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Ûber harmonische Kapazitât und quasikonforme

Abbildungen im Raum

H. M. Reimann (Zurich)

Einleitung

Fur den 3-dim. euklidschen Raum E3 wurde eine Théorie der quasikonformen
Abbildungen entwickelt (siehe z.B. Gehring [4], Vâisâlà [10]), die viele Merkmale
der Théorie fur die Ebene beibehâlt. Die Définition der quasikonformen Abbildungen
im Raum stutzt sich auf den Begriff der konformen Kapazitât von Ringen. Ein Ring
R in E3 ist das homômorphe Bild von {x \ 0<a<\x\<b}. Betrachtet man aile stetig
differenzierbaren Funktionen u mit dem Randwert 0 auf der einen Randkomponente
und dem Randwert 1 auf der anderen, so heisst die Grosse M3=inf J |gradw|3 dx

u R

,,konforme Kapazitât" von R (nach Loewner). Eine quasikonforme Abbildung im
Raum ist dann ein Homôomorphismus von einem Gebiet G in E3 auf ein Gebiet G'

mit der Eigenschaft, dass fur eine gewisse Konstante K und fur aile Ringe R mit
RczG und Bild R' die UngleichungM3 (R)<KM3 (Rf) besteht. Die vorliegende Studie

befasst sich mit den Abbildungen, die man erhâlt, wenn die konforme Kapazitât in
dieser Définition durch die harmonische M2(i£)=inf J |gradw|2 dx ersetzt wird. Die

u R

harmonische Kapazitât eines Ringes ist gleich dem Wert des Dirichletintegrals
derjenigen harmonischen Funktion in R, welche das verallgemeinerte Dirichlet-
Randwertproblem mit den Werten 0 und 1 auf den beiden Randkomponen-
ten lôst. Der Kapazitâtsbegriff wird im folgenden durch den allgemeineren

Begriff des Moduls ersetzt. Dièse beiden Begriffe fallen fur Ringe zusammen (vgl.

(1.7)).
Die Methoden, welche die Untersuchung derartiger Abbildungen gestatten,

stammen grôsstenteils aus der Théorie der quasikonformen Abbildungen. Handelt es

sich im ersten Abschnitt noch um Diffeomorphismen, so werden im zweiten und

dritten die gewonnenen Resultate auf Homôomorphismen ohne a priori Regularitâts-

voraussetzungen ûbertragen. Das Schwergewicht liegt hier demzufolge bei der

Abklârung von Regularitâtseigenschaften. Der letzte Abschnitt dient der Her-

leitung einer Normalfamilien-Eigenschaft. Die Resultate, die sich wesentlich

von der Théorie der quasikonformen Abbildungen abheben, sind in den Sâtzen 1

und 3 enthalten.
Herrn Prof. A. Pfluger môchte ich an dieser Stelle fur die mannigfachen An-

regungen und fur das rege Interesse, das er meiner Arbeit stets entgegenbrachte,
meinen ganz besonderen Dank aussprechen.
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I. Ein Âquivalenz-Satz

In diesem Abschnitt werden Diffeomorphismen mit gewissen speziellen Eigen-
schaften studiert. Die Abbildung A, die ein Gebiet GcE3 auf ein Gebiet G'aE3 ab-

bildet, ist im Punkte x*eG differenzierbar, wenn es eine lineare Transformation H
gibt, fur welche die Beziehung

h(x) h(x*) + H{x - x*) + o(\x - x*\)

besteht. Wird die Abbildung mit Hilfe kartesischer Koordinaten beschrieben, so ist

H=H(x*) die Funktionalmatrix im Punkte x*. h ist eine in G stetig differenzierbare

Abbildung, falls H(x) in G definiert ist und stetig ist. h ist ein Diffeomorphismus, falls
die inverse Abbildung h'1 existiert und falls h und h'1 stetig differenzierbar sind. Ist
h ein Diffeomorphismus von G auf G', so ist H als Matrix in allen Punkten von G

regulâr. Es werden nur Abbildungen in E3 (3-dim. euklidscher Raum) betrachtet,
obwohl sich gewisse Resultate ohne weiteres auf hôhere Dimensionen ûbertragen
lassen. Aile betrachteten Gebiete G, G' liegen also in E3.

Den Ausgangspunkt bilden Diffeomorphismen, fur welche die relative Ânderung
des Dirichletintegrals beschrânkt ist.

Wir sagen, der Diffeomorphismus h:G->Gf habe die Eigenschaft (D), falls eine

Konstante K>0 existiert, so dass fur aile in G stetig differenzierbaren reellwertigen
Funktionen u mit u' — Uoh~l die Ungleichung

I grad2 udm^K \ grad2 u' dm (D)
G G'

gilt. (Mit m wird das 3-dim. Lebesgue-Mass bezeichnet, das Volumenelement ent-
sprechend mit dm. Zur Kennzeichnung der Variablen wird dafur auch dx geschrieben.)

Zuerst soll gezeigt werden, dass (D) mit einer lokalen Eigenschaft (L) gleichwertig
ist. Ist H* die Transponierte der Funktionalmatrix H, so besitzt HH* nach einem
Satz der linearen Algebra drei réelle positive Eigenwerte X\ ^ X\ ^ X\ > 0 Dièse Eigen-
werte sind stetige Funktionen von x und es gilt

Xx max \Hx\9 |det H\= XlX2k2t

Mit diesen Bezeichnungen lâsst sich eine Eigenschaft (L) formulieren :

Der Diffeomorphismus h:G^>G' besitzt die Eigenschaft (L), falls eine Zahl K
existiert mit

XJX2 X3^K fur aile x in G (L)
Bemerkungen

1) Zusammen mit der Konvention Xt ^ X2 ^ X3 ist die Bedingung XX\X2 X3^K mit den
drei Ungleichungen A|Ay/Aà< J^fur aile Permutationen (ij, k) von (1, 2, 3) aequi-
valent. Ist nâmlich Xt ^ X2 ^ X3, so gilt XJX2X3 ^ X2jX1 X3 > X3jXxX2.
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2) Der Ausdruck Ài/À2À3 ist invariant gegenûber der Zusammensetzung von h mit
einer Translation oder einer Rotation.

3) Aus^/A/Afc^Àïûr aile Permutationen (ij, k) von (1, 2, 3) folgt A, > À"11= 1, 2, 3

aber nicht umgekehrt, wie das Beispiel h(x)=(ax1, K'1 x2, K"1x3) mit a>K~1
zeigt. Aus der Bedingung Xt^ K"1 folgt, dass der inverse Diffeomorphismus h~x in
jedem konvexen Teilgebiet von G' einer Lipschitzbedingung der Form

lK\x-y\ geniigt.

Dass aus der Eigenschaft (L) die Eigenschaft (D) folgt sieht man leicht:

I grad2udm= \ (Hgradu'f |detH\~1 dm

G'

max \Hx\2
J

max \Hx\2 gxdià2u' ~~~— dm

G'

—^- grad2 u' dm < X grad2 m'
J ^2^3 J
G' G'

fur aile in G stetig differenzierbaren Funktionen m.

Die Umkehrung ist der Inhalt von

Lemma 1. Erfullt ein Diffeomorphismus h:G-+G' die Bedingung (D), so erfullt er
auch die Bedingung (L).

Der Beweis verlâuft indirekt. Es sei A1/A2A3 C>^:im Punkte x*eG. Wegen der

Invarianz der Bedingungen (D) und (L) gegenûber Translationen und Rotationen,
kann ohne Einschrânkung angenommen werden, dass x*=0 und

(K o o\
h(x) Hx + o(\x\) mit H H(0)=l 0 A2 0 j

(Bekanntlich lâsst sich eine nxn Matrix M mit Hilfe von orthogonalen Matrizen Ov

und O2 in der Form M=O1HO2 darstellen, wobei i/eine Diagonalmatrix ist). Die

zur Funktionalmatrix H{x) inverse Matrix H~1(x) schreiben wir in der Form
H~1 (x) (Vf j (x)). Dann ist

v«y(O) 5iyV, mit vir1=Ai

Da die vu nach Voraussetzung stetige Funktionen sind, gibt es zu gegebenem e>0,
e<|v1v2v3j, ein ô>09 so dass

A {x | \xt\ <ôyi~ 1, 2,3}cG und dass fur aile xeA
Ivu(*) - vu(0)| < 6 und |detif (x)| < (|Vl v2 v3| - e)"1
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Wir verwenden die Familie von stetig differenzierbaren Funktionen:

1+cos ——± 1+cos —- l+cos--~ furxe^l
S J\ S J\ à)

0 sonst

«=1,2... 0<e< | vx v2 v3 |. Es ist

n nnx1 ^x2\/ nx3\
gradw(x) -- n sin—-—( 1 +cos—- 1 +cos~—

ô\ ô \ ô J\ ô

ô

fur

cos—jsin^^l+cos—j,
nnxx

+ cc

0 sonst, und grad2 u dm gn2 (n2 + 2) ô

G

Mit u'(h(x)) u(x) erhâlt man aus

f grad2m' dm= f (gradm-H"1)2 |detH| dm

G' G

nach einiger Rechnung die Abschâtzung
2

grad2u' dm < — [^n2(|v1| 4-e)2 + cl82n2 + c2en + 0(e)]
J |viv2v3|-e
G'

und c2 sind von n und e unabhângige Konstanten. Daraus schliesst man, dass

grad2 m7 dm

G'

G

Da iiber n und e noch frei verfiigt werden kann, setzen wir jetzt e n~1. Der Grenz-
wert fur «->oo der rechten Seite der letzten Ungleichung ist dann C"1. Es lâsst sich
also ein n0 finden, derart dass

grad2 u dm > K grad2 uf dm fur u w(/ï0> lfno).
G G'

Um eine dritte, aequivalente Eigenschaft zu formulieren, verwenden wir den Be-
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griff des Moduls einer Kurvenschar. Wir stûtzen uns dabei auf die Untersuchungen
von Fuglede [2] und Yàisâlâ [10] und [11].

Linienin tegrale

Eine Teilmenge y von E3 ist eine Kurve, falls y homôomorph zu einem offenen,
halboffenen oder abgeschlossenem Intervall ist. Eine rektifizierbare Kurve der Lange
/ kann mit Hilfe der Bogenlânge parametrisiert werden: x x(s). Das Linienintegral
der nicht negativen, Borel-messbaren Funktion q iiber y ist dann als

I q ds= I q(x(s)) ds

y 0

definiert. (Der Wert oo ist zugelassen.) Ist die Kurve lokal rektifizierbar, so ist das

Intégral als uneigentliches Intégral definiert.

Der Modul einer Kurvenschar F

Wir bezeichnen mit F(F) die Familie der nicht negativen, Borel-messbaren Funk-
tionen q (x), die der Bedingung

fur aile lokal rektifizierbaren Kurven yeF genùgen.

Définition: Seip^l,m das 3~dim. Lebesgue-Mass. Der p-Modul einer beschrânk-

ten Kurvenschar F ist die réelle Zahl

Mp(F) inf | qp dm
eeF(n

E3

Die nicht lokal rektifizierbaren Kurven der Schar treten also in dieser Définition

gar nicht in Erscheinung. Wird das Intégral einer Funktion iiber eine nicht lokal
rektifizierbare Kurve mit Hilfe des 1-dim. Hausdorff-Masses definiert, so lâsst sich

zeigen, dassMp(r)=0, wenn das System F nur aus nicht lokal rektifizierbaren Kurven
besteht.

Beispiele

1) Ein Tripel Z= (g, Eo, Et) nennen wir einen Zylinder in E3, wenn es einen Homôo-

morphismus h vom Einheitszylinder {(xl9 x2, x3) \ xl+xl^ 1, 0^jc3< 1} auf die

abgeschlossene Huile des Gebietes Q gibt, der x3=0 (xf +xl^l). Auf Eo und

x3 1 auf Ex abbildet. Die Kurven in Q mit Anfangs- und Endpunkt in Eo bezw.

Ex stellen eine Kurvenschar Fz dar. Unter dem /?-Modul MP(Z) eines Zylinders
versteht man den /?-Modul dieser Schar.
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Der Modul eines geraden Zylinders mit der (ebenen) Grundflâche Eo und der
Hôhehlâsstsichleicht berechnen: Wâhlt man q h~* so gilt j h~1 ds ^ 1 und daher

[ tdm=h~pm(Q)
Q

Anderseits gilt fur aile Funktionen geF(F) und fur aile Kurven y'eFz parallel
zur Zylinderachse:

und daher
F qp dm j I qp dm^m(Q)h~p.

Daraus schliesst man, dass Mp(Z) m(Q)h~p. Setzt man fur einen beliebigen
Zylinder anstelle von h den Abstand d von Eo und Ex ein, so erhâlt man mit
q d~x ein Analogon zur Rengelschen Ungleichung:

Mp(Z)^m(Q)d-p (1.1)

2) Ein Ring R ist ein beschrânktes Gebiet in 2s3, das homôomorph zu R(a,b)
{x\ a<\x\<b, 0<a<b} ist. Der Rand von R besitzt zwei Komponenten: eine

innere Do und eine âussere Dx. Der Modul eines Ringes, Mp(R), ist der Modul der-
jenigen Kurvenschar FR, welche aus den Kurven in R besteht, die Do und Dt ver-
binden. Zur Berechnung des /7-Moduls von R(a,b) fur p>\ werden folgende
Funktionen verwendet:

n - P~^ 1
r2/(l-p) _ K r2/(l-p) fû 3

«_ j^

Dann gilt fur eine Intégration entlang eines Radius
b b

1= [ Qdr= [Qr2lp-r-llp dr

b b

pr2 dr\

[ Qdr= [

\ f r"2^"^ drY* klp~>- J
a a a

Also gilt fur beliebige q
b

f Qpdm 4n [ gpr2 dr^ kp~1'4n
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mit Gleichheit fur qp. Fur p 2 ergibt sich insbesondere :

a —

An
(1.2)

Es besteht eine einfache Beziehung zwischen dem Modul von R (a, b) und den

Moduln der Zylinder, die man durch Aufschneiden des Ringes erhâlt: Wird R(a, b)

von Kegeln durch den Nullpunkt in endlich viele Zylinder Zt zerlegt, so gilt

Y,Mp{ZÙ Mp{R) (1.3)
i

Fiir Zylinder Z, die durch Kegel mit der Spitze im Nullpunkt und dem Raumwinkel
w aus R(a, b) herausgeschnitten werden ht Mp(Z)=wkp~1.
Der Zylinder Z=(Q9 Eo, E^) zum Beispiel mit

Q {x\a< \x\ <b9 xt >0}
Eo {x I |x| a, xt > 0}, El {x\\x\ b, xx > 0}

hat also den Modul
Mp(Z) 2ttF-1 (1.4)

Dièse Behauptungen folgen unmittelbar aus der Herleitung des Wertes fur den Modul
von R(a, b).

Fiir beliebige Ringe gilt die schwâchere Beziehung

£ Mp(Zt) < MP(R) (1.5)

fur eine beliebige endliche Zerlegung des Ringes in disjunkte Zylinder Zl (g(0, Eq\
Ef) mit E^cDq, E^czDi und Q(i)c:R, /= 1, 2,...,«. Das folgt unmittelbar aus den

Definitionen: Ist Xi die charakteristische Funktion von Q(l> und ist QeF(FR)9 so ist

Qi QXi eine zulâssige Funktion fiir Z^QieF^z) i l,..., n.
Man schliesst daraus die gewiinschte Ungleichung

inf \Qpdm^Yu inf \ QÏ dm

Die zu (1.1) analoge Ungleichung fur Ringe folgt auch hier mit p=d l, d Abstand

von Do und Dx :

Mp(R)<m(R)d~p (1.6)

Fiir den Fall p=2 erhâlt man nach Fuglede [2] auch eine Abschâtzung in der

anderen Richtung (eine entsprechende Betrachtung fiir den Fall/?=3 siehe Gehring
(3] oder [4] p. 369): Eine Lipschitz-Flâche a ist eine 2-dim. Mannigfaltigkeit in E3,

auf der mit Hilfe von Funktionen/*, i 1,2,... ein System von Parameterumgebungen
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defimert ist, wobei die/t auf Gebieten Gtc:E2 definiert sind und emer zweiseitigen
Lipschitz-Bedmgung genugen :

c;'\x -y\^ \ft(x) - ft(y)\ < c~l \x - y\ x, yeE2, /t(x), ft{y)ea
Das Intégral J q ds einer Borelfunktion g uber eine Lipschitz-Flache cr kann unter

Verwendung der Resultate von Rademacher [8] folgendermassen definiert werden:
Die fl(x)=fl(xl, x2) sind fu differenzierbar, die Koeffizienten E9F,G der ersten

Fundamentalform messbar und die Form *JEG — F2 dxt dx2 ist unabhangig von der
gewahlten Lipschitz-Darstellung/,. Eine Unterteilung von a in disjunkte Borelmengen
Bl mit (J Bx — g, derart dass Bt îm Bildbereich von/t liegt, gestattet dann die Défini-

I
a fi 1(Bi)

Der Modulbegnff kann somit auf naturhche Art auf Système I von Lipschitzflachen
ausgedehnt werden. Wir setzen

MP(I) — inf qp dm

Das Infimum erstreckt sich uber aile mcht-negativen Borel-Funktionen qeF(I) mit
der Eigenschaft

g ds ^ 1 fur aile ael
a

IR sei nun die Schar der Lipschitzflachen, welche die Randkomponenten Do und
Dx des Ringes R trennen. Dann gilt nach Fuglede [2] Satz 9 p 200 und Bemerkung
p 207

M2 (rR) 1/M2 (IR) J grad2 u dm (1 7)

R

wlost hier das verallgemeinerte Dinchlet-Randwertproblem mit den Randwerten 0
auf Do bzw 1 auf Dt.

Setzt man S(R) S= inf J ds so ist q S~1 zulâssig (S~ieF(S)) und somit
aeïR a

R
Aus (1.7) folgt dann

M2(rR)^S2lrn(R) (18)

Die dntte zu (D) und (L) aequivalente Eigenschaft ist eine Aussage uber das Ver-
halten der Moduln von Kurvenscharen:
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Der Diffeomorphismus h:G-+G' besitzt die Eigenschaft (M) falls eine Konstante

^existiert, so dass M2(r)^KM2(rf) fur aile Kurvenscharen TczG mit r=h(r).
Die Aequivalenz ergibt sich sofort aus den folgenden Lemmata 2 und 3.

Lemma 2. Ein Diffeomorphismus h\G-+G' mit der Eigenschaft (L) erfilllt (M).
Beweis :

Fur Q'eF(r% yer und x'=h(x) gilt

JV (*(*)) M*) *> f Q'Wds
7 h (y)

(vgl. die Définition fur Xx (x) auf p. 285). Die Funktion q' (h(x)) Xx (x) gehôrt also zu

nn
f Qr2X\dm^K f Qf2ÀlÀ2À3drn K f q'2 dm

G'

denn K
daraus folgt M2 (r) ^ KM2 (r).

Lemma 3. Ein Diffeomorphismus h:G-*Gf, der die Bedingung M2{Z)^KM2{Z')
fur aile Zylinder Z=(Q, Eo, Ex) mit QcG erfullt, hat die Eigenschaft (L).

Aus diesem Lemma ist ersichtlich, dass es genugt, (M) durch die schwâchere

Forderung
M2(Z)^KM2{Zf) (M*)

fur aile Zylinder Z in G mit Bild h{Z)=Zr zu ersetzen.

Beweis von Lemma 3: Die Eigenschaften (L) und (M) sind beide invariant unter
Translation und Rotation. Um zu zeigen, dass Xl/À2X3^Kim Punkte xeG, kônnen

wir daher (wie im Beweis zum Lemma 1) annehmen, dass x=0 und dass h(x)=
(kx 0 0\

Hx+o(\x\),H=[ 0 X2 0

\0 0 Xj
Die Abbildung des Zylinders Zt=(g, Eo, Ex\ Q={x\\xx\< t/2, x\ + x\<t}

Ex {x | xt ± f/2, x\+x\ < t) liefert :

M2(Z) nt*l? < KM2(Z') < ^^V^o^r
nach der Ungleichung (1.1). Daraus schliesst man

und daher XJX2X3^K9 die gewiinschte Ungleichung.
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Mit der gleichen Méthode lâsst sich zeigen, dass (M) auch durch folgende Be-
dingung ersetzt werden kann: Der Diffeomorphismus h:G-*G' gentigt der Un-
gleichung

M2(R)^KM2(R') fur aile Ringe R mit RcG. (M**)

Beweis: Wir normieren h wie oben. Als Ring R' R^ (t) wâhlen wir mit beliebigem
n>\ den ,,Zylinder" {xf | \x[\<t/n, x'2+x32<(t + t/n)2}9 aus dem die Kreisscheibe
{jc' | x'22 + xf32 ^ t2, *i 0} entfernt wird. Nach den Ungleichungen (1.6) und (1.8) gilt:

(t + tjnf 2nn/t m(R') d~2{Rr) ^ M2(Rf) ^ K~l M2(R)

Die beiden Ungleichungen ergeben

und mit dem Grenzûbergang /->0 folgt

und schliesslich i/2 3

(Ein entsprechender Beweis fur den Fall/? 3 findet sich bei Gehring [4] p. 374/375.)
Die Ergebnisse dièses Abschnittes lassen sich folgendermassen zusammenfassen:

Aequivalenz-Satz. ht h ein Diffeomorphismus eines Gebietes GaE3 aufein Gebiet
G'œE3, so sindfolgende Aussagen aequivalent:

(D) $ gmd2udm^K J grad2(uoh'1) dm fur aile in G stetig differenzierbaren
G G'

Funktionen u.

(L) ÀJÀ2À3^KyX1^À2^À3>0inallenPunkten xeG (I2 1, 2, 3 ist Eigenwert
von HH*, H ist die Funktionalmatrix von h im Punkte x).

(M) M2 (r) < KM2 (rf) fur aile Kurvenscharen fcG mit V=h (r). Es genugt
(M*) M2 (Z) < K M2 (Z') fur aile Zylinder mit QczG oder

(M**) M2(R)^KM2{Rf)fur aile Ringe mit RczG zufordern.

Korollar 1. Ist h ein Diffeomorphismus G-*G', so sind folgende Bedingungen
^équivalent:
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(D"1) Jgrad2w dm ^ C"1 j gmd2 (u oh'1) dmfur aile stetig differenzierbaren Funk-
Q G'

tionen u.

(L"1) Aa/A^ ^ C"1^ ^ A2 ^ A3>0) in G.

(M " *) M2 (r) ^ C "*M2 (jT /w> a//e Kurvenscharen fcG.
Korollar 1 ist eine Anwendung des Aequivalenz-Satzes auf den inversen Diffeomor-
phismus A""1.

Korollar 2. /y/ A em Diffeomorphismus G-?(?', der die Ungleichungen

C-lM2{Z') ^ M2(Z) ^ KM2(Z') (1.9)

fur aile Zylinder in G erfullt, so gilt lokal

Nach dem Aequivalenz-Satz und nach der Bemerkimg 3 auf Seite 286 ergibt sich

aus (1.9), dass A^"1<A,^C i l, 2, 3 und daraus die Lipschitz-Bedingung.
Korollar 2 dient als Ausgangspunkt fur den zweiten und dritten Abschnitt, wo auf

die Differenzierbarkeits-Voraussetzung fur h verzichtet wird. Es wird dort gezeigt,
dass sich aus der Voraussetzung (1.9) und der Forderung, dass h ein Homôomorphis-
mus ist, trotzdem eine Lipschitz-Stetigkeit nachweisen lâsst. Daraus folgt dann ins-

besondere, dass h fast iiberall differenzierbar sein muss. Gewisse Aussagen aus dem

Aequivalenz-Satz lassen sich sodann ûbertragen.

Beispiele

1) Fur Streckungen h{x)= vx, v reell und positiv, gilt A,/AyAts v"1 fur aile Permuta-
tionen (1,7, k) von (1, 2, 3). Ist umgekehrt h ein Diffeomorphismus mit Aj/AjA^s A"

fur aile xeG und fur aile Permutationen (i,j9 k) von (1, 2, 3), so folgt daraus sofort

k^K'1 i= 1, 2, 3. Nach einer Verallgemeinerung des Satzes von Liouville (siehe

Gehring [4], p. 389, Satz 16) muss h die Restriktion einer Môbiustransformation
auf G sein. Somit ist h abgesehen von Rotationen und Translationen eine Streckung

2) Konforme Abbildung der Einheitskugel auf sich.

Ist h eine Môbiustransformation (konforme Abbildung) der Einheitskugel \x\ < 1

auf sich, welche die jq-Achse auf sich abbildet und den Punkt (a, 0, 0), 0<a< 1,

in den Nullpunkt ûberfûhrt, so induziert h auf jeder Ebene durch (0, 0, 0) und

(a, 0,0) eine Abbildung w, die sich in komplexer Schreibweise als

darstellen lâsst. Die jq-Achse wurde als réelle Achse gewâhlt. Da es sich um eine
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Môbiustransformation handelt, gilt fur festes x: Àt =À2 À3 X. Setzt man

1 inf À(x) inf
M<i |z|<i

C sup A(x) sup
|jc|<1 |zl^i ^Z

dw

dz~

dw

1 + fl
1 + 0

1 — a

so schliesst man daraus, dass h fur aile x, |x|<l, der Bedingung

C"1 ^ÀlXÀ(x) À~1(x)^K
genùgt.

3) Kugelrmge
Zwei Kugelringe R(= {x \ 1 <\x\ <at) i= 1, 2 sollen difFeomorph aufeinander ab-

gebildet werden. Wir setzen G Rl,G' R29al<a2, und berechnen die kleinste
Konstante K mit der Eigenschaft, dass bei diesem Diffeomorphismus h die Be-

dingungen des Aequivalenz-Satzes erfùllt sind. Dazu geben wir h als eine sym-
metrische Abbildung vor (in Kugelkoordinaten) :

(1/r' - l/a2)/(l - l/a2) (1/r

und zeigen, dass dièse Abbildung im erwâhnten Sinne die beste ist. Die Konstante
K wird mit Hilfe der Bedingung (L) berechnet. Wegen der Symmetrie gilt:

,,.f), ,,2_w/rdr
d{r') rfld{\jrf) r
dr r2 d(llr) r2(l - 1/^)

> 1, denn ax < a2
M2(RX)

12À3 1 - 1/fli M2(R2)
(siehe(1.2))

Daraus schliesst man, dass K=M2 (R1)IM2 (^2)- E>ie Bedingung (M**) des

Aequivalenz-Satzes liefert K'^M2(R1)IM2(R2) fur aile Diffeomorphismen h.

IL Absolute Stetigkeit

Im ersten Abschnitt wird von den untersuchten Abbildungen stets vorausgesetzt,
dass sie stetig differenzierbar seien. Auf dièse einschrânkende Voraussetzung soll
jetzt verzichtet werden. Die Bedingungen (D) und (L) im Aequivalenzsatz lassen sich



296 HANS MARTIN REIMANN

dann nicht mehr so formulieren, jedoch lassen sich die Bedingungen (M), (M*) und

(M**) auf beliebige Homôomorphismen h ûbertragen.
Zur Untersuchung der Regularitâtseigenschaften von h benôtigen wir einige Be-

griffe und Resultate aus der reellen Analysis. Eine ausfuhrliche Darstellung findet
sich bei Lehto-Virtanen [5], Kap. III, § 2.

Ein réelles Borelsches Mass t heisst absolut stetig bezûglich dem Borel-Lebesgue
Mass m, falls t(N) 0 fur jede m-Nullmenge N. Der Homôomorphismus h:G-+G'
induziert durch B-*h(B) eine Abbildung der Borelmengen in G auf Borelmengen in
G'. Wir setzen

t,(S)= m (/*(£)) (2.1)

ftir Borelmengen B in G. xh (B) ist ein positives Borelsches Mass auf G.

Définition. Der Homôomorphismus h:G-+G' heisst absolut stetig in G, falls das

zugeordnete Mass rh auf G absolut stetig ist.

Ist K(r, x) die konzentrische Kugel mit Mittelpunkt xeG und Radius r und exis-

tiert der Grenzwert /w _x

'w ;^ m(X(r,x))

so heisst x' (jc) die Derivierte von x im Punkte x Nach dem Satz von Lebesgue be-

sitzt ein positives, beschrânktes Borelsches Mass t in G fast uberall eine Derivierte und

es gilt fur jede Borelmenge B in G:

x (B) ^ x' dm

B

Gleichheit besteht genau dann, wenn t in G absolut stetig ist.

Définition. Die in GcE3 stetige Funktionfmit Werten in E3 ist absolut stetig auf
Linien (ACL), falls folgendes gilt: Injedem Quader Q={x\ a^Xi^bi, i= 1, 2, 3} a G

istf absolut stetig auffast allen achsenparallelen Strecken in Q. Die Vereinigung der

achsenparallelen Strecken laQ, auf denenfnicht absolut stetig ist, hat 3-dimensionales

Lebesgue-Mass O.

Satz 1. Erfullt der Homôomorphismus h:G-*G' die Bedingung (M*): M2(Z)^
^KM{Z')fur aile Zylinder Z= (g, Eo, Ex) mit QcG und Z' h (Z), so ist die inverse

Abbildung h ~1 absolut stetig und es gilt m (B) <:K3m(h (B))fiir aile Borelmengen BczG.

Fur den Beweis dièses Satzes brauchen wir drei Hilfsâtze.

Hilfsatz 1. Erfullt der Homôomorphismus h die Voraussetzungen von Satz 1, so

gilt (M**):
M2 (R) ^KM2 (R') fur aile Ringe R mit RcG.

Fur den Beweis dièses Hilfsatzes beniitzen wir Resultate von Fuglede [2].
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R sei ein beliebiger Ring, RcG. Wir setzten zunâchst voraus, dass die Randkom-

ponenten von R keine irregulâren Punkte beziiglich des Dirichlet-Randwertproblems
enthalten. Es gilt dann

grad2u dm M2(R)
R

wobei u die harmonische Funktion mit den Randwerten w 0 auf Do und w=l auf
Dt ist. Wir verwenden das Verfahren, das auf die Gleichung (1.3) gefùhrt hat: Der
Ring R wird durch eine Flâche Fin zwei Zylinder Zi9 Z2 zerlegt. Von Fwird voraus-
gesetzt, dass fur jede Stromlinie s (orthogonale Trajektorie zu den Niveauflâchen

u const.) entweder snF=0 oder snF=s gilt. Von den beiden Zylindern muss ge-

zeigt werden, dass g \gmdu\ extremal ist, woraus dann folgt:

M2(Zt) J grad2u dm î=l,2. (2 4)
Qi

Auf eine Ausfûhrung des Beweises kann verzichtet werden, da sich die Méthode von
Fuglede [2] (Punkt 3° p. 202-205) auf unseren Fall ûbertragen lâsst. Aus (2.4) und

(1.5)erhâltman

M2 (R) M2 (Zx) + M2 (Z2) < K (M2 (Z[) + M2 (Z2)) < K M2 (R').

Besitzt nun aber Do oder D1 irregulâre Punkte, so kann Rr h (R) bei vorgegebenem
e>0 durch einen Ring Ro, RoczR', approximiert werden fur den die Ungleichung

M2(R0) ^ M2(R') + e (2.3)

gilt.1 Zu einem solchen Ro wâhlen wir einen Ring Rt mit h~1(R0)czRlc:R9 dessen

Randkomponenten nur aus regulâren Punkten bestehen (z.B. den Ring, der aus den
Punkten besteht, die von h~x (Ro) einen geeigneten Abstand haben). Wie soeben be-
wiesen wurde, ist M2(R1)^KM2(Rf1). Daraus folgt:

M2(R) ^ M2(Rl) ^ KM2{R\) < KM2(R0) < KM2(R') + Ke

d2iR1czR und RoczR'u und damit

M2(R)^KM2(Rf).

*) Nach Choquei [1] p. 146/147 ist MziR) gleich der Kapazitât des inneren Komplementes / von
R beziiglich der Green'schen Funktion des Gebietes R u/. Da / kompakt ist, gilt

M2(R) cap/ inf capO.
o => /

Das Infîmum erstreckt sich uber die offenen Mengen O, die / enthalten. Wegen der Monotonie des
Moduls gibt es daher einen Ring R* mit âusserer Randkomponente Du dessen innere Randkom-
ponente /)0* ganz in R liegt und fur den

M2(R*) ^ M2(R) + fi/2
gilt. Eine Spiegelung am Einheitskreis mit dem Zentrum in / und nochmalige Anwendung des be-
schriebenen Verfahrens liefert das gewiinschte Résultat.
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Hilfsatz 2. Ist R ein beliebiger Ring mit innerem Komplement I, und ist R* der
durch zwei konzentrische Kugelflâchen berandete Ring mit m(R) m(R*) und

m(I)=m(n so gilt M2(R*)<M2(R).

Dieser Satz stammt von Szegô [9]. Wir sagen im Folgenden, jR* entstehe aus R durch
Symmetrisierung.

Hilfsatz 3. Ist R' {x' \ a'<\x'-x'Q\<b'}czG\ R=h~1(R') und R* der aus R
durch Symmetrisierung entstandene Ring, so folgt aus den Voraussetzungen des Satzes 1;

K'1 <a'ja* + K-V/6' (2.6)

Beweis: Nach den Hilfsâtzen 1 und 2 gilt:

K M2 (Rf) ^ M2 (R) > M2 (R*).

Sind a* und b* (a*<è*) die Radien der begrenzenden Kugelflâchen von R*, so ergibt
dies zusammen mit der Gleichung (1.2)

K4n(l/a' - l/b')"1 ^ 47c(l/a* - 1/fc*)"1
unddaraus

10-1/b'<K(Ua*-1/b*)
und (2.6).

K-*+a'lb*<a'la* + K-*a'lb'

Folgerungen

1) Fur eine Folge konzentrischer Ringe R't mit

a[ < 1, b\ y/â[ > a[ und a\ -> 0

schliesst man aus (2.6):

und durch Grenzûbergang:

K'3 < lim inf(a;/af)3 lim inf{m{I[)lm{h^1 {II)) (2.7)
i-»oo

wo l'i das innere Komplement des Ringes R\ ist, also eine Kugel vom Radius a\.

2) Ist V 2e und a' ^ e, so folgt aus (2.6)

und daher besteht fur jede Kugel /' mit Radius <e, deren Abstand zum Rand von
G grôsser als e ist, die Ungleichung

m(/')/m(/) (a'la*f > K"3/8, / h~\ï) (2.8)

Aus diesen beiden Folgerungen ergibt sich leicht ein
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Beweis des Satzes 1 : Eine Lebesgue-Nullmenge N' c G' kann durch Kugeln tiber-
deckt werden, derart dass die Summe ihrer Inhalte beliebig klein ist. Daraus und aus

(2.8) schliesst man, dass N=h~1(N')aG wieder eine Nullmenge ist. h'1 ist also in
G' absolut stetig. Die h'1 zugeordnete Mengenfunktion t^"1 (siehe (2.1)) ist in jeder
kompakten Teilmenge von G' beschrânkt. Nach dem Satz von Lebesgue existiert die
Derivierte (t,,"1)' f.ii. in G' und nach (2.7) ist f.ù.

Wegen der absoluten Stetigkeit von t^"1 gilt fur aile Borelmengen BczG

m(B) m\h
w

Daraus folgt die Behauptung des Satzes.

Satz 2. h sei ein Homoomorphismus G-+G'. Ist dannfur ein p>\
Mp{Z)^KMp{Zf)

fur aile Zylinder in G, so ist h absolut stetig auf Linien (ACL).
Die Beweismethode dièses Satzes geht auf Pfluger [7] zuriick. Der Fall mit

Dimension d=3 und p d ist bei Vâisâlâ [11] behandelt. Es genugthierzubemerken,
dass der Beweis von Vâisalâ auch fur d^n Gûltigkeit besitzt.

III. Lipschitz-Stetigkeit

In diesem Abschnitt wird sich herausstellen, dass die Homôomorphismen h von G

auf G', fur die eine ,,zweiseitige" Ungleichung

K~XM2{Z) < M2{Zr) < CM2(Z) (3.1)

gilt, eine Lipschitzbedingung erfullen. Deshalb sind dièse f.ii. differenzierbar, ein
Umstand, der grundlegend ist fur die Obertragung der Ergebnisse aus dem ersten
Teil. Ob sich die Differenzierbarkeit f.ù. von h bereits aus der ,,einseitigen"
Ungleichung (Voraussetzung im zweiten Abschnitt) herleiten lâsst, ist eine offene Frage.
Im Gegensatz zur Théorie der quasikonformen Abbildungen in E3 ist es jedoch un-
môglich, aus der einseitigen Ungleichung eine zweiseitige herzuleiten. Der
Homoomorphismus h(r, q>, z) (r2, (p, z) (in Zylinderkoordinaten), der {x (r, <p, z) |

|0<^<l,0^r<l} auf sich abbildet, belegt dièse Behauptung.

Satz 3. Geltenfur den Homoomorphismus h:G^Gf die Ungleichungen

K~ * M2 (Z) ^ M2 (Z') ^CM2 (Z)

jur aile Zylinder Z=(Q, Eo, Et)9 QczG, so erfiillt h (lokal) eine Lipschitzbedingung
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der Form

y/K^C-^x -y\^ \h(x) - h(y)\ < JYc3 \x - y\ (3.2)

Korollar. h und h'1 sindfm. differenzierbar.
Dies ist eine Folgerung des Satzes von Rademacher
Wir beweisen die zweite Ungleichung in (3.2). Die erste folgt dann durch Anwen-

dung auf die inverse Abbildung A"1. Es muss vorausgesetzt werden, dass die Verbin-
dungsstrecke der Punkte x, y, in G liegt. In diesem Sinne ist der Satz nur eine lokale
Aussage. Durch x und y legen wir sodann die Symmetrieachse eines geraden, offenen

Kreiszylinders Q, QaG, dessen Grund- und Deckebene Eo und Ex die Punkte x
bzw. y enthalten. Wir verwenden die Ungleichung (1.1), die fur Z=(g, Eo, E^) in
Gleichheit ûbergeht:

M2(Z) m(Q)\x-y\~2

Konvergiert der Radius r des Kreiszylinders gegen Null, so strebt dgegen |h (x) — h (y)\.
Nach Satz 1 gilt nun

und daraus folgt
m(Q)\x - y\~2 M2(Z) < KM2(Z') < Km(Qf) d~2 < KC3 m(Q) d~2

Division mit rn(Q) und anschliessender Grenzûbergang r->0 fûhren auf die zweite

Ungleichung in (3.2).
Satz 3 besitzt nach Fuglede [2] (Beweis zu Satz 4 p. 188) folgende Umkehrung:

Aus der (lokalen) Voraussetzung:

folgt
c~5M2(r) < M2(rf) < c5M2(r)

fur aile Kurvenscharen F a G.

Aus Satz 3 ergeben sich eine ganze Reihe von Folgerungen :

1) Die partiellen Ableitungen von h, die fast ûberall existieren, sind lokal in L^, denn

sie sind durch ^/KC3 beschrânkt.

2) Aus den Voraussetzungen des Satzes 3 folgt die Eigenschaft (L) (siehe p. 285) fur
aile Punkte xeG, in denen h differenzierbar ist:

XJÀ2Â3^K À1^À2^X3>0 (3.3)

Daraus erhâlt man

X^K-1 (3.4)

Der Beweis auf p. 13/14 beniitzt nur die Differenzierbarkeit in den betreffenden

Punkten. Darum kann dièses Ergebnis auch folgendermassen formuliert werden :
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Ist der Homôomorphismus h f.û. differenzierbar und gilt K~1M2(Z)^M2(Z') fur
aile Zylinder in G, so gilt (3.3) in allen Punkten, in denen h differenzierbar ist. Ins-
besondere ist (3.3) unabhângig von der Grosse von C. Die folgende Umkehrung
lâsst sich unmittelbar von einem Ergebnis von Vâisâlâ ([10] Satz 6.5) ûbertragen:
Is»t h ACL, f.û. in G differenzierbar und gilt (3.3) in fast allen Punkten, in denen h

differenzierbar ist, so folgt daraus:

fur aile Kurvenscharen F a G.

Weil sich die entsprechenden ,,zweiseitigen" Ungleichungen immer durch die Be-

trachtung des inversen Hôomorphismus ergeben, gilt

K~1M2 (D ^ M2 (rf) ^CM2 (r) (3.5)

fur aile Kurvenscharen, sobald dièse Ungleichungen fur Zylinder bestehen.

3) Die Ungleichungen x^JX^^KC
^X3IX1X2>(KCy1 (3.6)

fur Punkte xeG, in denen h differenzierbar ist, sind eine direkte Konsequenz von
(3.3), (3.4) und den entsprechenden Ungleichungen fur h"1. (3.6) zusammen mit der
Differenzierbarkeit f.û. und der absoluten Stetigkeit auf Linien bedeuten, dass ein
Homôomorphismus h, der den Voraussetzungen des Satzes 3 genûgt, (ATC)-quasi-
konform ist (im Sinne von Vàisâlâ [10] Satz 6.13)2). Dièses Ergebnis lâsst sich
auch folgendermassen formulieren :

Satz 43) Erfullt der Homôomorphismus h die Ungleichungen

K'xM2{r) < M2(r) ^ cM2(r)
fiir aile Kurvenscharen La G, so gilt fiir dièse auch

{KC)~xM2{r) < M3(r') < KCM3(r)
Das Beispiel h(xl9 x2, x3) b(axu x2, x3), a>\ zeigt, dass die Konstante KC
nicht verbessert werden kann (KC=a2).

4) Es ist bekannt (siehe Morrey [6] Kapitel 3), dass ein Homôomorphismus h : G-+G',
der (3.2) erfullt, die Klasse der reellwertigen ACL-Funktionen w, deren partielle
Ableitungen lokal in Lp{p>\) sind, invariant lâsst: w, definiert auf einem Gebiet
Q<^G, und u'^Uoh'1, definiert auf Q' h(Q), gehôren gleichzeitig zur erwâhnten
Klasse. Zudem besteht f.û. in Q die Gleichung
grad u=Hgtdiàu'.
(H ist die Funktionalmatrix von h.)

2) Im Sinne von Gehring [4], Satz 4, ist /i(#C)1/2-quasikonform.
3) Dièses Résultat ist etwas besser als dasjenige, welches in den C.R. de FAcad. Sci. Paris 266,

274 (1968) angekundigt wurde.
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Nach derselben Begrundung wie auf Seite 286 erhâlt man daraus folgendes Résultat:

Mit den Voraussetzungen des Satzes 3 gilt

K"1 grad2wdm^ grad2u'dm<C gmd2udm

Q Q' Q

fur aile in einem Gebiet QczG definierten ACL-Funktionen w, deren partielle
Ableitungen lokal in L2 sind.

Als Umkehrung zur Folgerung 4 beweisen wir:

Satz 5. Lasst der Homôomorphismus h : G-+G' die Klasse der in Teilgebieten Q von

G definierten ACL-Funktionen w, deren partielle Ableitungen lokal in Lp (p>l) sind,

invariant, und gilt

f |gradu|pdm<K f \gmdu'\p dm

Q Q'

fur aile dièse Funktionen, sofolgt daraus

fur aile Zylinder Z=(Q, Eo, EJ, QcG.
Zur Vorbereitung des Beweises von Satz 5 geben wir fur den Modul eines Zylinders
eine zweite Définition an. Dièse lâsst sich auch fur Ringe in dieser Art formulieren,
was im Falle/? 3 bereits von Gehring [3] gezeigt worden ist.
Zweite Définition :

Der Modul eines Zylinders Z=(Q, Eo, Ex) ist die réelle Zahl

AP(Z) inf f |gradu\p dm (p > 1)
u J

Q

Das Infimum erstreckt sich ûber aile in Q definierten ACL-Funktionen u, die auf Eo

und Ex durch die Konstanten 0 bzw. 1 stetig fortgesetzt werden kônnen.
Es muss gezeigt werden, dass AP{Z)=MP(Z).

a) MP{Z)^AP{Z)

Ist |gradw| in Lp, so ist u fur aile yeFz, mit Ausnahme einer Schar I\ vom/?-Modul 0,

absolut stetig entlang jeder kompakten Teilkurve von y (Vâisâlâ [10] Lemma 4.1).

Aus der Bedingung w=0 bzw. w= 1 auf E0(Ei) folgt daher fur dièse Kurven:

|gradw|ds^ 1
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Wird |gradw| durch eine Borelfunktion/mit/=|gradw| f.û. ersetzt, so gilt

/ ds |gradu| ds

y y

fur aile Kurven mit Ausnahme einer Schar T2 vom/?-Modul 0 (Fuglede [2] Theorem
3d). Da Ft und T2 nichts zum Modul MP(Z) beitragen, erhâlt man daraus

b) Die umgekehrte Ungleichung stûtzt sich auf eine Konstruktion von Gehring
[3] und auf ein Regularisierungsverfahren.

/>0 sei eine Borel-Funktion mit \fds> 1 fur aile yeFz und \fp dm< oo. Ist die
y Q

zweite Bedingung fur kein/erfûllt, so istMp(Z)=oo und daher Ap{Z)^Mp(Z). Mit
q bezeichnen wir die in Q definierte Hilfsfunktion

ô(x) bezeichnet den Abstand von x zum Rand von Q. q(x) ist Lipschitz-stetig:

\Q(x)^Q(xf)\<2-1\x-xf\ (3.7)

t ist ein Ortsvektor in Be={t \ \t\<s^ l}c:E3 und figuriert als Parameter. Die Be-

zkh\mgy(x)=yt(x) x+tQ(x) definiert fur jedes teBe eine eineindeutige Abbildung
von Q auf sich.
Die Funktion

ist fur festes s in x stetig, denn/ist integrierbar und q(x) ist stetig. Zudem gilt:

y

fur aile yerZ9 denn

(x, e) ds(x) J ds(x)

Be y (y)

(nach Fubini). Fiir die Transformation des Bogenelementes erhâlt man nach (3.7):

ds(y) ds(x + îq) < (1 + \t\ |grad^|) ds(x) < (1 + \t\/2) ds(x)
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Mit der Voraussetzung lfds*£: 1 fur aile yeTz folgt daraus:
y

1 1

y bc

Fur e->0 konvergiert g(x, e) in der Lp-Norm gegen/:

dm

1 f f
——- I dm(l) I

(3.9)

(/(x + tS) - /(*)) dm(t)

Wird/in Lp durch stetige Funktionen mit kompaktem Trâger approximiert, so ist

ersichtlich, dass der letzte Ausdruck mit s gegen 0 konvergiert. Weil Q beschrânkt ist,

konvergieren daher auch die (inx) stetigen Funktionen

v ' ' 1 + £/2

in Lp gegen/und erfûllen wegen (3.9) die Bedingung

v (x, e) ds > 1 fur aile y e Tz

Wir definieren eine Funktion u(x9 s) durch die Gleichung

u (x, s) Min < 1, inf v (x, s) ds (x) >

Das Infimum erstreckt sich ûber aile rektifizierbaren Kurven p in Q9 die 2s0 mit x
verbinden. Wegen der Stetigkeit von v(x9 s) genûgt u(x9 e) lokal einer Lipschitzbe-

dingung und ist daher eine ACL-Funktion mit |gradw(x, e)\ < v(x9 e). Damit kann zu

jeder Borelfunktion/>0 mit $fds>l fur aile yeFz und zu jedem ô>0 eine ACL-
y

Funktion u(x9 s) angegeben werden, die sich durch 0 (bzw 1) stetig auf Eo (bzw E^
erweitern lâsst und fur die

f |grad u\p dm < j fp dm + ô

Q Q
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gilt. Daraus schliesst man die gesuchte Ungleichung

Mit dieser Vorbereitung gestaltet sich der Beweis zum Satz 5 sehr einfach :

Zu einem beliebigen Zylinder Z' (Q', Eo, E[), Q'cG', gibt es eine Folge von ACL-
Funktionen ûn — unoh~x, die in Q definiert sind, mit Randwerten 0 auf Eo und 1 auf Ex
und die

lim f
«->oo J

dm Mp(Z')
Q'

erfùllen. Nach der Yoraussetzung zu Satz 5 gilt daher

K J |grad<|p dm> j Igrad wjp dm ^ Mp(Z)
0! Q

Mit dem Grenzùbergang «-»oo folgt daraus

KMp(Z')>Mp(Z)

Gestiitzt auf Satz 3 mit den Folgerungen 2 und 4 und auf Satz 5 formulieren wir in
Analogie zum ersten Abschnitt (vgl. p. 293) folgenden

Aequivalenz-Satz. Ist h ein Homôomorphismus eines Gebietes GczE3 auf ein
Gebiet G'czE3, so sind folgende drei Aussagen aequivalent:
(1) K~1M2(Z)^M2(Z')^CM2{Z)fur aile Zylinder Z mit QcG
(2) h und h'1 sindACL,f.u. differenzierbar und in den Punkten, in denen h differenzier-

bar ist, gilt C~1^kijXjkk^Kfiir aile Permutationen (i,j, k) von (1, 2, 3)
(3) h und h'1 lassen die Klasse der ACL-Funktionen, die in Teilgebieten Q von G (bzw.

Q von G') definiert sind und deren partielle Ableitungen lokal in L2 sind invariant,
und es gilt fur dièse Funktionen:

K~l grad2wdm< grad2u'dm<C gmd2udm

Q Q' Q

IV. Normalfamilien-Eigenschaft

Définition. Eine Familie F von stetigen Funktionen heisst normal, fails jede unend-
Uche Folge {/„} in G definierter Funktionen aus F eine Teilfolge besitzt, die aufjeder
kompakten Teilmenge von G gleichmâssig gegen eine Funktion f oder gegen die Kon~

stante ± oo konvergiert. Gehôrtfjeweils wieder zu F, so ist F eine vollstândige Normal-
familie.

Die Forderung, dass aile Funktionen/„ auf G definiert sein mûssen, kann abge-
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schwâcht werden. Es sollen auch Folgen {/„} von Funktionen aus jpzugelassen werden,
deren Definitionsbereiche {Gn} eine beliebige kompakte Teilmenge des Gebietes G

von einem gewissen Index an enthalten,

Satz 6. Die Familie Fder Homôomorphismen, die den Voraussetzungen des Satzes 3

geniigen, ist eine vollstândige Normalfamilie.
Nach dem Satz von Arzela-Ascoli ist F eine Normalfamilie, wenn dk

Homôomorphismen in F gleichgradig stetig sind. Wegen der Lipschitz-Stetigkeit (Satz 3) ist
dièse Bedingung erfiïllt, und es muss nur noch die Vollstândigkeit gezeigt werden. Es

sei also {hn} eine Folge von Homôomorphismen aus F, die auf jeder kompakten
Teilmenge von G gleichmâssig gegen h konvergiert. Wir verwenden folgende Abschâtzung:

\h(x) - h(y)\ > | !*.(*) - hn(y)\ - |*(x) - *.(*) + hn(y) - h(y)\ \

Bei gegebenem e, 0<e< 1, gilt fur n>n(e, x, y)

\h(x) - hn(x) + hn(y) - h(y)\ < \h(x)-hn(x)\ + \h(y) - hn(y)\

< eJK~3C~ x\x- y\ fur x ^ y
und daher T

\h(x) - h(y)\ >(l- e)jK~3 C"1 |x - y\ > 0 fur x # y

h ist also wieder ein Homôomorphismus und insbesondere wieder Lipschitz-stetig.
(Die Ungleichung

folgtaus
\h(x)

\h(x) - h(y)\ < \h(x) - hn(x)\ + \hn(x) - hn{y)\ + \hn(y) - h(y)\)
Mit dem Satz von Rademacher schliesst man wieder, dass h f.û. differenzierbar ist.

Es geniigt dann, die Ungleichungen

K~1M2(R) < M2(R') < CM2(R)

nur fur Ringe R9 RcG, zu beweisen. Mit dem Beweis auf Seite 293 erhâlt man
nàmlich

in allen Punkten xeG, in denen h differenzierbar ist und fur aile Permutationen

(hj, k) von (1,2, 3). Nach der zweiten Bemerkung Seite 305 folgt daraus (3.5) und

damit (3.1) als Spezialfall.
Zu einem beliebig gewâhlten Ring R, RcG, betrachten wir die Folge der Ringe

R^=hn(R). Wir kônnen voraussetzen, dass M2(Rn)>K~iM2(R) (vgl. Hilfsatz 1

Seite 296). Wâhlen wir nun nach der Beziehung (2.3) einen Ring R*,R*czR'=h (R) mit

M2(R*) < M2(R') + s

so ist R* von einem gewissen Index an in R^=hn(R) enthalten. (R ist nach Définition
kompakt). Daher gilt:

M2{R') + s > M2(R*) S* M2(R'n) ^ K~lM2(R)
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Da e beliebig gewâhlt ist, folgt daraus

Weil die inversen Homôomorphismen auch eine Normalfamilie bilden, gibt es eine

Teilfolge von {h~l}, die auf jeder kompakten Teilmenge in G' h(G) gleichmâssig

gegen h'1 konvergiert. Die analoge Oberlegung, angewandt auf dièse Teilfolge,
liefert

M2(R')^CM2(R)
Der Beweis ist vollstândig.
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