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Foliations on Open Manifolds, 11

by ANTHONY PHILLIPS

1. Introduction

Consider an n-dimensional smooth Riemannian manifold M which is open (i.e.
has no compact components) and on M a field o of tangent k-planes. This note gives
a sufficient condition for ¢ to be homotopic to an integrable field. The condition is
stated in terms of the complementary g-plane field 6 (g=n—k), which we may con-
sider as a g-dimensional subbundle of TM, the tangent bundle of M.

THEOREM_: If the structural group of o' can be reduced to a discrete group,
then o is homotopic to an integrable field.

REMARKS: This theorem was suggested by the following result of Ehresmann
([1, p. 38], [2, p. 364]): Let Nc M be an embedded submanifold; then N is a leaf
of a foliation of a neighborhood of N in M if and only if the structural group of the
normal bundle of N in M can be reduced to a discrete group. It gives a partial answer
to a question posed by Reeb [7], Haefliger [2] and Thomas [8]. Since the one-dimen-
sional orthogonal group is discrete, this gives a simpler proof of [6], Theorem 1.2:
every (n— 1)-plane field on M is homotopic to an integrable field. The restriction to
open manifolds allows the use of submersion theory.

The proof of this theorem is given in the next two sections; the last section contains
an example.

Early drafts of this note contain a much more restricted theorem. I am very grateful
to André Haefliger for pointing out this generalisation.

2. Proof of Theorem

Let M be the universal cover of M, with p: M — M the projection, and denote by
a:M— M the covering transformation corresponding to the element a of the funda-
mental group = of M. We will use the notation «,, : TM—TM, etc., for the differential
of a: M— M, etc. A field 7 of tangent planes on M satisfying

a,T=1 for aem (*)

projects on M to a field p,t which is integrable if and only if 7 is. The fields o, o*
are lifted up by p to fields p*o, p*o* on M satisfying (»). Let us give M the Riemannian
metric pulled back from M by p; then p*a* =(p*o)" .
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The universal covering p: M— M is a principal bundle over M with group 7. The
bundle o+, having discrete structural group, is isomorphic to M x,RY, the g-plane
bundle associated to p: M— M by a representation r : 71— O(q). (Compare [3], Lemma
1.) To simplify notation, let r,=r («). As usual, we construct M x,R? by dividing
M x R? by the relation (x, y)~ ((x), r,(»)), for aen. Let ¢:0'—M x,R? be the iso-
morphism, and p: M x R7— M x , R? the canonical projection.

There exists a unique trivialisation @:p*st— M x R? making the following square
of bundle maps commute, as can easily be verified.

p*al —2, M xR?
Ps l 1 p
o —2 M x .R*
The reason for defining @ is to obtain the tangent bundle map H:TM—TR? by the
composition

TM — p*e"—25 M x R12, R? = TRY = TR*

(the first map is orthogonal projection, and TR denotes the tangent space at the
origin.) This map has kernel ker H=p*c; furthermore it is easy to check that H is
a m-equivariant epimorphism in the sense that He o, =(r,)s° H, for aen, and that
rank(H)=gq.

LEMMA: The map H is homotopic through m-equivariant epimorphisms to the
differential f, of a submersion f: M- R4,

This lemma is proved in the next section. It yields the proof of the theorem, as
follows. If H, is the homotopy, 0<¢<1, then ker H, defines a homotopy between p*c
and the k-plane field ker( f,), which is tangent to the foliation given by the manifolds
{ f=constant}. By equivariance each ker H, satisfies (+), so p,kerH,, 0<¢<1, gives a
homotopy between ¢ and the integrable field p ker(fy).

3. Proof of Lemma

First, following [5], Corollary 1.2, realize M as M =| >, U, an expanding union
of compact manifolds with boundary, such that U, is an n-disc and either a) U,
retracts into U; through embeddings which leave U,_, fixed, or b) U,,, is U; with a
handle of index <n— 1 attached. We may assume that the p~! U, give a similar decom-
position for M; of course now in case b) p~1U,,, will be p~1U; with one handle
attached for each element of 7. This can be guaranteed, for instance, by taking neigh-
borhoods of the simplexes of an (n— 1)-dimensional spine of M (which exists by [9],
Theorem 3.2) in a sufficiently fine triangulation.
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For convenience in indexing, we will parametrize the homotopy by [0, co]. Let
Uy be one component of p~'U,; then Ug is an n-disc and, by Lemma 2.1 of [5],
H | Ug is homotopic through bundle epimorphisms to the differential fy of a submer-
sion f': Uy —» R4 Let V, be an open set containing Uy and such that Vona(Vy)=0
for aen, and let H/, te[0, 1], be a homotopy, fixed outside V,, between H and a
bundle epimorphism H, equal to f,, on Ug. Such a homotopy, through bundle epi-
morphisms, exists by [5], Lemma 5.1. A m-equivariant homotopy H,:TM—TRY,
0<<1, is now defined by H,=H outside p~'p(V;), and H,|, = (r.)s H|,° ax*
for xeV,, and aen. Also define f,:p~ U, — R? by fy° a(x)=r° f'(x), for xe Uy, aen.

Induction hypothesis: between t=0 and t=k we have deformed H through
n-equivariant epimorphisms to a map H, which over p~'U, is the differential of a sub-
mersion f;. Observe that the deformation between k and k+1 will leave this map
fixed on p~!U, _,. The induction step will thus imply the existence of a well-defined
homotopy, since for any xep™'U,, H,|,=H,,|, for t>k+2.

Proof of induction step: cases a) and b) must be distinguished. In case a) there is
a homotopy 4, te[0, 1], of embeddings of U, ,, in itself, joining the identity map of
Ui+1 to hy: Ui, — Uy, and such that each 4, is the identity on U,_,. Covering this
homotopy defines a unique similar homotopy k, on p~'U, . ,. Let f; +; =f;° h,. Extend
the homotopy ()4 :TU, +,—TU,,, to a homotopy of bundle epimorphisms L,: TM —
—TM (see [5], Lemma 5.1); cover this homotopy to define L,: TM —TM, and finally
let H,,,=H,° L,, for t[0, 1].

In case b), let U}, ; be one of the components of p " 1U, ,; —p~ 1 U,. It follows from
the proof of [5], Lemma 6.2 that H, | U;%, , is homotopic through epimorphisms fixed
near p~1U, to f,, where f":U; ;—R? is a submersion extending f;. Proceed as in
the case k=0 to define f; ., and a homotopy from H, to H,,, satisfying the induction
hypothesis.

4. An Example

Consider the punctured projective space P®—x. This manifold is doubly covered
by §°x R. On S° x R the 2-plane field spanned by v (the pullback of a non-zero
vectorfield on P* via the projections S° x R—S5—P5) and w=0/0t is invariant under
the antipodal map and so defines a 2-plane field on P®—x. This bundle clearly has
discrete structural group; it now follows that P®—x has a 4-dimensional foliation.

The existence of such a foliation cannot be directly deduced from submersion
theory, for the following argument shows there can be no submersion from P%—x to
a 2-dimensional manifold M. Such a submersion f would split T(P°—x) as n*@¢&*,
where n= f*TM. Note first that for i<5 the i™ Stiefel-Whitney class [4] of P®—x is
wi(P®—x)=a', where a generates H' (P®—x; Z,)=Z,. The equation ws(P°—x)=
=win w4+ w,on wyé shows that w,n and w,n cannot both be 0. Suppose wyn #0, that



370 ANTHONY PHILIPS

is wyn=a. This would imply a®=w, (f*TM)*= f*(w,;TM)?=0. Similarly w,n#0 is
also impossible.

Finally, note that the 2-plane field spanned by v and w on S° x R is integrable, and
thus projects to give an integrable 2-plane field on P°—x. This manifold therefore
carries foliations of dimensions 1 (integrate a non-zero vectorfield), 2, 4 and 5 (see
the Remarks in § 1). On the other hand, a straightforward argument with Stiefel-
Whitney classes shows that there can exist no 3-plane field on P®—x.
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