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Uber die Kiinneth-Formel fiir ausserordentliche Cohomologie

GuIDO MISLIN

Einleitung

Die Kiinneth-Formel gibt eine Beziehung zwischen der Cohomologie eines Pro-
duktes von topologischen Riumen und der Cohomologie der Faktoren an. Sind X
und Y (endliche) CW-Komplexe, so kann man die Kiinneth-Formel in Form einer
kurzen exakten Sequenz von zelluliren Cohomologiegruppen schreiben

0-(H*X ® H*Y)* % HY(X x Y)- Tor(H*X, H*Y)**' -0

Diese exakte Sequenz nimmt fiir punktierte CW-Komplexe X und Y, unter Ver-
wendung von reduzierter Cohomologie, die folgende Form an

0— (A*X ® A*Y) ™ AU(X A Y)> Tor(A*X, A*Y)'*1 50

(Es bezeichnet XA Y=Xx Y/Xv Y das ,,smash*“-Produkt, und m bzw. # sind die
dusseren Produkte der Cohomologietheorien H bzw. H).

Im folgenden wird gezeigt, dass fiir eine ausserordentliche Cohomologietheorie A
eine stark konvergente ,,Kiinneth-Spektralsequenz* mit E5* ‘=~ Tor’ (h*X, h*Y)?**
und EZ9>gr, h?(X A Y) existiert, falls man eine endliche flache Auflosung des A-
Moduls A*X geeignet ,,geometrisch realisieren” kann; A=h*S° bezeichnet den
Koeffizientenring. Diese Spektralsequenz bricht zusammen, wenn Tor’; (h*X, h*Y)=0
ist fiir p>1. Dann erhilt man wie im Falle der gewdhnlichen Cohomologie, eine
Kiinneth-Formel in Form einer exakten Sequenz

0 (F*X ® ,A*Y)T > h(X A Y) > Tor (R*X, i*Y)**! >0

Dies trifft z.B. fiir die komplexe K-Theorie zu, wie Atiyah in [2] gezeigt hat, und
modulo 2-Torsion auch fiir die reelle K-Theorie (vgl. Korollare 1 und 4). Fiir andere
Cohomologietheorien erhilt man analoge Resultate, wenn man geeignete Voraus-
setzungen iiber die homologische Dimension von i*X bzw. i*Y macht (vgl. Korollar
5).

Die Methode, welche zu der oben beschriebenen Spektralsequenz fiihrt, ist eine
Verallgemeinerung des Beweises von Atiyah (loc. cit.) der Kiinneth-Formel fiir die
komplexe K-Theorie.

Die meisten Resultate der vorliegenden Arbeit sind in einer Comptes-Rendus-
Note angekiindigt worden (G. Mislin, C. R. Acad. Sc. Paris, t. 267, p. 504-506, 1968).
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I. Ungraduierte Cohomologiefunktoren mit Multiplikation

Es bezeichne € die Kategorie der punktierten Riume vom Homotopietypus eines
endlichen CW-Komplexes. Alle im folgenden auftretenden Ridume seien Objekte
aus %.

1. DEFINITION 1. Ein auf der Kategorie % definierter kontravarianter
Funktor ¢ mit Werten in der Kategorie der Abelschen Gruppen heisst ungraduierter
Cohomologiefunktor mit Multiplikation, falls gilt:

1) Exaktheit. Ist X—»Y—Z eine Cofaserung in %, so ist die Bildsequenz
tZ—->tY—tX exakt.

2) Homotopie-Invarianz. Ist f: X— Y eine Homotopiedquivalenz, so ist #f:tY—tX
ein Isomorphismus.

3) Suspensions-Isomorphismus. Es gibt eine homomorphe natiirliche Transforma-
tion v:t5z0) =¢(S'A).

4) Multiplikation. Es gibt eine natiirliche Transformation pu:fx t—fo A mit

o) u ist homomorph in beiden Variablen, und definiert somit fiir alle X und Y
einen Homomorphismus tX®¢Y—t(X A Y), den wir auch mit u bezeichnen.

B) u soll auf folgende Art mit v kompatible sein: po (v®1)=vou

tIX®tY-51t(X A Y)

v®11v lv
t(S'AX)@tY-Lt(S'AX AY)

v) Die folgende abgeschwichte Form von Kommutativitit und Assoziativitit soll
erfiillt sein:
S°-Assoziativitit.

po(1@u)=puo(u®1):tXRtS°@tX > t(X A Y)
S°-K ommutativitit.

Toop=puoT;: tS°®tX—-5‘—>t(S0 AX)xtX
Ti] Tz =l
X ®tS°Lst(X A SY)2itx

Hierbei bezeichnen T, und T, die evidenten Abbildungen, und X ist auf kanonische
Weise mit S° A X und X A S° identifiziert.

) Es gibt eine 1€£5° mit 4 (1®x)=pu(x®1)=x fiir alle xe£X and alle X.

Aus v und § folgt, dass £S° ein assoziativer und kommutativer Ring A mit 1 ist,
und dass £X ein unitdrer A-Modul ist. Wegen y sind die beiden A-Modul-Strukturen
tS°®tX—tX und tX®1S°—tX natiirlich isomorph. Aus der S°-Assoziativitit folgt,
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dass u wie folgt faktorisiert: u=fiox (x die kanonische Abbildung)
tXQtY-51t(X A Y)

Ist {k’, v'} eine ausserordentliche, multiplikative, reduzierte Cohomologietheorie,
s ist #=h* ein Funktor von der oben beschriebenen Art, falls die Multiplikation dem
Axiom 4 von Definition 1 geniigt. (Man verlangt natiirlich in diesem Fall, dass i* im
graduierten Sinne S°-kommutativ ist). Fiihrt man in A* Koeffizienten Z, ein, 5o kann
man unter gewissen Umstdnden in h*( ; Z,) eine multiplikative Struktur definieren
[vgl. 1]. Diese multiplikative Struktur ist im allgemeinen weder kommutativ noch
assoziativ. Doch ist die oben geforderte abgeschwichte Form von Kommutativitit
und Assoziativitit fir = fi*( ; Z,) haufig erfiillt, so z.B. fiir die reelle K-Theorie mit
Koeffizienten Z,, falls p eine ungerade Primzahl ist.

II. Der triviale Fall: Tor4(¢Y, )=0

Ist der Funktor Tor{ (¢Y, )=0, so ist auch Tor%(¢Y, )=0 fiir alle p>1 und man
nennt ¢Y flach. Gleichbedeutend damit ist zu sagen, dass ® ,¢Y ein exakter Funktor
ist. Fiir diesen Fall nimmt die Kiinneth-Formel die folgende einfache Form an.

2. LEMMA 1. Ist tY ein flacher A-Modul, so gilt fiir alle X
A:tX ®@,tY =t(X A Y)

Beweis. Fiir X=S° ist dies offensichtlich richtig. Nun kann man mittels Induktion
das Lemma fiir X =S" beweisen, wie man aus dem folgenden (wegen Definition 1, B)
kommutativen Diagramm abliest

5" '@, 1Y L 1(S"' A Y)
Vel z|v
tS"®,tY —L£51(S" A Y)
Da Y flach ist, ist #( ) ® 41 ein halbexakter Homotopiefunktor. Also ist i:¢( )®
®4tY—>t( AY) eine natiirliche Transformation zwischen halbexakten Homotopie-

funktoren, die auf den Sphiren ein Isomorphismus ist. Folglich ist j fiir alle end-
lichen CW-Komplexe ein Isomorphismus [6, Satz 7.1].

3. KOROLLAR 1. Fiir die Zg-graduierte reelle K-Theorie KO* ( ;Z,) mit
Koeffizienten Z,, p eine ungerade Primzahl, gilt die Kiinneth-Formel

ii: KO* (X;2,)® ,KO* (Y; Z,) = KO* (X A Y; Z,)
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Beweis. Der Funktor t= KNO#( s Z,)=@ ;. zaI&VO‘( ; Z,) trdgt eine kanonische
multiplikative Struktur [vgl. 1], welche ¢ zu einem Cohomologiefunktor mit Multi-
plikation (cf. Def. 1) macht. Nach Bott [3, p. 72] ist der Ring KNO#Sogl[x, v/
/(x*—4,2y, xp, y*) mit deg(x)=4 und deg(y)=7 (in Zg). Die Reduktion mod.p,
R:KO*S°—KO0* (S°; Z,), ist ein Ringhomomorphismus und, wegen Tor} (KO*S°,

p) =0, ist R surjektiv. Weil das Bild Im(R)~KO*S°®Z, ist als Ring, folgt:
KO* (8°; Z,)~KO*S°®Z,~Z,[z]/(z>—4). Aber (z—2) und (z+2) sind fremde
Elemente im Hauptidealring Z,[z] wegen p#2; demnach gilt Z,[z]/(z*—4)x
~(Z, [v]/(v+2))><(Z (wl/(w=2))=Z,xZ,, [vgl. 4, §1 Prop. 4]. Der Koeffizienten-
ring A=tS°=K0* (8°; Z,) ist also halbeinfach und mithin sind alle A-Moduln
projektiv [5, Chap. I, Theorem 4.2]. Somit ist Ko* (X; Z,) flach fiir alle X und das
Korollar foigt aus dem Lemma 1.

(Ein analoges Korollar erhidlt man natiirlich z.B. fiir die Cohomologietheorien
A*( ;Z,) oder KU* ( ; Z,) fiir beliebige Primzahlen p.)

Das folgende Lemma gibt ein hinreichendes Kriterium dafiir an, dass zX ein
flacher A-Modul ist.

4. LEMMA 2. Ist die Abelsche Gruppe H*X®1S° torsionsfrei, so ist tX ein freier
tS°-Modul.

5. HILFSSATZ 1. Es sei R ein Ring mit 1. Ist H*X®R torsionsfrei, so ist die
natiirliche Ring-Abbildung ¢ : H*X® R—H* (X; R) ein Isomorphismus.

Beweis. Gemiss dem Koeffiziententheorem geniigt es zu zeigen, dass Tor (H*X, R)
=0 ist. Da H*X eine endlicherzeugte Abelsche Gruppe ist (Xe%) brauchen wir
jedoch nur zu zeigen, dass fiir jeden endlichen direkten Summanden Z,,c H*X gilt
Tor(Z,,, R)=0. Hierzu betrachten wir die exakte Sequenz 0—Tor(Z,, R)—R*R—
—Z,® R—0, wobei M die Multiplikation mit m bedeutet. Weil Z,® R ein direkter
Summand der torsionsfreien Gruppe H*X®R ist folgt Z,® R=0, d.h. M ist sur-
jektiv. Es sei nun beKer(M) und a ein Element mit M (a)=ma=1. Wegen M (ab)
= (ma) b=b=a(mb)=0 folgt Ker (M)=Tor(Z,, R)=0.

Beweis von Lemma 2. Wir betrachten die ausserordentliche Cohomologietheorie
h* definiert durch A'=¢ und (v':h'>h**1.X)=(v:t—>1.2) fiir alle i. Da diese Coho-
mologietheorie die Periode 1 hat, kann man die Atiyah—Hirzebruch Spektralsequenz
wie folgt schreiben:

E5(t) =~ H?(X; tS°) = EP, () = gr, tX

{E}(t), d,(t)} ist eine Spektralsequenz von tS°-Moduln. Aus der Voraussetzung folgt,
unter Verwendung des Hilfssatzes, dass E3(f)x H?(X; tS°)x H?(X)®tS° ist. Be-
trachtet man die evidente natiirliche Transformation g:t—»t®Q=1¢', so erhdlt man
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einen Morphismus zwischen Spektralsequenzen o*:{E(¢), d,(t)}={E" (¢'), d.(t')}.
Die Spektralsequenz {E(¢'), d,(¢')} bricht aber zusammen, denn #'S° ist ein Q-
Vektorraum. Daraus folgt, dass auch {E,* (¢), d,(¢)} zusammenbricht. Betrachtet man
namlich das Diagramm

E5 (1) —2"— E5 (1)
d2? (1) Jd22 )
5" (1) 225 E5 ()

so ist 05" %.d5(t)=d5(t")o05=0, denn es ist d,(t')=0 fiir r>2. Andrerseits ist

05:E; ()= H*X®tS°—E; (')~ E5 (t)®Q injektiv, denn nach Voraussetzung ist
H*X®tS° torsionsfrei. Also folgt aus g5 2.d5(¢)=0, dass d5(t)=0 ist. Analog
schliesst man: d,(¢)=0 fiir > 2. Schreibt man H?X als direkte Summe einer freien
Abelschen Gruppe F und einer Torsionsgruppe 7, H’ X~ F®T, so induziert die
Projektion auf den ersten Faktor einen zS°-Isomorphismus H?X®tS°~F®1S°x
=~ (£S°)™, wobei m den Rang von F bezeichnet. Es folgt Ej(t)=(¢tS°)"=EZ (¢)=
~gr,tX. Der tS°-Modul ¢X ist somit frei, denn er besitzt eine endliche Filtrierung
mit freier assoziierter graduierter Gruppe @gr,¢X.

6. KOROLLAR 2. Die Multiplikation [i:tX® ,tY—t(XAY) ist ein C-Isomor-
phismus zwischen Abelschen Gruppen. (C=XKlasse der Torsionsgruppen).

Beweis. Wir betrachten wieder die natiirliche Transformation g:t—t'=¢( )®Q.
Der Funktor ¢’ trigt auf natiirliche Weise die Struktur eines ungraduierten Coho-
mologiefunktors mit Multiplikation y’, induziert durch dieselbe Struktur von ¢, und
¢ ist kompatibel mit den Multiplikationen. Folglich gibt es ein kommutatives
Diagramm

FX @Y 50 (X AY)
®Q7 TeQ
X ®@41Y —L5t(X A Y)

Aus Lemma 2 folgt, dass t'Y flach ist (¢’ S®=1S°®Q ist torsionsfrei und divisibel).
Somit ist i’ gemiss Lemma 1 ein Isomorphismus. Ferner sind die vertikalen Pfeile im
Diagramm C-Isomorphismen, denn fiir eine Abelsche Gruppe 4 sind Kern und
Cokern der natiirlichen Abbildung 4—»A4®Q die Torsionsgruppen Tor(4, Q/Z)
bzw. A® (Q/Z). Folglich ist auch ji ein C-Isomorphismus.

II. N-Aufissungen und die Kiinneth-Spektralsequenz

Wir wollen uns hier im Hinblick auf die Anwendungen auf Z- bzw. Z -graduierte
Cohomologiefunktoren = h* beschrinken, mit i vom Grade 0 und v vom Grade 1.
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7. DEFINITION 2. Es sei N eine natiirliche Zahl. Eine N-Auflosung von X
besteht aus einer Familie von Cofaserungen

(Y= F=5 Y ;0 <SESN; Yo = X; Yy, =0},

wobei man verlangt, dass 4A*F, flach ist und dass die Homomorphismen o : i*F,—
—h*Y, surjektiv sind fiir alle k.
Zu einer N-Auflésung von X gehort eine flache Aufldsung von A*X der Linge N

Fh Nt 0 pRp 0 pkp g0t K
0->h Fy—5. -5 hF——>hF,~—>hX
aN
i*Y,

mit 0k=0'ko‘rk.
Ferner gehort zu einer N-Auflosung von X eine Faktorisierung von f:0-Z"X,
ndmlich

0__"2_) YN"iN__"l“)ZYN_l e 4 EN_lYl J:S‘*ZNYO = ZNX
wobei jP=XN"? “I(pl, ist, und ¢, die Abbildung in der Puppesequenz
¥, = Fy= ¥, +1———+ZY ~» &,
bezeichnet.
Offensichtlich ist die Cofaser Cof(j?)=Cof (Z" "7~ 1¢p,)= 2N "?F,.
8. SATZ. Besitzt X eine N-Auflosung, so gibt es eine Spektralsequenz
{EP% d,} mit EY?=Torp(h*X, h*Y)"*%und EfY, @ EX 9= gr, h*(X A Y).

Beweis. Es sei f=1IIjP die zur N-Auflésung von X gehorige Faktorisierung von
0—ZVX. Betrachtet man den Kompositionsfunktor {79, wi}={A"*1( A Y), V" "9,
so erhilt man [vgl. 7] aus der Faktorisierung f=II;* ein Rees-System mit zugehoriger
Spektralsequenz {EP %, d,}. Es folgt in der Schreibweise von [7]

EP=TI(j) = AN*(ZV"PF, A Y) 2 h*"4(F, A Y)

Dabei wurde verwendet, dass Cof(j7)x=ZN~ "F ist. Das Differential df"?:E{"—
—EP~12*1 wird induziert durch
(Fpoy AY22L Y AYZALE A Y)=(F,oy A YZ2LF, A Y),

sodass man ein kommutatives Diagramm erhilt
EP? = BPY(F, A Y) L2 B YR, A Y)x EPT R

1 =i
(F*F, @ Jhi* Yy’ 9 —28L |, (B*F,_, @ Jh*Y)'*

R

=
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Gemiss Lemma 1 sind die vertikalen Pfeile natiirliche Isomorphismen, denn A*F,
ist flach fiir alle k. Also sind die Komplexe {E!"% df"?} und {(A*F,@h*Y)"*q,
(0k®1)P*9} isomorph. Weil {h*F,, d;} eine flache Auflssung von A*X ist, folgt

p>-p

E}?=KerdyImd}™ 97! = Ker (0 ® 1)’ Im (05, ® 1)’ ¥ =
~ Tor, (A*X, h*Y)?*1

Fiir p¢[0, N] ist offensichtlich EZ’?=0, denn h*X besitzt eine flache Auflssung der
Linge N (d.h. w.dim,A*X<N). Hieraus folgt Ey,.,~E,, weil der Grad von d,
gleich (—r, 1) ist. Schliesslich folgt aus der Endlichkeit der Faktorisierung von f,
dass EZ 9 gr, T9(f)=gr, " " 1(EZ"X A Y)=gr, i1 (XA Y).

9. KOROLLAR 3. Besitzt X eine N-Auflosung fiir ein gewisses N und ist
Tor’y (h*X, h*Y)=0 fiir p>1, so gilt die Kiinneth-Formel

0->(R*X @, h* Y SR (X A Y)> Tory (B*X, B*Y)"" ' 50

Beweis. In der Spektralsequenz des Satzes von § 8 ist E}*?=Tor’ (A*X, h*Y)=0
fiir p¢[0, 1]. Somit sind alle Differentiale d, gleich O fiir 7 > 2 und mithin E} 1> E2 1~
~gr, h*(X A Y). Man erhilt also eine exakte Sequenz 0—E3" “5h%(X A Y)—E} 10
und verifiziert leicht, dass der Homomorphismus i mit dem Produkt j {ibereinstimmt.

IV. Einige Beispiele

Besitzt X eine 1-Auflosung, so ist w.dim,, h*X <1, und die Voraussetzungen von
Korollar 3 sind somit erfiillt. Umgekehrt folgt aus w.dim,h*X<1, falls es eine
Abbildung i:X—F, gibt mit i*:h*Fy—h*X surjektiv und A*F, flach, dass X eine
1-Aufldsung besitzt, nimlich: 0—h*F, »h*F,— h*X—0, wobei F, die Cofaser von i
bezeichnet.

10. LEMMA 3. Besitzt X eine 1-Auflosung beziiglich der gewohnlichen Cohomologie:
0—H*F,»H*Fy—H*X—0, so induziert die zugehirige Cofaserung X-FyF, eine
1-Auflosung beziiglich jeder ausserordentlichen Cohomologietheorie h deren Koeffi-
zientenring h*S° torsionsfrei ist.

Beweis. Es ist zu zeigen, dass 0—A*F,&5h*F,%h*X—0 eine flache Aufldsung
des i*S°-Moduls i*X ist. Nach Lemma 2 sind i*F, und i*F, frei, denn die Gruppen
H*F, und H*F, sind frei (endlicherzeugte flache Z-Moduln), und #*S° ist nach Vor-
aussetzung torsionsfrei. Die Abbildung o* ist genau dann surjektiv, wenn f* injektiv
ist, weil X-%F, & F, eine Cofaserung ist. Aber f*®Q: h*F,® Q—h*F,®Q ist injektiv,
denn h*®Q ist gewdhnliche Cohomologie [6, Satz 10.8]. Folglich ist auch g* injektiv,
denn A*F, ist torsionsfrei.
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Beispiel. Man verifiziert leicht, dass die Voraussetzungen von Lemma 3 erfiillt
sind, wenn man fiir # die komplexe Cobordismentheorie QU wihlt und fiir X z.B.
einen Moore-Raum oder einen Linsenraum (speziell : einen reellen projektiven Raum)

Nach Atiyah [2] gibt es zu jedem X eine Cofaserung X-—»F o—F; 1 mit i * KU Fo-»
SKU*X surjektiv und H*F, frei. Daraus folgt, dass 0-KU* F1—+KU Fo-—>KU X—

—0 eine 1-Aufldsung ist, denn KU*S°=KU°S°@KU'S® =~ Z. Somit gilt fiir die
KU-Theorie die Kiinneth-Formel. Hieraus kann man eine Kiinneth-Formel fiir die
KO-Theorie erhalten, wenigstens modulo 2-Torsion.

Es bezeichne Z[x]/(2x—1)=~Z[}]=Q den Teilring der rationalen Zahlen, er-
zeugt durch 4. Dann sind fiir eine Abelsche Gruppe 4 Kern und Cokern der natiir-
lichen Abbildung 4—A®Z[3}] offensichtlich 2-Gruppen.

11. KOROLLAR 4. Fiir die Zg-graduierte Cohomologietheorie Ko* ()®Z[1]
—K02 gilt die Kiinneth-Formel

0 (KO¥X ® ,KOZY) » KO%(X A Y)— Tor} (KO X, KOZY)"* ' >0

Beweis. Wnr betrachten die oben beschriebene 1- Auﬂosung bez. der KU-Theorxe
0—-KU* F1—+KU Fo——>KU X—-0, mit H*F, frei. Ferner sei KU* ()®Z[]= KU2
Dann ist das folgende Diagramm kommutativ

0 > KOY(F,) - KO3 (F;) - KO3 (X) - 0
cife cife c{fe (D)
0— KU3(F;) - KU3(Fo) » KU3(X) >0

Die untere Zeile ist exakt, denn Z[4] ist ein flacher Z-Modul. Bezeichnen ¢ und ¢
die durch Komplexifizierung und Reellisierung induzierten Homomorphismen, so
ist gc=21Id ein Isomorphismus, denn eZ[4]. _Die obere Zeile im Dlagramm (D)
ist folglich auch exakt. Wegen KO°(ZiX)= KO~ i(X) folgt, dass 0—KO} (F)-
—KO? (Fo)—->K02 (X)—0exakt ist. Es bleibt zu zeigen, dass dies eine flache Auflsung
ist. Da man natiirlich die multiplikative Struktur in K02 definiert mittels jener von
KO*, erhilt man fiir den Koeffizientenring 4=KO7 (S°) = K0* (S°)®@Z[}] =
=(Z[x, yJ/(x* -4, 2, xy, Y’)QZ[}]=(Z[3]) []/(z*—4)=Z[3] x Z[}]. Nun ist
H*F, frei und ANZ[%] x Z[%] torsionsfrei, sodass aus Lemma 2 folgt, dassKOZ (Fo)
frei ist. Somit ist KOZ (F,) projektiv, denn gl.dim(Z[3]x Z[3])=gl.dim Z[3]=1.

Bemerkung. R. Wood hat gezeigt, dass der Homomorphismus /i: KO*X ® AKO# Y
~Ko0* (X A Y) nicht immer injektiv ist (man wihle X=Y=CP?). Aus Korollar 4
folgt, dass der Kern von ji eine 2-Gruppe ist.

Das folgende Beispiel soll zeigen, wie man N-Auflosungen konstruieren kann.

12. KOROLLAR 5. Ist der komplexe Cobordismenring QU*X ein A-Modul von
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endlichem Typ und ist w.dim AQNU*X <2, so gilt fiir alle Y die Kiinneth-Formel
0 (QU*X ® , QU*Y)! - QU (X A Y) - Torf(QU*X, QU*Y)** ' - 0

Beweis. Bezeichnet MU = {MU (1), ZMU (1), MU (2),...} = {4(2), A(3), ...}
das Thom-Spektrum (mit den evidenten Abbildungen XA (n)—>A(n+1)), so ist
QU*X ~11m [Z'X, A(k+r)]. Da A(k)(k—1)-zusammenhingend ist, gilt fiir ge-

niigend grosses r: QUAX =[2"X, A(k+r)]. Man kann also ein Erzeugendensystem
Fisees [ des A-Moduls QU*X finden, des reprisentiert wird durch Abbildungen
fi:ZX—>A(n; +r) Diese Abbildungen definieren natiirlich auch ein Erzeugenden-

system von QU*Z'X. Es sei nun V=114 (ni+r)yund v=(f,..., fn): 2" X—V; dann ist
v*:QU*V—>QU*Z'X surjektiv nach Konstruktion. Man iiberlegt sich leicht, dass ¥
derart durch einen endlichen CW-Komplex ¥ approximiert werden kann, dass v=s00:
I X5 VSV ist, mit freiem H*V. (Man approximiere MU (n) durch den Thom-Raum
des 2N-universellen U (n)-Biindels iiber der Grassmannschen Mannigfaltigkeit
U(N)/U(n) x U(N-n) etc.). Es folgt, dass 7*:QU*P—QU*Z"X surjektiv ist. Wegen
Lemma 2 ist QU* ¥ frei, denn A =QU*S® ist torsionsfrei und H*V ist frei. Bezeichnet
W die Cofaser von , so ist 0 QU* W— QU*V'— QU*Z'X —0 eine flache Auflosung
von QU*Z'X denn nach Voraussetzung ist w.dim AQU*E'X =w.dim AQU*X <2.

Gemiss Korollar 3 gilt somit die Kiinneth-Formel fiir 2”X und mithin auch fiir X.

V. Anhang

L. Hodgkin hat mit dhnlichen Methoden eine Kiinneth-Formel fiir die dqui-
variante K-Theorie bewiesen [8] und hat eine interessante Verallgemeinerung der
Eilenberg-Moore-Spektralsequenz erhalten [9]. Diese gestattet es, in gewissen
Fillen die ausserordentliche Cohomologie eines Faserproduktes mithilfe einer Spek-
tralsequenz vom ,,Kiinneth-Typ* zu berechnen.*)
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