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Hill Equations with Coexisting Periodic Solutions, II.

by H. GUGGENHEIMER 1)

There is a certain interest in finding all Hill equations with coexisting periodic
solutions, i.e., Hill equations all whose solutions are periodic, cf. [4], Chap. VIIL.
Recently, I gave a differential geometric method for the construction of second order
linear differential equations with coexisting periodic solutions [2]. The same problem
has been solved by F. Neuman with the tools of the theory of dispersions [5]. In the
present paper, we construct directly all Sturm-Liouville equations x”+Qx=0 with
continuous, periodic coefficients and coexisting periodic solutions. The formulae
were found by an interpretation of the theory of dispersions [1] in differential ge-
ometry. However, in the present formulation we need only the most elementary tools
of calculus and analytic geometry. On the way, we give a geometric derivation of some
results of H. A. Schwarz that contain the solution of our problem.

1. Polar coordinates in an (xy, x,)-plane are defined by

Xy =rcosa, X,=rsina.

For a continuous curve x(¢)=(x, (¢), x,(¢)), we determine a(¢) as a continuous func-
tion by an appropriate choice of the branch of arctan x,/x,. The determinant of two
vectors a, b in the plane is denoted by [a, b].

Let Q(t) be a continuous function for — oo <7< + 0. We consider the differential
equation

xX"+Q()x=0 (1)

onthe real number line. We choose two linearly independent solutions x, (¢), x,(¢) of
unit Wronskian. For the vector x(¢) this means that [x, x']=1. The parameter 7 is
twice the area 4 covered by the vector x since

t t
2A=f[x,dx]=fdt=t—to.
to to

This means that ¢ is connected with the polar coordinates of x(¢) by

t—ty= frz(t) da(t),

1) Research supported partially by NSF Grant GP-8176.
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1.6., da 1
T @
or
r=()""" (2a)

and « is a strictly monotone function of ¢. In fact, r(¢)>0 since the Wronskian never

vanishes.
We introduce the two unit vectors

c(a¢) = (cosa, sina), n(a)=(—sina, cosa).
Then x(t)=r(t) c(«), x'(t)=r'c(a)+r 'n(x) and
X")=0"—r ) c(@)=—r"*1-rr)x(1).
A comparison with (1) shows that (see also [1], (5) p. 32)
Q(t)=-lz(1 -7 ‘ff) 3
r dt

We see that for any continuous function Q(¢) there exist nonzero C2-functions r(t)
such that (3) holds. Before we show that (3) solves our problem, we note that, by
(2a), (3) is equivalent to ([1], p. 35)

1am 3 a”Z )
)= = e o [ e 2, 4

The Schwarzian derivative of a function s(¢) is

Sm 3 Sf/Z
sty=——_-{=].
w=2-2(5)

An easy verification shows that (4) is equivalent to Schwarz’s formula [6]

Q(t) = 3 {tana, t} = 3 {x,/x4, t}.

Schwarz also noted that the knowledge of a solution s=tana of {s,¢}=20Q(¢) is
sufficient for the determination of a pair of solutions of (1) with unit Wronskian since
s'=o' cos"2a=x; %. Hence,

1—1/2’ I—1/2s’ (5)

X1 =4S Xy =S

and

LEMMA 1: The function a(t) uniquely determines x(t).
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Similarly, r(¢) and «(0) determine x(¢) via

t

a(t) = a(0) + g;

(6)

2. We assume now that Q(¢) is a periodic function of period w.

LEMMA 2: All solutions of (1) are periodic (x(t+w)=x(t)) or semi-periodic
(x(t+w)=—x(1)) if and only if

tano(t + w) =tana(t),
Le.
a(t + w)=a(t) + kr, kinteger. ™

The necessity follows from the definition of a and the sufficiency from lemma 1.
If (7) holds, r(¢) is periodic of period w and

w

fr_z dt = kr.

0

The solution of our problem is immediate:

THEOREM: All solutions of (1) are periodic or semi-periodic if and only if
Q) =r"*(1—=r"r)

where
reC%r(t)> 0, r(t + ) =r(t),

and

[0}

fr—z(t) dt =kn.

0

The solutions are periodic for k even, semi-periodic for k odd.
We note that the condition (7) implies that the problem

X"+ Qx=1Ax, x(w)=+x(0)

has a collapsing k-th interval of instability at A=0 ([4], Chap. VII). In fact, every
xi(1) (i=1, 2) vanishes k times in an interval of periodicity since the radius vector
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covers k straight angles in monotone motion. But the number of zeros in the interval
of definition is the index of the eigenvalue (see, e.g., [3], p. 148).
If we want to insure Q(¢)>0, we have to ask in addition to the conditions of the
theorem that r”(f) <r>(¢). In that case, the curve x(t) is without inflexion points.
Using (4) instead of (3), one may construct Q(¢) starting from f(¢#)=a'(¢) with
0 f(t)dt=kn. We obtain:
All solutions of (1) are periodic (k=2i) or semi-periodic (k=2i+1) if and only if

_L@W 3OV
20=3 7 1 79) *+10
where

feC f(1)>0, f(t+ w) = f(1)
and

jif(t)dt=k7t.
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