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A Note on the Fundamental Theorem of Projective Geometry

M. Ojanguren and R. Sridharan1)

Introduction

The aim of this note is to prove a généralisation to commutative rings of the
classical fundamental theorem of projective geometry. In § 1, we introduce the notions
of projective spaces and projectivities. In § 2, we prove the main theorem. The method
ofproof is similar to the proof of the theorem in the classical case as found for example
in Artin [1]. The proof, as in the classical case, is elementary, but is trickier. In § 3,

we give an example to show that a bijection between projective spaces of the same
dimension which préserves collinear points is not necessarily a projectivity. This is in
contrast to what happens in the case of projective spaces over fields.

§ 1. Projective Spaces and Projectivities

Let A be a cummutative ring with 1 and let M be a free vl-module. Let P(M)
dénote the set of ail >4-free direct summands of rank 1 of M. This set is called the

projective space associâted to M. Clearly, any élément of P{M) is of the form Ae
where e is a unimodular élément of M, i.e. there exists a linear form g:M->A with
g(e) 1. If (el9..., en) is a basis for the ^-module M and e= £ atei9 then we note that
e is unimodular if and only if ^^ef=^. If the ring A is such that every projective

module of rank 1 is free, then P(M) coincides with the usual projective space of
algebraic geometry [2, p. 13].

Définition. Let M and N befree modules over commutative rings A and B respective^.

A map a: P(M)-+P(N) is called a projectivity if a is bijective and for pl9 p2,

p3eP(M), we hâve ocp1 cap2 + a/?3 in N ifand only ifpt cp2 -f/?3 in M.
This définition généralises the classical notion of projectivity between projective

spaces over fields.

We note that by the very définition, a~1:P(N)-^P(M) is also a projectivity. For

later purposes, we need the following

Lemma 1. With the notation above, ifei9 ...9en is a basis ofM andeeMa unimodular
élément such that Ae a ^Aeit then txAecz

*) The authors thank Prof. Eckmann for having given them the opportunity to work at the

Forschungsinstitut fur Mathematik, ETH.
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Proof. We prove the lemma by induction on k. Let e= Ysater Then

é= Ysaiei + ek îs unimodular and AecAe'+Aek. By définition this implies

thatttAeaaAe' + ctAek.Lete" Yjaiei~^~ek- Since e'eAe" + Aek-u we again hâve

aAe'aaAe" + uAek-1. We thus hâve ocAec:aAe" + (xAek_1+(xAek. By induction,

ctAe" c ^a^4^ + aAek and hence otAecz

Let A and B be rings and a:A^B a homomorphism. If M and TV are modules

over A and i? respectively, then a map 4>: M-*N is called a-semilinear if $ is additive
and 0(am) cr(a) 0(m) for ail ae A, me M. If M and iV are free modules over A and i?

of the same rank and 0 : M-*N a c-semilmear map which takes a basis (eu..., en) of
M mto a basis of N, then if e= Y,aiei is a unimodular élément of M, then $(e)

£ cr^) ^(^,) is unimodular in N. For, if J] 2tat= 1, lEe>4, we hâve ^ 0"(A,) (r(a,)= 1

which implies (?(^)= ]jT (/(a,) <P(e,) is unimodular. It is clear that we hâve an induced

map P(<P):P(M)-+P(N) by setting for any unimodular élément e of M, P(<P) (Ae)
B<P(e). We then hâve the following rather obvious

Proposition 1: With the same notation as above, for any pup2,p^P{M) with
PiŒPi+P3> P($)Pi^-Pi®)P2+P($)Pz- 1^ °" 1S an isomorphism, then P{$) is a

projectivity.

§ 2 The Theorem

Our object in this section is to prove the following theorem which généralises to
commutative rings the classical "Fundamental theorem of projective geometry".

Theorem. Let M and N befree modules offinite rank^3 over commutative rings A
and B respectively. Ifa:P(M)->P(N) is a projectivity, then there exists an isomorphism
a:A-+B and a o-semilinear isomorphism 4>:M-*N such that a=P(#). If at:A-^B,
J l,2, are isomorphisms and 0t:M^N are a-semilinear isomorphisms such that
P(4>1)=P(4>2), then there exists a beB such that 0l b-02 and ^1 c72.

Proof. Let el9..., en be a basis for M and let <xAet Bfl9 l^i^n. We assert that
fi>"->fn generate the ^-module N. Since any élément of N is a linear combination of
éléments of a basis for N, it is enough to check that any unimodular élément/e N is a
linear combination offl9 ...,/n. If eeM is a unimodular élément with ccAe Bf and
e== Y*aiex> we hâve Aecz £v4et and by lemma 1, we get Bfa

This proves that fl9 ...,fn generate N. Since B is a commutative ring, this implies
that rank N^n. Since a"1 is also a projectivity, it follows that rank M=rank N and
•A»...,/» is a basis for N.
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Let (xAe1=Bfl and <xAe2 Bg2. Now e1 + e2 is unimodular and A(el+e2)<=.
c A et 4- A e2 which implies that ay4 (^ + e2) c:Bft + l?g2. Hence a^(ex + e2)=B{btfx +
+ b2g2). Since v4e2c:,4é>1+,4(é?1+e2) we hâve Bg2czBf1+B(b1f1+b2g2). Thus

^2 ^/1+^(^1/1+^2^2)- Since/1?g2 are independent, it follows that c&2 l, i.e. Z?2

is a unit in 5. Similarly bx is also a unit. Writing/2=Z>71^2^2? we see that/2 is
unimodular, Bf2 Bg2 and xA(el + e2) B(f1+f2). Doing this for any />1, we get a

basis j\, /2,...,/, of N such that

aAet Bfi 1 ^ ï < n

It is clear as before that for any aeA aA{ex +ae2) B(b1f1-\-b2f2) with
bx a unit of B. Thus we can write

(2)

where a:A^B is a well defined map. Clearly

a(0) 0 and <x(l)=l. (3)

For any fixed i>2, we can similarly define x\A^B by

(4)
and we hâve

t(0) 0 and t(1)=1. (5)

Since e1+ae2 + afeieA(e1+ae2) + Aei9 we hâve <xA(el

f{. Hence aA{e1+ae2 + areù B(b(f1 + G{a)f2) + b'fù. Similarly, ocA(ei+ae2 +

Combining the above équations, we find that

aA(ei +ae2 + a' et) B{fx + a{a)f2 + T(a')/,). (6)

Since ae2 + eieA(el+ae2 + ei)+Aei, using (6) and (5) we hâve cn

5(6(/1 + cr(a)/2+/l) + ^/i). Since ocA(ae2 + ei)c:Bf2 + Bfi9 we get Z> + c O and this

proves
eù B{o(a)f2+fl). (7)

Now using (6) and (5), we hâve for a, a'eA, aA(e1

+ «0/2+/i)- But <xA(ei+(a+a')e2 + ei)czaLA(e1+ae2)+aA(a'e2 + ei). Using (7), we

therefore hâve aA(e1+(a+a')e2 + ei)czB(fi + (T(a)f2)+B(G(a')f2+fi). Using the

above, we see that for a, a'eA, we hâve

Now for a,a'eA, we hâve, using (6), that <xA(e1
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+ T(tf)/f). On the other hand, aA(el+aa'e2 + aei)c:ctAe1-\-(x,A(afe2 + ei) which
implies that ctA(el+aafe2 + aei) B(bf1 + b'(a(a')f2+fi)). Comparing coefficients,

we find that a{aaf) x{a) o(af). Setting a' 1, we get

a{a) x(à) for ail as A (9)
and

o(aar) G(a)a{af) tôt a, a'eA. (10)

Thus, the map o:A-*B defined by (2) is a homomorphism. Replacing a by a"1, we

can define a homomorphism o'\B-+A satisfying

and clearly a and a' are inverses of each other. Thus o\A-+B is an isomorphism.
We now show that, for a2,..., aneA, we hâve

(11)

We can assume by induction that

Since

aA(e1 +a2e2 +•••+ anen) a &A(ex + a2e2 +•••+ an_l en-x) + ccAen,

we hâve

On the other hand, we also hâve

aA{e1 + a2e2+ — +anen) c <xA(e1 + anen) + ccAe2 +••• + otAen_1.

Comparing coefficients we find that bf b(r(an) and this proves (11).

If a2,...9aneA are such that a2e2H htf^eM is unimodular, we hâve

<xA(a2e2 +...+ anen) <= A^ + a2^2 +•••+ anen)

Using(ll) wehave

We also hâve _ r nr*A(a2e2+-+aneM)czBf2+-+Bfm.
Combining thèse two facts, we get

*A(a2e2+-+ameu) B(a(a2)f2+-+a(all)fH). (12)

We now assert that for any au...9ai-u ai+1,..., aneA and i 2,..., n,

(13)
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To prove (13), we first observe, using (1) and (12) that ocA(el-\-eJ)=B(fl-\-fJ) for
anyyVï. Fixing an i and replacing et by el9 we can repeat the previous arguments to

get an isomorphism q:A-+B such that for al9...9 at-u al+1,..., aneA, we hâve the

following équation:

ocA(ei + a1ei + —+fl,_1e,_1 +al+1el+1 + — +aneH)

insteadof(ll). B(/.+ e(al} A+- + ,(«„)/„). (14)

Taking in (14) at=0 and comparing this équation with (12), we find that g q.
Now (14) gives (13).

Let e= ^a,e,eMbea unimodular élément. We now show that

(15)

Since for /= 1, 2, 3, we hâve aAectxAe^ocAÇe^ htf^H—) (where /\ indicates
that the corresponding term is omitted), we can write

f bio(a1)f1 + c1a(a2)f2 + cl
c2c(a1)f1 + b2a{a2)f2 + c2a(a3)f3

(16)

Comparing coefficients, we find

bx aiaj) a(a2) c3a{at) a(a2) ct a{ax) a(a2)
and for every / ^ 3, we hâve

b1 a(at) a(a) c2 a{a1) o{a) cx a{ax) a(at).

Since e=Yjaiei ^ unimodular, it follows that£o-(a,)/f is unimodular and hence

there exist kl9...,kneB such that £ a{at) kt=\. Set

d bt a{ax) kx + ct a{a2) k2 + ••• + cx a(an) kn.

Using the équations (16), we easily verify that da(aî)==b1a(al) and da(al) cla(al)
for /^2. Then dis a unit and (15) is proved.

Let <P:M-+N be the (r-semilinear isomorphism M-*N defined by #(£,)=/,. The

équation (15) shows that a=P(4>). The proof of the second statement of the theorem

is the same as in the classical case which can be found for instance in E. Artin [1,

chap. II].
§ 3 A Counter-Example

If M, N are finite dimensional vector spaces of the same rank over fields A and B

respectively and if ct:P(M)~*P(N) is a bijection which is such that for any pl9p2>

p39eP(M) with/?1 czp2 +/?3, we hâve ocp1czocp2 + a/?3, it can be proved (see for instance

Artin [1, chap. II]) that a is a projectivity. We now give an example to show that this

need not be the case if A and B are arbitrary rings.
Let K be a field; let A K(x) be the ring of formai power séries in x and B the
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quotient field of A. The canonical inclusion a\A-*B induces a tr-semilinear map
A3-*B3 which in turn gives rise to a map P(a):P(A3)-+P(B3).

Proposition 2.*) The map P(a) is a bijection such that for any pl9p2,p3eP(A3)
with pi ap2 +p3, we hâve P(o) P\ ^P(p) p2 +P(g) P3> However P(ff) is not aprojectivity.

Proof. Let (al9 a2, a3), (a'l9 a2, a'3) be unimodular éléments of A3 which represent
the same élément ofP(B3). We then hâve a, a'eA, a^O, a' =£0 such that a'{a'u a2, af3) —

=a(aua2,a3), i.e. a'a^a^l^/O. If £#^ 1, we ^ave ^^ ^ with A
1 <£< 3

Z ai^i^- Similarly, afi a for some fie A. This impliesthataanda'differbyaunitof
A and hence A(au a2, a3) A(a'l9 d2, a3). This proves that P(a) is injective. Given any
élément of P{B3\ we can write it in the form Be where eeA3. Dividing if necessary
by a suitable power of x, we may assume that at least one coordinate of e has a nonzero
constant term and hence is a unit in A. Therefore we may assume that e is a unimodular

élément of A3 and this proves that P(p) is surjective. If pl9p2ip3eP(A3) are
such that p1 c p2+p3, it is trivial to check that P{g)p1<zP{a)p2JtP{a)p3. Now,
P{a) v4(l, 0, 0) £(l, 0, 0) B(x, 0, 0)cP((t) A(x, 1, 0)+P(a) A(0,l, 0). However,
(1, 0, 0)$A(x, 1, 0) + i4(0, 1, 0). This shows that P(o) is not a projectivity.
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*) (Added in proof.) This proposition and its proof are valid equally for any unique factorisation
domain.
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