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Transplantation harmonique, transplantation par modules,

et théorèmes isopérimétriques

par Joseph Hersch (Ecole polytechnique fédérale, Zurich)

§1. Introduction

Des applications bien connues de la représentation conforme à des problèmes
plans de physique mathématique reposent sur l'invariance de l'intégrale de Dirichlet
lors d'une «transplantation conforme» [9]: Soit Ç(z) une application conforme
(univalente) d'un domaine plan G2 sur un autre G^; la transplantée d'une fonction/(Q,
donnée dans <%, est la fonction f(z)=f(Ç(z)) et l'on a D(J)=D(f), où

/)(/)=JJGç grad2/^ et dA est l'élément d'aire.
Nous allons étudier ici deux extensions de cette transplantation, qui restent

applicables à des domaines de types topologiques différents et de dimensions N, N
quelconques. La première de ces extensions («transplantation harmonique») a été brièvement

annoncée dans une note aux Comptes rendus ([!]; voir aussi [3]); elle permet
de transplanter une fonction ayant les mêmes surfaces de niveau qu'une fonction
harmonique. La seconde en revanche («transplantation par modules») n'est pas
soumise à cette restriction; c'est pourquoi elle peut fournir des bornes inférieures

pour la fréquence propre fondamentale d'une membrane : nous donnerons une nouvelle

démonstration du théorème isopérimétrique de Rayleigh-Faber-Krahn.
Toutes les considérations qui suivent restent valables pour N quelconque; pour

faciliter le langage, elles seront exprimées ici pour N= 3 dimensions.

§2. La «transplantation harmonique»

2.1. Soit G un domaine de l'espace, dont la frontière F se compose de trois parties

Fo, Fl9 Fa. Nous supposons l'existence de la solution h(x, y, z) — h{X) du problème
de Dirichlet suivant:

h ho const sur Fo, h h1= const sur Fx,
ôh/dn 0 sur Ta, Ah 0 dans G.

Soit y une surface, ou un système de surfaces, séparant Fo de Ft dans G: une

«rive» de y est connexe à Fo dans G—y, l'autre «rive» de y est connexe à Ft; soit

d/dn la dérivée normale dirigée vers J\. On sait que le flux JJy ôh/dn dS est indépendant
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de y, donc

oùju /xrori est le «module», C la «capacité», Z>(/î) JJJg grad2/* û?t l'intégrale de

Dirichlet, dx l'élément de volume, dS l'élément de surface.

Soit if/ (h) une fonction de classe C1 dans l'intervalle h0 < h < ht ; que vaut l'intégrale
de Dirichlet /)(/) de la fonction f(X) \l/(h(X))9 XeGl Partageons G par toutes les

surfaces de niveau y^ (h=h) de h ; l'élément de volume peut s'écrire dx dn dS, où
dn est la distance entre les surfaces yfi et yn + dh au point considéré, et dS est sur yh\

G h0 Yfi h0

Le quotient

Hf) i h\lllÂU
D(h) h1~hoj

ho

ne dépend donc que des nombres h0 et hx et de la fonction i//(h).

2.2. Procédons de même pour un autre domaine G, qui n'est pas nécessairement

topologiquement équivalent à G (et peut même avoir une dimension N différente de N).
Décomposons sa frontière F en trois parties Fo, Fu Fa; appelons fi la fonction harmonique

dans G qui vaut h0 sur F0, ht sur Fl9 et dont la dérivée normale s'annule sur Fa.

DÉFINITION. - La fonction f(X) \l/(h(X)) sera appelée la transplantée harmonique

de la fonction f(X) i//(h(X)).
La formule (2) reste valable pour / et h, d'où

D(h) D{h)
En particulier, si D(h) D(h), c'est-à-dire si /ï ju, alors D(/) D(/) et l'intégrale
de Dirichlet est invariante par cette transplantation harmonique.

2.3. Soit G un domaine de l'espace, de frontière F décomposée en Fo et Fa. Nous
supposons l'existence d'une fonction de Green g(X, Q) (X, point variable; Q, point
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fixe dans G), définie par g=0 pour XeF0, dg/dnx=0 pour XeFa, et —Axg=ôQ
(mesure de Dirac au point g). Cette fonction de Green g(X, Q)=h(X), harmonique
dans G —g, jouera le même rôle que la fonction h de 2.1. Soit y une surface, ou un
système de surfaces, séparant Q de Fo dans G, nous avons ici jjydh/ôn dS=l, d'où

par (1), pour une fonction f(X) \j/(h(X%
oo

£(/) \\l/'2dh. (J')
o

Soit h(X)=g(X, Q) une fonction de Green dans un autre domaine G avec f
F0 + Fa, nous pouvons «transplanter»/de G sur G en définissant f(X) ij/(h(X)).

Alors D(/) Z)(/).

2.4. Pour généraliser la notion de «rayon conforme», nous définissons (grâce à

la fonction de Green) le «rayon harmonique» RQ(G; Fo, Fa) d'un domaine G en un

point QeG, relatif à Fo et Fa (F0 + Fa r frontière de G); RQ(G; Fo, Fa) est le rayon
de la boule sphérique BN de même dimension N (par exemple N= 3) que G, de centre
Q, et telle que, avec fo f, Fa vide, gB(X, Q)-gG;ro,ra(X, 0~*O lorsque (Q et Q

restant fixes) \XQ\ |Xg|~>0. (Définition voisine de celle de la constante de Robin.) -
Pour iV=3, ona47rg(J!r, Q) \XQ\~x-Rq1 +o(1).

Le rayon harmonique maximum Â(G; Fo, Fa) est défini par

A(G; Fo, Fa)

Si G est un domaine plan simplement connexe et si F0 F (Fa vide), alors R(G) est

égal au rayon conforme maximum f (G) [9].

2.5. Un LEMME (cf. Carleman [1] et Szegô [11]):
Soit G un domaine borné de l'espace, dont la frontière est formée de n surfaces

fermées F[i}+F[2) + • • • +F^ Ft intérieures et d'une frontière extérieure Fo (Fa vide);
soient VG le volume de G et Vo > VG) le volume de tout le domaine borné délimité par
Fo ; de tous ces domaines G ayant mêmes Vo et VG, le domaine limité par deux sphères

concentriques réalise le Maximum du module ^ ^rori-

Remarque - II est bien connu (conséquence immédiate du principe de Dirichlet)

que le module est une fonctionnelle de domaine monotone; la proposition suivante

est donc équivalente au lemme:
VQ et il étant donnés, VG est un Minimum pour le domaine compris entre deux sphères

concentriques.

Démonstration du lemme. - Nous considérons la fonction h harmonique dans G,
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qui vaut 0 sur Fo et 1 sur Fu et nous partageons G par toutes les surfaces de niveau

pour tout 0< /î^ 1. - D'autre part, le volume infinitésimal compris entre ^ et
vaut \dV\=\lyftdndS=dîi\\yfi\gr2L&h\~1 dS\ donc, par l'inégalité de Schwarz puis
l'inégalité isopérimétrique géométrique dans l'espace,

/T1 \dV\ > àh([[ dsX > dft'(36n)213 7 (fi)4'3, (3)

où V(fi) est le volume de tout le domaine borné délimité par yn; V(0)=Vo; V(l)
V0-VG; \dV\ -(dV/dfï) dfi; donc, par (3), - F"4/3 dV^(36n)2/3 /i </fi; d'où en

intégrant (k va de 0 à 1):

(^o - ^g)"1/3 - V0-il3 > i(36n)2/3 ^ (48;r2)"3 p.

On a l'égalité dans le cas de deux sphères concentriques Fo (rayon Ro, V0=4nRl/3)
et A (rayon Ru V0-VG=4^/3): o/o» (48rc2)-1/3 [(Fo-Fc)-1/3-^" 1/3]

Remarque. - Le lemme et sa démonstration restent valables si l'on admet que
r0 soit formée de plusieurs surfaces fermées (dont l'une est la frontière extérieure);
les volumes séparés de G par les composantes intérieures de Fo ne doivent alors pas
être comptés dans Vo. (Ce cas peut être considéré comme cas limite du précédent: on
peut relier entre elles les diverses composantes de Fo par des «tuyaux» minces.)

2.6. Le LEMME analogue, relatif au rayon harmonique maximum:
De tous les domaines G de l'espace, de volume VG donné et dont la frontière Fo

consiste en une ouplusieurs surfacesfermées, la sphère a le plus grand rayon harmonique
maximum À.

En d'autres termes: FGS*(4/3) nÂ(G)3.

Remarque heuristique. - Ce lemme peut être considéré comme un cas limite du
précédent, J\ étant une sphère infinitésimale.

Démonstration. - Soit QeG tel que RQ(G)=À; lorsque X-*Q, la fonction de Green
Q) est de la forme 4ng(X, Q) \XQ\~1-A~1 + o(l). Soit VK le volume du sous-

domaine GK= {XeG | 0<g(X, Q)<K}; le module de GK vaut K; donc, par le lemme
de 2.5, VK est au moins égal au volume compris entre deux sphères concentriques de
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rayons Ro et RK<R0, la sphère extérieure ayant le volume VG et le module étant K:
(4/3) nRl VG9 (4nRK) "* - (4ttJR0)"x K; VG- VK ^ 4tlR|/3, donc // existe un point X
tel que \XQ\^RK et g(X9 Q)^K.

Par la définition de A=RQ(G),

V 3 y, g(X,Q)>U1^
8>o r x 4n \\XQ\ R

\XQ\<r

choisissons ^=(47ir)~1 ~(48tc2Fg)"1/3, alors i?K==''; 3JTtel que |Zg| ^r et

K + (48;r2FG)-1/3 - (4tt^)-1 - g;

pour tout e>0, on a donc (47i^)"1>(487i:2FG)"1/3-£, donc VG^4nR3/3.

2.7. Extension du théorème isopérimétrique k^^jl de Pôlya-Szegô [9].
Nous considérons le problème de la «membrane vibrante à TV dimensions»:

0 dans le domaine G et w=0 sur la frontière F.

THÉORÈME. - Parmi tous les domaines G à N dimensions admettant une fonction
de Green, la boule sphérique BN réalise le Maximum de 2%È(G)2.

Démonstration (exprimée ici pour N= 3). - Soient Q le centre d'une boule sphérique

B=BN de rayon R È(G); Q un point de G où RQ(G) R(G); w1(Z) iA(gB(X, Q))

la fonction propre fondamentale de B; sa «transplantée» U(X) \j/ (gG(X, Q)) s'annule

sur T, elle est admissible pour le principe de Rayleigh dans G:

G

on va montrer que ce quotient de Rayleigh est

En effet, D(t/)=2)(w1) (cf. 2.3); d'autre part, le sous-domaine Ô= {X \ gG(X, Q)>g}
a la fonction de Green g$(X, ô)=£g(^ 0-"& donc le rayon conforme maximum

i^Ô)^i?Q(Ô), où (cf. 2.4) *G(Ô)^ ^
du lemme 2.6 (cas N=* 3), son volume V$ ^ (4/3) tt^(Ô)3 > (4/3) n [R(G) "1 + Ang] ~ 3

VB9 où Ê est la boule de rayon Ê dans laquelle gfl(J?, Q)> g; en effet, ^ est

déterminée par
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La fonction ^ étant monotone croissante,

V^= J vâd[_rm> J
c /-o gA=o B

Ainsi s'achève la démonstration (ici pour iV= 3) de l'inégalité isopérimétrique A? < AfN.

Remarque. - Nous avons utilisé ci-dessus R(ô)^RQ(ô); en fait, on a l'égalité, ce

qui est un corollaire de la suradditivité des modules.
Pour N=3 dimensions, on a XB1i Tt2jR2, donc

A?À2(G)<te2. (4)

2.8. Application de (4) à quelques domaines dont on connaît Àl :

(a) Parallélépipède rectangle de côtés a, b, c: Ài n2(a~2 + b~2 + c~2), d'où
R~2^a-2 + b~2 + c-2, soit iU3"1/29K_2(0; b; c). ([4], pp. 12 ss.)

Comparaison: le lemme 2.6 donne A3^3abcj4n, soit ^<(3/4tt)1/3 $Jlo(a;b; c),

qui est plus faible car (3/4tt)1/3~0,620>0,577- 3~1/2 et 9Jto^9Ji-2-

(b) Cas particulier a b c (cube): At 3n2/a2, d'où JÎ< 0/^/3 ^0,57735*.
[Comparaisons: l'inégalité grossière de monotonie donne È>0,5a; le lemme 2.6 donne

(c) Cas limite b c= oo : G est le domaine compris entre deux plans parallèles, de

distance a; Ài n2/a2, (4) donne À^a; la valeur exacte est À a/\n4~0,72135a. On a

donc ici A1i?2 (7r/ln4)2^0,520347i2. On a lieu de conjecturer que c'est, pour les

domaines convexes à trois dimensions, la plus petite valeur possible de ^k2. [De
façon analogue, Pôlya et Szegô ([9], p. 17) ont conjecturé que, parmi les domaines
convexes plans, la bande infinie réalise le Minimum de À1r2 (r=rayon conforme
maximum).]

(d) Cylindre de révolution infini, de rayon R : Àt =jllR2, (4) donne donc A < nRjjQ ca

(e) Cylindre de révolution tronqué (rayon R, hauteur H) : Xt =jl/R2 + n2jH2, d'où

R~2>JÏn-2R-2 + H-2, soit À^3-lf2m-2(y/2nRlJ0; JlnRlh\ H).
Comparaison : le lemme 2.6 donne R3 < 3R2Hj4, soit A < (3/o/8;i2)1/3 SDÎ0 /

\/2nRlj0; H) qui est plus faible, car (3/^/8ti2)1/3^0,603>0,577^3"1/2 et
([4], pp. 12 ss.)

(f) Cas particulier H=2R: Nous obtenons ^<(y^-2 + 0,25)
[Comparaisons: l'inégalité grossière de monotonie donne A>R; le lemme 2.6 donne
^(3/2)1/3 H~ 1,145/*.] [Par le théorème de Rayleigh-Faber-Krahn, le lemme 2.6
est toujours plus faible que (4).]
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Inversement, la connaissance de À (ou d'une borne inférieure) fournira une borne
supérieure pour Ax.

2.9. Extension d'une propriété isopérimétrique des membranes rectangulaires [5, 6].
Considérons un domaine G (dimension N quelconque) de frontière F Fo 4- Ft + Fa

(r0, Fl9 Fa disjointes). Nous supposons qu'il existe une fonction harmonique h dans
G telle que A 0 sur F09 h=l sur Fu dh/dn 0 sur ra9 et que l//zrori =£>(/*)<oo. -
Soit donnée dans G une «répartition de masses» q(x19..., xn) q(X); masse totale
M=$GgdT. - Considérons dans G deux problèmes de «membranes vibrantes
inhomogènes»:

Au + Xqu 0 dans G, avec

0) u=0 sur r0, du/dn 0 sur Fl et Ta; première valeur propre Aro;

1) w=0 sur r1? du/ôn=0 sur Fo et Ta; première valeur propre Xri.

Alors

tâ *rJn2. (5)

Cette inégalité est isopérimétrique: on a l'égalité notamment avec g const pour
tout cylindre (ou prisme) tronqué droit, de faces opposées Fo et Ft. - Elle a d'abord
été démontrée à l'aide de la représentation conforme [5, 6] pour les «quadrilatères»
et les domaines doublement connexes dans le plan.

Démonstration de (5). - La fonction fo(X) $in[nh(X)l2~] est admissible pour le

principe de Rayleigh caractérisant Âro;f1(X) cos[nh(X)l2'] pour celui caractérisant

XFi; partageons G par les surfaces de niveau y^(A= îi) de h, nous obtenons

=f1

«=0 yR

1 %H f
^L/iJ ^ J

Remarque. - Pour les problèmes correspondants à 1 dimension dans l'intervalle
0 <x < 1, nous avons la fonction harmonique K=x et les fonctions propres fondamentales

«O sin(7dc/2) sin{nî%j2) et û1=co$(nxl2)=cos(nfil2); les fonctions f0 et /i
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utilisées dans la démonstration sont précisément les transplantées harmoniques de û0

et wx (cf. 2.2).

§3. La «transplantation par modules»

3.1. La transplantation harmonique (§2) s'applique à des fonctions ayant les

mêmes lignes de niveau qu'une fonction harmonique, ce qui est une forte restriction.
Pour transplanter des fonctions n'ayant pas cette propriété, nous remarquons que
nous n'avons pas utilisé complètement Vharmonicité de h\ Nous avons utilisé (en 2.1)

que le flux JJ dhjdn dS est le même pour toutes les surfaces de niveau yH de h; tandis

que l'harmonicité de h est équivalente à cette propriété pour toute surface y. - On
voit donc que, à l'aide de 2.1 et 2.2, nous saurons transplanter une fonction/(X)
(de classe C1) dans G, constante sur JT0, constante sur Fl9 et de dérivée normale nulle

sur Fa, pourvu que nous sachions construire une fonction h(X) dans G, ayant les

mêmes surfaces de niveau yn (h=fï) que f(X) et dont le flux \\yh ôh(X)/ôn dS soit
indépendant de h. - Le problème de 2.1 est donc modifié ainsi: On donne de nouveau
h0 et hl9 mais on impose, en lieu et place de l'harmonicité, toutes les surfaces de

niveau yH de h, et la condition j$Yfi dhjdn dS=comt. Appelons k cette constante. La
fonction h est complètement déterminée : c'est le potentiel électrostatique en présence
des «conducteurs parfaits» y^. Il est clair que la différence dfi des valeurs de h sur
deux conducteurs voisins y^ et 7/; + ^ est proportionnelle au module infinitésimal
(résistance électrique)

- [m- D'°WT ' [âpdS]

On peut imposer deux des trois nombres h0, hl9 k, la constante k (l'intensité) est

proportionnelle à la différence h^—hç. Sans aucune restriction essentielle, nous
choisirons dans ce travail ho 0 et k— 1, ce qui détermine hv

Nous avons donc

et, en désignant par yx la ligne de niveau passant par le point X,

h(X)
r0

nous introduisons la notation fi~ (X) (au lieu de h{X)\ et nous dirons «le module au
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point X» pour désigner cette fonction ainsi définie dans G. Le signe - dans \i~ veut
rappeler que, par suite de la suradditivité des modules, \i~(X)=n~(yx)^Mroyx: *1 ne

faut pas confondre fi~ J dp et \i.

La fonction cherchée est ainsi simplement le «module» h(X)=fi~ (X). On va vérifier
qu'elle a bien la propriété voulue.

3.2. THÉORÈME. - Leflux du «module» à travers chaque surface de niveau vaut 1.

Démonstration. - Considérons deux surfaces de niveau voisines y et $ ; fi^y d\i d\i " ;

dn(X) est la distance d'un point Xef à y; par 3.1, nous avons

Remarque. - Si Tx se réduit à un point, le «module» jâ (X) varie en général
de 0 à +oo. Ce n'est pas une fonction harmonique, mais son flux vaut 1 à travers

chaque ligne de niveau: c'est une extension naturelle de la notion de fonction de Green.

3.3. Le «module» fi~(X) ayant les mêmes lignes de niveau que/(JT), on peut
écrire f(X) il/(n-(X))9 d'où (analogue à 2.1 et 2.3):

fl max

f '2

M-=o

"Y ci")

- J ^2(^

Dans le cas 0<^~ <oo (cf. remarque ci-dessus), nous avons

oo

Ai"=0

3.4. Etant donnés: (a) deux domaines G, G (dont les dimensions iV et N ne sont

même pas nécessairement égales), de frontières F=ro + ri + ra et r=f?0 + f1 + rfl;
(b) une fonction/dans G, constante sur r0, constante sur Fl5 et de dérivée normale

nulle sur Ffl;
(c) une fonction F dans G, jouissant des propriétés analogues;

alors nous définissons la transplantée par modules f(Jl) def(X) comme suit:
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\T (X) est définie dans G comme en 3.1, à l'aide des lignes de niveau de/; p." (X)
de même dans G à l'aide des lignes de niveau de F; alors f{X) est de la forme f(X)

[Souvent /w /T (A), /W /T(A).]

DÉFINITION:

Y (6)(^/
\Mmax

On a alors, par 3.3,

/*- max

-3— I I \j/f2
\P-maxJ J

H~=0

)• (2")

En particulier, si fi ~
ax fi

~
ax, e? également ici si tous deux sont infinis, nous définissons

d'où

/>(/) D(/). (2'")

3.5. t/we tfw/re démonstration du théorème de Rayleigh-Faber-Krahn [10, 2, 8, 9]

Ni la transplantation conforme, ni la transplantation harmonique (§ 2) ne peuvent
servir à démontrer ce théorème k^A^nj\. (A est l'aire du domaine, y0^2,4048 le

premier zéro de la fonction de Bessel Jo (x) ; on a l'égalité pour la membrane circulaire.)
En effet, la fonction propre fondamentale ux(X) du domaine plan considéré G (ux =0
sur la frontière F) n'a en général pas les mêmes lignes de niveau qu'une fonction
harmonique. Quand on compare G à une membrane circulaire K, une transplantation
conforme ou harmonique ne peut donc avoir lieu que de K sur G, le principe de

Rayleigh est alors appliqué (à la fonction transplantée) dans G: il ne peut fournir que
des bornes supérieures pour Xx.

En revanche, la «transplantation par modules» permet d'utiliser les lignes de niveau
de ux dans G et de transplanter ut de G sur K.

Le théorème pour Ndimensions est bien connu: De tous les domaines de dimension
N et de JVJ-volume V donnés, la boule sphérique donne la plus petite valeur propre
fondamentale Ax. - La démonstration suivante sera, elle aussi, exprimée pour Af=3
dimensions, mais elle reste valable pour tout N.

Nous avons ici F0 F, Fa est vide, Ft est formée par le point (ou les points) où ut
atteint son maximum. - Dans le domaine G considéré, nous définissons la fonction
M~(X), comme en 3.1, à partir des surfaces de niveau de ut(X). La fonction i// est
définie par u1(Z) ^(^"(X)). - Soit K une sphère de centre Q et de volume VG égal
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à celui de G: son rayon R est donné par 4nR3l3 VG. Le «module» fi~(X) dans K
sera défini relativement aux sphères concentriques, d'où fi~(X) fi(X)
(4n)~1(\%Q\~1 — R~1). [Il est égal à g£g; on a ici Vadditivité des modules.] La
transplantée de Wj (X) est û(X) \l/(p,(X)); w=0 sur la frontière sphérique f de J£ Par (2'"),

H~=0 G n~=0

où rfF est le volume compris entre les surfaces de niveau yM_ et yM- + «/,,- ; soit
le volume du sous-domaine de G où /i~<^; dV/dii" =dV/d^; il suit du lemme 2.5

(Carleman, Szegô) que la dérivée dVjdÇ est, pour chaque £, plus grande que pour
une sphère de volume VG— V(Ç); donc, avec 4nr3/3 VG— V(Ç),

d'où, en intégrant et en tenant compte de F(<î;=O)=O,

\yG - v(or1/3 > (48tt2)i/3 ç + vGi/3 \yG

pour tout { (analogue: 2.5), c'est-à-dire V(Ç)> V(Ol V(Ç ao)=VG= VK= ?(£ oo).

La fonction ^(<^) étant monotone croissante, on a par (7):

oo

$=0 ^=0 K

nous appliquons le principe de Rayleigh à la fonction û(X) dans K:

û2dx

§4. Une interprétation-démonstration des théorèmes de Rayleigh-Faber-Krahn et de

Pôlya-Szegô: comparaison de cordes vibrantes inhomogènes de longueur infinie

4.1. Si nous considérons comme connues les surfaces de niveau de la fonction

propre fondamentale wA (X) d'un domaine G (membrane à N dimensions, à frontière

fixée), le problème de la vibration fondamentale devient équivalent à celui d'une corde

inhomogène de longueur infinie, fixée à son extrémité gauche.
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En effet, le quotient de Rayleigh (avec lignes de niveau yM_ connues) est, par (1"'),

«m=D</) '¦-
/» oo

G J du'

c'est le quotient de Rayleigh d'une telle corde inhomogène, avec la masse spécifique
Q(n~) dV/dn~, \x~ étant simplement l'abcisse. - La masse totale de la corde est

M=J*- =0 q dpi~ VG. - La première valeur propre Àt et la première fonction propre
\j/(li sont les mêmes pour la membrane et pour la corde.

4.2. Interprétation du théorème de Rayleigh-Faber-Krahn.
La comparaison entre une membrane G à N dimensions et une membrane dans

une boule sphérique Bv (N dimensions aussi) de même JV-volume VG se ramène à

la comparaison entre deux cordes inhomogènes (cf. 4.1) d'abcisse jj,~, de masses

spécifiques q(ii~) et q(ii~) respectivement, mais d'égale masse totale M=VG:
1G — ÎQ 2Bv OC

Al ~~A1> Al —Al'
La démonstration donnée en 3.5 peut être interprétée ainsi: en vertu du lemme 2.5

(Carleman, Szegô), on a pour toute abcisse <^:

4 Ç oo oo

q dfi~ §dfi~, donc aussi m(£)= q dfi~ < § d}i~

m(0) M=m(0): on passe de q à q en déplaçant des masses vers la droite. (Il est

intuitif que cela abaisse Xv) - On peut, sans modifier le Minimum du quotient de

Rayleigh, se restreindre aux fonctions ^(ju") positives, monotones croissantes (le
quotient de Rayleigh diminue si l'on remplace partout dij/ par \d^\); pour chaque
telle fonction ij/9

00 00 00 00

J Qt2dn-= J m(É)«/|>2(0]< J m(0dW2(0'}= J S*2 dn~,
n~=o <«=o ç=o n'=o

d>où

J qi]/2 dn~ J
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4.3. Interprétation du théorème de Pôlya-Szegô.
Soit QeG tel que RQ(G) A; on compare la membrane à N dimensions dans G,

modifiée par l'imposition des lignes de niveau de g(X, Q), ce qui fait augmenter Xl9 avec
la boule sphérique Br de rayon À; cela revient à comparer deux cordes infinies de

masses spécifiques q et q; la démonstration donnée en 2.7 peut être interprétée ainsi:

par le lemme 2.6, on a ici m(Ç)>rh(£) (voir 4-2), d'où Â?^ <i? =A?*.

Conclusion

La transplantation harmonique permet de suppléer, dans certains cas, à la
transplantation conforme lorsque celle-ci n'est plus à disposition; tandis que la transplantation

par modules, plus souple, ramène l'étude de fonctionnelles de domaines à celle
des modules déterminés par les surfaces de niveau des solutions inconnues. - L'idée
de la transplantation harmonique est voisine de la méthode de Pôlya et Szegô ([9],
pp. 100-105) consistant à imposer les lignes de niveau.
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Summary

The "harmonie transplantation" allows to extend some isoperimetric theorems,

so far proved by conformai mapping, to higher connectivity and to higher dimensions;

for the first eigenvalue Xt of a membrane, it again can give only upper bounds. - The

"transplantation by moduli" is much more flexible; for example, it leads to a simple

one-dimensional interprétation of the Rayleigh-Faber-Krahn theorem.
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