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Die Extremalitiit gewisser Teichmiillerscher Abbildungen

des Einheitskreises

Von EUGEN BLuUM (Ziirich)
I. Einleitung

In seiner Arbeit [4] {iber quasikonforme Abbildungen hat Strebel Riemannsche
Flichen R vom hyperbolischen Typ mit unendlichem Fldacheninhalt betrachtet und
geometrische Bedingungen dafiir angegeben, dass jede zu ¢=@'? und k, O<k<l,
gehorende Teichmiillersche Abbildung f, extremal oder eindeutig extremal ist, wobei
¢ eine beliebige konforme Abbildung von |Z| <1 auf R ist. Die vorliegende These ist
im wesentlichen eine Fortsetzung dieser Arbeit. Die verwendeten Methoden sind zum
Teil schon in den Arbeiten von Strebel [4, 5] und Sethares [3] enthalten.

In den folgenden Abschnitten betrachten wir einfach zusammenhédngende Rie-
mannsche Flichen R mit unendlichem Flidcheninhalt, die der z-Ebene iiberlagert und
zum Einheitskreis |Z] <1 konform dquivalent sind. @ sei eine konforme Abbildung
von |Z| <1 auf R. Wir bilden die z-Ebene durch die affine Abbildung Fg: w=Kx+iy,
K> 1, auf die w-Ebene ab. Fy erzeugt durch ,,Mitdeformieren* von R eine Fldche Sund
eine K-quasikonforme Abbildung von R auf S, die bis auf Decktransformationen
eindeutig bestimmt ist. Den Punkten der Fliche R mit der Spur z entsprechen dabei
die Punkte auf S mit der Spur w=Kx+iy. Wir zeichnen, falls es mehrere gibt, eine
dieser Abbildungen aus und bezeichnen sie wieder mit Fy. Die Fldche S ist ebenfalls
zum Einheitskreis | W| <1 konform dquivalent. Ist ¥ eine konforme Abbildung von
IW|<1 auf S, so ist ¥~ 'cFgo® eine K-quasikonforme Abbildung von |Z|<1 auf
|W|<1. Wir sagen, die quasikonforme Abbildung F: R— S stimme auf dem Rande
von R mit Fy iiberein, wenn f, =¥ 1cFto® und f=¥ 1. F.® die gleiche Rand-
abbildung induzieren. f; hat die komplexe Dilatation

k= (K—1)8%(K + 1) [&')> = k &'?/|d'|?

ist also eine zum quadratischen Differential ¢ = ®'? gehdrende Teichmiillersche Ab-
bildung, Mit & bezeichnen wir die Familie der quasikonformen Abbildungen von R
auf S, die auf dem Rande mit Fy iibereinstimmen, mit ® die Menge aller quasikon-
formen Abbildungen von |Z|<1 auf |W|<]1, die auf |Z]=1 mit f, libereinstimmen.
Die Abbildung Fe § und die induzierte Abbildung f=¥ !, F.®e ® sind gleichzeitig
extremal oder eindeutig extremal.l)

) ) D.h. Die Abbildung hat die kleinste maximale Dilatation, bezw. ist die einzige mit dieser
Eigenschaft.
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I,={I'}} sei ein beliebiges System von Querschnitten von R, die iiber der Ge-
raden Im z=y liegen: Wier nennen I'} einen Horizontalquerschnitt von R. Mit /()
bezeichnen wir die totale Linge von I',, mit L(y) die Lange des Systems F(I',)=
={F (1";)} A sei eine beliebige Vereinigungsmenge von Systemen I', mit endlichem
Inhalt [A4]. (Im folgenden bezeichnen wir den Fldcheninhalt einer messbaren Menge
G immer mit |G|.) Wir nennen A4 einen Horizontalstreifen. Fiir eine beliebige Ab-
bildung Fe bezeichnen wir mit T(4) die Punktmenge F(4)— Fx (A4).

Wir beweisen nun den folgenden Satz:

SATZ 1. a) Gibt es in R eine Folge (A,) von Horizontalstreifen mit den Eigen-
schaften: lim,,_, , |A,|= o0, lim,_ o, |T(4,)|/|4,]=0, so ist Fx in § extremal.

b) Hat Fe { die maximale Dilatation K und erfiilt (A,) die strengeren Bedingun-
gen: lim,,  A,=R,lim,_, |T(A4,)|=0, so ist F=Fgx-Fg ist also in § eindeutig
extremal.

Beweis. (A,) sei eine Folge von Horizontalstreifen, die die Voraussetzungen a)
erfiillt. F sei eine beliebige Abbildung aus & mit der maximalen Dilatation K. Strebel
[4] hat gezeigt, dass die Enden von Fy(I'}) von den entsprechenden Enden von
F(I'}) fiir fast alle y den Abstand Null haben und dass fiir fast alle y gilt:

Kl(y)<L(y) = f Ip + ql dx (1)
r!’
Dabei ist p=F,, g=F;. Durch Integration und Anwendung der Schwarzschen Un-
gleichung folgt aus (1):

K*|4,” < ( I L(y) dy)2 <

lp + ql ~ @
ﬂ. (Ip1* = IgI?) dx dyﬂl dy < |F(4,) K|4,]
Fiir |F(A4,)| gilt die Abschdtzung:
[F (4,) < K|[4,] + |T(4,) (€)
Aus (2) und (3) folgt: |
K? < KK+ R|T(4,)!/|4, “)

Da lim,,  |T(4,)|/|4,] =0 ist, folgt aus 4): K< K. Fy ist also in & extremal.

Um den zweiten Teil des Satzes zu beweisen, nehmen wir an, F habe die maximale
Dilatation K. Die Ungleichung (2) lisst sich verbessern, wenn man den Integranden
|p+4)%/(Ip|*> —|q|?) genauer abschitzt. Es gilt:

Ip + q1*/(Ip)* = 191*) < K — 2(k — Rex)/(1 — k?) (5)
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wobei kK =g/p die komplexe Dilatation von F ist. (Vergleiche Strebel [5]) Aus (2), (3)
und (5) folgt:

K < 14+ 1T (Kiad - 2 [Je-rebaxar) @
An

Da Rex <|k|<k<1 ist, gilt:

2 ~
[ (k—Rek)dxdy >0 @)
An
Aus (6) und (7) folgt schliesslich die Ungleichung:
2 ~
Osl—?‘[j(k—ReK)dxdy<|T(A,,)l 8)
An
Ist lim,, , A,=R und lim,_, , [T(4,)| =0, so folgt aus (8):
Jf(k—Re%)dxdy=0 9)
R

Es gilt also fast iiberall in R: Rek =k. Aus der Ungleichung k=Re& <|x| <k folgt
schliesslich: k¥ =k fast iiberall in R, wobei k=(K—1)/(K+ 1) die komplexe Dilatation
von Fy ist. Die komplexen Dilatationen von F und Fy stimmen also fast iiberall in R
liberein. Dann haben auch £ und f; fast iiberall in | Z| <1 die gleiche komplexe Dilata-
tion. Daher gilt: f=g.f;, wobei g eine lineare Transformation von |W|<1 ist. Da f
auf |Z|=1 mit f, iibereinstimmt, muss g die identische Abbildung sein und es ist
f=/; und daher F=Fy.

IL. Ein Beispiel

Wir betrachten das folgende schlichte Gebiet G der z-Ebene:
G={z=x+iy|y>|x|* «> 3}

Die affine Abbildung w=Fg(x+iy)=Kx+iy, K>1, bildet G auf ein Gebiet G’ der
w-Ebene ab. Es ist bekannt, dass Fy in & extremal ist. (Vergleiche: Sethares [3].)
Wir beweisen den folgenden Satz:

SATZ 2. Fy ist in § eindeutig extremal.
Beweis. F sei eine beliebige Abbildung aus & mit der maximalen Dilatation K.
I'y ist der Horizontalquerschnitt von G, der auf der Geraden Imz=y liegt. Es gilt:
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I(y)=2y'"*=2y#, B=1/a<3}. Wir betrachten eine Folge (y,), ¥,=>0, lim,_, , y,= o,
und definieren: G,=Gn{Imz<y,}. Da (G,) eine Folge von Horizontalstreifen ist,
die G ausschopft, geniigt es, die Existenz einer monotonen, divergierenden Folge (y,)
nachzuweisen, fiir welche lim,_, . |T(G,)|=0 ist, falls K=K ist. Wir definieren:
d(y)=sup,r, [ImF(z)—y|. Strebel [5] hat den folgenden Verzerrungssatz bewiesen:

VERZERRUNGSSATZ. G sei ein schlichtes Gebiet der z-Ebene. Fe§ habe die
maximale Dilatation K. I'; sei das System aller Querschnitte von G auf der Geraden
Imz=y und /(y) erfiille die Bedingung:

~

I()) SM <o fiir 0<|y—yol <M /KRK.

Dann gilt: d(y,) < M\/ﬁ.
Wir beweisen den folgenden Hilfssatz:

HILFSSATZ 1. Hat F die maximale Dilatation K, so gilt fiir
1-28./KK(y,)f~1>0 die Abschitzung:

2\/k_~i()’o)ﬂ _ M\/K—K

— 1
1-28/KR(yof ™" ®

d(yo) <

Beweis. Wir wihlen y, so, dass 1 —2 ﬁ\/ Ef(yo)” ~1>0ist. Fiir y <y, gilt: I(y) <
<2y8. Fiir 0<y—y,< M\/KI? erhalten wir fiir /(y) die Abschitzung:

1(5) =2y <25+ 2B(rof' ™" (y = yo) S 2)5 +2B(yo)' ' M /KK =M

Fir |y—yol<M \/ KK gilt also: /(y)<M. Aus dem Verzerrungssatz von Strebel
folgt: d(yo)< M. /KK, q.e.d.

Ist G(yo,¥)=Gn{z|yo<Imz<y}, so erhalten wir fir |T(G(y,,»))| die Ab-
schitzung:

y+d(y) Yo ‘
TGOo N <K [ 1man+K [ 100dn
y Yo—d(yo)

< Kl(y +d () d(y) + Ki(yo) d(yo)
Fiir alle geniligend grossen y gilt wegen (1): d (y)<4\/ KR y? <y und daher:
IT(G (o, )| <8-2"K/KRy** + K1(yo) d (o) = Cy** + Cq @
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Da |G (o, »)I =2 = y§*1)/(B+1) ist, gilt:
lim [T (G (o, ¥Y))I/IG (¥, ¥)| = 0.

y— o
Daraus folgt, dass Fy in § extremal ist.

Es sei nun K= K. Wirsetzen M (y)=K[>**?? 1(y) dy und zeigen, dass eine monoton
wachsende, divergierende Folge (y,) existiert, so dass lim,. M (p,)=0 ist. Da

|T(G,)l < M(y,) ist, gilt fiir eine solche Folge (y,): lim,_|7T(G,)|=0. Fiir alle ge-
niigend grossen y gilt nach (2):

M(y) < const. y2# (3)

In einem ersten Schritt zeigen wir, dass eine monotone, divergierende Folge (y, )
existiert so, dass fiir eine geeignete Konstante C; gilt: M (y; )< Cy(yy,)?f ¢~ D/2,
Dazu nehmen wir an, es gebe ein y, so, dass fiir alle y >y, und gewissen Konstanten
y>—1, ¢>0 gilt:

L(y) =2 KI(y) + ¢y’ (4)
Aus (12), (I3), (2) und (4) folgt dann fiir alle y>y,:

y

2Kc 2
K16 (0 7 + 1 11600 07 =35 < [ Lo an) <
Yo

K?|G(yo, Y)I* + KIG (yo, M (Cy*? + Cy)
Schliesslich erhalten wir fiir alle y >y, die Ungleichung:
2¢ C 2¢  (po)*!
Syt ey i+ =+
yr1 Y ( Cy* cr+1) P

Dalim,, H(y)=1 ist, folgt aus (5): y+1<2p. Wir wihlen y=28—1. Dann muss
¢<C(y+1)/2=Cp sein. Fiir ¢>Cp ist also die Annahme (4) falsch. Wihlen wir
¢>CP, so existieren daher beliebig grosse y, fiir welche L(y)<KI(y)+c(y)*#~1 ist,
und damit eine monotone, divergierende Folge (y, ) so, dass gilt:

Ly, ) <KI(y1e) + c(ry0)* P! (6)

Fir d(y) erhalten wir mit Hilfe einer einfachen geometrischen Uberlegung die
Abschitzung:

(@) < (L)’ /4 - K2(1(y)'14 (7)
Aus (6) und (7) folgt:
(d(.V1 k))2 < (K [(y, ©+ ey k)2 - 1)2/4 - K? (l(}’1 k))2/4 =
Ke(y, k)”—1 + (02/4)(}’1 k)ﬁ_z =Kec(y; k)M_l (1 + (C/4K) (¥ k)p.‘l)

>=Cy”H(y) (5
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Da f—1<—%und (3) f—1<0ist, gilt fir gentigend grosse k:

d(y1p) < (2KC)1/2 (1 k)(ap—n/z =c; (¥ k)“(ﬂ_l)/z; limd(y,,)=0. (®

k— o

Wir erhalten daher fiir M(y,,) die Abschitzung:
M(y1) < Ky +d(y k)) d(yii) < K2t te, (V1 k)2p+(ﬁ-1)/2 q.e.d. )
Ist B<1, soist 2B+ (f—1)/2<0 und es gilt daher:

lim M(y,,) = lim [T(G,,)| = 0.

k— k— o0

Es bleibt somit der Fall §>1 iibrig. Wir nehmen an, es gebe ein k, so, dass fiir
alle y >y, wiederum (4) gilt und betrachten das Gebiet G (y; ,, ¥1 «), Wobei k >k, ist.
Fiir |T(G(¥1x, ¥11))| gilt wegen 9) die Abschétzung:

'T(G(J’lko,yu))l < C;(y, k)2ﬁ+(ﬂ—1)/2 } "
+ Kl(y1 ko) d(yl ko) =, (ylk)2ﬂ+(ﬁ—1)/2 +Cy,

Aus (12), (I3), (4) und (10) folgt fir alle k> k, die Ungleichung:

2¢ _
m()’u)ﬁl < Cl(ylk)23+(lf 1)/2
(1 + Cos Loz (Y1) ) (11
Ci(y )*P7e~12 " ¢, (y+1) (¥, JHEFE-D2
=C,(y1)** T V2 H, (y, %)

Falls nun =14 ist, so ist H; (1) (71)*? T ¥~ 1/2 konstant und es miisste daher ent-
gegen unserer Annahme y< —1 sein. Zu gegebenen Konstanten —2>p> —1 und
c>0 gibt es daher eine monotone, divergierende Folge (7, ), fiir welche gilt:

L(¥,1) < KI(F34) + c(724) (12)

Aus (7) und (12) erhalten wir die Abschidtzung:

(@020 < (KD 1520 G2 + (1) ()
= Ke(a Mo (1 + (c4K) (520 7)

Fiir alle gentigend grossen k£ und eine Konstante C, gilt daher:
d(ﬁz k) < (2 Kc)llz (.172 k)1/10+7/2; M(j"z k) < Cz(f’z k)3/10+y/2

Da3+7/2<0 ist, so gilt: lim;, , M (7,,)=lim;, | T(g, )| =0.
Wenn f>14 und ¢>C;(58—1)/4 ist, so kénnen wir wie oben auf die Existenz
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einer Folge (y,,) schliessen, fiir welche die folgenden Ungleichungen gelten:

a) L(p2i)<KI(yyi)+c(yy)fTEPE-D
B) d(y20)<cs (12D Gy M(py)<Cy(py ) CIOG-D

Dabei sind ¢, und C, positive Konstanten.

Ist < 80ist 28+ (2) (B—1)=(4) f—2<O0. Ist B>, so setzen wir das Verfahren
fort. Nach r Schritten konnen wir schliesslich die Existenz einer divergierenden Folge
(y,+) nachweisen, welche fiir gentigend grosse k und eine geeignet gewihlte Kon-
tsante C, die folgende Bedingung erfiillt:

M(yrk) < Cr(yrk)zﬁ+(ﬁ_1)(2r_ 1)/2r

(2"—1)/2" strebt monoton gegen 1. Der Exponent 28+ (2"—1) (—1)/2" wird negativ,
sobald (2"—1)/2">2p/(1— p) ist. Ist r, die ganze Zahl, fiir welche gilt: (2"°—1)/2">
>2B/(1—B)=(2°""—1)/2" " so erhalten wir nach r, Schritten eine Folge (3, ),
fiir welche gilt:

a) limy,,;=o00; b) lim|T(G,,)|=0.

k- o k— o0

Damit ist der Satz 2 bewiesen.
Falls o < 3 ist, so versagt das im Beweis angewendete Iterationsverfahren.

III. Extremale quasikonforme Abbildung einer Klasse von Uberlagerungsfliichen
mit unendlichem Flicheninhalt

R sei eine einfach zusammenhdngende Riemannsche Flidche, die der z-Ebene iiber-
lagert ist. Jedes System I', = {I'}} zerlegt R in endlich oder unendlich viele Teilgebiete.
Fiir jedes dieser Teilgebiete ist bestimmt, ob es sich an mindestens einen der Quer-
schnitte I'; nach oben anschliesse. Mit G,={G%} bezeichnen wir die Gesamtheit
dieser Teilgebiete. Wir wihlen nun ein festes System I',  so, dass jedes dieser Teil-
gebiete GY, ganz oberhalb der Geraden Imz =y, liegt. Die Bedingung ist z.B. erfiillt,
wenn wir fiir I',, das System aller Querschnitte von R iiber Imz=y, wihlen. Fiir
V>yo bezeichnen wir mit I',={I" ;,1} das System aller Querschnitte von R, die iiber
der Geraden Imz=y und in G,, liegen. G,={G%} liegt ganz oberhalb der Geraden
Imz=y, Den zwischen den Geraden Imz=y,>y, und Imz=y>y, liegenden
Teil von G, bezeichnen wir mit G (yy, y).

DEFINITION. Wir nennen G, einen oberen Arm oder einen Arm in der Richtung
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n/2, falls gilt:
a) |G,,|=00

— y
b) Esexistiert eina<1so,dasslim,_, ., (y)~“*D [ I(n) dy = Cy, 0< Cy< 0 ist.
Yo
Wir beweisen den folgenden Satz:

SATZ 3. Falls R mindestens einen oberen Arm hat, so ist F, in § extremal.

Beweis. F sei eine beliebige Abbildung aus § mit der maximalen Dilatation K.
Da G(y,, y) fiir alle y>y, >y, ein Horizontalstreifen ist, geniigt es nach dem Satze 1
zu zeigen, dass fiir ein y, >y, lim,_,  |T(G (¥, V))I/IG (31, »)| =0 ist. Wir beweisen

zunichst den folgenden Hilfssatz:

HILFSSATZ 2. Ist d* (y)=sup,.r,(ImF(z)—y), so gilt die Abschitzung:

y+dt(y) y+(d+(»)/2) .
1 -
(@*(»)?<KK f I(n) dn( j z’(‘{)d") (2a)
y+(d+(y)/2) y

Istd™ (y)=inf, . r, (Im F(2)—y),sogilt, falls F(T';) ganz in F, (G, ) liegt,die Abschdtzung:

y+(d~-(»/2) y g .

@or<sk [ wwa( [ o) (2b)

y+d=(») y+d-()/2)

Beweis. d” (y) und d* (y) sind nach unten halbstetige Funktionen. Sind sie fir
eine in einem Intervall iiberall dichte Punktmenge beschriankt, so bleiben sie daher
im ganzen Intervall beschrankt. Da die Enden von F(I'}) und F,(I'}) fiir fast alle y
den Abstand Null haben, kénnen wir uns bei der Abschitzung von d* (y) und d~ ()
auf Querschnittssysteme I', beschrinken, die diese Eigenschaft haben. Wir nehmen
an, es gebe ein y, >y und einen Punkt Pel’, so, dass F(P) fiirein y>y, auf F,([;)
liegt. F(I',) hat dann Punkte mit F,(T',,) gemeinsam und es gibt in Fg(G,,) Punkte,
die nicht in F(G,) liegen. Fx(G,,) ist also keine Teilmenge von F(G,). Jedes System
F(T'y445), 0< A4y <y, —y, trifft dann Fx(I',,) ebenfalls. Wire dies nicht der Fall, so
wiirde namlich gelten: Fx(G,,)<F(G,,4,) = F(G,), was einen Widerspruch darstellt.

Gibt es ein y,, yo <y, <y und einen Punkt Perl, so, dass F(P) fiir ein <y, auf
Fy(I';) liegt, so trifft F(I',) das System Fg(I',,) und es gilt: F(G,)¢Fx(G,,). Fir
0<dy<y-—y, trifft auch F(I',_,,) das System Fg(I',,). Sonst wire ja F(G,)<
< F(G,y-4,)= Fx(G,,), was im Widerspruch zur Aussage F(G,)¢ F(G,,) steht.

Wir betrachten nun die Kurvenscharen:

s={nly<n<y+? 72} 5 =r@)ines)
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Um eine obere Schranke fiir d* (») zu erhalten, schitzen wir die extremalen Lingen
A=A{$)und X' =4(9’) ab. Die extremale Linge A einer Schar € von lokal rektifizier-
baren Kurven C konnen wir nach Lehto und Virtanen [2] so definieren:

(A®)" = inf mQ(Q)< inf le(c))—z

Dabei ist B die Familie der nicht-negativen Borel-messbaren Funktionen, Q die
von der Kurvenschar € iberstrichene Menge,

l, = fpldzl; m,(Q) = ff p*dxdy
C Q

Fiir eine feste Metrik g, gilt also:

1A' < m,, (inf1,)~>
Py

Wir wihlen g, wie folgt: go=1 in Fx (G ((y+1)/2, ¥1))
00=0 sonst.
Aus den vorangehenden topologischen Uberlegungen folgt mit Hilfe der Metrik g,:

Y1 _q
v20-07 (k[ 1) ©)
(y+y1)/2

Da F K-quasikonform ist, gilt:

K>/ 4)
Aus (3) und (4) folgt die Ungleichung:
y1 +y1)/2
? L) ©®)
(1 -y <KK f ! dn( J ———dn)
+y0)/2 y

Gehen wir in (5) zur oberen Grenze iiber, so erhalten wir die Abschitzung (2a). Ist
F(T,) in F¢(G,, ) enthalten, so fiihren analoge Uberlegungen zur Ungleichung (2b).

Wir brauchen nun eine vorldufige Abschitzung von d(y)=max(d* (»), |d~ (»))),
welche fiir alle geniigend grossen y gilt und beweisen daher den folgenden Hilfssatz:

HILFSSATZ 3. Zu jeder Konstanten ¢>0 existiert ein j(¢) so, dass fiir y > j(e)
gilt: d(y)<ay,
Beweis. Wir nehmen an, es gebe zu einer Konstanten ¢>0 beliebig grosse y so,
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dass d* (y)=cy ist. Ist 1 >a’ > a, so existiert wegen 1b) ein y* so, dass fiir y> y* gilt:

y+d*(y)

I)dn <c(y+d*(»)*'/4 (6)
y+@+(»)/2)

Mit I bezeichnen wir das Intervall y <n<(1+¢/2) y und betrachten fiir '’ <b<1 die
folgende Menge E,:

E,={n|nel, 1(n) > "}
Fiir das Mass u(E,) von E, gilt wegen 1b) fiir y >y*:
p(E,) < const. () ¢ 7P,

Daraus folgt:

u(l = E,) > (¢/2) (1 = const. (3)* ™) y

Da a’'—-b<0 ist, konnen wir annehmen, fir y>y* sei u(I— E,)>cy/4. Wir wihlen
y=y* so, dass d* (y)=cy ist. Es gilt dann:

y+d*(»)/2)

1 1 1 ~b 1-b

> | iz | s -E) S0l
y I I-Ep

Aus (2a), (6) und (7) folgt: (d* (y))*<KK(y+d* (»)***(y)*"'. Da b—1<0 und

a’+1<2 ist, existiert ein y=>y* so, dass d* (y)<cy ist fiir y>j, was einen Wider-

spruch darstellt. Es gibt also zu jedem &> 0 ein j(¢) so, dass d* (y) <ey ist fiir y > (e).
Q () sei die Menge aller y’, fiir welche gilt: a) y, <y’ <y; b) Es existiert ein Punkt

Per, so, dass F(P)eFg(I';) fiir ein j<y’. Fiir jedes y'e Q(y) gilt:

(y+y/2 y

(y-y)<KK f l(n)dn< j l(l—;)dn)_l

y' (r+y)/2

Auf gleiche Weise, wie oben lésst sich zeigen, dass zu jedem &> 0 ein j(e) existiert so,
dass fir alle y>j(e) gilt: infQ(y)>(1—¢) y. Ist e<$, so ist fiir y>max (2o, 7(¢))
infQ(y)>y,. Dann liegt F(I',) ganz in F¢(G,,) und es gilt daher: y—infQ(y)=
=|d~ (y)| <&y. Damit ist der Hilfssatz bewiesen. Gleichzeitig haben wir gezeigt, dass
fiir geniigend grosse y F(I',) ganz in Fx(G,,) liegt.

Wir withlen y; so gross, dass F(I",,) in Fg(G,,) liegt und suchen eine divergierends
Folge (y,), fiir die wir eine mdglichst kleine Schranke fiir |7(G(y,, y,))| angeben
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konnen. Wir definieren die Menge B:

y
y—®
yo
Ist by =inf B, so folgt aus 1): a) —1<by<a;b) Falls by= — 1 ist, so liegt b, nicht in B.
Wir wahlen b, wie folgt: b, =b,, falls byeB ist, b; =b,+¢, falls b, ¢ B ist, wobei
0<e<(l1—by)/2 ist. Da b, in B liegt, existiert fiir ein beliebig gegebenes ¢>0 eine

monotone, divergierende Folge (y,) so, dass fiir gentigend grosse » gilt:

In

Val2 > ¥y j I(n)dn < c(y,)*™! ®)

yn/2

I, sei das Intervall y,/2<y<y,. Nach dem Hilfssatz 3 gilt fiir eine Nullfolge (e,)
und yel,:d(y)<e,y, Istinf,.; d¥ (y)=0, so ist nichts zu beweisen. Wir nehmen
daher an, es seiinf, ., d* (y)>0. Wir unterteilen das Intervall I, durch die folgenden
Teilpunkte a,,;:

anO = yn/2’ a1 = Auo + d+ (ano); ani=an,i—1 + d+ (an,i—l)

Es gelte: Ang <yn:.v Ank+1 >Vne
Wir betrachten die Intervalle I,;,=[a,,;-y, a,;],i=1,2,...,k. Da fir yel,
d(y)<e,y, ist, kénnen wir annehmen, es gelte:

™M=

d* (@, i-1) > yal4

i=1

]

Es gibt mindestens ein Intervall I, so, dass gilt:
[ 10y dn <4 (@i G ©
Inl

Wiare nimlich fiir alle i, [(n) dp=4c(y,)" d* (a,,;-1), s0 wiirde gelten:

[1manss [ 10> 4c0 3, d* @) > 00,

I,

was im Widerspruch zu (8) steht.
Wir betrachten nun fiir ein 6>0 die Menge E%,:

Ey={n|nel,, I(n) > )+
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und schitzen ihr Mass p(E2)) ab. Es gilt:

4c(yn)" d (an1- 1)>f’('1) dn > f 1(n) dn > p(Eq) (ya)***

Daraus folgt: u(E2,)<4cd* (a,,-1) (vs)~°.
Fiir gentigend grosse n gilt:

p(En)) < d* (ay,1-1)/4 (10)

Wir definieren: I,,=[a,;-; (@,,-1+aw)/2].
Mit Hilfe von (10) erhalten wir die Abschidtzung:

1 bi1—9d 3+
,Jl’(—")dw j l()d”>(y") A7 (an,i-1)/4 (1)

Init=Ini! n En 8

Aus (2a), (9) und (11) folgt: d* (a, ) <const.(y,)**%/2,
Wir setzen: a, ,_,=y,. Da y,/2<y, <y, ist, gilt:.

limy, =o0; d¥(y.) <const.(y,)+? (12)

n-* o

Aus (9) und (12) folgt:

y1 yn'+d¥(yn’)

IT(G(y1, y)) < f I(n)dn + f 1(n) dn < C, + const. (y,)?*1+%/?

y1+d~(y1) '

'
Da b, —e nicht in B liegt, gilt: lim,_, , (y,) "%~ | I() dn>C,, wobei 0<Cy< 0
- y1
ist. Fiir geniligend grosse » gilt also:

IT(G(y19 ylll))I”G(y19 y;)l < C1/IG(y1’ y:')l 4 const. (y;)bl +6/2+e—-1

Wihlen wir e=6/2=(1—-5,)/4, so ist b, +8/2+&e—1=(b;—1)/2<0. Daher gilt:
lim, ., o |T(G ¥y, yI/IG (315 ¥a)| =0. Fy ist also in & extremal.

Durch eine Drehung um den Winkel &, 0 < a <27 geht die Fliche R in eine Fliche
R iiber. Hat R einen oberen Arm, so sagen wir, R habe einen Arm in der Richtung
n/2+a. Wir sprechen von einem rechten (bezw. linken oder unteren) Arm, wenn
= —n/2 (bezw. a=mn/2 oder a=mn) ist.
Es lisst sich zeigen, dass Fy in § extremal ist, wenn die Fliche R einen Arm in
einer beliebigen Richtung besitzt.

Im Beweis des Satzes 3 wird die Struktur der Fliche R ausserhalb des Armes G,
nicht beniitzt. Fy ist daher extremal, wenn R eine beliebige, der z-Ebene iiberlagerte
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Riemannsche Fldache ist, welche ein einfach zusammenhédngendes Teilgebiet mit
einem Arm enthilt.

In einem rechten oder linken Arm G, definieren wir I, /(x), G, und G(x,, x,)
auf analoge Weise wie I',, /(y), G, und G(y;, y,). Ist Iy =Fy(I,), so definieren wir:

D(x)=sup| R, F™'(P)—xl

Pe rxx

Wir betrachten nun eine einfach zusammenhédngende Riemannsche Flache R,
die einen vertikalen oder horizontalen Arm besitzt, der anstelle von (1b) die strengere
bedingung (1b’) erfiillt:

1(y) < const. |y|® (bezw.l(x) < conmst.|x|’), 0<p<i (1b")

Wir beweisen zuerst einen Hilfssatz

HILFSSATZ 4. Fe{ habe die maximale Dilatation K.
a) Hat R einen oberen (bezw. unteren) Arm, der die Bedingung (1b') erfiillt, so
existiert eine monotone, divergierende Folge (y,) (bezw. (3,)), fiir welche gilt:

d(y,) < const.(y,) " *;

Yntd(yn)

M(y,) = f I(y)dy < const.(y,)™", n>0. (13)

Yn—d(yn)
(bezw. d(7,) < const.|5,| " *; M(5,) < const.|7,| ")

b) Hat R einen rechten (bezw. linken) Arm, der (1b’) erfiillt, so existiert eine
monotone, divergierende Folge (x,) (bezw. (X,)), fiir welche gilt:

xn+ D(xn)

D(x,) < const.(x,) ?7"; M(x,) = f I(x) dx < const. (x,)”"
Xn = D(xn)

(bezw. D (%,) < const. |%,| #7"; M (%,) < const.|%,|”")

(14)

Beweis. Wir nehmen an, R habe einen oberen Arm G,,. Es gibt ein y*>y, so,
dass fir y > y* F(I',) = Fx(G,,) ist. Aus der Bedingung (1b") und aus dem Hilfssatz 2
folgt, dass fiir alle geniigend grossen y gilt:

d(y) < const.(y) < y (15)

Daraus erhalten wir fiir M(y) die Abschitzung:
M(y) < sup  (I(n))2d(y) <2d(y)const.(y + d(»))’ < const.(y)*? (16)

y—d(y)<n<y+d(y)

Wir nehmen an, es gebe ein 7>y* so, dass fiir y>j und gewisse Konstanten y> —1
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und ¢>0 gilt:

L(y)=KIl(y)+c(y) (17)
In gleicher Weise wie im Kapitel 1I folgt aus (16) und (17):

2¢(0) G + 1) < C()*F (1 + (CI(»)??)

wobei C und € positive Konstanten sind. Daraus konnen wir schliessen, dass eine
monotone, divergierende Folge (y, ) existiert so, dass fiir ¢c> Cp gilt:

L(.V1k)<Kl(J’1k) “'”"’(,"1k)2ﬁ—1

Um eine Abschitzung fiir d(y,,) zu erhalten, betrachten wir das Querschnitts-

system I',,, ={I';,}. Die Lange von I'}, , bezeichnen wir mit/,.
Fir di= sup |F(z)—y;,| gilt die Abschétzung:
zelty,

@y <L) -K X LP/4-K LA < (KL +c(y)*"71)%4 - K2 174
i#k

=Kcli(n )72+ () THA< CL(n )T+ ()t T4
=C, (Jﬁk)ap—l(l + C, (1, k)ﬁ—l)

Da f—1<0 ist, gilt fiir geniigend grosse k:
di(y1) e ()70 d(yi) = Sl,lpdi(h WS e (p)f e

Daraus erhalten wir fiir M(y, ;) die Abschitzung:
M(J”1k)<2d(J’1k)( sup l(}’)) .
Vik—dSySyi1td (18)
< d (1) const. (J’1 x +d(y, k))ﬂ < Ci(yy k)”ﬂﬁhl)/2

Das im Kapitel II eingefiihrte Iterationsverfahren ldsst sich daher auch auf Arme
G,, anwenden, welche die Bedingung 1b’) erfiillen. Nach r Schritten kénnen wir die
Existenz einer Folge (y,;) nachweisen, fir welche gilt:

d(y.i) < cr(yrk)ﬂ+(ﬂ"1)(2'—1)/2r; M(y,i) < Cr(J’rk)”HLUB_1)(2“1)/2r

Da f <1 ist, finden wir nach endlich vielen Schritten eine monotone, divergierende
Folge (y,), fiir welche (13) gilt. Hat R einen unteren Arm, so verliuft der Beweis
genau gleich.

Hat R einen horizontalen, z.B. einen rechten Arm, so betrachten wir die Ab-
bildungen:

priz-wi=iz; (F) hiw*=u*+iv*>z* =@W*K)+iv*

0 zfow=—iKz*
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Es gilt:
§02°(FI?)_1°(P1=FK; F1?=€01°FE10‘P2

Ist F eine Vergleichsabbildung von Fx mit der maximalen Dilatation K, so ist F*=
=@, F 1., eine Vergleichsabbildung von Fg. Da ¢, und ¢, konform sind, hat F*
ebenfalls die maximale Dilatation K. (Fg) !0 ¢, bildet R auf eine Flache R* mit einem
oberen Arm, der die Bedingung (1b") erfiillt, ab. Nach dem soeben bewiesenen Teil
des Hilfssatzes existiert eine divergierende Folge (), fiir welche gilt:

d(ypy= sup [ImF*(P*)— y}| < const.(y})”"*?;

P*e @y«

M(y;) < const.(y3)™", n>0.

@, bildet I', . auf ein System I', von Vertikalquerschnitten von Fy(R) ab, wobei
u,=Ky, ist. Wir wihlen auf I, einen beliebigen Punkt P. Es gilt:

ReF~'(P) =Re(p; ' cF*o ;' (P)) = Im(F*s @5 ' (P)) = ImF*(P¥)
Re F¢ ' (P) = Im(Fgo @5 '(P)) = Im Fg(P%)

Da P*=¢; ' (P) auf I, . liegt, folgen daraus die Abschétzungen:

ReF~*(P) — ReFg (P)| = lIm F*(B*) — y} < const. (4)"*"
D(x,) <const.(x,)"?""; wobeix,=u,/K=yist. ) (19)
M (x,) < const.(x,)”" q.e.d. )

Wir beweisen schliesslich den folgenden Eindeutigkeitssatz:

SATZ 4. Die Fliche R besitze mindestens einen Arm. Es sei moglich, hochstens
vier Arme, zwei vertikale und zwei horizontale, die wir mit G,,, G;05 Gy G5 , bezeichnen,
so abzutrennen, dass |R—G,,— G5, — G, —Gx,| <o ist. Falls fiir genugend grosse |x|
und |y|;1(x)<c|x|? und I(p)<c; |y, 0<B</s, ist, so ist Fg in § eindeutig extremal.

Beweis. Da R einen Arm besitzt, ist Fy extremal. F sei eine Abbildung aus § mit
der maximalen Dilatation K. Aus dem Hilfssatz 4 folgt die Existenz von vier mono-

tonen, divergierenden Folgen (y,), (7,), (x,) und (%,) mit den Eigenschaften:

d(y,) < const.(y,) "*P; M(y,) < const.(y,)”";

<
d(y,) <const.|p,| " %; M(p,) < const.|7,|™" (20)
D(x,) < const.(x,) " #; M(x,) < const.(x,)”";
D(x,) < const.|x,| """ #; M(%,) <const.|%,|”"; 5>0.

Sind Gy, und Gy ,_die durch Fg(I',,) und Fy(I';,) von Fx(R) abgetrennten Gebiets-
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systeme, so definieren wir: Gy, =F~*(Gy, ), Gi,=F *(Gx;,). Wir betrachten den
folgenden Teil R, der Fliche R: R,=R—G, —G;, — Gy, — G5, . R, hatendlichen Inhalt.
E sei die Familie aller Horizontalquerschnitte von R,. Wir unterscheiden die folgenden
Teilmengen Q; von €. €, sei die Menge der Querschnitte, deren beide Endpunkte auf
dem Rand von R liegen, €, die Familie der Querschnitte, die den Rand von R mit
F~'sFx(I,,) verbinden und nicht in G, _p,,, enthalten sind. €; bestehe aus den
Querschnitten, die auf dem Rand von R und auf F ™' F, (I's,) enden und nicht ganz in
Gs,+px, licgen, €, aus allen Querschnitten, die F~'oFyg (I, ) mit F~1oFg(Is)
verbinden, € aus allen iibrigen Querschnitten.

Mit E,; bezeichnen wir die Punktmenge, mit 4,; die Ordinatenmenge, welche von
@, iliberstrichen wird. Es gilt:

Ens| < M(x,) + M(X,) 1)
Ist u(A,;) das Mass von 4,,;, so gilt:
u(4,,) <const.(x,); u(A4,;) <const.|%,)’; u(A4,s) <I1(xo) (22)

Ist /;(y) die Linge eines Querschnittes aus ¢, der iliber der Geraden Imz =y liegt und
L,(y) die Lénge seines F-Bildes, so gelten fiir fast alle y die folgenden Abschitzungen:

Kl (}’) <L, (J’)§ Klz()’) - KD(xn) < Lz()’)
Kl3(y)— KD(x,) <Ls(y); Kl (y)— K(D(x,) + D(%,)) < Ly (v)

Durch Integration erhalten wir die Ungleichungen:

KIE..llsff |p+ gl dxdy;
Enl

KIE, | -—KD(x,,)u(A,.z)<fJr Ip + gl dxdy

En 2 (23)
KIE,.sl-—KD(fn)u(Ans)Sf [ 1p+ ql dxdy

E:3
KIE, o — K(D(%) + D(%)) u(Ays) < f f b + gl dxdy

Ena

Addieren wir die Ungleichungen (23), so erhalten wir die Abschétzung:
K'Rnl - K lEn 5| - K{D(xn) (ﬂ (An 2) + ﬂ(An 4)) + D(jn) (ﬂ(An 3)
+u(4, 0} = KIR) = B,< [ [ 1p+ gl dxdy

Rn

(24)



Die Extremalitit gewisser Abbildungen des Einheitskreises 335

Daraus folgt mit Hilfe der Schwarz’schen Ungleichung:
2 &
K*|R,I> - 2K|R,| B, < |F(R,)| {KlR,,I - ” (k — Re¥) dx dy} (25)
L]

wobei K die komplexe Dilatation von F ist.
Ist R,=R~G,, —Gs,—G, —Gy,, so gilt:

[Rn‘ - M(xn) - M(in) < anl < IRn' = M(xn) + M(xn) } (26)
K(IR,l — M (y,) — M(3,) < IF(R,)| < K(IRal + M (y,) + M (5,))
Aus (20), (21), (22), (25) und (26) folgt schliesslich:

lim ff(k—RerZ)dxdy=fj(k—ReE)dxdy=0.
R, R

n—aw

Daher ist Fy in § eindeutig extremal.
Aus dem Satz 4 folgt insbesondere, dass Fy in § eindeutig extremal ist, wenn R
ein schlichtes Gebiet ist, welches in G={x+iy | y>c|x|*, a>3} enthalten ist.

IV. Extremale quasikonforme Abbildung der universellen Uberlagerungsfliiche
eines zweifach zusammenhéingenden, beschriinkten Gebietes

SATZ 5. Ist G die universelle Uberlagerungsfliche des zweifach zusammenhiingen-
den, beschrinkten Gebietes G, dessen innere Randkomponente 7y, nicht punktformig
ist, so ist Fy in & eindeutig extremal.

Beweis. Wir nehmen zunichst an, die Projektion von y; auf die y-Achse sei ein
Intervall y,<y<y,+d, d>0. Bezeichnen wir mit g, die Gerade Imz=y, so ist fir
Yo<Sy<yo+d g,ny #0. Wir definieren: z,(y)=x,(»)+iy, x,(y)=
max {Rez|zeg,n y,}. Mit I'} bezeichnen wir den Horizontalquerschnitt von G des-
sen linker Endpunkt z, (y)ist. Der zweite Endpunkt von I'y liegt auf der dusseren Rand-

komponente y, von G. Wir betrachten die folgenden Familien von Horizontalquer-
schnitten:

B={I)|yo<y<yo+df2}; C={I7|yo+d2<y<y,+d}; D=BuC

[, —w<i<+ o0, seien die Uberlagerungswege von Iy, +4/2- Sie seien so numeriert,
dass das durch [;_, und I, aus G herausgeschnittene Gebiet S, schlicht iiber
der z-Ebene liegt. Mit B;, C,und D, bezeichnen wir die Kurvenfamilien im Blatte S; mit
den Spuren B, C und D. Es gilt: B,nC,,,=T;. G,=(US)u(UizL,T) ist ein
einfach zusammenhingender Horizontalstreifen. Fy ist daher in § extremal, wenn fiir
jedes Fe§ lim |T(G,)|/|G,|=0 ist. Ist insbesondere |T(G,)| gleichmassig be-

n—w

schrinkt, so ist lim no I (GG, =0.
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Um eine Schranke fiir |T(G,)| anzugeben, schitzen wir ab, wieviele Blitter
Fx(S)) ein Jordanbogen F(I';) hochstens treffen kann. Wir sagen, F(I';) winde sich
r-mal im positiven (bezw. negativen) Sinn um die Randkomponente Fy(y;) von
Fy(G) herum, falls F([;) mit jedem Horizontalquerschnitt der Streifen Fy(D,,,),
wobei 1 <k <r (bezw. o —r <k <0) ist, Punkte gemeinsam hat, aber nicht mit allen
Horizontalquerschnitten von Fy (D;,,,) (bezw. Fx(D;_,)).

Wir nehmen an, F(I',) winde sich s-mal im positiven Sinn, F(F_,_,) r-mal im
negativen Sinn um Fy (y,) herum. Es gibt dann in Fi (D, ) einen Horizontalquer-
schnitt [™* so, dass F(I',)nI™*=0 ist. In Fx(D_,_,_,) liegt ein Horizontalquer-
schnitt I, der F(I'_,_,) nicht trifft. [* und ["" trennen von G ein Gebiet £ ab, fiir
welches gilt:

r@yefe ("0 m@®)o((U ) )

Aus (1) erhalten wir fir |T(G,)| die Abschitzung:
IT(G.)] < (r+s+2)K|G| ¥)

Wir schitzen nun s nach oben ab, wobei wir s>1 voraussetzen diirfen. Dazu
betrachten wir die Familie C,,, von Horizontalquerschnitten und die Kurvenschar:

ﬁn+1 = {F(f;)) l fgecn-}-l}

A sei die extremale Linge von C, ., A’ die extremale Linge von H, . Hat Fe { die
maximale Dilatation K, so gilt: K> A'/A. Ist [, (p) die Linge von I'ye D, so definieren
wir: a=supply(y). Fiir A gilt die Abschétzung:

1A > dj2a 3)

Beniitzen wir die gleichen Bezeichnungen wie im Kapitel I1I, so gilt fiir eine beliebige
Borel-messbare Metrik g:
A"z (inf 1))*/m,
Hy 4t
Wir wihlen ¢ wie folgt: o=1 in (J;—, D, =0 sonst. Es lisst sich leicht zeigen,
dass sich jeder Bogen aus H, ., mindestens s-mal um Fy (y,) herumwindet. Es gelten
daher die folgenden Abschdtzungen:

m,<Kad(s—1); l,2(s—1)2d; A >4d(s—1)/Ka “4)
Aus (3) und (4) folgt:
s<(KRa*2d*) +1 &)

Auf dhnliche Weise erhalten wir fiir » die Abschéatzung:
r<(KKa?*2d*) +1 (6)
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((KKa*/d*)+4) K|G]| ist wegen (2), (5) und (6) eine gleichmissige Schranke fiir
|T(G,)|. Fx ist also in & extremal.

Wir zeigen nun, dass zu jeder Abbildung Fe ¥ mit der maximalen Dilatation K
eine Folge (4,) von Horizontalstreifen existiert, welche G ausschdpft und fiir welche
lini,_,  |T(4,)| =0 ist. Dann ist nimlich nach dem Satze 1 Fy in & eindeutig extremal.

Wir definieren: R= {z | yo +d/4<Imz<y,+3d/4} n G. Mit R, bezeichnen wir den
Teil des Blattes S, der die Spur R hat. Wir nehmen an, es gebe eine Konstante ¢>0
und ein m so, dass fiir i > min R, gilt: L(y)> K!(y)+c. G,, , sei das Gebiet ({7, S))u
U(UJZAT)). Hat Fe & die maximale Dilatation K, so folgt aus unserer Annahme und
aus (12) fiir jedes n>m die Ungleichung:

2
K2|Gpl? + Ked(n — m) |Gl < (f L(y)dy)
< K2 (G pl? + KIT(Gou i)l 1Gral

(7

Da |T(G,,,) gleichmissig beschrinkt ist, folgt aus (7): ¢ < C/(n—m), wobei C eine
positive Konstante ist. Da lim,_, , C/(n—m)=0 ist, muss ¢<0 sein, was im Wider-
spruch zu unserer Annahme steht. Die Annahme ist also falsch. Es gibt daher eine
Nullfolge (&,) und eine streng monoton wachsende Folge (jj,) von ganzen Zahlen so,
dass in R ein Querschnittssystem I', _existiert, fiir welches gilt:

L(yjk) < K l(yjk) + &, (8)

Auf analoge Weise ldsst sich zeigen, dass eine monoton fallende Folge (i) existiert
5o, dass es in R;, ein Querschnittssystem r », &ibt, fur welches gilt:

L(y,) < KI(y)) + & 9
Ist d(y)=sup, . p, IImF(z)— y|, so folgt aus (8) und (9):

limd(y;)=1limd(y;,)=0.

k= o0

=0
Ist [ ;. der Querschnitt aus r, ,derin B Y ¢ ;. und I'; der Querschnitt aus r.,
der in B; U, liegt, so bezeichnen wir mit 4, das Gebiet mit endlichem Inhalt,
welches durch I*; und [; aus G herausgeschnitten wird. Ist /,=supg /(), so gilt
fir geniigend grosse n die Abschitzung:

IT(4,) <1o(d(y;,) +d(.))

(4,) ist also eine Ausschopfung von G, fiir welche gilt: lim,_, . |T(4,)|=0. Fy ist
daher in § eindeutig extremal.

Ist die innere Randkomponente 7, eine horizontale Strecke, so betrachten wir die
Abbildungen: ¢, :z—z*=iz;

FO iz =x*+iy*sw*=(xYK)+iy*; @wrow=—iKw*
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Durch ¢, wird y, auf eine vertikale Strecke y,* abgebildet. (Fg)~! ist also in der
Klasse (F*)~! aller Abbildungen, die auf dem Rande von ¢, (G) mit (Fg)~?! iiber-
einstimmen, die einzige extremale Abbildung. Es gilt:

@20(FR) oy =Fy; (FR)™ ' =0¢;'oFgopy' (10)

Ist F eine belicbige Abbildung aus § mit der maximalen Dilatation K, so liegt

(F*) '=¢; 'cFop;' in (F*)"!. Da ¢, und ¢, konform sind, hat (F*)™* ebenfalls

die maximale Dilatation K. Da (Fg) ! in (F*) ! extremal ist, gilt: K> K. F ist also in

& extremal. Falls K=K ist, so ist (F*)"'=(Fg)~!, da (F§)~! in (F*)~! eindeutig

extremal ist. Wegen (10) muss dann gelten: F=Fy. Fy ist also in & eindeutig extremal.
Wir beweisen schliesslich den folgenden Satz:

SATZ 6. G, sei ein einfach zusammenhdngendes, beschrinktes Gebiet. Ist z,€G,
und G die universelle Uberlagerungsfliche von G=Gy—{z,}, so ist Fx in & extremal.

Beweis. Zur Vereinfachung fiihren wir den Beweis fiir den Fall, in welchem G,
einen analytischen Rand hat. Wir konnen z,=0 setzen. g, g(0)=0 sei eine konforme
Abbildung von G, auf |z'|<1. Ist C={z' | 0<|z’|<1} und C die universelle Uber-
lagerungsfliche von C, so induziert g eine konforme Abbildung & von G auf C, die
bis auf Decktransformationen bestimmt ist. ¢, sei der Radius von C, der auf der
positiven reellen Achse liegt. y,=g *(0o) hat eine endliche Linge /,. Die Uber-
lagerungswege §; von g, seien so numeriert, dass das Gebiet S; mit endlichem Fléchen-
inhalt, welches durch §;_; und g, aus C herausgeschnitten wird, schlicht iiber der
Z’-Ebene liegt. C,=(U%,+:8)u (U418, ist einfach zusammenhingend. (=
¢ (z)=logz’ bildet C auf die linke Halbebene E:Re{ <0 ab. Wir normieren ¢ so,
dass C, in den Streifen E,:—2nin<Im{<2min ubergeht. (G,)=(g ' (C,)) ist eine
Ausschdpfung von G. ,=g"1(g,)und 7_,=g&"1(0_,) sind die in G liegenden Rand-
bogen von G,. Ist yp p.=Fg(G) ein Bogen, der P mit P’ verbindet und |y p, p/| seine
Linge, so definieren wir:

8(P,P')= inf |yp pl; B;=supd(F (P), Fx(P))

{yp, P} Pe¥

Nach einem allgemeinen Satz von Sethares [3] ist Fy extremal, wenn fiir jede Ver-
gleichsabbildung F gilt:

lim |T(C,)/IG,] =0; lim (B, + B_,)/|G, =0 (11)

n—* o n—c

Um (11) zu beweisen, beniitzen wir den folgenden

VERZERRUNGSSATZ VON TEICHMULLER [7]. Ist & eine quasikonforme
Abbildung von E auf sich mit der maximalen Dilatation K, die den Rand von £
identisch abbildet, so liegt #({,) im nicht-euklidischen Kreis mit dem Mittelpunkt
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{, und dem Radius d(K), wobei d(K) eine monoton wachsende und stetige Funktion
von X ist.

Yx=Fgof 1op™! bildet E auf Fx(G) ab. Liegt Fin §, sostimmt Yy =Fog 'oqp™!
auf dem Rande von E mit Y, iiberein. ¥ ' oy bildet den Rand von E identisch ab.
Sind K und K* die maximalen Dilatationen von F und g0y, so gilt: K*<KK.

Wir untersuchen zunichst, wie die Strahlen g,:Im{=2nk durch Y .y trans-
formiert werden. Ist {,=&q+2mik, so liegt Yx ' oy ({,) nach dem Verzerrungssatz
von Teichmiiller im nichteuklidischen Kreis Cy, 4xg, mit dem Radius d(KX) und
dem Mittelpunkt {,. Fiir den euklidischen Radius r(KK ) und den euklidischen
Mittelpunkt {§ gelten die Beziehungen:

(b =¢ocosh(d(KR))+2nik =& b +2nik ,
r(KK) =& sinh(d(KK)) =S| a } (12)

Sind g, und g; die Tangenten von C,, 4z, Welche sich in {=2nik schneiden, so
liegt Yx ' oy ({) zwischen g, und g;. Mit Hilfe von (12) erhalten wir fiir g; und gy die
Gleichungen:

gen=2nk—al; gin=2nk+at (13)

Da (13) nicht von &, abhingt, liegt ¢ ' oV (g,) ganz im Winkelgebiet, welches durch
g, und g, begrenzt wird. Ist P, das Gebiet, welches durch die Strahlen g, und g”, aus
E herausgeschnitten wird, so gilt:

lrbk_1°l/’(En)= lpl—(—l"F"g—l"(p~1(En)='10121(1:(Gn))cpn
Daraus folgt:

F(Gn) - FK(Gn) = l//K (Pn) - FK (611) = ‘//KF(Pn - En); } (14)
IT(Gn)l < N/K (Pn - En)l

P,—E, besteht aus zwei getrennten Winkelgebieten Q,, und @, ,, wobei Rd(Q,,)=

=gn Ug,',, Rd(Qn 2)=g— n Ug”-n iSt' ES gllt daher: N/K (Pn - En)l = |¢K (in)l + NIK (Qn 2)|
¢~ !(g,) ist eine logarithmische Spirale mit der Gleichung:

r(e)=e @ 2™, 7|, a=argz

Daraus folgt: |1 (Q,,)|=a/4.
Ist M eine Schranke von |dg ~!(z')/dz’|, so erhalten wir schliesslich die Abschitzung:

Y& (Q, 1) < KM?aj4

In gleicher Weise lisst sich zeigen, dass KM?a/4 eine Schranke von |y (Q,,)] ist.
IT(G,)| ist daher gleichmissig beschréinkt.
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Um B, abzuschitzen, wihlen wir Pefj, beliebig. Ist {=¢@.g(P), so liegt
' =yg oy ({) in Cp yxz) Der Bogen I'c C; 4z, verbinde { mit {’ und bestehe aus
hochstens zwei Strecken I'; und I',, wobei I'; horizontal und I', vertikal ist. Es
gelten die folgenden Abschitzungen:

lp (Ml <1; |9~ (I',) < const.2zr[logrl; r=[p™" ({)|

Da lim,_2nrlogr=0 ist, so ist |¢ ' (I')| und daher auch |y (I')| beschrinkt. Da
Y (') Fx (P) mit F(P) verbindet, ist B, gleichméssig beschréinkt.

Wir betrachten zum Schluss die universelle Uberlagerungsfiiche C.¢(Z)=
= e~ 1/Z+1) pildet den Einheitskreis | Z| < 1 konform auf € ab. Nach dem Satze 6 ist
jede zu @ (Z)=(?'(Z2))*=4e? " V¥*D)(Z+1)* und einem beliebigen k, 0<k <1,
gehorende Teichmiillersche Abbildung extremal. Es ldsst sich leicht iiberpriifen, dass
©(Z) keine der von Sethares [3] angegebenen hinreichenden Bedingungen fiir die
Extremalitit von f, erfiillt. Nach einer dieser Bedingungen miisste z.B. fiir jedes
6>01limg, _;|¢(Z)||Z+1|*>*°=0 sein. Ist K ein Kreis, der in |Z| <1 liegt und | Z|=1
in Z= —1 beriihrt, so gilt fiir Ze K: Re(Z—1)/(Z+1)=const. Daraus folgt:

lim |@(2)| |z + 1/**° = lim const.|z + 1]> 2 =00 fiir 0<d<2.

z—+—1 z— =1
zekK zeK
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