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Foliations on Open Manifolds, II

by Anthony Phillips

1. Introduction

Consider an w-dimensional smooth Riemannian manifold M which is open (i.e.
has no compact components) and on M a field a of tangent fc-planes. This note gives

a sufficient condition for a to be homotopic to an integrable field. The condition is

stated in terms of the complementary ^r-plane field a1 (q n — k), which we may
consider as a #-dimensional subbundle of TM, the tangent bundle of M.

THEOREM : If the structural group of a1 can be reduced to a discrète group,
then g is homotopic to an integrable field.

REMARKS : This theorem was suggested by the following resuit of Ehresmann

([1, p. 38], [2, p. 364]): Let NaM be an embedded submanifold; then N is a leaf
of a foliation of a neighborhood of N in M if and only if the structural group of the

normal bundle of N in M can be reduced to a discrète group. It gives a partial answer
to a question posed by Reeb [7], Haefliger [2] and Thomas [8]. Since the one-dimen-
sional orthogonal group is discrète, this gives a simpler proof of [6], Theorem 1.2:

every (« — l)-plane field on M is homotopic to an integrable field. The restriction to

open manifolds allows the use of submersion theory.

The proof of this theorem is given in the next two sections ; the last section contains
an example.

Early drafts of this note contain a much more restricted theorem. I am very grateful
to André Haefliger for pointing out this généralisation.

2. Proof of Theorem

Let i(f be the universai cover of Af, with p:fiï-*M the projection, and dénote by
a:iCf->M the covering transformation corresponding to the élément a of the funda-
mental group n of M. We will use the notation a* : TÀÏ->Tiïï, etc., for the differential
of a: fiî~+fii, etc. A field t of tangent planes on J$î satisfying

a*T r for aen (*)

projects on M to a field p+% which is integrable if and only if t is. The fields <r, aL

are lifted up by p to fields p*a, p*oL on i0 satisfying (*). Let us give iGf the Riemannian
metric pulled back from Mbyp; then p*al=(p*<y)1.
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The universal covering p:$[-+M is a principal bundle over M with group n. The
bundle a1, having discrète structural group, is isomorphic to MxrRq, the #-plane
bundle associated top\$l-*M by a représentation r:n-*O(q). (Compare [3], Lemma
1.) To simplify notation, let ra=r(a). As usual, we construct AÏxrRq by dividing
M x Rq by the relation (x, y)~ (oc(jc), ra(y)), for aen. Let <p:<jx-+]M xrRq be the iso-

morphism, and p;Mx Rq-*M x rRq the canonical projection.
There exists a unique trivialisation $\p*aL-*$/L x Rq making the following square

of bundle maps commute, as can easily be verified.

V

The reason for defining # is to obtain the tangent bundle map H:TJS4-^TRq by the

composition

TRq0 c TRq

(the first map is orthogonal projection, and TRI dénotes the tangent space at the

origin.) This map has kernel kerH=p*a; furthermore it is easy to check that H is

a 7i-equivariant epimorphism in the sensé that H° a^ (ra)H!° H, for aen, and that

LEMMA: The map H is homotopic through n-equivariant epimorphisms to the

dijferential /* of a submersion f:M-+Rq.

This lemma is proved in the next section. It yields the proof of the theorem, as

follows. If Ht is the homotopy, 0<f<l, then kerHt defines a homotopy betweenp*o
and the &-plane field ker(/*), which is tangent to the foliation given by the manifolds

{/=constant}. By equivariance each kerHf satisfies (*), sop*ketHt, O^t^l, gives a

homotopy between a and the integrable field /?*ker(/*).

3. Proof of Lemma

First, following [5], Corollary 1.2, realize M as M= \JfL1 Ui9 an expanding union

of compact manifolds with boundary, such that Uo is an w-disc and either a) Ui+i
retracts into U* through embeddings which leave l/f_2 fixed, or b) l/i+1 is Ut with a

handle of index <n~ 1 attached. We may assume that the/?"1 Ut give a similar
décomposition for f&\ of course now in case b) p~iUi+1 will be p~1Vi with one handle

attached for each élément of n. This can be guaranteed, for instance, by taking neigh-

borhoods of the simplexes of an («- l)-dimensional spine of M (which exists by [9],

Theorem 3.2) in a sufficiently fine triangulation.
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For convenience in indexing, we will parametrize the homotopy by [0, oo]. Let
[/* be one component of p~1U0\ then U* is an «-dise and, by Lemma 2.1 of [5],

H | U* is homotopic through bimdle epimorphisms to the differential/* of a submersion/':

U$^>Rq. Let Vo be an open set containing 17* and such that Fona(Fo)=0
for aen, and let JFf/, fe[0, 1], be a homotopy, fixed outside Fo, between H and a

bundle epimorphism H[ equal to /* on U*. Such a homotopy, through bundle
epimorphisms, exists by [5], Lemma 5.1. A rc-equivariant homotopy Ht:TAÏ-+TRq9

0^/<l, is now defined by Ët — H outside p~ip(V0), and Hf|a(x) (ra)*°/J/|x°a* *

for xeV09 and aen. Also ÛQMQfo:p~1Uo^Rq by/0°a(x)= ra°f'(x)9 for xel/o, aerc.
Induction hypothesis: between f 0 and t k we hâve deformed // through

7r-equivariant epimorphisms to a map Hk which over /?~1L/fcis the differential of a
submersion fk. Observe that the déformation between k and k H-1 will leave this map
fixed on p~1Uk-2- The induction step will thus imply the existence of a well-defined

homotopy, since for any xep~1Uk9 Ht\x Hk+2\x for t^k + 2.

Proof of induction step: cases a) and b) must be distinguished. In case a) there is

a homotopy ht, te [0, 1], of embeddings of Uk+l in itself, joining the identity map of
Uk+1 to h1:Uk+l-^Uk9 and such that each ht is the identity on Uk-2. Covering this
homotopy defines a unique similar homotopy htonp~1Uk+l. Let/fc+1 =fk° hv Extend
the homotopy (ht)% : TUk+1-+TUk+i to a homotopy of bundle epimorphisms Lt:TM-+
-+TM (see [5], Lemma 5.1); cover this homotopy to define Lt:TM^TM9 and finally

In case b), let Uk+1 be one of the components ofp~1Uk+1—p~1Uk, It foliows from
the proof of [5], Lemma 6.2 that Hk | U*+1 is homotopic through epimorphisms fixed
near p~1Uk to/^, wherz f':Uk+1^>Rq is a submersion extending/fc. Proceed as in
the case k 0 to define fk+l and a homotopy from Hk to Hk+l satisfying the induction
hypothesis.

4. An Example

Consider the punctured projective space P6 — x. This manifold is doubly covered
by S5 x R. On S5 x R the 2-plane field spanned by v (the pullback of a non-zero
vectorfield on P5 via the projections S5 x R^S5^P5) and w=ô/dt is invariant under
the antipodal map and so defines a 2-plane field on P6—x. This bundle clearly has
discrète structural group; it now foliows that P6 —x has a 4-dimensionai foliation.

The existence of such a foliation cannot be directly deduced from submersion
theory, for the following argument shows there can be no submersion from P6 — x to
a 2-dimensional manifold M. Such a submersion/would split T(P6 — x) as rç2©£4,
where rj=f*TM. Note first that for i^5 the /th Stiefel-Whitney class [4] ofP6-x is

Wi{P6-x)=a\ where a générâtes H1(P6-x; Z2)=Z2. The équation w5(P6-x)
H>1rç w4Ç + w2rj w3Ç shows that wtf and w2rj cannot both beO. Suppose w^ ^ 0, that
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is w1f/ a. This would imply a3 w1(/*rM)3=/*(w1rM)3 0. Similarly w2rj=£0 is

also impossible.
Finally, note that the 2-plane field spanned by v and w on S5 x R is integrable, and

thus projects to give an integrable 2-plane field on P6 — x. This manifold therefore
carries foliations of dimensions 1 (integrate a non-zero vectorfield), 2, 4 and 5 (see

the Remarks in § 1). On the other hand, a straightforward argument with Stiefel-

Whitney classes shows that there can exist no 3-plane field on?6-jc.
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