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354
Transplantation harmonique, transplantation par modules,

et théorémes isopérimétriques

par JosepH HERSCH (Ecole polytechnique fédérale, Ziirich)

§1. Introduction

Des applications bien connues de la représentation conforme a des problémes
plans de physique mathématique reposent sur l'invariance de l'intégrale de Dirichlet
lors d’une «transplantation conforme» [9]: Soit {(z) une application conforme (uni-
valente) d’'un domaine plan G, sur un autre G;; la transplantée d’une fonction f({),
donnée dans G, est la fonction f@=f((@)etlona D(f)=D(f), ol
D(f)=[fg, grad®fdA, et dA est I'élément d’aire.

Nous allons étudier ici deux extensions de cette transplantation, qui restent appli-
cables 2 des domaines de types topologiques différents et de dimensions N, N quel-
conques. La premiére de ces extensions («transplantation harmonique») a été briéve-
ment annoncée dans une note aux Comptes rendus ([7]; voir aussi [3]); elle permet
de transplanter une fonction ayant les mémes surfaces de niveau qu’une fonction
harmonique. La seconde en revanche («transplantation par modules») n’est pas
soumise a cette restriction; c’est pourquoi elle peut fournir des bornes inférieures
pour la fréquence propre fondamentale d’une membrane: nous donnerons une nouvelle
démonstration du théoréme isopérimétrique de Rayleigh-Faber-Krahn.

Toutes les considérations qui suivent restent valables pour N quelconque; pour
faciliter le langage, elles seront exprimées ici pour N=3 dimensions.

§2. La «transplantation harmonique»

2.1. Soit G un domaine de I’espace, dont la frontiére I" se compose de trois parties
ry, Iy, I',. Nous supposons ’existence de la solution A(x, y, z)=h(X) du probléme
de Dirichlet suivant:

h=hy=const sur I'y, h=h,=const sur I,
Oohfon =0 sur T, A4h=0 dans G.

Soit y une surface, ou un syst¢me de surfaces, séparant I', de I'; dans G: une
«rive» de y est connexe & I'y dans G—y, 'autre «rive» de y est connexe a I'y; soit
0/0n la dérivée normale dirigée vers I';. On sait que le flux [, 0h/on dS est indépendant
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de y, donc
1 1
- =4n1C = ——= D(h
H (h1‘“ho)2 ®)

gomeRl L e [

ol p=pr,r, est le «module», C la «capacité», D(h)={[{s gradzh dr lintégrale de
Dirichlet, dt I’élément de volume, dS 1’élément de surface.

Soit y (k) une fonction de classe C! dans l'intervalle h, <A< h, ; que vaut I'intégrale
de Dirichlet D(f) de la fonction f(X)=y (h(X)), XeG? Partageons G par toutes les
surfaces de niveau y;(h=h) de h; ’élément de volume peut s’écrire dt=dndS, ol
dn est la distance entre les surfaces y; et v, 45 au point considéré, et dS est sur y;;

D(f)= HJ-W(M') dn dS = flp'z(ﬁ) dhﬁds_%%jw dh. (1)

Le quotient

D(f) 12
D(h) h, ——hojl'[/ dh @)

ne dépend donc que des nombres h,, et h, et de la fonction y (h).

2.2. Procédons de méme pour un autre domaine G, qui n’est pas nécessairement
topologiquement équivalent a G (et peut méme avoir une dimension N différente de N).
Décomposons sa frontiére I” en trois parties [y, Iy, I",; appelons /i la fonction harmo-
nique dans G qui vaut h, sur Iy, &, sur I';, et dont la dérivée normale s’annule sur [,

DEFINITION. - La fonction f(X)=y (R (X)) sera appelée la transplantée harmo-
nique de la fonction f(X) =y (h(X)).

La formule (2) reste valable pour fet h, d’ou

b(7) _ D). @)

D(h) D(h)
En particulier, si D(h)=D(h), c’est-a-dire si ji=p, alors D(f)=D(f) et l'intégrale
de Dirichlet est invariante par cette transplantation harmonique.

2.3. Soit G un domaine de I’espace, de frontitre I' décomposée en I'y et I',. Nous
supposons ’existence d’une fonction de Green g(X, Q) (X, point variable; Q, point
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fixe dans G), définie par g=0 pour Xel, 0g/ony=0 pour Xel,, et —Axg=94,
(mesure de Dirac au point Q). Cette fonction de Green g(X, Q)=h(X), harmonique
dans G—Q, jouera le méme réle que la fonction 4 de 2.1. Soit y une surface, ou un
syst¢tme de surfaces, s€parant Q de I'y dans G, nous avons ici jjyah/an dS=1, d’ou
par (1), pour une fonction f(X)=y (h(X)),

D(f)= [ an. (1)
0

Soit #(X)=g(X, 0) une fonction de Green dans un autre domaine G avec ['=
=Iy+I,, nous pouvons «transplanter» f de G sur G en définissant f(X) =y (h(X)).
Alors D(f)=D(f).

2.4. Pour généraliser la notion de «rayon conforme», nous définissons (grace a
la fonction de Green) le «rayon harmonique» Ry(G; I'y, I',) d’un domaine G en un
point QeG, relatif & I'y et I', (I +I',=T frontitre de G); Ry(G; I'y, I',) est le rayon
de la boule sphérique By de méme dimension N (par exemple N=3) que G, de centre
0, et telle que, avec [o=T, [, vide, g5(X, 0)—g¢.ro.r.(X, @)—0 lorsque (J et Q
restant fixes) | X 0| =|XQ|—0. (Définition voisine de celle de la constante de Robin.) -
Pour N=3, on a 4ng(X, Q)=|XQ|*— Ry ' +0(1).

Le rayon harmonique maximum R(G; Iy, I',) est défini par

R(G; I, I';) = maxg . g Ro(G; o, Ty).

Si G est un domaine plan simplement connexe et si I['o=T (I, vide), alors R(G) est
égal au rayon conforme maximum 7 (G) [9].

2.5. Un LEMME (cf. Carleman [1] et Szegd [11]):

Soit G un domaine borné de I’espace, dont la frontiére est formée de n surfaces
fermées 'V +T'® 4 ... + T\ =T, intérieures et d’une frontiere extérieure I'y (I, vide);
soient V; le volume de G et V,, (> V) le volume de tout le domaine borné délimité par
I'y; de tous ces domaines G ayant mémes V, et Vg, le domaine limité par deux sphéres
concentriques réalise le Maximum du module p=pr r,.

Remarque — 11 est bien connu (conséquence immédiate du principe de Dirichlet)
que le module est une fonctionnelle de domaine monotone; la proposition suivante
est donc équivalente au lemme:

V, et u étant donnés, Vg est un Minimum pour le domaine compris entre deux sphéres
concentriques.

Démonstration du lemme. — Nous considérons la fonction # harmonique dans G,
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qui vaut O sur I'; et 1 sur I'y, et nous partageons G par toutes les surfaces de niveau
vi (h=h) de h.

i oh oh ch
p =DHh)=||h—dS - h—dS = —dS = |grad h| dS
on on on
Iy o

Iy Yh

pour tout 0< A< 1. — D’autre part, le volume infinitésimal compris entre y; et V54 4
vaut |dV|=[{, dn dS=dh §§y; lgradh|~1 dS; donc, par V'inégalité de Schwarz puis
I’inégalité isopérimétrique géométrique dans ’espace,

2
ptdv) = dﬁ-(” dS) > dh-(36n)* vV (h)*?, (3)
Yk

ot V(h) est le volume de tout le domaine borné délimité par y;; V(0)=V,; V(1)=
=Vy—Vg; |dV|= —(dV|dh) dh; donc, par (3), —V ~*3dV>(36n)*? udh; d’ou en
intégrant (h va de 0 2 1):

(Vo — V)12 — V5 13 > 3 (36n)*° pu = (48723 p.

On a I’égalité dans le cas de deux sphéres concentriques I', (rayon Ry, Vy = 41:R3 /3)
et Iy (rayon R,, Vo—Vgz=4nR}/3): alors (48n%) 13 [(Vo—Vg) V3 =V4 3] =
=(4nR,)"! —(4nRo) ™' =p.

Remarque. — Le lemme et sa démonstration restent valables si I’on admet que
I'y soit formée de plusieurs surfaces fermées (dont 'une est la frontiére extérieure);
les volumes séparés de G par les composantes intérieures de I'y ne doivent alors pas
étre comptés dans V,. (Ce cas peut étre considéré comme cas limite du précédent: on
peut relier entre elles les diverses composantes de I'y par des «tuyaux» minces.)

2.6. Le LEMME analogue, relatif au rayon harmonique maximum:
De tous les domaines G de l'espace, de volume V; donné et dont la frontiére I',

consiste en une ou plusieurs surfaces fermées, la sphére a le plus grand rayon harmonique
maximum R.

En d’autres termes: V;>(4/3) nR(G)>.

Remarque heuristique. — Ce lemme peut €tre considéré comme un cas limite du
précédent, I', étant une sphére infinitésimale.

Démonstration. — Soit QeG tel que Ry(G)= R; lorsque X— Q, la fonction de Green
g(X, Q) est de la forme 4ng(X, Q)=|XQ|~* =R ' +0(1). Soit V le volume du sous-
domaine Gy = {XeG | 0<g(X, Q)<K};le module de Gg vaut K; donc, par le lemme
de 2.5, Vy est au moins égal au volume compris entre deux sphéres concentriques de
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rayons R, et Ry <R, la sphére extérieure ayant le volume V; et le module étant K:
(4/3) TRy =V, (4nRy) ™' —(4nRy) "' =K; Vo— Vi <4nR}/3, donc il existe un point X
tel que | XQ|<Rg et g(X, Q)<K.

Par la définition de R=R,(G),

1 1 1
A ER{CE QP—(@‘}@)‘“

IXQ|<"

choisissons K= (4nr)~ ! —(48n2V;)™!/3, alors Ry=r; IX tel que [ XQ|<ret
gX, Q) <K;

X, ) 1 1 >1(1 1
K>g(X.0)> Q‘i@“ﬁ)‘“z‘n;“ﬁ)‘s

= K + (48n° VG)'”3 —(@nR) ! —¢;
pour tout £>0, on a donc (4nR) ™! > (487%V;)~ /3 —¢, donc Vg =4nR3/3.

2.7. Extension du théoréme isopérimétrique A, 7* <j& de Polya—Szegi [9].
Nous considérons le probléme de la «membrane vibrante &8 N dimensions»:
Au+ 2% =0 dans le domaine G et u=0 sur la frontiére I

THEOREME. — Parmi tous les domaines G @ N dimensions admettant une fonction
de Green, la boule sphérique By réalise le Maximum de 1S R(G)>.

Démonstration (exprimée ici pour N=3). — Soient { le centre d’une boule sphérique
B=By de rayon R=R(G); Q un point de G ol Ry(G)=R(G); # (X)=y (§s(X, 0))
la fonction propre fondamentale de B; sa «transplantée» U(X)=y (gs(X, Q))s’annule
sur I', elle est admissible pour le principe de Rayleigh dans G:

A‘st[U]=D(U)/fff U? dr;

on va montrer que ce quotient de Rayleigh est

<D(a1)/fffaf di =18,
B

En effet, D(U)=D (i) (cf. 2.3); d’autre part, le sous-domaine G= {X | g (X, Q)> &}
a la fonction de Green gg(X, Q)=gq(X, Q)— g, donc le rayon conforme maximum
R(G)=Ry(G), ot (cf. 2.4) Ry(G) " 1=R(G) "' +4ng, R(G) ' <R(G) "' +4ng; en vertu
du lemme 2.6 (cas N=3), son volume V3> (4/3) nR(G)3 >(4/3) n[R(G) ' +4ng] >=
=V, ot B est la boule de rayon R dans laquelle g4(X, 0)> §; en effet, R est déter-
minée par 4ng=R™'— R(G) 1.
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La fonction / étant monotone croissante,

0 [o 0]

”f Utas= [ Vsl @)> fOVﬁd[wz(é)]=flfafdf.

A

A
g:O g=

Ainsi s’achéve la démonstration (ici pour N =3) de Iinégalité isopérimétrique A < AF™.

Remarque. — Nous avons utilisé ci-dessus R(G)?RQ(G); en fait, on a I'égalité, ce
qui est un corollaire de la suradditivité des modules.
Pour N=3 dimensions, on a 13*=nr%/R?, donc

ASR*(G) < 7. 4)

2.8. Application de (4) & quelques domaines dont on connait 4, :

(a) Parallélépipéde rectangle de cotés a,b,c: A =n*(a"*+b"%+c" %), dou
R22a24b724¢72, soit R<3712M_,(a; b; c). ([4], pp. 12 ss.)

Comparaison: le lemme 2.6 donne R®<3abc/4n, soit R<(3/4n)2 My (a; b; ©),
qui est plus faible car (3/4n)!/2>~0,620>0,577~3"12 et M, =M _,.

(b) Cas particulier a=b=c (cube): 4, =3n%/a®, d’ott R< a/\ﬁ ~0,57735a. [Com-
paraisons: 1’inégalité grossiére de monotonie donne R>0,5a; le lemme 2.6 donne
R<(3/4m)'3 a~0,620a.]

(c) Cas limite b=c=o00: G est le domaine compris entre deux plans paralléles, de
distance a; A, =n?/a?, (4) donne R<a; la valeur exacte est R=a/ln4~0,721354. On a
donc ici 4, R*=(n/In4)*~0,520347n2. On a lieu de conjecturer que c’est, pour les
domaines convexes 2 trois dimensions, la plus petite valeur possible de A,R?. [De
fagon analogue, Pdlya et Szegd ([9], p. 17) ont conjecturé que, parmi les domaines
convexes plans, la bande infinie réalise le Minimum de 4,#? (F=rayon conforme
maximum).]

(d) Cylindre de révolutioninfini, derayon R: A, =j2/R?, (4) donnedonc R< R /j, ~
~1,3064R.

(e) Cylindre de révolution tronqué (rayon R, hauteur H): A, =ji/R*+n*/H?, d’ol
R™?2j3n=2R™24 H™2, soit R<3™12M_,(\/2nRljo; /27 R]jo; H).

Comparaison: lelemme 2.6 donne R < 3R*H/4, soit R< (3j5/87%)'* M, (\/ 27R}jo;
\/2nR/jO; H) qui est plus faible, car (3j3/87%)!/3~0,603>0,577~3"12 et M, =M _,.
([4], pp. 12 ss.)

(f) Cas particulier H=2R: Nous obtenons R<(jin~2+0,25)""/2R~1,094R.
[pomparaisons: I'inégalité grossiére de monotonie donne R> R; le lemme 2.6 donne
R<(3/2)'/* R~1,145R.] [Par le théoréme de Rayleigh-Faber-Krahn, le lemme 2.6
est toujours plus faible que (4).]
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Inversement, la connaissance de R (ou d’une borne inférieure) fournira une borne
supérieure pour 4,.

2.9. Extension d’une propriété isopérimétrique des membranes rectangulaires [5, 6].

Considérons un domaine G (dimension N quelconque) de frontiere '=I'y+T'; + 1T,
(I'y, I'y, I', disjointes). Nous supposons qu’il existe une fonction harmonique 4 dans
G telle que A=0 sur I'y, h=1 sur I'y, 0h/on=0 sur I',, et que 1/p;  =D(h)<o0. -
Soit donnée dans G une «répartition de masses» ¢(x,..., xy)=0(X); masse totale
M= ¢ dr. — Considérons dans G deux problémes de «membranes vibrantes in-
homogeénes»:

Au + Agu=0 dans G, avec
0) u=0 sur I'y, Ou/on=0 sur I'; et I',; premiére valeur propre Ar;
1) u=0sur I';, du/on=0 sur I'y et I',; premiére valeur propre Ar,.

Alors
Art+ A0 = 8Mup r,m 2. (5)

Cette inégalité est isopérimétrique: on a 1’égalité notamment avec g =const pour
tout cylindre (ou prisme) tronqué droit, de faces opposées I'y et I';. — Elle a d’abord
été démontrée a I’aide de la représentation conforme [5, 6] pour les «quadrilatéres»
et les domaines doublement connexes dans le plan.

Démonstration de (5). — La fonction f,(X)=sin [nh(X)/2] est admissible pour le
principe de Rayleigh caractérisant A, ; f; (X)=cos [nh(X)/2] pour celui caractérisant
Ar,; partageons G par les surfaces de niveau y;(h= ) de A, nous obtenons

2 p h
D(fo) = 7_:) cos? —n—) grad? h dt
2) ] 2
G

1

=(;f)2 [ cosz(nﬁ)dﬁf—dS—:—D(fl)

o
h=0
1

~1__ 1
I A RUfo] R [f i

SMJ (fo+f1)d7"'—

Remarque. —; Pour les problémes correspondants & 1 dimension dans I'intervalle
0<% <1, nous avons la fonction harmonique i =% et les fonctions propres fondamen-
tales i, =sin (n%/2)=sin(nh/2) et @, =cos(n%/2)=cos(nh/2); les fonctions f, et fi
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utilisées dans la démonstration sont précisément les transplantées harmoniques de i,
et ﬁl (Cf. 2.2).

§3. La «transplantation par modules»

3.1. La transplantation harmonique (§2) s’applique & des fonctions ayant les
mémes lignes de niveau qu’une fonction harmonique, ce qui est une forte restriction.
Pour transplanter des fonctions n’ayant pas cette propriété, nous remarquons que
nous n’avons pas utilisé complétement I’harmonicité de h! Nous avons utilisé¢ (en 2.1)
que le flux [ 0h/on dS est le méme pour toutes les surfaces de niveau y; de k; tandis
que I’harmonicité de 4 est équivalente a cette propriété pour foute surface y. — On
voit donc que, a l'aide de 2.1 et 2.2, nous saurons transplanter une fonction f(X)
(de classe C!) dans G, constante sur I, constante sur I'y, et de dérivée normale nulle
sur I',, pourvu que nous sachions construire une fonction h(X) dans G, ayant les
mémes surfaces de niveau y; (h="h) que f(X) et dont le flux {f ys OR(X)[0n dS soit
indépendant de h. — Le probléme de 2.1 est donc modifié ainsi: On donne de nouveau
ho et hy;, mais on impose, en lieu et place de I’harmonicité, toutes les surfaces de
niveau y; de h, et la condition [f,. 0h/on dS=const. Appelons k cette constante. La
fonction % est complétement déterminée: c’est le potentiel électrostatique en présence
des «conducteurs parfaits» y;. Il est clair que la différence dh des valeurs de 4 sur
deux conducteurs voisins y; et y;.4; est proportionnelle au module infinitésimal
(résistance électrique)

dp = p(dG) = [4nC(dG)] ™" [(dz)z DdG(h)] - [;}E H ggds]—l

k\"' dh .
—dS| =|-—%]) =—, dh=kdu.
([an] =) -5 ara

On peut imposer deux des trois nombres Ay, Ay, k, 1a constante k (I’intensité) est
proportionnelle a4 la différence A, —h,. Sans aucune restriction essentielle, nous
choisirons dans ce travail hy=0 et k=1, ce qui détermine h,.

Nous avons donc

dh = dy

et, en désignant par yy la ligne de niveau passant par le point X,
x
h(X) = f d[l. = #_ (X),
To

nous introduisons la notation x~ (X) (au lieu de #(X)), et nous dirons «le module au
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point X» pour désigner cette fonction ainsi définie dans G. Le signe — dans u~ veut
rappeler que, par suite de la suradditivité des modules, p~ (X)=p" (yx) SHryy,: il ne
faut pas confondre p~ = du et p.

La fonction cherchée est ainsi simplement le «module» h(X)=p"~ (X). On va vérifier
qu’elle a bien la propriété voulue.

3.2. THEOREME. - Le flux du «module» a travers chaque surface de niveau vaut 1.

Démonstration.— Considérons deux surfaces de niveau voisines yet§; py s =du=du~;
dn(X) est la distance d’un point Xe$ a y; par 3.1, nous avons

ou~ 1 1
—dS=d —dS=dp-—=1.
j on #den ”du

A A
v v

Remarque. — Si I'; se réduit a un point, le «module» u~ (X) varie en général
de 0 & + o0. Ce n’est pas une fonction harmonique, mais son flux vaut 1 & travers
chaque ligne de niveau: c’est une extension naturelle de la notion de fonction de Green.

3.3. Le «module» u~ (X) ayant les mémes lignes de niveau que f(X), on peut
écrire f(X) =y (p~ (X)), d’ou (analogue a 2.1 et 2.3):

B "max

* ou~\? ou~
p()- | f w'Z(u-)(g‘;) dn dS = J ¢'2(u")d;rﬂ s
G u~ =0 Yu~
l‘—n{:ax (1")
= | W2 (u") du
w- =0

Dans le cas O<u™ < oo (cf. remarque ci-dessus), nous avons

D)= [ Wrw)au. (")

u-=0

3.4. Etant donnés: (a) deux domaines G, G (dont les dimensions N et N ne sont
méme pas nécessairement égales), de frontieres '=I'y+I'+1T, et F=F,+T, +1,;

(b) une fonction fdans G, constante sur I'y, constante sur I';, et de dérivée normale
nulle sur I',;

(c) une fonction F dans G, jouissant des propriétés analogues;
alors nous définissons la transplantée par modules f(X) de f (X) comme suit:
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1~ (X) est définie dans G comme en 3.1, 4 I'aide des lignes de niveau de f; i~ (X)
de méme dans G a I'aide des lignes de niveau de F; alors £ (X) est de la forme f(X) =

=l//(ﬂ— (X))' [Souvent u;ax=4u~ (Fl)’ ﬁ';laxzﬁ— (fl)']

DEFINITION:
20 Pmax -~
r@® =tz @) ©®
On a alors, par 3.3,
41— max
:umax ’ umax - .umax
p=(2==) [ wronra(Bz)=t=p),
o G max max
Fimax D(f) = onax D(f) - (2
En particulier, $i fi .« = I max> €f €galement ici si tous deux sont infinis, nous définissons
F&X)=y(@E (X)), (6"
d’ou
D(f) = D(f). (2")

3.5. Une autre démonstration du théoréme de Rayleigh-Faber-Krahn [10, 2, 8, 9]

Ni la transplantation conforme, ni la transplantation harmonique (§ 2) ne peuvent
servir 3 démontrer ce théoréme A,4>mj2. (4 est 'aire du domaine, j,~2,4048 le
premier zéro de la fonction de Bessel J,(x); on a I’égalité pour la membrane circulaire.)
En effet, la fonction propre fondamentale #, (X)) du domaine plan considéré G (v, =0
sur la frontiere I') n’a en général pas les mémes lignes de niveau qu’une fonction
harmonique. Quand on compare G A une membrane circulaire K, une transplantation
conforme ou harmonique ne peut donc avoir lieu que de K sur G, le principe de
Rayleigh est alors appliqué (a la fonction transplantée) dans G il ne peut fournir que
des bornes supérieures pour A,.

En revanche, la «transplantation par modules» permet d’utiliser les lignes de niveau
de u, dans G et de transplanter u, de G sur K.

Le théoréme pour N dimensions est bien connu: De tous les domaines de dimension
N et de N-volume V donnés, la boule sphérique donne la plus petite valeur propre
fondamentale A,. — La démonstration suivante sera, elle aussi, exprimée pour N=3
dimensions, mais elle reste valable pour tout N.

Nous avons ici I'y=1T, I', est vide, I'; est formée par le point (ou les points) ot u,
atteint son maximum. — Dans le domaine G considéré, nous définissons la fonction
#”(X), comme en 3.1, 3 partir des surfaces de niveau de u, (X). La fonction ¥ est
définie par u, (X)=4y (1~ (X)). - Soit K une sphére de centre § et de volume V égal
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a celui de G: son rayon R est donné par 4nR3/3=V,. Le «module» i~ (X) dans K
sera défini relativement aux sphéres concentriques, d’ott i~ (X)=/j(X)=

(4m)~*(1XQ)"'—R™"). [Tl est égal & g3; on a ici I'additivité des modules.] La trans-
plantée de u; (X) est #(X)=y (i(X)); =0 sur la frontiere sphérique I de K. Par (2"),

) av

Dy (@) = j V) du” = Do) = 6 mum-f j V)
e Hee (7)
ou dV est le volume compris entre les surfaces de niveau y,_ et y,-4,-; soit V(&)
le volume du sous-domaine de G ou u~ <¢&; dV/du™ =dV/d&; il suit du lemme 2.5

(Carleman, Szegs) que la dérivée dV/d¢ est, pour chaque &, plus grande que pour
une sphére de volume V;— V(£); donc, avec 4nr3/3=V,;—V(§),

av  — 4ar? dr

P 2 -

d¢ =~ —dr/dnr®
d’ou, en intégrant et en tenant compte de V(£=0)=0,

[Ve = VO™ > (4822)2 £ + V5 2 = [Vg = PO

pour tout ¢ (analogue: 2.5), c’est-a-dire V(&)= V(&); V(E=00)=Vy=Vy=F(é=0).
La fonction (&) étant monotone croissante, on a par (7):

= (4nr*)? = (36m)*"% (V5 — V (§)*;

D@=1 [ VOV @ =4 | Vo=V @AW Q]
£=0 =0
<1 f[ — D] AV ()] = 48 f V2 () dP(E) = 1S f f f dt;
£=0

nous appliquons le principe de Rayleigh a la fonctzon #(X) dans K:
D. (i
K (u) < A, 1G.

§4. Une interprétation-démonstration des théorémes de Rayleigh-Faber—Krahn et de
Polya—Szegi: comparaison de cordes vibrantes inhomogénes de longueur infinie

A< R[] =

4.1. Si nous considérons comme connues les surfaces de niveau de la fonction
propre fondamentale u, (X) d’un domaine G (membrane 4 N dimensions, A fronti¢re
fixée), le probléme de la vibration fondamentale devient équivalent 2 celui d’une corde
inhomogene de longueur infinie, fixée a son extrémité gauche.
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En effet, le quotient de Rayleigh (avec lignes de niveau y,_ connues) est, par (1”),

or.i (dl// )2 _
=} du
D(f) _ du

2 av
J‘f dt ~—~¢2 d‘u...
¢ 1

=0

R[f]=

le_
QU
.:I

c’est le quotient de Rayleigh d’une telle corde inhomogéne, avec la masse spécifique
o(u )=dV/du~, u~ étant simplement l'abcisse. — La masse totale de la corde est
M =j';°_ -0 0 du~ =Vg. — La premiére valeur propre 4, et la premiére fonction propre
Y (u"~) sont les mémes pour la membrane et pour la corde.

4.2. Interprétation du théoréme de Rayleigh—Faber—Krahn.

La comparaison entre une membrane G & N dimensions et une membrane dans
une boule sphérique By (N dimensions aussi) de méme N-volume V; se raméne a
la comparaison entre deux cordes inhomogenes (cf. 4.1) d’abcisse u~, de masses
spécifiques o (u ") et ¢(u ™) respectivement, mais d’égale masse totale M =Vj;:
=28, B =),

La démonstration donnée en 3.5 peut €tre interprétée ainsi: en vertu du lemme 2.5
(Carleman, Szeg0), on a pour toute abcisse &:

4 ¢ @
f edu” > f ddu~, doncaussi m(&)= fQ du~ < fg"d,u" = m(&);

g ¢
m(0)=M=m(0): on passe de ¢ a § en déplacant des masses vers la droite. (1l est
intuitif que cela abaisse 1,.) — On peut, sans modifier le Minimum du quotient de
Rayleigh, se restreindre aux fonctions Y (u~) positives, monotones croissantes (le

quotient de Rayleigh diminue si ’on remplace partout dyy par |dy|); pour chaque
telle fonction ,

o

p= =0 p==0

| e = [ m@awrens< [ n@awr@- [ ata.
n==0 £=0 ¢=0 a==0
[yraw (w2 aw
o o ~
R[Y]= > 2 =R[Y]; dot Af=21>1=2}
Jevraw [awran

0 0
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4.3. Interprétation du théoréme de Pélya—Szegé.

Soit QeG tel que Ry(G)=R; on compare la membrane a2 N dimensions dans G,
modifiée par I'imposition des lignes de niveau de g(X, Q), ce qui fait augmenter A,, avec
la boule sphérique Bj; de rayon R; cela revient & comparer deux cordes infinies de
masses spécifiques g et ¢; la démonstration donnée en 2.7 peut étre interprétée ainsi:

par le lemme 2.6, on a ici m(&)=m(&) (voir 4.2), d’ou A9< 18 <l~‘{ =B,
Conclusion

La transplantation harmonique permet de suppléer, dans certains cas, & la trans-
plantation conforme lorsque celle-ci n’est plus & disposition; tandis que la transplan-
tation par modules, plus souple, raméne ’étude de fonctionnelles de domaines a celle
des modules déterminés par les surfaces de niveau des solutions inconnues. — L’idée
de la transplantation harmonique est voisine de la méthode de Pdlya et Szego ([9],
pp. 100-105) consistant & imposer les lignes de niveau.
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Summary

The “harmonic transplantation” allows to extend some isoperimetric theorems,
so far proved by conformal mapping, to higher connectivity and to higher dimensions;
for the first eigenvalue 4, of a membrane, it again can give only upper bounds. — The
“transplantation by moduli” is much more flexible; for example, it leads to a simple
one-dimensional interpretation of the Rayleigh—Faber—Krahn theorem.
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