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Nicht-hyperelliptische Schottky-Verdoppelungen

Hemnz HuBer (Basel)

Im Rahmen der geometrischen Funktionentheorie ist es wiinschenswert, zu jeder
natiirlichen Zahl g>2 eine mdglichst einfache kompakte Fliche vom Geschlecht g
zu konstruieren, die nicht hyperelliptisch ist. Zu diesem Ende betrachten wir ein
(g+1)-fach zusammenhéngendes Gebiet G der komplexen Ebene, dessen Randkompo-
nenten g kongruente Kreise mit den Zentren &*, (0<k<g—1, e=exp(2ni/g), g=2),
und ein Kreis mit dem Zentrum 0 sind. Die Abbildung z— &z von G auf sich induziert
einen konformen Automorphismus & der Schottky-Verdoppelung S von G, der genau
zwei Fixpunkte auf S besitzt. Wir werden zeigen:

I: Die beiden Fixpunkte von ® sind keine Weierstrasspunkte von S.

Da die von @ erzeugte zyklische Gruppe der Ordnung g als Permutationsgruppe
auf der Menge der Weierstrasspunkte wirkt, und weil die Fixpunktmenge dieser
Gruppe nur aus den beiden Fixpunkten von @ besteht, so folgt aus I als Korollar:
II: Die Anzahl der Weierstrasspunkte von S ist teilbar durch g.

Da jede hyperelliptische Fliche vom Geschlecht g genau 2g+ 2 Weierstrasspunkte
besitzt, so ergibt sich aus II:

III: Fiir g>2 ist S niemals hyperelliptisch.

Fiir den Beweis von I ist es zweckmadssig, die Schottky-Verdoppelung S von G

folgendermassen zu beschreiben:

S={(z,1)|zeG} v {(z,2) | zeG}
mit der Identifikation
(z,1) =(z2,2) VzedG.

Topologie und konforme Struktur von S werden in bekannter Weise derart definiert,
dass die zwei Teilgebiete von S

S;={(z,1)|zeG}, S,={(z,2)|zeG}
durch die Abbildungen
(pI:(Za 1)'—)25 902:(2.,2)”2
konform auf G abgebildet werden. S besitzt die konformen Automorphismen
D:(z,1)>(ez,1), (z,2)—(ez,2),
Y:(z,1)>(%2), (z2)-(1),
sowie den antikonformen Automorphismus

0:(z,1)>(z,2), (2,2)-(z,1).
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Wir nehmen jetzt an, es sei (0, 2) ein Weierstrasspunkt, und m die zugehorige
minimale Nicht-Liicke. Dann ist
l<m<g, (1

und es gibt eine auf S meromorphe Funktion p, welche in (0, 2) einen Pol der Ordnung
m besitzt und sonst iiberall holomorph ist. Durch Addition einer geeigneten Kon-
stanten kann erreicht werden, dass p(0, 1)=0. Weiter kann durch Multiplikation mit
einer passenden Zahl bewirkt werden, dass die Laurententwicklung von p in (0, 2)
folgendermassen normiert ist:

p(£2)=1/z"+alz" ' +-- (2
Dann folgt

(p-®)(5,2)=p(ez,2) = p(eTT;, 2)=¢"2" + ag""l/z""1 4.

Die Funktion p . @ —&"p besitzt somit in (0, 2) einen Pol der Ordnung <m-—1, ist
sonst iiberall holomorph, und verschwindet in (0, 1). Daher muss sie, geméss Defi-
nition von m, iiberall verschwinden:

po®=¢"p. (3)

Jetzt betrachten wir die Potenzreihenentwicklung von p in (0, 1):

p(Z, 1)= Z bkzk.
) k=1
Dann ist

(po®—¢"p)(z,1)=p(ez, 1) — " p(z, 1) = 121 (" — &™) by Z*.

Wegen (3) folgt daraus: (e*—&™)b,=0 VYk>1, und somit wegen (1): b,=0 fiir
k=1, ...,m—1. Da die Gesamtanzahl der Nullstellen von p auf S gleich m ist, folgt

daraus:
p(z,)=bz"+--, b#0, 4

und p besitzt ausser (0, 1) keine weiteren Nullstellen auf S.
Aus (2) und (4) ergibt sich:

(po®)(z, 1) =p(£,2) = 1/z" + afz" ! +--- “
(po¥)(52)=p(z, 1) =bz" +-

Das Produkt p(po ¥) ist daher iiberall holomorph und somit konstant:

. Po Y = b/p . (6)
Weiter ergibt sich aus (2) und (4):

@(z, )=p(z,2)=1/z"+d/z" "'+
(poO) (Z-, 2) = p(z", 1) =bh" e era
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Daraus und aus (5) folgt, dass die meromorphe Funktion po6—po ¥ in (0, 1) einen
Pol der Ordnung <m—1 besitzt, iiberall sonst holomorph ist, und in (0, 2) von einer
Ordnung >m verschwindet; sie verschwindet daher iiberall, und wegen (6) folgt:

p09=5/ﬁ

Fiir ze0G folgt daraus wegen 0(z, 1)=(z, 1):p(z, 1)=>5/p(z, 1). Somit gibt es ein
r >0 so, dass b=r?und |p(z, 1)|=r VzedG. Sei jetzt yo+ y, + -+ + y, der Randzyklus
von G. Dann hat die Funktion

f(2)=p(z1), zeG,
offenbar folgende Eigenschaften:
a) f ist holomorph auf G, verschwindet im Nullpunkt von der Ordnung m und
sonst nirgends in G.
b) Die Bildzyklen f(y;) liegen auf der Kreislinie mit dem Zentrum 0 und Radius r.
Wir betrachten die Umlaufszahlen dieser Bildzyklen um den Nullpunkt:

nj=Q2mni)! fdf/f, j=0,1,...,8

Wegen a) ist

g

Y nj=m,

=0
und wegen b) gilt: Auf y; nimmt f jeden Wert ¢, |c| = r, in mindestens |r;| verschiedenen
Stellen an. Jetzt unterscheiden wir zwei Félle:

1.) Sind alle n;#0, so nimmt f etwa den Wert r auf jedem y; mindestens einmal an.
f besitzt also auf 0G mindestens g+ 1 verschiedene r-Stellen. Damit besitzt aber p
auf S mindestens g+ 1 >m verschiedene r-Stellen. Das ist unmoglich.

2.) Ist n; =0, so wihle man einen Punkt z,€y;,. Dann nimmt f'den Wert ¢ = f(2o)
auf y;, mindestens einmal, auf jedem anderen y; mindestens |r;| mal an. Fiir die
Gesamtzahl N der verschiedenen c-Stellen von f auf 0G ergibt sich also

Nz1+ ) Inl=21+]) nj=1+m.
J#jo Jj#lJo
Das ist wiederum nicht maglich.
Somit kann (0, 2) kein Weierstrasspunkt sein; dann ist aber auch (0, 1)=¥(0, 2)

keiner.
Eingegangen 26.9.68
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