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Die Extremalitât gewisser Teichmiïllerscher Abbildungen

des Einheitskreises

Von Eugen Blum (Zurich)

I. Einleitung

In seiner Arbeit [4] ûber quasikonforme Abbildungen hat Strebel Riemannsche
Flâchen R vom hyperbolischen Typ mit unendlichem Flâcheninhalt betrachtet und
geometrische Bedingungen dafûr angegeben, dass jede zu ç &2 und k, 0<k<\9
gehôrende Teichmûllersche Abbildung/fc extremal oder eindeutig extremal ist, wobei
<P eine beliebige konforme Abbildung von |Z| < 1 auf R ist. Die vorliegende Thèse ist
im wesentlichen eine Fortsetzung dieser Arbeit. Die verwendeten Methoden sind zum
Teil schon in den Arbeiten von Strebel [4, 5] und Sethares [3] enthalten.

In den folgenden Abschnitten betrachten wir einfach zusammenhângende
Riemannsche Flâchen R mit unendlichem Flàcheninhalt, die der z-Ebene ûberlagert und

zum Einheitskreis \Z\ < 1 konform âquivalent sind. 0 sei eine konforme Abbildung
von |Z| < 1 auf R. Wir bilden die z-Ebene durch die affine Abbildung FK: w Kx+iy,
K>1, auf die w-Ebene ab. FK erzeugt durch ,,Mitdeformieren" von R eine Flâche S und
eine X-quasikonforme Abbildung von R auf S, die bis auf Decktransformationen
eindeutig bestimmt ist. Den Punkten der Flàche R mit der Spur z entsprechen dabei
die Punkte auf S mit der Spur w^Kx + iy. Wir zeichnen, falls es mehrere gibt, eine
dieser Abbildungen aus und bezeichnen sie wieder mit FK. Die Flâche S ist ebenfalls

zum Einheitskreis | W\ < 1 konform âquivalent. Ist W eine konforme Abbildung von
auf S, so ist xP~1oFKo$ eine ir-quasikonforme Abbildung von \Z\<\ auf

1. Wir sagen, die quasikonforme Abbildung F.R-+S stimme auf dem Rande

von R mit FK ûberein, wenn fk=Y~1oFKo$ xrnà f=W~1oFo<P die gleiche Rand-

abbildung induzieren. fk hat die komplexe Dilatation

k (K - 1) $'2/(K + 1) |<*>f k$'2l\&\2

ist also eine zum quadratischen Differential cp 4>'2 gehôrende Teichmûllersche
Abbildung. Mit 3f bezeichnen wir die Familie der quasikonformen Abbildungen von R
auf S, die auf dem Rande mit FK ûbereinstimmen, mit © die Menge aller quasikonformen

Abbildungen von |Z|<1 auf |FF|<1, die auf |Z| 1 mit/* ûbereinstimmen.
Die Abbildung Feft und die induzierte Abbildung/= W'1 oFo<Pe © sind gleichzeitig
extremal oder eindeutig extremal.1)

x) D.h. Die Abbildung hat die kleinste maximale Dilatation, bezw. ist die einzige mit dieser
Eigenschaft.
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Fy={Fy} sei ein beliebiges System von Querschnitten von R, die ûber der Ge-
raden Im z=y liegen. Wier nennen Fy einen Horizontalquerschnitt von R. Mit l(y)
bezeichnen wir die totale Lange von Fy, mit L(y) die Lange des Systems F(Fy)

{F(Fy)}. A sei eine beliebige Vereinigungsmenge von Systemen Fy mit endlichem
Inhalt \A\. (Im folgenden bezeichnen wir den Flâcheninhalt einer messbaren Menge
G immer mit |G|.) Wir nennen A einen Horizontalstreifen. Fur eine beliebige Ab-
bildung Fe% bezeichnen wir mit T(A) die Punktmenge F(A) — FK(A).

Wir beweisen nun den folgenden Satz:

SATZ 1. a) Gibt es in R eine Folge (An) von Horizontalstreifen mit den Eigen-
schaften: lim,,^^ |^4W| oo, limn_00 \T(An)\/\An\=0, so ist FK in 5 extremal.

b) Hat Fe% die maximale Dilatation K und erfiilt (An) die strengeren Bedingun-

gen: lim^^ An R9\imn^Or)\T(An)\=0f so ist F=FKFK ist also in $ eindeutig
extremal.

Beweis. (An) sei eine Folge von Horizontalstreifen, die die Voraussetzungen a)

erfûllt. F sei eine beliebige Abbildung aus 5 ™t de* maximalen Dilatation K. Strebel

[4] hat gezeigt, dass die Enden von FK(Fy) von den entsprechenden Enden von
F(Fy) fur fast aile y den Abstand Null haben und dass fur fast aile y gilt:

+ q\dx (1)

Dabei ist p=Fz, q F^ Durch Intégration und Anwendung der Schwarzschen Un-

gleichung folgt aus (1):

ll<
(2)

An

Fur \F(An)\ gilt die Abschâtzung:

Aus (2) und (3) folgt:

Da Hm^oo \T(An)\/\An\=0 ist, folgt aus 4): K^Ë. FK ist also in g extremal.

Um den zweiten Teil des Satzes zu beweisen, nehmen wir an, Fhabe die maximale

Dilatation K. Die Ungleichung (2) lâsst sich verbessern, wenn man den Integranden

\P+i\2I(\p\2-\<l\2) genauer abschàtzt. Es gilt:

\P + <l\2l{\p\2 ~ kl2) <K-2(k- Reîc)/(1 - k2) (5)
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wobei k =q/p die komplexe Dilatation von F ist. (Vergleiche Strebel [5]) Aus (2), (3)

und(5)folgt:

K2 \Af < (K \An\ + \T{An)\) (k |4J - ^^p jï(fe - Re k) dxdy\ (6)

Da Reic^|/c|^/:<l ist, gilt:

0 (7)

Aus (6) und (7) folgt schliesslich die Ungleichung:

2 ff0 < ^ (^ — Rejc) dxdy < |T(^4n)| (8)

Ist linv^^i* und \imn_JT(An)\=0, so folgt aus (8):

O (9)

Es gilt also fast ûberall in R: RçK=k. Aus der Ungleichung A: Reic^|ic|^A: folgt
schliesslich: k =k fast ûberall in R, wobei k (K—1)1(K+1) die komplexe Dilatation
von FK ist. Die komplexen Dilatationen von F und FK stimmen also fast ûberall in R
ûberein. Dann haben auch/und/& fast ûberall in \Z\ < 1 die gleiche komplexe Dilatation.

Daher gilt:/=go/ft, wobei g eine lineare Transformation von |FF|<1 ist. Da/
auf \Z\ 1 mit fk ûbereinstimmt, muss g die identische Abbildung sein und es ist

/=/* und daher F=FK.

II. Ein Beispiel

Wir betrachten das folgende schlichte Gebiet G der z-Ebene:

G {z x + iy\y>\x\*,oi>3}
Die affine Abbildung w FK(x + iy)=Kx+iy, K>\, bildet G auf ein Gebiet Gr der
w-Ebene ab. Es ist bekannt, dass FK in 5 extremal ist. (Vergleiche: Sethares [3].)

Wir beweisen den folgenden Satz:

SATZ 2. FK ist in 5 eindeutig extremal.
Beweis. F sei eine beliebige Abbildung aus 5 mit der maximalen Dilatation K.

Fy ist der Horizontalquerschnitt von G, der auf der Geraden lmz=y liegt. Es gilt:
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/(j>)=2//a=2/, j3=l/a<i. Wir betrachten eine Folge (yn),yn>0, lim^^j^oo,
und definieren: Gn Gn{lmz<yn}. Da (Gn) eine Folge von Horizontaïstreifen ist,
die G ausschôpft, genûgt es, die Existenz einer monotonen, divergierenden Folge (yn)
nachzuweisen, fur welche lim,,.^ \T(Gn)\=0 ist, falls K=K ist. Wir definieren:

ry \ImF(z)—y\. Strebel [5] hat den folgenden Verzerrungssatz bewiesen:

VERZERRUNGSSATZ. G sei ein schlichtes Gebiet der z-Ebene. Fe% habe die

maximale Dilatation K. Fy sei das System aller Querschnitte von G auf der Geraden

lmz=y und l{y) erfûlle die Bedingung:

l{y) < M <oo fur 0 < \y - yQ\ < /I
Dann gilt:

Wir beweisen den folgenden Hilfssatz :

HILFSSATZ 1. Hat Fdie maximale Dilatation K, so giltfiir
-1 >0 die Abschâtzung:

Beweis. Wir wâhlen y0 so, dass 1 -2py/KR{yQY~1>^ ist. Fur y^y0 gilt:
Fur 0<y—yo^My/ÀXerhalten wir fur l(y) die Abschâtzung:

2/ ^ 2/0 + Ipiyof-1 (y - y0) < 2yfi0 + l^of'1 MJYl M

Fur \y—yo\^My/KË gilt also: l(y)^M. Aus dem Verzerrungssatz von Strebel

folgt: d(yo)^My/KË, q.e.d.

Ist G(yo,y)=Gn{z \yo<lmz<y}, so erhalten wir fur \T(G(y09y))\ die

Abschâtzung:
y+d(y) yo

r r
^ j J

Fur aile genûgend grossen y gilt wegen (1): d(y)<4y/KR y"<y und daher:

0, y))\ < S-2fKy/WIy2l> + Kl(y0) d(y0) Cy2f + Co (2)
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Da \G{yo,y)\=2{yi>+1-yl+iW + \) ist, gilt:

lim\T{G(yo,y))\l\G(yo,y)\ 0.
y-*co

Daraus folgt, dass FK in 5 extremal ist.

Es sei nunK=K. WirsetzenM(y) K\yy+d(y) \{y)dy undzeigen,dasseinemonoton
wachsende, divergierende Folge (yn) existiert, so dass limn^(X)M(yn) 0 ist. Da
\T(GH)\^M(yn) ist, gilt fur eine solche Folge (yn): lim^\T(Gn)\=0. Fur aile ge-
nûgend grossen y gilt nach (2) :

M(y)^const.y2p (3)

In einem ersten Schritt zeigen wir, dass eine monotone, divergierende Folge (yt k)

existiert so, dass fur eine geeignete Konstante Ct gilt: M(ylk)^C1(ylk)2fi+(P~1)/2.
Dazu nehmen wir an, es gebe ein y0 so, dass fur aile y ^y0 und gewissen Konstanten

y> -1, c>0 gilt:

¦cyy (4)

Aus (12), (13), (2) und (4) folgt dann fur aile y>y0:

K2\G(y0, y)\2 + ^ \G(y0, y)\ (yy+l - /0+1) < ([ L{n) d*

K2\G(y0, y)\2 + K\G(y0, y)\ (Cy2fi + Co)

Schliesslich erhalten wir fur aile y^y0 die Ungleichung :

_ _ -
(5)

Da lim>;_00//r(j;)=l ist, folgt aus (5): 74-I =^2^. Wir wâhlen y 20-1. Dann muss
l CP sein. Fur c>Cf$ ist also die Annahme (4) falsch. Wâhlen wir

oCp, so existieren daher beliebig grosse y, fur welche L(y)<Kl(y) + c(y)2p~1 ist,
und damit eine monotone, divergierende Folge (yx k) so, dass gilt:

+ c(ylk)2p-1 (6)

Fur d(y) erhalten wir mit Hilfe eîner einfachen geometrischen (Jberlegung die

Abschâtzung:

(d(y))2^(L(y))2l4-K2(l(y))2l4 (7)

Aus (6) und (7) folgt:

: (Kl(ylk) + c(ylk)2p-l)2l4 - K2(l(ylk))2l4
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Da j3— 1 < — § und (f) /? — i<0 ist, gilt fur genûgend grosse k:

d(ylk) < (2KcY'2(ylkr"-1)'2=c1(ylky^-^2; lim d(ylk) 0. (8)
fc-»oo

Wir erhalten daher fur M(ylk) die Abschâtzung:

M(ylk)<Kl(ylk + d(ylk))d(yik)*:K2<)+1c1(ylk)2<>+WI2 q.e.d. (9)

Ist /?<!, so ist 2^ + (yS—1)/2<0 und es gilt daher:

limM(3;lt)=lim|T(Glt)|=0.
k-*ao &-*oo

Es bleibt somit der Fall ft^\ ûbrig. Wir nehmen an, es gebe ein k0 so, dass fur
aile y ^yko wiederum (4) gilt und betrachten das Gebiet G (yt ko, yt k), wobei k > k0 ist.

Fur \T(G(ylko,ylk))\ gilt wegen 9) die Abschâtzung:

Aus (12), (13), (4) und (10) folgt fur aile k>k0 die Ungleichung:

2c

7

/., \y+i ^ r" i

¦*• •

Cm 2c (H)

Falls nun /?=| ist, so ist Hx (j^ t) (jx t)2^+w 1)/2 konstant und es mûsste daher ent-

gegen unserer Annahme y^—1 sein. Zu gegebenen Konstanten — |>y> —1 und

c>0 gibt es daher eine monotone, divergierende Folge (y2k), fur welche gilt:

+ c(ylky (12)

Aus (7) und (12) erhalten wir die Abschâtzung:

(d(y2k))2 < (Kc/2) Ky2

Fur aile genûgend grossen k und eine Konstante C2 gilt daher:

d{y2k) < (2Kcy'2(y2kY'^'2; M(y2k) < C2(y2

Da.-^+y/2<0 ist, so gilt: ïimk^<x>M(y2k)=limk^JT(g2k)\=:0.
Wenn /}>$ und c>Ci(5)î-l)/4 ist, so kônnen wir wie oben auf die Existenz
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einer Folge (y2 k) schliessen, fUr welche die folgenden Ungleichungen gelten :

a)

b) d(y2k)<c2(y2ky+<3<w-»; c)

Dabei sind c2 und C2 positive Konstanten.

Ist£<fV,soist 2j8 + (f) (p-l) (±£) £-f <0. Ist P>i?t, so setzen wir das Verfahren
fort. Nach r Schritten kônnen wir schliesslich die Existenz einer divergierenden Folge
(yrk) nachweisen, welche fur genûgend grosse k und eine geeignet gewâhlte Kon-
tsante Cr die folgende Bedingung erfûllt:

(2r- l)/2r strebt monoton gegen 1. Der Exponent 2/? + (2r-1) (/?- l)/2r wird negativ,
sobald (2r- l)/2r>2j8/(l -p) ist. Ist r0 die ganze Zahl, fur welche gilt: (2r°- l)/2r°>
>2P/(l-P)^(2r°~1-l)/2ro~1 so erhalten wir nach r0 Schritten eine Folge (yrok),
fur welche gilt:

a) limj^=oo; b) hm |T(Grot)| 0.
fe-+oo fc-*oo

Damit ist der Satz 2 bewiesen.

Falls a < 3 ist, so versagt das im Beweis angewendete Iterationsverfahren.

III. Extremale quasikonforme Abbildung einer Klasse von Ûberlagerungsflàchen
mit unendlichem Flâcheninhalt

R sei eine einfach zusammenhângende Riemannsche Flâche, die der z-Ebene ûber-
lagert ist. Jedes System Fy {Fxy} zerlegt R in endlich oder unendlich viele Teilgebiete.
Fur jedes dieser Teilgebiete ist bestimmt, ob es sich an mindestens einen der Quer-
schnitte F* nach oben anschliesse. Mit Gy {Gy} bezeichnen wir die Gesamtheit
dieser Teilgebiete. Wir wâhlen nun ein festes System Fyo so, dass jedes dieser
Teilgebiete G£o ganz oberhalb der Geraden Imz=j0 liegt. Die Bedingung ist z.B. erfiillt,
wenn wir fur Fyo das System aller Querschnitte von R ûber Imz=j0 wâhlen. Fur
y>y0 bezeichnen wir mit Fy {Fy} das System aller Querschnitte von R, die ûber
der Geraden Imz=j> und in Gyo liegen. Gy {Gy} liegt ganz oberhalb der Geraden

lmz=y. Den zwischen den Geraden lmz=yl^y0 und lmz=y>y1 liegenden
Teil von Gyo bezeichnen wir mit G{yu y).

DEFINITION. Wir nennen Gyo einen oberen Arm oder einen Arm in der Richtung
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n/2, falls gilt:

a) |GJ oo
y

b) Esexistierteina<\ so,dass\imy^ao(y)~(a+l) J /(*/) drj Co> 0<Co<oo ist.
yo

Wir beweisen den folgenden Satz:

SATZ 3. Falls R mindestens einen oberen Arm hat, so ist Fk in $f extremal
Beweis. F sei eine beliebige Abbildung aus $ mit der maximalen Dilatation K.

Da G{yu y) fur aile y>yx >yQ ein Horizontalstreifen ist, genûgt es nach dem Satze 1

zu zeigen, dass fur ein yl>y0\imy^oo\T(G(yi,y))\/\G(yl9y)\=0 ist. Wir beweisen

zunâchst den folgenden Hilfssatz:

HILFSSATZ 2. Ist d+ (y) s\xpzery(ImF(z)-y), so gilt die Abschâtzung:

J dr,\ (2a)

Istd~(y) infz e Fy (ImF(z)-y), so gilt,falls F(ry)ganz in Fk (Gyo) liegt,die Abschâtzung:

J (2b)

Beweis. d~ (y) und d+ (y) sind nach unten halbstetige Funktionen. Sind sie fur
eine in einem Intervall ûberall dichte Punktmenge beschrànkt, so bleiben sie daher

im ganzen Intervall beschrànkt. Da die Enden von F(Fy) und Fk(Fy) fur fast aile y
den Abstand Null haben, kônnen wir uns bei der Abschâtzung von d+ (y) und d~ (y)
auf Querschnittssysteme Fy beschrânken, die dièse Eigenschaft haben. Wir nehmen

an, es gebe ein yt >y und einen Punkt PeFy so, dass F(P) fur ein y>yt auf Fk(Fy)
liegt. F(Fy) hat dann Punkte mit Fk(Tyi) gemeinsam und es gibt in FK(Gyi) Punkte,
die nicht in F(Gy) liegen. FK(Gyi) ist also keine Teilmenge von F(Gy). Jedes System

F{ry+Ây),O<Ay<yt-y, trifft dann FK(Fyi) ebenfalls. Wâre dies nicht der Fall, so

wûrde nâmlich gelten: FK(Gyi)c:F(Gy+ày)c:F(Gy), was einen Widerspruch darstellt.

Gibt es ein y2, y0 ^y2 <y und einen Punkt PeFy so, dass F(F) fur ein y<y2 au^

FK(F;) liegt, so trifft F(Fy) das System FK(Fy2) und es gilt: F(Gy)$FK(Gy2). Fur

0<Ay<y-y2 trifft auch F{Fy.Ay) das System FK(Fy2). Sonst wâre ja F(Gy)^
czF(Gy-ày)czFK(Gy2), was im Widerspruch zur Aussage F(Gy)<£FK(Gy2) steht.

Wir betrachten nun die Kurvenscharen:
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Um eine obère Schranke fur d+ (y) zu erhalten, schâtzen wir die extremalen Làngen
A A(£>) und Xf X($t)') ab. Die extremale Lange À einer Schar (£ von lokal rektifizier-
baren Kurven C kônnen wir nach Lehto und Virtanen [2] so definieren :

Dabei ist ^3 die Familie der nicht-negativen Borel-messbaren Funktionen, Q die

von der Kurvenschar (E ùberstrichene Menge,

C Q

Fur eine feste Metrik q0 gilt also :

Wir wâhlen q0 wie folgt: Q0 Hn Fx
Qo=0 sonst.

Aus den vorangehenden topologischen Uberlegungen folgt mit Hilfe der Metrik g0 :

JJ (,)j^ (3)

(y+yi)/2

Da F^-quasikonform ist, gilt:

R>k'lk (4)

Aus (3) und (4) folgt die Ungleichung:

yi (y+yt)/2

(yi-y)2^KK f l(rj)dJ J -±-df?) (5)

(y+yO/2 y

Gehen wir in (5) zur oberen Grenze ûber, so erhalten wir die Abschâtzung (2a). Ist
F(F) i F() hl fh l Ubl Ulih (2b)in FK(Gyo) enthalten, so fûhren analoge Uberlegungen zur Ungleichung (2b).

Wir brauchen nun eine vorlâufige Abschâtzung von d(y)=max(d+ (y), \d~ (y)\),
welche fur aile genûgend grossen y gilt und beweisen daher den folgenden Hilfssatz:

HILFSSATZ 3. Zujeder Konstanten e>0 existiert ein y (s) so, dass fur y>y(s)
gilt: d(y)<ey.

Beweis. Wir nehmen an, es gebe zu einer Konstanten c>0 beliebig grosse y so,
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dass d+ (y)^cy ist. Ist 1 >af>a, so existiert wegen lb) ein y* so, dass fur y^y* gilt:

(6)

Mit / bezeichnen wir das Intervall y ^ y\ ^ (1 + c/2) y und betrachten fur a < b< 1 die

folgende Menge Eb :

Fur das Mass fi(Eb) von is6 gilt wegen lb) fur

ti(Eb)<consl(y)1+a'-b.

Daraus folgt:

fi(I - £,) > (c/2) (1 - const.(y)a'-b) y

Da a' — b<0 ist, kônnen wir annehmen, fur y^y* sei fi(I—Eb)>cy/4. Wir wâhlen
y* so, dass J+ (y)^cy ist. Es gilt dann:

J
I-Eb

Aus (2a), (6) und (7) folgt: (d+ (y))2<KK(y + d+ {y)Y+1{yf~1. Da 6-l<0 und
a' + l<2 ist, existiert ein y°^y* so, dass t/+(j;)<cj ist fur y^y, was einen Wider-
spruch darstellt. Es gibt also zu jedem e>0 ein y(e) so, dass d+ (y)<ey ist fur y ^y(s).

Q (y) sei die Menge aller y\ fur welche gilt : a) yo<yf <y; b) Es existiert ein Punkt

PeTy so, dass F(P)eFK(ry) fur ein y<y'. Fur jedes y'eQ(y) gilt:

(y+y')/2

(y-y'f^KK J /(^)d^ J
(y+y')/2

Auf gleiche Weise, wie oben lâsst sich zeigen, dass zu jedem e>0 ein y(é) existiert so,

dass fur aile y^y(e) gilt: infQ(y)^(l—e)y. Ist e<l, so ist fur y>max(2y0,y(s))
infQ(y)>y0. Dann liegt F(Fy) ganz in FK(Gyo) und es gilt daher: y-infQ(y)~

\d~ (y)\ <ey. Damit ist der Hilfssatz bewiesen. Gleichzeitig haben wir gezeigt, das^

fur genûgend grosse yF(Fy) ganz in FK(Gyo) liegt.

Wir wâhlen yx so gross, dass F(Fyi) in FK (Gyo) liegt und suchen eine divergierende

Folge (yn), fur die wir eine môglichst kleine Schranke fur \T(G(yu yn))\ angeber
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kônnen. Wir definieren die Menge B:

y->oo J
J

Ist b0 infB9 so folgt aus 1) : a) —1< b0 < a ; b) Falls b0 — 1 ist, so liegt b0 nicht in B,
Wir wâhlen bx wie folgt: b1=b0, falls &oei? ist, bt=b0 + e9 falls bo$B ist, wobei

0<s<(l—bo)/2 ist. Da ^ in B liegt, existiert fur ein beliebig gegebenes c>0 eine

monotone, divergierende Folge (yn) so, dass fur genûgend grosse n gilt:

yJ2>yi; J Z(i0dif<cGO* + 1
(8)

yn/2

In sei das Intervall yn/2^y^yn. Nach dem Hilfssatz 3 gilt fur eine Nullfolge (en)

und yeln:d(y)<enyn. Ist infyeJnc/+(j) O, so ist nichts zu beweisen. Wir nehmen
daher an, es sei infye/n d+ (^)>0. Wir unterteilen das Intervall /„ durch die folgenden
Teilpunkte an t :

<*no yJ2; anl=an0 + d+(an0); ani ana_i + d+ (a^t-J

Es gelte: ank^yn; aKfk+1>yn.
Wir betrachten die Intervalle /„ t [an 11 _ t, an t], / 1, 2,..., k. Da fur yeln

d(y)<enyn ist, kônnen wir annehmen, es gelte:

Es gibt mindestens ein Intervall Inl so, dass gilt:

(9)

Wâre nâmlich fur aile i$intl(ri) drj^4c(yn)bl d+ (fln,i_i), so wùrde gelten:

was im Widerspruch zu (8) steht.
Wir betrachten nun fur ein ô>0 die Menge E*nl:
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und schâtzen ihr Mass ii(Eônï) ab. Es gilt:

4c(ytty <*>„,,_!)> J l{r,)dr, > J l(r,)dr, > (i(Enl)

Daraus folgt: /*(£*,)< 4c rf+ (a,,,,_i) (jn)"a.
Fur genûgend grosse n gilt:

/i(E*1)<d+(flB,)-1)/4 (10)

Wir definieren: /ii [aB>i-i,(an>I-i+aM0/2]-
Mit Hilfe von (10) erhalten wir die Abschâtzung:

1

I
Im1 /nl'-Inl1 nJ,l'

Aus (2a), (9) und (11) folgt: d+ (anil.1)<const.(yn)bi+312.
Wir setzen: aHt i-i=jB. Da^/2^^^^ ist, gilt:.

dij>W*1"'d+(a.,_1)/4 (11)

lim y'n oo ; rf+ (y^ < const. (j^)6'+a/2 (12)
»-*oo

Aus (9) und (12) folgt:
yi yn'+d + (yn')

\T(G(yi,y'tt))\< j l(r,)dr,+ J l(t,) dr, < C, + const.

Da^-enichtin^liegt, gilt: limll^00(^)"(1 + 5l"£) J l(rj) dr\^C0, wobei

ist. Fur genûgend grosse n gilt also:

\T(G(yu y'n))\l\G(yu y'n)\ < Ctl\G[yl9 y'n)\

Wâhlen wir e <5/2 (l~A1)/4, so ist bt +5/2 + 6- l (è1-l)/2<0. Daher gilt:

lim^^ |r(G(jl5 ^)l/|G(yi, JOI =0. FK ist also in g extremal.

Durch eine Drehung um den Winkel a, 0 < a < 2tt geht die Flâche R in eine Flâche

R ûber. Hat R einen oberen Arm, so sagen wir, R habe einen Arm in der Richtung

te/2+a. Wir sprechen von einem rechten (bezw. linken oder unteren) Arm, wenn

a= — n/2 (bezw. a=7t/2 oder a=7i) ist.
Es lâsst sich zeigen, dass FK in 5 extremal ist, wenn die Flâche R einen Arm in

einer beliebigen Richtung besitzt

Im Beweis des Satzes 3 wird die Struktur der Flâche R ausserhalb des Armes GyQ

nicht benûtzt. FK ist daher extremal, wenn R eine beliebige, der z-Ebene ûberlagerte
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Riemannsche Flâche ist, welche ein einfach zusammenhângendes Teilgebiet mit
einem Arm enthâlt.

In einem rechten oder linken Arm Gxo definieren wir Fx, /(x), Gx und G(xi9 x2)
auf analoge Weise wie Fy9 l(y), Gy und G(yu y2). Ist FKx FK(Fx), so definieren wir:

D(x)=sup| Rt F~1(P)-x\

Wir betrachten nun eine einfach zusammenhângende Riemannsche Flâche R,
die einen vertikalen oder horizontalen Arm besitzt, der anstelle von (lb) die strengere
bedingung (lb') erfûllt:

l(y) < const. \yf (bezw. /(x) ^ const. |x|'), 0 < j» < \ (lb')

Wir beweisen zuerst einen Hilfssatz

HILFSSATZ 4. Feg habe die maximale Dilatation K.
a) Hat R einen oberen (bezw. unteren) Arm, der die Bedingung (lb') erfûllt, so

existiert eine monotone, divergierende Folge (yn) (bezw. (y^)),fûr welche gilt:

d(yn)< const. (yn)

J const

yn-d(yn)

< const.\yH\'n'p; M(yn) < const. \yn\~n)

(13)

b) Hat R einen rechten (bezw. linken) Arm, der (lb') erfûllt, so existiert eine

monotone, divergierende Folge (xn) (bezw. (xn)),fûr welche gilt:

D(xn)< const. (xn) p n; itëf (xn) l (x) dx < const. (xw) n

const. \xn\~p~n; iGr(xn) < const.

(14)

Beweis. Wir nehmen an, R habe einen oberen Arm Gyo. Es gibt ein y*>y0 so,
dass fur y^y*F(Fy)c:FK(Gyo) ist. Aus der Bedingung (lb') und aus dem Hilfssatz 2

folgt, dass fur aile genùgend grossen y gilt:

d(y) ^ const. (yf < y (15)

Daraus erhalten wir fur M (y) die Abschâtzung:

M(y) ^ sup (l{n))2d{y) < 2d(y)const.{y + d[yjf < const.(y)2 fi (16)
y-d{y)^n^y¥d{y)

Wir nehmen an, es gebe ein y^y* so, dass fur y^y und gewisse Konstanten y> -1
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und c>0 gilt:

L(y)>Kl{y) + c{yy (17)

In gleicher Weise wie im Kapitel II folgt aus (16) und (17):

wobei C und C positive Konstanten sind. Daraus kônnen wir schliessen, dass eine

monotone, divergierende Folge (ji*) existiert so, dass fur c>Cf$ gilt:

Um eine Abschâtzung fur d(ylk) zu erhalten, betrachten wir das Querschnitts-
system fyik= {rvyik}. Die Lange von Fvyik bezeichnen wir mit/v.
Fur dt sup \F(z)—yllc\ gilt die Abschâtzung:

(df < (L(y) - K Y /«)2/4 " K2l?/4 <(Klt + ciy^f^fjA - K2l2/4

Da /? — 1 <0 ist, gilt fur genûgend grosse k:

dt(yi k) < ci (yi k)p+(fi~i)l2; d{yx k)
i

Daraus erhalten wir fur M(yx k) die Abschâtzung:

:) sup
(18)

d(ylk)comt.(ylk + d(ylk)Y

Das im Kapitel II eingefûhrte Iterationsverfahren lâsst sich daher auch auf Arme

Gyo anwenden, welche die Bedingung lb') erfûllen. Nach r Schritten kônnen wir die

Existenz einer Folge (yrk) nachweisen, fur welche gilt:

d(yrk) < cr{yrkrif-1)i2r-1)l2r; M(yrk) < Cr{yr

Da fï<% ist, finden wir nach endlich vielen Schritten eine monotone, divergierende

Folge (yn), fur welche (13) gilt. Hat R einen unteren Arm, so verlâuft der Beweis

genau gleich.
Hat R einen horizontalen, z.B. einen rechten Arm, so betrachten wir die Ab-

bildungen :

: w* u*
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Esgilt:

Ist F eine Vergleichsabbildung von FK mit der maximalen Dilatation K, so ist F*
— (pi oF~x o q>2 eine Vergleichsabbildung von F#. Da (p± und q>2 konform sind, hat F*
ebenfalls die maximale Dilatation K. (F^)"1 o(pt bildet R auf eine Flâche R* mit einem

oberen Arm, der die Bedingung (lb') erfùllt, ab. Nach dem soeben bewiesenen Teil
des Hilfssatzes existiert eine divergierende Folge (y*), fur welche gilt:

d(y*n) sup |ImF*(P*) - tf | < const.(y^+n;
P*eryn,

M(yt)< const. (yt)~", ff > 0.

q>2 bildet rVn, auf ein System FUn von Vertikalquerschnitten von FK(R) ab, wobei

un Ky* ist. Wir wâhlen auf tUn einen beliebigen Punkt P. Es gilt:

o^o^1 (P))
^-1 (P) ImiFloyï^P)) Im F*(P*)

Da P* (pï1 (P) auf Fyn, liegt, folgen daraus die Abschàtzungen :

P*) - ^1 < const.(^
D(xn) < constfo)-*"'; wobei xn mm/X y*n ist. ^

Aï (xn) ^ const. (xB)" ' q. e. d. ^

Wir beweisen schliesslich den folgenden Eindeutigkeitssatz:

SATZ 4. Die Flâche R besitze mindestens einen Arm. Es sei môglich, hôchstens

vier Arme, zwei vertikale undzwei horizontale, die wir mit Gyo, Gy0, GXo, G^ bezeichnen,

so abzutrennen, dass \R-GyQ-Gy0-GXo-Gx0\<oo ist. Falls fur genugend grosse \x\

und\y\;l(x)^c\x\fi und l(y)<c; \y\fi, 0<jff< 1/3, ist, so ist FK in g eindeutigextremal
Beweis. Da R einen Arm besitzt, ist FK extremal. F sei eine Abbildung aus 5 mit

der maximalen Dilatation K. Aus dem Hilfssatz 4 folgt die Existenz von vier mono-
tonen, divergierenden Folgen (yn), (yn), (xn) und (xn) mit den Eigenschaften:

(20)
\y\'n

d(yn) < œnst(yn)~(t1+P); M(yn) ^ const.

d{yn) < const. \yJTn'p\ M(yn) ^ const. \yn

D(xn) ^ const.{xnyn~P\ i#(O < const.(xH)'n;

xnrtl-'; M(xn) < const. \xn\~n\

Sind &KXn und GKXn die durch FK(FXn) und FK(FXn) von FK(R) abgetrennten Gebiets-
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système, so definieren wir: G*n F 1 (&KXn), G*n F i(GKXn). Wir betrachten den

folgenden TeilRnder Flâche R: Rn R-Gyn-Gyn-(j*n-G*n. Rn hatendlichen Inhalt.
G sei die Familie aller Horizontalquerschnitte von Rn. Wir unterscheMen d;e folgenden
Teilmengen (£f von G. (Ej sei die Menge der Querschnitte, deren beide Endpunkte auf
dem Rand von R liegen, (E2 die Familie der Querschnitte, die den Rand von R mit
F~1oFK(FXt) verbinden und nicht in GXn^D(Xn) enthalten sind. (£3 bestehe aus den

Querschnitten, die auf dem Rand von R und auf F~1 o FK (F^J enden und nicht ganz in
GXn+D(xny (£4 aus allen Querschnitten, die F~1oFK(FXn) mit F^oF^F^J
verbinden, (E5 aus allen ûbrigen Querschnitten.

Mit Eni bezeichnen wir die Punktmenge, mit Ani die Ordinatenmenge, welche von
(£j ûberstrichen wird. Es gilt:

(21)

(22)

Ist f*(Ani) das Mass von Anh so gilt:

PL (An 2) < const. (xnY ; /i (An 3) < const. \x/; fi (An 4) ^ / (x0)

Ist /f (j) die Lange eines Querschnittes aus (£,-, der ùber der Geraden Imz=y liegt und

£,(y) die Lange seines F-Bildes, so gelten fur fast aile y die folgenden Abschâtzungen:

D{xn))Kh{y) -
Durch Intégration erhalten wir die Ungleichungen:

K\En2\ ~ KD(xn)fi(An2) ^ jj \p

En 2

K\En3\ - KD(x^(43) < jj \p + q\ dxdy
En 3

K\En4\ - K(D(xn) + D{xn))ti{AnA) < JJ \p + q\ dxdy
En 4

(23)

Addieren wir die Ungleichungen (23), so erhalten wir die Abschâtzung:

K\Rn\ -K\En5\ - K{D(xn){fi(An2) + fi(An4)) + D(xn)(fi(An3)

+ n(An4)} K\Ra\ -Bn^jj\p + q\ dxdy
(24)
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Daraus folgt mit Hilfe der Schwarz'schen Ungleichung:

K2 \Rf - 2K\Rn\ Bn < \F(Rn)\ Ik\Rh\ - ^-^ jï(fc - Reîc) dxdyX (25)

wobei k die komplexe Dilatation von F ist. *

Ist Kn R-GXn — Gzn-Gyn-Gyni so gilt:
|1*J - tt(xn) - iï(xn) < |*J ^ \Rn\ + M(xn) + M{xn) | (26)

Aus (20), (21), (22), (25) und (26) folgt schliesslich:

lim [[{k-Ren)dxdy (k-Reîc) dxdy 0.
n-*co J J J J

Rn R

Daher ist FK in g eindeutig extremal.
Aus dem Satz 4 folgt insbesondere, dass FK in g eindeutig extremal ist, wenn R

ein schlichtes Gebiet ist, welches in G= {x + iy | y>c\x\x, a>3} enthalten ist.

IV. Extremale quasikonforme Abbildung der universellen Ùberlagerungsflâche
eines zweifach zusammenhângenden, beschrânkten Gebietes

SATZ 5. Ist G die universelle Vberlagerungsftâche des zweifach zusammenhângenden,

beschrânkten Gebietes G, dessen innere Randkomponente yt nicht punktfôrmig
ist, so ist FK in Qf eindeutig extremal.

Beweis. Wir nehmen zunâchst an, die Projektion von yt auf die j-Achse sei ein
Intervall yo^y^yo + d, d>0. Bezeichnen wir mit gy die Gerade Imz=y, so ist fur
yo^y^yo + d gyny1¥:0- Wir definieren: zo{y) xQ{y) + iy, xo(y)
max {Rez | zegy n y^. Mit Fy bezeichnen wir den Horizontalquerschnitt von G dessen

linker Endpunkt z0 (y) ist. Der zweite Endpunkt von Fy liegt aufder âusseren
Randkomponente y2 von G. Wir betrachten die folgenden Familien von Horizontalquer-
schnitten:

Fh -qo</< + oo, seien die Oberlagerungswege von ryo+d/2. Sie seien sonumeriert,
dass das durch /'J_1 und ff aus G herausgeschnittene Gebiet St schlicht ûber
der z-Ebene liegt. Mit Éi9 ^und 3t bezeichnen wir die Kurvenfamilien im Blatte §t mit
den Spuren B, C und D. Es gilt: ^n^+1=ff. ôB (Ui»^)^(U?=i»A) ist ein
einfach zusammenhângender Horizontalstreifen. FK ist daher in g extremal, wenn fur
jedes Feg lim \T(Gn)\l\Gn\~0 ist. Ist insbesondere \T(Gn)\ gleichmâssig be-

schrànkt, so fstïim n-+(X)\T(Gn)\l\&n\=0.
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Um eine Schranke fur \T(Gn)\ anzugeben, schatzen wir ab, wieviele Blâtter
FK(Sk) ein Jordanbogen F(ff) hôchstens treffen kann. Wir sagen, F(ff) winde sich

r-mal im positiven (bezw. negativen) Sinn um die Randkomponente FK(y±) von
FK(G) herum, falls F (Fi) mit jedem Horizontalquerschnitt der Streifen FK(Di+k),
wobei K^r (bezw.d— r^k^O) ist, Punkte gemeinsam hat, aber nicht mit allen

Horizontalquerschnitten von FK(Di+r+1) (bezw. FK(Di_r)).
Wir nehmen an, F(Fn) winde sich s-mal im positiven Sinn, F(F_n.1) r-mal im

negativen Sinn um FK(yi) herum. Es gibt dann in FK(3n+s+1) einen Horizontalquerschnitt

F* so, dass F(Fn)nF* 0 ist. In FK(D_n_r_i) liegt ein Horizontalquerschnitt

F ', der F(f_w_i) nicht trifft. F* und f' trennen von G ein Gebiet Ë ab, fur
welches gilt:

(d)( (1)
-r-n-l / \-n-r-l /

Aus (1) erhalten wir fur \T(Gn)\ die Abschâtzung:

(2)

Wir schatzen nun s nach oben ab, wobei wir ^>1 voraussetzen dûrfen. Dazu

betrachten wir die Familie Cn+1 von Horizontalquerschnitten und die Kurvenschar:

k sei die extremale Lange von Cn+U X' die extremale Lange von Hn+i. Hat Fe$ die

maximale Dilatation K, so gilt: Ë^Àf/L Ist lo(y) die Lange von F°yeD, so definieren

wir: a supDl0(y). Fur A gilt die Abschâtzung:

\\X^d\2a (3)

Benûtzen wir die gleichen Bezeichnungen wie im Kapitel III, so gilt fur eine beliebige

Borel-messbare Metrik g :

X > inf lQfjme

Wir wâhlen q wie folgt: £=1 in Ufc=2^«+*> Q~® sonst. Es làsst sich leicht zeigen,

dass sich jeder Bogen aus Hn+1 mindestens s-mal um FK(yl) herumwindet. Es gelten

daher die folgenden Abschâtzungen:

me^Kad(s-l); le^(s-l)2d; X > 4d(s - 1)/Ka (4)

Aus (3) und (4) folgt:

s^(KRa2l2d2) + l (5)

Auf âhnliche Weise erhalten wir fur r die Abschâtzung:
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((KKa2/d2) + 4)K\G\ ist wegen (2), (5) und (6) eine gleichmâssige Schranke fur
\T(Gn)\. FK ist also in g extremal.

Wir zeigen nun, dass zu jeder Abbildung Fe $f mit der maximalen Dilatation K
eine Folge (Ân) von Horizontalstreifen existiert, welche G ausschôpft und fur welche

lini,,.^ \T(Ân)\ 0 ist. Dann ist nàmlich nach dem Satze 1 FK in g eindeutig extremal.
Wir definieren : R {z | y0 + d/4 ^ Imz ^y0 + 3d/4] n G. Mit #, bezeichnen wir den

Teil des Blattes §„ der die Spur R hat. Wir nehmen an, es gebe eine Konstante c>0
und ein m so, dass fur i^min Rt gilt: L{y)^Kl(y) + c. Gmn sei dasGebiet (|JJI=m*?i)u

u(U"=m A)- Hat Fegf die maximale Dilatation K, so folgt aus unserer Annahme und
aus (12) fiir jedes n>m die Ungleichung:

K1 \Gmn\2 + Kcd(n - m) \Gmn\ < ^J L{y) dy)

Da \T(Gmn)\ gleichmâssig beschrânkt ist, folgt aus (7): c^C/(n — m), wobei C eine

positive Konstante ist. Da limn^ooC/(n — m) 0 ist, muss c<0 sein, was im Wider-
spruch zu unserer Annahme steht. Die Annahme ist also falsch. Es gibt daher eine

Nullfolge (ek) und eine streng monoton wachsende Folge (jk) von ganzen Zahlen so,
dass in RJk ein Querschnittssystem Fyjk existiert, fur welches gilt:

+ ek (8)

Auf analoge Weise lâsst sich zeigen, dass eine monoton fallende Folge (Q existiert
so, dass es in Rtl ein Querschnittssystem tyi gibt, fur welches gilt:

g + 6, (9)

Ist d(y) supzeFy\ImF(z)-y\9 so folgt aus (8) und (9):

J
k-*oo I-+00

Ist FJn der Querschnitt aus Fyj der in BJnuCJn und Fln der Querschnitt aus Fyt
der in Bln u Cln liegt, so bezeichnen wir mit Ân das Gebiet mit endlichem Inhalt,
welches durch FJn und Ftn aus G herausgeschnitten wird. Ist /0 supG l(y), so gilt
fur genûgend grosse n die Abschâtzung:

{An) ist also eine Ausschôpfung von G, fur welche gilt: limw^oo|r(i'M)|=0. FK ist
daher in g eindeutig extremal.

Ist die innere Randkomponente yt eine horizontale Strecke, so betrachten wir die
Abbildungen : (pt :z->z* iz ;

(K)'1 :z* x* + iy* -> w* (x*/K) + iy*; (p2:w*-+w - iKw*
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Durch (px wird yx auf eine vertikale Strecke yx* abgebildet. (F^)"1 ist also in der
Klasse (g*)"1 aller Abbildungen, die auf dem Rande von cpl(G) mit (F^)"1 uber-

einstimmen, die einzige extremale Abbildung. Es gilt:

(pioiFty'ocp^Fj,; (Fty1=(P21^Kocp~1i (10)

Ist F eine beliebige Abbildung aus g mit der maximalen Dilatation K, so liegt
(F*)~1=(p2loFo<pï1 in (g*)"1. Da <pt und <p2 konform sind, hat (F*)"1 ebenfalls

die maximale Dilatation K. Da (F^)"1 in (g*)"1 extremal ist, gilt: K^K. FK ist also in

g extremal. Falls K=K ist, so ist (F*y1 (Fl)-\ da (F^)"1 in (g*)"1 eindeutig
extremal ist. Wegen (10) muss dann gelten: F=FK. FK ist also in g eindeutig extremal.

Wir beweisen schliesslich den folgenden Satz:

SATZ 6. Go sei ein einfach zusammenhângendes, beschrânktes Gebiet. Ist zoeGo
und G die universelle Vberlagerungsflâche von G G0 — {z0}, so ist FK in g extremal.

Beweis. Zur Vereinfachung fûhren wir den Beweis fur den Fall, in welchem Go

einen analytischen Rand hat. Wir kônnen zo=0 setzen. g, g(0)=0 sei eine konforme

Abbildung von Go auf |z'|<l. Ist C={z' | 0<|z'|<l} und C die universelle Ûber-

lagerungsflâche von C, so induziert g eine konforme Abbildung g von G auf C, die

bis auf Decktransformationen bestimmt ist. £0 sei ^er Radius von C, der auf der

positiven reellen Achse liegt. 7o=^~1(^o) hat eine endliche Lange /0. Die Ober-

lagerungswege Qt von q0 seien so numeriert, dass das Gebiet §t mit endlichem Flâchen-

inhalt, welches durch §i^1 und gt aus C herausgeschnitten wird, schlicht iiber der

z'-Ebene liegt. Cn=([JrLn+l§i)u(\Jnrn1+1§i) ist einfach zusammenhângend. £

cp(z')=\ogzf bildet C auf die linke Halbebene F:Re£<0 ab. Wir normieren cp so,

dass Cn in den Streifen En : — 2n in < ImC < 2n in ûbergeht. (Gn) (g~~1 (£„)) ist eine

Ausschôpfung von G. yn=g~1(é'n)und y-n=g~i(Q^n)sind die in G liegenden Rand-

bogen von Gn. Ist yPt p'^Fk(G) ein Bogen, der P mit P' verbindet und \yPt P.\ seine

Lange, so definieren wir:

înf \yp,P'\l *i= supÔ(F(P)9FK(P))
{ h

Nach einem allgemeinen Satz von Sethares [3] ist FK extremal, wenn fur jede Ver-

gleichsabbildung F gilt:

lim \T(Gn)\l\&n\ 0; lim (Bn + B.n)/\Gn\ 0 (11)
n-*ao n-*co

Um (11) zu beweisen, benûtzen wir den folgenden

VERZERRUNGSSATZ VON TEICHMÛLLER [7]. Ist h eine quasikonforme

Abbildung von E auf sich mit der maximalen Dilatation K, die den Rand von E

identisch abbildet, so liegt h(Ç0) im nicht-euklidischen Kreis mit dem Mittelpunkt
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£0 und dem Radius d(K), wobei d(K) eine monoton wachsende und stetige Funktion
von K ist.

ij/K=FKog~1o(p~1 bildet E auf FK(G) ab. LiegtFin <$,sostimmtil/ — Fog~io(p~1
auf dem Rande von E mit i//K ûberein. \j/^* o \j/ bildet den Rand von E identisch ab.

Sind K und K* die maximalen Dilatationen von F und ^x1q1A> so gilt : K*^KR.
Wir untersuchen zunâchst, wie die Strahlen gk:lm^ 2nk durch ^x1qIA trans-

formiert werden. Ist Ç0 Ç0 + 2nik, so liegt ^Ki°ll/(Co) nach dem Verzerrungssatz

von Teichmûller im nichteuklidischen Kreis CCod(K^) mit dem Radius d(KK) und
dem Mittelpunkt Ço. Fur den euklidischen Radius r{KK) und den euklidischen

Mittelpunkt Co gelten die Beziehungen:

Sind g^ und ^' die Tangenten von Qo d(K^)9 welche sich in Ç 2nik schneiden, so

liegt il/^oif/ (Q zwischen g'k und g'k'. Mit Hilfe von (12) erhalten wir fur gk und g'k die

Gleichungen:

g^:i/ 27r/c-a^; g'k':ri 2nk + aÇ (13)

Da (13) nicht von £0 abhângt, liegt ^x oi/r (gM) ganz im Winkelgebiet, welches durch
g^ und gr^ begrenzt wird. IstPn das Gebiet, welches durch die Strahlen g'n und g'Ln aus
£" herausgeschnitten wird, so gilt :

lAx1 oFof1 cep"1 (En) ils-Kl

Daraus folgt:

^K(PB - £„);

Pn~En besteht aus zwei getrennten Winkelgebieten Qnl und Qn2, wobei Rd(Qnl)

9
J

(g^) ist eine logarithmische Spirale mit der Gleichung:

r(oc) e-ia-2nk)/a; r \z'\, a argz'

Daraus folgt: ^"'(ôm)!^.
Ist Af eine Schranke von \dg"1(z')/dz'\9 so erhalten wir schliesslich die Abschâtzung:

In gleicher Weise lâsst sich zeigen, dass KM2a/4 eine Schranke von \&k(Qh2)\ ist.
\T(Gn)\ ist daher gleichmâssig beschrânkt.
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Um Bn abzuschâtzen, wahlen wir Peyn beliebig. Ist (pog(P), so liegt
C ^k1 oXl/(0 in Q,d(KRy Der Bogen FcCç d(KS) verbindeÇmit£'undbestehe aus

hôchstens zwei Strecken Ft und F2, wobei F± horizontal und F2 vertikal ist. Es

gelten die folgenden Abschâtzungen :

IçT^rOKl; |ç>-1(r2)|<const.27cr|logr|; r |ç>-1(C)|

Da limr_*027rrlogr 0 ist, so ist \<p 1(F)\ und daher auch \\I/K(F)\ beschrànkt. Da

*I/K(F)FK(P) mit F(P) verbindet, ist Bn gleichmâssig beschrànkt.
Wir betrachten zum Schluss die universelle Oberlagerungsflâche C.$(Z)

e(Z~1)/(Z+1} bildet den Einheitskreis |Z| < 1 konform auf C ab. Nach dem Satze 6 ist

jedezu <p(Z)=(^(Z))2 4e(Z-1)/(Z+1)/(Z+l)4 und einem beliebigen k, 0<k<\,
gehôrende Teichmûllersche Abbildung extremal. Es lâsst sich leicht ûberprûfen, dass

(p{Z) keine der von Sethares [3] angegebenen hinreichenden Bedingungen fur die

Extremalitât von fk erfùllt. Nach einer dieser Bedingungen mùsste z.B. fur jedes

<5>0limz^.i\<p(Z)\ \Z+l\2+â 0 sein. Ist Ktin Kreis, der in \Z\< 1 liegt und \Z\ 1

in Z= -1 berûhrt, so gilt fur ZeK: Re(Z- 1)/(Z+ l) const. Daraus folgt:

lim |ç>(z)| \z + l\2+ô lim const. \z + l\ô~2 =oo fur 0<^<2.
zeK zeK
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