collapsing A:-th interval of instability at A=0 ([4], Chap. VII). In fact, every
*i(00=l, 2) vanishes k times in an interval of periodicity since the radius vector
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covers k straight angles in monotone motion. But the number of zéros in the interval
of définition is the index of the eigenvalue (see, e.g., [3], p. 148).

If we want to insure Q(t)>0, we have to ask in addition to the conditions of the
theorem that r"(t)<r3(t). In that case, the curve x{t) is without inflexion points.

Using (4) instead of (3), one may construct Q(t) starting from f(t) a'(t) with
jof(t)dt=kn. We obtain:

AH solutions of (1) are periodic (k=2i) or semi-periodic (k 2i+l) if and only if

where

feC2,f(t)>0,f(t
and
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