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Nicht-hyperelliptische Schottky-Verdoppelungen

Heinz Huber (Basel)

Im Rahmen der geometrischen Funktionentheorie ist es wiinschenswert, zu jeder
natûrlichen Zahl g>2 eine môglichst einfache kompakte Flâche vom Geschlecht g
zu konstruieren, die nicht hyperelliptisch ist. Zu diesem Ende betrachten wir ein

(g+ l)-fach zusammenhângendes Gebiet G der komplexen Ebene, dessen Randkompo-
nenteng kongruente Kreise mit den Zentren sk, (O^k^g—1, e=Qxp(2ni/g)9 g^2),
und ein Kreis mit dem Zentrum 0 sind. Die Abbildung z^ez von G auf sich induziert
einen konformen Automorphismus # der Schottky-Verdoppelung S von G, der genau
zwei Fixpunkte auf S besitzt Wir werden zeigen:

/: Die beiden Fixpunkte von <P sind keine Weierstrasspunkte von S.

Da die von 4> erzeugte zyklische Gruppe der Ordnung g als Permutationsgruppe
auf der Menge der Weierstrasspunkte wirkt, und weil die Fixpunktmenge dieser

Gruppe nur aus den beiden Fixpunkten von <P besteht, so folgt aus I als Korollar:
//: Die Anzahl der Weierstrasspunkte von S ist teilbar durch g.

Da jede hyperelliptische Flâche vom Geschlecht g genau 2g + 2 Weierstrasspunkte
besitzt, so ergibt sich aus II:
///: Fur g>2 ist S niemals hyperelliptisch.

Fût den Beweis von I ist es zweckmâssig, die Schottky-Verdoppelung S von G

folgendermassen zu beschreiben:

S {(z,l)\zeG}u{(z,2)\zeG}
mit der Identifikation

(z,l) (z,2) VzedG.

Topologie und konforme Struktur von S werden in bekannter Weise derart definiert,
dass die zwei Teilgebiete von S:

St {(z,l)\zeG}9 S2 {(z,2)|zgG}

durch die Abbildungen
q>t:{z9 l)->z, ç>2:(z,2)->i

konform auf G abgebildet werden. S besitzt die konformen Automorphismen

#:(z,l)->(«z,l), (z,2)->(ez,2),
!F:(z,l)-^(f,2), (z,2)->(z-,l),

sowie den antikonformen Automorphismus
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Wir nehmen jetzt an, es sei (0, 2) ein Weierstrasspunkt, und m die zugehôrige
minimale Nicht-Liicke. Dann ist

l<m<g, (1)

und es gibt eine auf S meromorphe Funktion/?, welche in (0, 2) einen Pol der Ordnung
m besitzt und sonst ûberall holomorph ist. Durch Addition einer geeigneten Kon-
stanten kann erreicht werden, dass/?(0, l) 0. Weiter kann durch Multiplikation mit
einer passenden Zahl bewirkt werden, dass die Laurententwicklung von p in (0, 2)

folgendermassen normiert ist :

p(z,2)=l/zm + a/zm-1+- (2)
Dann folgt

(po*)(f, 2) p(ez, 2) p^z, 2) em/zm + aem-1lzm-1 +•••

Die Funktion/?o# — smp besitzt somit in (0, 2) einen Pol der Ordnung </w—1, ist
sonst iiberall holomorph, und verschwindet in (0, 1). Daher muss sie, gemâss
Définition von m, ûberall verschwinden:

po# 8-p. (3)

Jetzt betrachten wir die Potenzreihenentwicklung von/7 in (0, 1):

p(z,l)=
_ k=l
Dann ist

1 \ n(c t \\ cm n v \\ X"1 (J* pm\ h t^11 — J/loZ, 11 — o jf/lZ, L — 7. y — / ^k '

Wegen (3) folgt daraus: (sk-sm)bk=0 Vk>\, und somit wegen (1): bk=0 fur
k= 1, m— 1. Da die Gesamtanzahl der Nullstellen von p auf S gleich m ist, folgt
daraus :

und p besitzt ausser (0, 1) keine weiteren Nullstellen auf S.

Aus (2) und (4) ergibt sich:

Das Produkt/?(/?o W) ist daher ûberall holomorph und somit konstant:

poW b/p. (6)
Weiter ergibt sich aus (2) und (4):

(Pq9)(z, 1) p{^ \\zm
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Daraus und aus (5) folgt, dass die meromorphe Funktion po0—pOW in (0, 1) einen
Pol der Ordnung <m— 1 besitzt, ûberall sonst holomorph ist, und in (0, 2) von einer

Ordnung ^m verschwindet; sie verschwindet daher iiberall, und wegen (6) folgt:

p o 9 bjp.

Fur zeôG folgt daraus wegen 6{z, l)=(z, \):p{z, \) b/p(z, 1). Somit gibt es ein

r >0 so, dass b r2 und |/?(z, 1)| r Vze dG. Sei jetzt y0 + 7i H h yg der Randzyklus
von G. Dann hat die Funktion

/(z) j>(z,l), zeG,

offenbar folgende Eigenschaften:
a) / ist holomorph auf G, verschwindet im Nullpunkt von der Ordnung m und

sonst nirgends in G.

b) Die Bildzyklen/(yJ) liegen auf der Kreislinie mit dem Zentrum 0 und Radius r.

Wir betrachten die Umlaufszahlen dieser Bildzyklen um den Nullpunkt:

nj (2niy1 jdflf, j O,l,...,g.
yj

Wegen a) ist
g

Z nj m>

und wegen b) gilt : Auf y} nimmt/jeden Wert c, \c\ r, in mindestens \rtj\ verschiedenen

Stellen an. Jetzt unterscheiden wir zwei Fâlle:
1.) Sind aile W/^0, so nimmt/etwa den Wert r aufjedem y,- mindestens einmal an.

/besitzt also auf dG mindestens g+1 verschiedene r-Stellen. Damit besitzt aber/?

auf S mindestens g+1 >m verschiedene r-Stellen. Das ist unmôglich.
2.) Ist «/o=0, so wâhle man einen Punkt zoeyjV Dann nimmt/den Wert c=f(z0)

auf yjo mindestens einmal, auf jedem anderen yj mindestens \rij\ mal an. Fur die

Gesamtzahl N der verschiedenen c-Stellen von/auf ôG ergibt sich also

Das ist wiederum nicht môglich.
Somit kann (0, 2) kein Weierstrasspunkt sein; dann ist aber auch (0, 1)= ÎF(O, 2)

keiner.
Eingegangen 26.9.68
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