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Uber die Kunneth-Formel fur ausserordentliche Cohomologie

GUIDO MlSLIN

Einleitung

Die Kunneth-Formel gibt eine Beziehung zwischen der Cohomologie eines Pro-
duktes von topologischen Ràumen und der Cohomologie der Faktoren an. Sind X
und Y (endliche) CW-Komplexe, so kann man die Kùnneth-Formel in Form einer
kurzen exakten Sequenz von zellulàren Cohomologiegruppen schreiben

0 -> (H*X ® H* Y)q 5 Hq (X x Y) -> Tor (H*X, H*Y)q+i^0

Dièse exakte Sequenz nimmt fur punktierte CW-Komplexe X und F, unter Ver-
wendung von reduzierter Cohomologie, die folgende Form an

0 -> (H*X ® Ë*Y)q 5 Ëq(X a Y) - Tor(ff*X9 H*Y)q+1 -» 0

(Es bezeichnet Xa Y=Xx Y/Xv Y das ,,smash"-Produkt, und m bzw. m sind die
âusseren Produkte der Cohomologietheorien H bzw. È).

Im folgenden wird gezeigt, dass fiir eine ausserordentliche Cohomologietheorie h

eine stark konvergente ,,Kûnneth-Spektralsequenz" mit Eg'qzTor*(li*X9 h*Y)p+q
und E£q^grphq(XA Y) existiert, falls man eine endliche flache Auflôsung des A-
Moduls h*X geeignet ,,geometrisch realisieren" kann; A h*S° bezeichnet den

Koeffizientenring. Dièse Spektralsequenz bricht zusammen, wennTor^/i*^, £*F) 0
ist fur p>\. Dann erhâlt man wie im Falle der gewôhnlichen Cohomologie, eine

Kunneth-Formel in Form einer exakten Sequenz

O-+(h*X®Aïl*Y)q^fiq(X a y)-»Tor?(/ï*X, îi*Y)q+1->0

Dies trifft z.B. fur die komplexe ^-Théorie zu, wie Atiyah in [2] gezeigt hat, und
modulo 2-Torsion auch fur die réelle i£-Theorie (vgl. Korollare 1 und 4). Fur andere

Cohomologietheorien erhâlt man analoge Resultate, wenn man geeignete Voraus-
setzungen ûber die homologische Dimension von h*X bzw. h* Y macht (vgl. Korollar
5).

Die Méthode, welche zu der oben beschriebenen Spektralsequenz fûhrt, ist eine

Verallgemeinerung des Beweises von Atiyah (loc. cit.) der Kunneth-Formel fiir die
komplexe Â-Theorie.

Die meisten Resultate der vorliegenden Arbeit sind in einer Comptes-Rendus-
Note angekûndigt worden (G. Mislin, C. R. Acad. Se. Paris, t. 267, p. 504-506, 1968).



372 GUIDO MISUN

I. Ungraduierte Cohomologiefunktoren mit Multiplikation

Es bezeichne *€ die Kategorie der punktierten Râume vom Homotopietypus eines

endlichen CW-Komplexes. Aile im folgenden auftretenden Râume seien Objekte

1. DEFINITION 1. Ein auf der Kategorie fé7 definierter kontravarianter
Funktor t mit Werten in der Kategorie der Abelschen Gruppen heisst ungraduierter
Cohomologiefunktor mit Multiplikation, falls gilt:

1) Exaktheit. Ist X-*Y-*Z eine Cofaserung in #, so ist die Bildsequenz
tZ-+tY-*tX exakt.

2) Homotopie-Invarianz. lst/:Z->7eine Homotopieâquivalenz, so ist tf:tY-+tX
ein Isomorphismus.

3) Suspensions-Isomorphismus. Es gibt eine homomorphe natûrliche Transformation

vU^t^^ti^A).
4) Multiplikation. Es gibt eine natûrliche Transformation n:txt-*toA mit
a) \i ist homomorph in beiden Variablen, und definiert somit fur aile X und Y

einen Homomorphismus tX®tY->t(XA Y), den wir auch mit fi bezeichnen.

(3) \i soll auf folgende Art mit v kompatible sein: /xo(v®l)=vo/i

tX®tY-^t(X a Y)

t(Sl AX)®tY-ï->t(S1 aX a Y)

y) Die folgende abgeschwâchte Form von Kommutativitât und Assoziativitât soll

erfullt sein:
S°-Assoziativitât.

Ho(l®ii) fio(fi® 1): tX (g) tS° ®tX-+ t(X a Y)

^-Kommutativitât.

T2oii~HoT1:tS°®tX-£+t(S° AX)^tX

tX ® tS0-^ t(X a S°) s tX

Hierbei bezeichnen 7\ und T2 die evidenten Abbildungen, und X ist auf kanonische

Weise mit S°aX und Xa S0 identifiziert.
8) Es gibt eine letS0 mit /i(l®x)=/j(x(g>l)=jc fur aile xetX and aile X.
Aus y und 8 folgt, dass tS° ein assoziativer und kommutativer Ring A mit 1 ist,

und dass tX ein unitârer ^1-Modul ist. Wegen y sind die beiden yl-Modul-Strukturen
tS°®tX->tX und tX®tS°-+tX natûrlich isomorph. Aus der *Sr0-Assoziativitât folgt,
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dass n wie folgt faktorisiert: fi=fLoK (k die kanonische Abbildung)

tX®tY-^t(X a Y)

«\ S*
tX®AtY

Ist {h\ v'} eine ausserordentliche, multiplikative, reduzierte Cohomologietheorie,
so ist f /î* ein Funktor von der oben beschriebenen Art, falls die Multiplikation dem

Axiom 4 von Définition 1 genûgt. (Man verlangt natûrlich in diesem Fall, dass K* im
graduierten Sinne S°-kommutativ ist). Fûhrt man in h* Koeffizienten Zq ein, so kann
man unter gewissen Umstânden in fi* ; Zq) eine multiplikative Struktur definieren
[vgl. 1]. Dièse multiplikative Struktur ist im allgemeinen weder kommutativ noch
assoziativ. Doch ist die oben geforderte abgeschwâchte Form von Kommutativitàt
und Assoziativitât fur t — h* ; Zq) hâufig erfûllt, so z.B. fur die réelle ^-Théorie mit
Koeffizienten Zp9 falls p eine ungerade Primzahl ist.

IL Der triviale Fall: TorfOF, 0

Ist der Funktor Tor^ (tY, 0, so ist auch Tor^^F, 0 fur aile p> 1 und man
nennt JFflach. Gleichbedeutend damit ist zu sagen, dass ®AtY ein exakter Funktor
ist. Fur diesen Fall nimmt die Kûnneth-Formel die folgende einfache Form an.

2. LEMMA 1. Ist tY einflacher A-Modul, so giltfur aile X

fi:tX®AtY^t(X a F)

Beweis. Fur X= S0 ist dies offensichtlich richtig. Nun kann man mittels Induktion
das Lemma fur X=Sn beweisen, wie man aus dem folgenden (wegen Définition 1, p)
kommutativen Diagramm abliest

tSn~1®AtY-^t(Sn~1 a F)

tSn®AtY—î-+t{Sn a Y)

Da /Fflach ist, ist /( ®AtY ein halbexakter Homotopiefunktor. Also ist fl:t( )®
®AtY-+t( a F) eine natûrliche Transformation zwischen halbexakten Homotopie-
funktoren, die auf den Sphâren ein Isomorphismus ist. Folglich ist p fur aile end-
Hchen CW-Komplexe ein Isomorphismus [6, Satz 7.1].

3. KOROLLAR 1. Fur die Z8-graduierte réelle K-Theorie KO* ; Zp) mit
Koeffizienten Zp, p eine ungerade Primzahl, gilt die Kûnneth-Formel

M: KO*(X; Zp)®AKO*(Y; Zp) s KO* {X a F; Zp)
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Beweis. Der Funktor t=KO*( ;Zp)=®ieZ8KOi( ;ZP) trâgt eine kanonische

multiplikative Struktur [vgl. 1], welche t zu einem Cohomologiefunktor mit Multi-
plikation (cf. Def. 1) macht. Nach Bott [3, p. 72] ist der Ring KO*S0^Z[x,y]/
/(x2-4,2y, xy, y3) mit deg(x) 4 und deg(j) 7 (in Z8). Die Reduktion mod.p,
R:KO*SO-+KO* (S0; Zp)9 ist ein Ringhomomorphismus und, wegen Tor^(KO*S0,
Zp)=0, ist R surjektiv. Weil das Bild Im(R)^KO*S°®Zp ist als Ring, folgt:

KO*(S°;Zp)^KO*S°®Zp^ZPlz']/(z2-4). Aber (z-2) und (z + 2) sind fremde
Elemente im Hauptidealring Zp[z] wegen /?^2; demnach gilt Zp[z]/(z2 —4)^
£(ZP [t>]/(!> +2)) x (Zp[>]/(w-2))sZ,x Z,, [vgl. 4, §1 Prop. 4]. Der Koeffizienten-

ring A tS° KO* (S°;Zp) ist also halbeinfach und mithin sind aile vl-Moduln
projektiv [5, Chap. I, Theorem 4.2]. Somit ist KO* (X; Zp) flach fur aile X und das

Korollar foïgt aus dem Lemma 1.

(Ein analoges Korollar erhâlt man natûrlich z.B. fur die Cohomologietheorien

Ê*( ; Zp) oder KU* ; Zp) fur beliebige Primzahlen p.)
Das folgende Lemma gibt ein hinreichendes Kriterium dafiïr an, dass tX ein

flacher /t-Modul ist.

4. LEMMA 2. Ist die Abelsche Gruppe H*X®tS° torsionsfrei, so ist tX einfreier
tS°-Modul

5. HILFSSATZ 1. Es sei R ein Ring mit 1. Ist H*X®R torsionsfrei, so ist die

naturliche Ring-Abbildung (p:H*X®R-+H*(X\ R) ein Isomorphismus.
Beweis. Gemàss dem Koeffiziententheorem genûgt es zu zeigen, dass Tor (H*X, R)

0 ist. Da H*X eine endlicherzeugte Abelsche Gruppe ist (Xer€) brauchen wir

jedoch nur zu zeigen, dass fur jeden endlichen direkten Summanden ZmcH*X gilt
Tor(Zm, i?)=0. Hierzu betrachten wir die exakte Sequenz 0->Tor(Zm, R^R^+R-*
->Zm®R-+0, wobei M die Multiplikation mit m bedeutet. Weil Zm®R ein direkter
Summand der torsionsfreien Gruppe H*X<8)R ist folgt Zm(g)i? 0, d.h. M ist
surjektiv. Es sei nun éeKer(M) und a ein Elément mit M(a) ma=l. Wegen M(ab)

(ma) b b a (mb) 0 folgt Ker (M) Tor (Zm, R) 0.

Beweis von Lemma 2. Wir betrachten die ausserordentliche Cohomologietheorie
fi* definiert durch # f und (vi:hi-+hi+ioZ)=(v:t-+toZ) fur aile i. Da dièse

Cohomologietheorie die Période 1 hat, kann man die Atiyah-Hirzebruch Spektralsequenz
wie folgt schreiben:

Ep2(t) s Hp(X; tS^^E^t) s grp tX

{E* (t), dr(t)} ist eine Spektralsequenz von fS°-Moduln. Aus der Voraussetzung folgt,

unter Verwendung des Hilfssatzes, dass Ep2(t)^Hp(X\tS°)^Hp(X)®tS° ist. Be~

trachtet man die évidente naturliche Transformation Q:t-*t®Q~t', so erhâlt man
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einen Morphismus zwischen Spektralsequenzen £*:{E*(t), dr(t)}-+{E?(t'\ dr(t')}.
Die Spektralsequenz {E*(t')9 dr(t')} bricht aber zusammen, denn t'S° ist ein Q-
Vektorraum. Daraus folgt, dass auch {E*(t), dr(t)} zusammenbricht. Betrachtet man
nâmlich das Diagramm

El(t)-^-* Ef2{t)
d2p (Oj, [d2P (*')

Ep*~2(t) e2P +
2>Ep+2(t')

so ist Qp+2od%(t) dp(tf)oQp Q, denn es ist dr(t') O fur r^2. Andrerseits ist
Q*:E%(t)^H*X®tS0-+E%(t')^E%(t)®Q injektiv, denn nach Voraussetzung ist
H*X®tS° torsionsfrei. Also folgt aus Qp+2odp(t) 0, dass d%(t) O ist. Analog
schliesst man: dr(t) O fur r>2. Schreibt man HPX als direkte Summe einer freien
Abelschen Gruppe F und einer Torsionsgruppe T, HPX^F®T, so induziert die

Projektion auf den ersten Faktor einen /SMsomorphismus
£ (tS°)m9 wobei m den Rang von F bezeichnet. Es folgt
^gtptX. Der fS°-Modul tX ist somit frei, denn er besitzt eine endliche Filtrierung
mit freier assoziierter graduierter Gruppe ®gvptX.

6. KOROLLAR 2. Die Multiplikation fi:tX(g)AtY-+t(Xa Y) ist ein C-Isornor-
phismus zwischen Abelschen Gruppen. (C=Klasse der Torsionsgruppen).

Beweis. Wir betrachten wieder die natûrliche Transformation q:t-*t' t( )®Q.
Der Funktor t' tràgt auf natûrliche Weise die Struktur eines ungraduierten Coho-
mologiefunktors mit Multiplikation \x 9 induziert durch dieselbe Struktur von t, und
Q ist kompatibel mit den Muitiplikationen. Folglich gibt es ein kommutatives
Diagramm

t'X®A.t'Y-£*t'(X a Y)

Aus Lemma 2 folgt, dass t'Y flach ist (t'S0 tS°®Q ist torsionsfrei und divisibel).
Somit ist fi' gemâss Lemma 1 ein Isomorphismus. Ferner sind die vertikalen Pfeile im
Diagramm C-Isomorphismen, denn fur eine Abelsche Gruppe A sind Kern und
Cokern der natûrlichen Abbildung A-^A®Q die Torsionsgruppen Tor(v4, Q/Z)
bzw. A® (Q/Z). Folglich ist auch fi ein C-Isomorphismus.

DI. A-Auflosungen und die Kiinneth-Spektralsequenz

Wir wollen uns hier im Hinblick auf die Anwendungen auf Z- bzw. Z^-graduierte
Cohomologiefunktoren t=h* beschrânken, mit fi vom Grade 0 und v vom Grade 1.
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7. DEFINITION 2. Es sei N eine natûrliche Zahl. Eine W-Auflôsung von X
besteht aus einer Familie von Cofaserungen

wobei man verlangt, dass îi*Fk flach ist und dass die Homomorphismen <r* : h*Fk->
-*îi*Yk surjektiv sind fur aile k.

Zxx einer TV-Auflôsung von X gehôrt eine fiache Auflôsung von h*X der Lange N

h*Y1

mit 8k akoTk.
Ferner gehôrt zu einer N-Auflôsung von X eine Faktorisierung

nâmlich

wobei jp ZN~p~1(pp ist, und cpp die Abbildung in der Puppesequenz

Yp-»Fp^Yp+l^ZYp-+ZFp

bezeichnet.

Offensichtlich ist die Cofaser Cof(jp) Cof(ZN-p-VP) ^"P^P.

8. SATZ. Besitzt X eine N-Auflôsung, so gibt es eine Spektralsequenz

{Epr> \ dr) mit Epi* s Tor£ (H*X9 fi* Y)p+« und EpN>+\ ^Ep^^ grp ît\X a Y).

/51. Es sei f=IIjp die zur N-Auflôsung von X gehôrige Faktorisierung von
0-+ZNX. Betrachtet man den Kompositionsfunktor {Tq,wq}=:{fiN+q( Ay),v^},
so erhâlt man [vgl. 7] aus der Faktorisierung/=i7/ ein Rees-System mit zugehôriger

Spektralsequenz {Ep'q, dr}. Es folgt in der Schreibweise von [7]

£{•« Tq(f) s hN+q(ZN-pFp a y) s fip+9(Fp a Y)

Dabei wurde verwendet, dass Cof(f)^ZN~pFp ist. Das Differential dp{q\E{A-+
__^gp-i,q+i wird jn(}uziert durch

(j^, a y^^yp a y^±Ufp a y) (^^ a y-^i>Fp a y),
sodass man ein kommutatives Diagramm erhâlt

p)(p.l a y)s
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Gemâss Lemma 1 sind die vertikalen Pfeile natûrliche Isomorphismen, denn fi*Fk

ist flach fur aile k. Also sind die Komplexe {Ep'q,dp'q} und {(h*Fp®h*Y)p+q,
(d*®l)p+q} isomorph. Weil {K*Fp9 5*} eine flache Auflôsung von h*X ist, folgt

Ep2>q Kerdf «/Imdr1'*"1 Ker(d* ® l)p+qllm(d*+1 ® l)p+q s
9 h*Y)p+q

Fur /?£[05 N] ist offensichtlich E%'q 0, denn fi*X besitzt eine flache Auflôsung der

Lange TV (d.h. w.dim^ h*X^ N). Hieraus folgt Eff+^E^, weil der Grad von dr

gleich —r, 1) ist. Schliesslich folgt aus der Endlichkeit der Faktorisierung von/,
dass E%q^grpTq(f)^grphN+q(ZNXA Y)^grphq(XA Y).

9. KOROLLAR 3. Besitzt X eine N-Auflôsung fur ein gewisses N und ist
TorAp(îi*X, h*Y) Ofiirp>l, so gilt die Kûnneth-Formel

0->(K*X ®Afi*Y)qÀ?(lAy)->Torf (H*X, h*Y)q+l->0

Beweis. In der Spektralsequenz des Satzes von § 8 ist El*q TorAp (h*X, h*Y) 0

fùrp$[0,1]. Somit sind aile Differentiale dr gleich 0 fur r ^ 2 und mithin Ef q^E%q^
^grphq(XA Y). Man erhâlt also eine exakte Sequenz 0-^£2°'^(Ja 7)->£'21'^0
und verifiziert leicht, dass der Homomorphismus / mit dem Produkt fi ùbereinstimmt.

IV. Einige Beispiele

Besitzt Zeine 1-Auflôsung, so ist w-dim^/i^X^l, und die Voraussetzungen von
Korollar 3 sind somit erfiillt. Umgekehrt folgt aus w.dim^/i^A^l, falls es eine

Abbildung i:X-+F0 gibt mit i*:h**F0-+fi*X surjektiv und h*F0 flach, dass X eine

1-Auflôsung besitzt, nâmlich: 0^/ï*F1->/ï*Fo->/î*Ar->0, wobei FX die Cofaser von i
bezeichnet.

10. LEMMA 3. Besitzt Xeine 1-Auflôsung bezuglich der gewôhnlichen Cohomologie:
0->JÎ*F1->i?*Fo->iî*lr-»0, so induziert die zugehôrige Cofaserung X-^F0-^Fï eine

1-Auflôsung bezuglich jeder ausserordentlichen Cohomologietheorie h deren Koeffi-
zientenring fi*S0 torsionsfrei ist.

Beweis. Es ist zu zeigen, dass 0->/ï*F1-C/i*Fo-^/i*X->0 eine flache Auflôsung
des fi*5'0-Moduls fi*Xist. Nach Lemma 2 sind h~*F0 und /ï*F1 frei, denn die Gruppen
H*F0 und H*Ft sind frei (endlicherzeugte flache Z-Moduln), und fi*S° ist nach Vor-
aussetzung torsionsfrei. Die Abbildung a* ist genau dann surjektiv, wenn j8* injektiv
ist, weil ZAFo^Fi eine Cofaserung ist Aber j8*®Q:fi*F1®Q-->fi*F0<g)Q ist injektiv,
denn fi*®Q ist gewôhnliche Cohomologie [6, Satz 10.8]. Folglich ist auch j8* injektiv,
denn /ï*F1 ist torsionsfrei.
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BeispieL Man verifiziert leicht, dass die Voraussetzungen von Lemma 3 erfûllt
sind, wenn man fur h die komplexe Cobordismentheorie QU wâhlt und fur X z.B.
einen Moore-Raum oder einen Linsenraum (speziell: einen reellen projektiven Raum).

Nach Atiyah [2] gibt es zu jedem Xeine Cofaserung X-^F0^F1 mit i*: KU*F0->
-+!O/#Xsurjektiv und H*F0 frei. Daraus folgt, dass 0-+KU*Ft-*KU*Fo-+KU*X-*

->0 eine 1-Auflôsung ist, denn KU*S0 KU0S0®KUiS° s Z. Somit gilt fur die

Àl/-Theorie die Kûnneth-FormeJ. Hieraus kann man eine Kûnneth-Formel fur die

KO-Theorie erhalten, wenigstens modulo 2-Torsion.
Es bezeichne Z[x]/(2x— l)=Z[£]cQ den Teilring der rationalen Zahlen, er-

zeugt durch \. Dann sind fur eine Abelsche Gruppe A Kern und Cokern der natùr-
lichen Abbildung A-*A®7j\$~] offensichtlich 2-Gruppen.

^11. KOROLLAR 4. Fur die Z8-graduierte Cohomologietheorie KO*( )®Z[|]
KO% gilt die Kunneth-Formel

0 -» {KOtX ®A KOt Y)q -? KO\(X a Y) -? Torf (KOfX, KOt Y)q+ x
-> 0

Beweis. Wir betrachten die oben beschriebene 1-Auflôsung bez. der ÂZZ-Theorie,

Q^KU*Fl->KU*Fo-*KU*X-+0, mit H*F0 frei. Ferner sei KU#( #

Dann ist das folgende Diagramm kommutativ

*#* ciU *$q (D)

Die untere Zeile ist exakt, denn Z[|] ist ein flacher Z-Modul. Bezeichnen c und q

die durch Komplexifizierung und Reellisierung induzierten Homomorphismen, so

ist £e=2Id ein Isomorphismus, denn ieZ[|]. Die obère Zeile im Diagramm (D)
ist folglich auch exakt. Wegen KO°{rX)^KO~i{X) folgt, dass O-^KOtiF^
-*KOt (F0)-+Kb$ (X)->0 exakt ist. Es bleibt zu zeigen, dass dies eine flache Auflôsung
ist. Da man natûrlich die multiplikative Struktur in KO$ definiert mittels jener von

KO*, erhâlt man fur den Koeffizientenring A=KOt (S°)^KO* (S°)®Z[i~] s
*, yl/(x2-49 2y, xy, /))®ZR]s(Z[i]) [z]/(z2-4)^Z[i]xZ[|]. Nun ist

^H*F0 frei und yl^Z[i] x Z[J] torsionsfrei, sodass aus Lemma 2 folgt, dassXO^ (Fo)

frei ist Somit ist KOt{Ft) projektiv, denn gl.dim(Z[|] x

Bemerkung. R.Woodhatgezeigt, dass der Homomorphismus/î:XO#Ar(8)ylXO# Y-*

-*KO*(Xa Y) nicht immer injektiv ist (man wâhle X=F=CP2). Aus Korollar 4

folgt, dass der Kern von fi eine 2-Gruppe ist.
Das folgende Beispiel soll zeigen, wie man TV-Auflôsungen konstruieren kann.

12. KOROLLAR 5. Ist der komplexe Cobordismenring QU*X ein A-Modul von
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endlichem Typ und ist w.â\mAQU*X<2, so gilt fur aile Y die Kûnneth-Formel

0 -» (QU*X ®A OU* Y)q -> QUq(X a 7) -> Torf (QU*X9 QU*Y)q+1 -» 0

Beweis. Bezeichnet MU {MU(l), IMU{\\ MU(2),...} {,4(2), ,4(3),...}
das Thom-Spektrum (mit den evidenten Abbildungen ZA(ri)-*A(n+l)), so ist
QUkX^lim[ZrX, A(k + r)~]. Da A(k) (fc-l)-zusammenhângend ist, gilt fur ge-

nûgend grosses r: QUkX^[ZrX, A(k + r)~\. Man kann also ein Erzeugendensystem
fw-'i/m des ^-Moduls QU*X finden, des repràsentiert wird durch Abbildungen
fi'.Z'X^Atyi + r). Dièse Abbildungen definieren natûrlich auch ein Erzeugendensystem

von QU*£rX. Es sei nun F=IL4(w; + r)und v= (fu...,fm):rX^V; dann ist
v*:QU* V-+QU*ErX surjektiv nach Konstruktion. Man ûberlegt sich leicht, dass V
derart durch einen endlichen CW-Komplex V approximiert werden kann, dass v=s o v :

I^AF-^Fist, mit freiem H*V. (Man approximiere MU(n) durch den Thom-Raum
des 2N-universellen t/(/7)-Bûndels ûber der Grassmannschen Mannigfaltigkeit
U(N)/U(n)xU(N-n) etc.). Es folgt, dass v*:QU*V-+QU*ZrX surjektiv ist. Wegen

Lemma 2 ist OU* Vfrei, denn A OU*S0 ist torsionsfrei und H* Vist frei. Bezeichnet
W die^Cofaser von û, so ist ^QU*W^QU*V-*QU*IrX-+() eine flache Auflôsung
von QU*IrX, denn nach Voraussetzung ist w.dimy4dt/*Irlr=w.dimyldï/*Ar<2.
Gemàss Korollar 3 gilt somit die Kûnneth-Formel fur 77X und mithin auch fur X.

V. Anhang

L. Hodgkin hat mit âhnlichen Methoden eine Kûnneth-Formel fur die âqui-
variante ^-Théorie bewiesen [8] und hat eine intéressante Verallgemeinerung der
Eilenberg-Moore-Spektralsequenz erhalten [9]. Dièse gestattet es, in gewissen
Fâllen die ausserordentliche Cohomologie eines Faserproduktes mithilfe einer Spek-
tralsequenz vom ,,Kûnneth-Typ" zu berechnen.*)

LITERATUR

[1] S. Araki and H. Toda, Multiplicative Structures in mod. q Cohomology Théories /, Osaka J. Math.
2(1965), 71-115.

[2] M. F. Atiyah, Vectorbundles and the Kiïnneth-Formula, Topology 1 (1962), 245-248.
[3] R. Bon, Lectures on K(X), Dept. of Math., Harvard University.
[4] N. Bourbaki, Eléments de mathématique, Algèbre, Chapitre VII (Hermann, Paris 1952).
[5] H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press, 1956).
[6] A. Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Mathematics (Springer-Verlag 1966).
[7] B. Eckmann and P. J. Hilton, Composition Functors and Spectral Séquences, Comment. Math.

Helv. 41 (1966-67), 187-221.

*) An der Kategorien-Konferenz in Seattle kiindigte J. F. Adams Resultate an, welche in
Zusammenhang mit der Kûnneth-Formel stehen. Die Berichte jener Konferenz werden demnâchst
in den Lecture Notes (Springer Verlag) erscheinen.



380 GUIDO MISLIN

[8] L. Hodgkin, An équivalent Kiinneth formula for K-Theorie, University of Warwick, Preprint.
[9] L. Hodgkin, Notes towards a géométrie Eilenberg-Moore Séquence, Forschungsinstitut fur

Mathematik, ETH, Zurich, Preprint.

Forschungsinstitut fur Mathematik, ETH Zurich
und
Cornell University, Ithaca N. Y.

Eingegangen den 15. Oktober 1968


	Über die Künneth-Formel für ausserordentliche Cohomologie.

