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Uber harmonische Kapazitiit und quasikonforme
Abbildungen im Raum

H. M. REIMANN (Ziirich)

Einleitung

Fiir den 3-dim. euklidschen Raum E® wurde eine Theorie der quasikonformen
Abbildungen entwickelt (siche z.B. GEHRING [4], VAISALA [10]), die viele Merkmale
der Theorie fiir die Ebene beibehilt. Die Definition der quasikonformen Abbildungen
im Raum stiitzt sich auf den Begriff der konformen Kapazitit von Ringen. Ein Ring
R in E? ist das homdmorphe Bild von {x|0<a<|x|<b}. Betrachtet man alle stetig
differenzierbaren Funktionen ¥ mit dem Randwert 0 auf der einen Randkomponente

und dem Randwert 1 auf der anderen, so heisst die Grosse M;=inf | |gradu|’ dx
u R

,,konforme Kapazitit*“ von R (nach LoEwWNER). Eine quasikonforme Abbildung im

Raum ist dann ein Homdomorphismus von einem Gebiet G in E* auf ein Gebiet G’

mit der Eigenschaft, dass fiir eine gewisse Konstante K und fiir alle Ringe R mit

R<G und Bild R’ die Ungleichung M 5 (R)< KM, (R’) besteht. Die vorliegende Studie

befasst sich mit den Abbildungen, die man erhilt, wenn die konforme Kapazitit in

dieser Definition durch die harmonische M, (R)=inf | |gradu|?® dx ersetzt wird. Die
u R

harmonische Kapazitit eines Ringes ist gleich dem Wert des Dirichletintegrals
derjenigen harmonischen Funktion in R, welche das verallgemeinerte Dirichlet-
Randwertproblem mit den Werten 0 und 1 auf den beiden Randkomponen-
ten 10st. Der Kapazititsbegriff wird im folgenden durch den allgemeineren
Begriff des Moduls ersetzt. Diese beiden Begriffe fallen fiir Ringe zusammen (vgl.
(1.7)).

Die Methoden, welche die Untersuchung derartiger Abbildungen gestatten,
stammen grosstenteils aus der Theorie der quasikonformen Abbildungen. Handelt es
sich im ersten Abschnitt noch um Diffeomorphismen, so werden im zweiten und
dritten die gewonnenen Resultate auf Homéomorphismen ohne a priori Regularitits-
voraussetzungen iibertragen. Das Schwergewicht liegt hier demzufolge bei der
Abklirung von Regularititseigenschaften. Der letzte Abschnitt dient der Her-
leitung einer Normalfamilien-Eigenschaft. Die Resultate, die sich wesentlich
von der Theorie der quasikonformen Abbildungen abheben, sind in den Sitzen 1
und 3 enthalten.

Herrn Prof. A. PFLUGER moéchte ich an dieser Stelle fiir die mannigfachen An-
regungen und fiir das rege Interesse, das er meiner Arbeit stets entgegenbrachte,
meinen ganz besonderen Dank aussprechen.



Uber harmonische Kapazitit und quasikonforme Abbildungen im Raum 285

I. Ein Aquivalenz-Satz

In diesem Abschnitt werden Diffeomorphismen mit gewissen speziellen Eigen-
schaften studiert. Die Abbildung 4, die ein Gebiet G E* auf ein Gebiet G'< E? ab-
bildet, ist im Punkte x*e G differenzierbar, wenn es eine lineare Transformation H
gibt, fiir welche die Beziehung

h(x)=h(x*)+ H(x — x*) + o(|x — x*|)

besteht. Wird die Abbildung mit Hilfe kartesischer Koordinaten beschrieben, so ist
H=H(x*) die Funktionalmatrix im Punkte x*. 4 ist eine in G stetig differenzierbare
Abbildung, falls H(x) in G definiert ist und stetig ist. 4 ist ein Diffeomorphismus, falls
die inverse Abbildung 4! existiert und falls # und ™" stetig differenzierbar sind. Ist
h ein Diffeomorphismus von G auf G’, so ist H als Matrix in allen Punkten von G
regulir. Es werden nur Abbildungen in E* (3-dim. euklidscher Raum) betrachtet,
obwohl sich gewisse Resultate ohne weiteres auf hohere Dimensionen iibertragen
lassen. Alle betrachteten Gebiete G, G’ liegen also in E>,

Den Ausgangspunkt bilden Diffeomorphismen, fiir welche die relative Anderung
des Dirichletintegrals beschrinkt ist.

Wir sagen, der Diffeomorphismus ~#: G—G’ habe die Eigenschaft (D), falls eine
Konstante K >0 existiert, so dass fiir alle in G stetig differenzierbaren reellwertigen
Funktionen « mit '=uo.h~! die Ungleichung

f grad’u dm < K f grad®u’ dm (D)
G G’

gilt. (Mit m wird das 3-dim. Lebesgue-Mass bezeichnet, das Volumenelement ent-
sprechend mit dm. Zur Kennzeichnung der Variablen wird dafiir auch dx geschrieben.)

Zuerst soll gezeigt werden, dass (D) mit einer lokalen Eigenschaft (L) gleichwertig
ist. Ist H* die Transponierte der Funktionalmatrix H, so besitzt H H* nach einem
Satz der linearen Algebra drei reelle positive Eigenwerte 12 > 12 > 23>0 Diese Eigen-
werte sind stetige Funktionen von x und es gilt

11 = max IHXI, IdetHl =ll 1213
|x|=1

Mit diesen Bezeichnungen lisst sich eine Eigenschaft (L) formulieren:

Der Diffeomorphismus #:G—G’ besitzt die Eigenschaft (L), falls eine Zahl K

existi i
ert mit AiJA, A3 < K fiirallexin G (L)

Bemerkungen

1) Zusammen mit der Konvention A, > 4, > 1, ist die Bedingung 4,/4,4; < K mit den
drei Ungleichungen 4,4 i/4 < K fiir alle Permutationen (i, j, k) von (1, 2, 3) aequi-
valent. Ist ndmlich 1; > A, > A3, so gilt A;/A, 45 = A,/ 43 = A3/, A,.
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2) Der Ausdruck 4,/4,4; ist invariant gegeniiber der Zusammensetzung von h mit
einer Translation oder einer Rotation.

3) Aus4,/A;4, < Kfiir alle Permutationen (i, j, k) von (1, 2, 3) folgt ;> K1 i=1,2, 3
aber nicht umgekehrt, wie das Beispiel #(x)=(ax;, K 'x,, K~'x;) mit a>K™!
zeigt. Aus der Bedingung A, > K ~* folgt, dass der inverse Diffeomorphismus 2~ ! in
jedem konvexen Teilgebiet von G’ einer Lipschitzbedingung der Form

|h™'(x)—h~'(»)| < K|x—y| geniigt.
Dass aus der Eigenschaft (L) die Eigenschaft (D) folgt sieht man leicht:

f grad?u dm = f (H gradw’)? |det H| ™' dm

G G’
< | max |Hx|?grad*u’ ——— dm
N |xl=1 i },213

G’

2
=| — grad®u’ dm < K | grad®u’ dm
Az As

G’ G’

fiir alle in G stetig differenzierbaren Funktionen u.
Die Umkehrung ist der Inhalt von

LemMA 1. Erfiillt ein Diffeomorphismus h:G—G’ die Bedingung (D), so erfiillt er
auch die Bedingung (L).

Der Beweis verlduft indirekt. Es sei 4,/4,1;=C> K im Punkte x*eG. Wegen der
Invarianz der Bedingungen (D) und (L) gegeniiber Translationen und Rotationen,
kann ohne Einschrinkung angenommen werden, dass x* =0 und

A, 0 O
h(x)=Hx+o(|x]) mit H=H0)={ 0 4, O
0 0 i

(Bekanntlich ldsst sich eine n x n Matrix M mit Hilfe von orthogonalen Matrizen O,

und O, in der Form M =0, HO, darstellen, wobei H eine Diagonalmatrix ist). Die

zur Funktionalmatrix H(x) inverse Matrix H™! (x) schreiben wir in der Form
~1(x)= (v;;(x)). Dann ist

V,j(O) = 5,~jvi mit v,-—l == Ai
Da die v;; nach Voraussetzung stetige Funktionen sind, gibt es zu gegebenem ¢>0,
e<|v; v, Vs, ein >0, so dass

A={x||x]<6,i=1,2,3} =G und dass fiir alle xe 4
[vi;(x) — v;;(0) <& und |detH(x)| < (|v;v,vs] — g)”!
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Wir verwenden die Familie von stetig differenzierbaren Funktionen:

1+cos V1 4 cos 2 (1 + cos 22 fiir xed
COS —— 0S8 —— S — ur xe
U (n, s)(x) = u(") = 0 o o

0 sonst

n=1,2... 0{e{ | v, v,v3]|. Es ist

gradu(x) = — g (n sinm:sx1 (1 + cos%) (1 + cos ﬂaﬁ),
1+cosnm€1 in 2 1+co T%s
sin cos ——

0 0 5 )’

i+ LIATA N TX,\ . TX;
C — COoOS—— | SIn ——
7% 5 5

fiirxeA

=0 sonst, und f grad’u dm = gn*(n®> +2) ¢

G

Mit o’ (h(x))=u(x) erhdlt man aus

fgradzu’ dm = f (gradu-H™')? |det H| dm
G’ G

nach einiger Rechnung die Abschitzung

2

n°o

Jgradzu’ dm<lr;—; o e[gnz(lvll +e)* +c,e2n* +c,en+ 0(e)]
1V2 V3] —

Gl

¢; und ¢, sind von # und ¢ unabhingige Konstanten. Daraus schliesst man, dass
f grad®u’ dm
‘ 2\7! + ¢)* &
¢ ~——-——~—<(1+—2) [——————I(Iv‘l I) +0(82)+O<;1~>]
f grad®u dm " YiVa Vsl — €

G

Da iiber n und & noch frei verfiigt werden kann, setzen wir jetzt e=n""'. Der Grenz-
wert fiir n— o0 der rechten Seite der letzten Ungleichung ist dann C~!. Es ldsst sich
also ein n, finden, derart dass

fgradzu dm > K f grad®u’ dm  fiir u = Uy, 1/n)-
G G’

Um eine dritte, aequivalente Eigenschaft zu formulieren, verwenden wir den Be-
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griff des Moduls einer Kurvenschar. Wir stiitzen uns dabei auf die Untersuchungen
von FUGLEDE [2] und VAISALA [10] und [11].

Linienintegrale

Eine Teilmenge y von E? ist eine Kurve, falls y homdomorph zu einem offenen,
halboffenen oder abgeschlossenem Intervall ist. Fine rektifizierbare Kurve der Lange
I kann mit Hilfe der Bogenldnge parametrisiert werden: x=x(s). Das Linienintegral
der nicht negativen, Borel-messbaren Funktion g iiber y ist dann als

1

[eds=[etx)as

Y 0

definiert. (Der Wert oo ist zugelassen.) Ist die Kurve lokal rektifizierbar, so ist das
Integral als uneigentliches Integral definiert.

Der Modul einer Kurvenschar I’

Wir bezeichnen mit F(I') die Familie der nicht negativen, Borel-messbaren Funk-
tionen g(x), die der Bedingung

fgds?l

14

fiir alle lokal rektifizierbaren Kurven yeI” geniigen.
DEFINITION: Sei p > 1, m das 3-dim. Lebesgue-Mass. Der p-Modul einer beschrdnk-
ten Kurvenschar I ist die reelle Zahl
M,(I)= inf f 0" dm

ee F(I
E3

Die nicht lokal rektifizierbaren Kurven der Schar treten also in dieser Definition
gar nicht in Erscheinung. Wird das Integral einer Funktion iiber eine nicht lokal
rektifizierbare Kurve mit Hilfe des 1-dim. Hausdorff-Masses definiert, so ldsst sich
zeigen, dass M ,(I') =0, wenn das System I' nur aus nicht lokal rektifizierbaren Kurven
besteht.

Beispiele

1) Ein Tripel Z=(Q, E,, E,) nennen wir einen Zylinder in E*, wenn es einen Homdo-
morphismus 4 vom Einheitszylinder {(x;, X, x3) | x}+x3<1,0<x;<1} auf die
abgeschlossene Hiille des Gebietes Q gibt, der x;=0 (x?+x2<1). Auf E, und
x;=1 auf E, abbildet. Die Kurven in Q mit Anfangs- und Endpunkt in E, bezw.
E, stellen eine Kurvenschar I'; dar. Unter dem p-Modul M,(Z) eines Zylinders
versteht man den p-Modul dieser Schar.
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Der Modul eines geraden Zylinders mit der (ebenen) Grundfliche E, und der
Hohe A lasst sich leicht berechnen: Wahlt man ¢=h"'so gilt | A7! ds > 1 und daher
7

M,(Z) < f h™"dm=h""m(Q)
Q

Anderseits gilt fiir alle Funktionen ge F(I') und fiir alle Kurven y’el’, parallel

zur Zylinderachse: "
(e <)

? v

und daher

fg”dm =ffg"dm =m(Q)h™".

Q Eo y’
Daraus schliesst man, dass M,(Z)=m(Q)h™P. Setzt man fiir einen beliebigen
Zylinder anstelle von A den Abstand d von E, und E; ein, so erhdlt man mit
o¢=d "1 ein Analogon zur Rengelschen Ungleichung:

M,(Z)<m(Q)d™? (1.1)

Ein Ring R ist ein beschrinktes Gebiet in E?, das homdomorph zu R(a, b)=
={x | a<|x|<b,0<a<b} ist. Der Rand von R besitzt zwei Komponenten: eine
innere D, und eine dussere D;. Der Modul eines Ringes, M, (R), ist der Modul der-
jenigen Kurvenschar I'g, welche aus den Kurven in R besteht, die D, und D, ver-
binden. Zur Berechnung des p-Moduls von R(a, b) fiir p>1 werden folgende
Funktionen verwendet:

p-3 1 2/(1-p) 2/(1-p) £
= p— 1 p@ =D _ fe=3/G=1) PP =k, T flir p # 3
1 -1 -1
03 = — r- =ksr
og(b/a)
Dann gilt fiir eine Integration entlang eines Radius
b b
1= f odr = f or2P-p=2P gp
“b T . b
.
<(f@pr2 dr) (f r_z/(”—l)dr) =k11,_”-fg"’r2 dr

Also gilt fiir beliebige o
b

fg”dm=4nfg”r2dr>k§_l-4n
R a
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mit Gleichheit fiir g,. Fiir p=2 ergibt sich insbesondere:

4r
M,(R) = e ——

= (1.2)

Es besteht eine einfache Beziehung zwischen dem Modul von R(a, b) und den
Moduln der Zylinder, die man durch Aufschneiden des Ringes erhilt: Wird R(a, b)
von Kegeln durch den Nullpunkt in endlich viele Zylinder Z; zerlegt, so gilt

X M, () = M, (R) (1.3)

Fiir Zylinder Z, die durch Kegel mit der Spitze im Nullpunkt und dem Raumwinkel
w aus R(a, b) herausgeschnitten werden ist M,(Z)=wk?~'.
Der Zylinder Z=(Q, E,, E,) zum Beispiel mit

Q0={x|a<|x]<b, x,>0}
E0={xHx|=a, x; > 0}, E1={x||x|=b, x, > 0}

hat also den Modul
M,(Z) = 2nk?~! (1.4)

Diese Behauptungen folgen unmittelbar aus der Herleitung des Wertes fiir den Modul
von R(a, b).
Fiir beliebige Ringe gilt die schwichere Beziehung

¥ M,(Z) < M,(R) (1.5)

fiir eine beliebige endliche Zerlegung des Ringes in disjunkte Zylinder Z,=(Q®, EY,
E{P) mit EPcD,, E?<cD, und Q¥ <R, i=1, 2,..., n. Das folgt unmittelbar aus den
Definitionen: Ist yx; die charakteristische Funktion von Q® und ist o€ F(I'y), so ist
0;=0; eine zuldssige Funktion fiir Z;:9;e F(I';) i=1,..., n.

Man schliesst daraus die gewiinschte Ungleichung

inf fg” dm>=) inf f of dm
ee F(I'r) i eieF(I'z)
Die zu (1.1) analoge Ungleichung fiir Ringe folgt-auch hier mit p=d~!, d Abstand

von D, und D;:
M,(R)y<m(R)d" (1.6)

Fiir den Fall p=2 erhidlt man nach FUGLEDE [2] auch eine Abschitzung in der
anderen Richtung (eine entsprechende Betrachtung fiir den Fall p=3 siche GEHRING
[3] oder [4] p. 369): Eine Lipschitz-Fliche o ist eine 2-dim. Mannigfaltigkeit in E>,
auf der mit Hilfe von Funktionen f;, i=1, 2,... ein System von Parameterumgebungen
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definiert ist, wobei die f; auf Gebieten G, E? definiert sind und einer zweiseitigen
Lipschitz-Bedingung geniigen:

ci Hx =yl <Uf(x) = i < e7' Ix =yl x, ye E?; fi(x), fi(y)eo.

Das Integral _fg ds einer Borelfunktion g iiber eine Lipschitz-Fliche o kann unter

g

Verwendung der Resultate von RADEMACHER [8] folgendermassen definiert werden:
Die f;(x)=f;(x;, x,) sind f.i. differenzierbar, die Koeffizienten E, F, G der ersten
Fundamentalform messbar und die Form ./ EG — F? dx, dx, ist unabhingig von der
gewihlten Lipschitz-Darstellung f;. Eine Unterteilung von o in disjunkte Borelmengen
B; mit | B;=o0, derart dass B; im Bildbereich von f; liegt, gestattet dann die Defini-

tion: fQ ds = Z Q(fi(x))\/ﬁ-—_FZ dx, dx,

i

a S17Y(By)
Der Modulbegriff kann somit auf natiirliche Art auf Systeme X von Lipschitzflichen
ausgedehnt werden. Wir setzen
M,(2)= inf f o’ dm

e€F(2)
E3

Das Infimum erstreckt sich iiber alle nicht-negativen Borel-Funktionen g€ F(X) mit
der Eigenschaft
f ods>1 firalleceX

c

2 sei nun die Schar der Lipschitzflichen, welche die Randkomponenten D, und
D, des Ringes R trennen. Dann gilt nach FUGLEDE [2] Satz 9 p. 200 und Bemerkung
p. 207

M, (T'g) = 1/M,(Zg) = f grad®u dm (1.7)
R

ul0st hier das verallgemeinerte Dirichlet-Randwertproblem mit den Randwerten O
auf Dy bzw 1 auf D,.
Setzt man S(R)=S= inf [ dsso ist g=8"" zuldssig (S~ '€ F(X)) und somit

ceZr o
M, (Zg) < f S™2dm =m(R)S™?
R
Aus (1.7) folgt dann
M, (Ig) > S*/m(R) (1.8)

Die dritte zu (D) und (L) aequivalente Eigenschaft ist eine Aussage iiber das Ver-
halten der Moduln von Kurvenscharen:
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Der Diffeomorphismus /#:G— G’ besitzt die Eigenschaft (M) falls eine Konstante
K existiert, so dass M, (I')S K M,(I"") fiir alle Kurvenscharen I'c G mit I'"=h(I).
Die Aequivalenz ergibt sich sofort aus den folgenden Lemmata 2 und 3.

LEMMA 2. Ein Diffeomorphismus h: G—G’ mit der Eigenschaft (L) erfiillt (M).
Beweis:
Fiir o’eF(I""), yel’ und x'=h(x) gilt

[ereuwass [ v

] h(y)

(vgl. die Definition fiir 4, (x) auf p. 285). Die Funktion ¢’ (#(x)) 4, (x) gehért also zu
F(I).

M,(I) < f 0?22 dm<K f 024 Ay Ay dm =K f o'*dm
G G G’

denn K > A,/4,4;,

daraus folgt M, (I') < KM, (I"').

LeMMA 3. Ein Diffeomorphismus h:G—G’, der die Bedingung M,(Z)<KM,(Z’)
fiir alle Zylinder Z=(Q, E,, E,) mit Q =G erfiillt, hat die Eigenschaft (L).
Aus diesem Lemma ist ersichtlich, dass es geniigt, (M) durch die schwéchere

Forderung
M,(Z) < K M,(Z)) (M¥)

fiir alle Zylinder Z in G mit Bild #(Z)=2Z’ zu ersetzen.

Beweis von Lemma 3: Die Eigenschaften (L) und (M) sind beide invariant unter
Translation und Rotation. Um zu zeigen, dass 4,/4,1; < K im Punkte xeG, konnen
wir daher (wie im Beweis zum Lemma 1) annehmen, dass x=0 und dass 4(x)=

i, 0 0
=Hx+o(|x|]), H={ 0 4, 0 }.
0 0 I,

Die Abbildung des Zylinders Z,=(Q, Eo, E;), Q= {x|Ix,|<1/2, x3+x5<t}
Ei={x|x,=%1/2, x3+x3 <t} liefert:
i Ay Ay + 0(F)

M,(Z)==nt P < KM,(Z)< K
2() T / 2( ) t21f+o(t2)

nach der Ungleichung (1.1). Daraus schliesst man
AAy Az +t 2 0(t%)
A+t %0(t?)

und daher 4,/1,4; <K, die gewiinschte Ungleichung,

1<K
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Mit der gleichen Methode ldsst sich zeigen, dass (M) auch durch folgende Be-
dingung ersetzt werden kann: Der Diffeomorphismus 4:G—G’ geniigt der Un-
gleichung '

M, (R)< K M, (R’) fiir alle Ringe R mit RcG. (M**)

Beweis: Wir normieren h wie oben. Als Ring R’ = R, (¢) wihlen wir mit beliebigem
n>1 den ,,Zylinder” {x' | |x}|<t/n, x;+x?<(t+1t/n)*}, aus dem die Kreisscheibe

{x" | x3? +x5* <t?, x| =0} entfernt wird. Nach den Ungleichungen (1.6) und (1.8) gilt:
(t+t/n)’2mn/t=m(R)d *(R) = M,(R') = K™ ' My(R)
27t

S(R)= —— t?

(R)="7 +0(@)

2w ¢t t\2

R) = —t+ - t*

m (R) ,11&2/13n( +n) tolt)

472 t* (A 43) "2 + o (Y

1\t
2n<t ¥ ~> —(A14243) " +o(P)
n/ n

M, (R) >

Die beiden Ungleichungen ergeben
(A243)"% + 17 %0 (%)

1 2
n
(1 + ~—) n" (A daAs) "+ 172 0(8)
n

und mit dem Grenziibergang ¢—0 folgt

K@+ 1/n)* = A1/4, 44

und schliesslich K > 4,/4, 4,
(Ein entsprechender Beweis fiir den Fall p=3 findet sich bei GEHRING [4] p. 374/375.)
Die Ergebnisse dieses Abschnittes lassen sich folgendermassen zusammenfassen:

AEQUIVALENZ-SATZ. Ist h ein Diffeomorphismus eines Gebietes G < E> auf ein Gebiet
G' < E?, so sind folgende Aussagen aequivalent:
(D) [grad’udm<K | grad®*(uoh™')dm fiir alle in G stetig differenzierbaren
G G’

Funktionen u.
(L) 2,/2,A3<K, A, = A, > A3 >0inallen Punkten xeG (A?=1, 2, 3 ist Eigenwert
von HH*, H ist die Funktionalmatrix von h im Punkte x).
(M) M, (<K M,(I") fiir alle Kurvenscharen I' =G mit I'=h(T'). Es geniigt
M*) M, (Z2)< K M,(Z') fiir alle Zylinder mit Q = G oder
(M**) M, (R)< K M, (R) fiir alle Ringe mit R<G zu fordern.

KOROLLAR 1. Ist h ein Diffeomorphismus G—G’, so sind folgende Bedingungen
aequivalent:
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(D™Y (grad’udm > C™!' | grad®(uoh™") dm fiir alle stetig differenzierbaren Funk-
G G

tionen u.
L™Y A3/A,4, =2 C 1 (A; = 4, = 1;,>0)in G.
MY M,(I') > C~*M,(I") fiir alle Kurvenscharen I' = G.
Korollar 1 ist eine Anwendung des Aequivalenz-Satzes auf den inversen Diffeomor-
phismus 471,

KOROLLAR 2. Ist h ein Diffeomorphismus G—G’, der die Ungleichungen
C 'M,(Z')< My(Z) < KM,(Z) (1.9)
fiir alle Zylinder in G erfiillt, so gilt lokal
K™ x =yl <Ih(x) = h(»)| < Clx — y|

Nach dem Aequivalenz-Satz und nach der Bemerkung 3 auf Seite 286 ergibt sich
aus (1.9), dass K™'<A;<Ci=1, 2, 3 und daraus die Lipschitz-Bedingung.

Korollar 2 dient als Ausgangspunkt fiir den zweiten und dritten Abschnitt, wo auf
die Differenzierbarkeits-Voraussetzung fiir 4 verzichtet wird. Es wird dort gezeigt,
dass sich aus der Voraussetzung (1.9) und der Forderung, dass # ein Hom&omorphis-
mus ist, trotzdem eine Lipschitz-Stetigkeit nachweisen ldsst. Daraus folgt dann ins-
besondere, dass 4 fast iiberall differenzierbar sein muss. Gewisse Aussagen aus dem
Aequivalenz-Satz lassen sich sodann iibertragen.

Beispiele

1) Fiir Streckungen /(x)=vx, v reell und positiv, gilt 4,/4;4,=v~! fiir alle Permuta-
tionen (i, j, k) von (1, 2, 3). Ist umgekehrt 4 ein Diffecomorphismus mit 4,/4;4,=K
fiir alle xe G und fiir alle Permutationen (i, j, k) von (1, 2, 3), so folgt daraus sofort
A;=K~1i=1, 2, 3. Nach einer Verallgemeinerung des Satzes von LIOUVILLE (siehe
GEHRING [4], p. 389, Satz 16) muss & die Restriktion einer Mobiustransformation
auf G sein. Somit ist 4 abgesehen von Rotationen und Translationen eine Streckung
im Verhiltnis K 1.

2) Konforme Abbildung der Einheitskugel auf sich.

Ist /# eine Mobiustransformation (konforme Abbildung) der Einheitskugel [x] <1
auf sich, welche die x,-Achse auf sich abbildet und den Punkt (g, 0, 0), 0<a<]1,
in den Nullpunkt iiberfiihrt, so induziert & auf jeder Ebene durch (0, 0, 0) und
(a, 0, 0) eine Abbildung w, die sich in komplexer Schreibweise als

w(z)=(z - a)l(1 - az)

darstellen ldsst. Die x,-Achse wurde als reelle Achse gewéhlt. Da es sich um ein¢
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Mobiustransformation handelt, gilt fiir festes x: 1, =4, =4;=A4. Setzt man

d 1-
K™'= inf A(x)= inf [—o| = "
|x]<1 |z|<1 dz 14+a
d 1
C=supA(x)=sup——»Y= ta
|x|<1 |zl<1 dz l-a

so schliesst man daraus, dass 4 fiir alle x, |x| <1, der Bedingung

C'<AAA(x)=1""(x)<K
geniigt.
3) Kugelringe

Zwei Kugelringe R;={x| 1<|x|<a;} i=1, 2 sollen diffeomorph aufeinander ab-
gebildet werden. Wir setzen G=R,, G'=R;, a; <a,, und berechnen die kleinste
Konstante K mit der Eigenschaft, dass bei diesem Diffeomorphismus 4 die Be-
dingungen des Aequivalenz-Satzes erfiillt sind. Dazu geben wir 4 als eine sym-
metrische Abbildung vor (in Kugelkoordinaten):

(. 9, ¢) = h(r, 9, ¢)
=3
o' =0
(1/r" = 1/a)/(1 = 1/a;) = (1/r — 1/ay)/(1 — 1/ay)
und zeigen, dass diese Abbildung im erwdhnten Sinne die beste ist. Die Konstante
K wird mit Hilfe der Bedingung (L) berechnet. Wegen der Symmetrie gilt:
Ay = d_(_r_)’ Ay=A3=7rr
dr
@) _r*dQr) r2(1 — 1/a,)
dr— r2d(1jr)  r*(1 —1/a)
>1, denn a;<a,
Aq _ 1—1]a, _ M, (R,)
Ayds  1—1la;  M,(R,)
AgfhiAs = AsfA Ay = A7 <1

Daraus schliesst man, dass K=M, (R,)/M, (R,). Die Bedingung (M**) des Aequi-
valenz-Satzes liefert K > M, (R,)/M,(R,) fiir alle Diffeomorphismen #.

(siehe (1.2))

II. Absolute Stetigkeit

Im ersten Abschnitt wird von den untersuchten Abbildungen stets vorausgesetzt,
dass sie stetig differenzierbar seien. Auf diese einschrinkende Voraussetzung soll
Jetzt verzichtet werden. Die Bedingungen (D) und (L) im Aequivalenzsatz lassen sich
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dann nicht mehr so formulieren, jedoch lassen sich die Bedingungen (M), (M*) und
(M**) auf beliebige Homéomorphismen # iibertragen.

Zur Untersuchung der Regularititseigenschaften von 4 bendtigen wir einige Be-
griffe und Resultate aus der reellen Analysis. Eine ausfiihrliche Darstellung findet
sich bei LEHTO-VIRTANEN [5], Kap. 111, § 2.

Ein reelles Borelsches Mass t heisst absolut stetig beziiglich dem Borel-Lebesgue
Mass m, falls t(N)=0 fiir jede m-Nullmenge N. Der Homéomorphismus #:G—G’
induziert durch B—h(B) eine Abbildung der Borelmengen in G auf Borelmengen in
G’'. Wir setzen

7,(B) = m(h(B)) 2.1)
fir Borelmengen B in G. 7,(B) ist ein positives Borelsches Mass auf G.

DEFINITION. Der Homéomorphismus h:G— G’ heisst absolut stetig in G, falls das
zugeordnete Mass 1, auf G absolut stetig ist.
Ist K(r, x) die konzentrische Kugel mit Mittelpunkt xe G und Radius r und exis-

tiert der Grenzwert , . 1(K(r, x)n G)
7’ (x) = lim
r—=0 m (K (r’ x))

so heisst 7’ (x) die Derivierte von 7 im Punkte x. Nach dem Satz von Lebesgue be-
sitzt ein positives, beschrinktes Borelsches Mass 7 in G fast iiberall eine Derivierte und
es gilt fiir jede Borelmenge B in G:

7(B) = f v dm

B

Gleichheit besteht genau dann, wenn 7 in G absolut stetig ist.

DEFINITION. Die in G E? stetige Funktion f mit Werten in E* ist absolut stetig auf
Linien (ACL), falls folgendes gilt: In jedem Quader Q= {x | a;<x;<b;,i=1,2,3}cG
ist f absolut stetig auf fast allen achsenparallelen Strecken in Q. Die Vereinigung der
achsenparallelen Strecken <= Q, auf denen f nicht absolut stetig ist, hat 3-dimensionales
Lebesgue-Mass O.

SATZ 1. Erfiillt der Homdéomorphismus h:G—G' die Bedingung (M*): M,(Z)<
<K M(Z') fiir alle Zylinder Z=(Q, E,, E,) mit Q <G und Z' =h(Z), so ist die inverse
Abbildung h™* absolut stetig und es gilt m(B)< K> m(h(B)) fiir alle Borelmengen B<G.
Fiir den Beweis dieses Satzes brauchen wir drei Hilfsdtze.

HILFSATZ 1. Erfiillt der Homéomorphismus h die Voraussetzungen von Satz 1, 50
gilt (M**):
M,(R)<KM,(R’) fiir alle Ringe R mit Rc=G.

Fiir den Beweis dieses Hilfsatzes beniitzen wir Resultate von FUGLEDE [2].
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R sei ein beliebiger Ring, R < G. Wir setzten zunichst voraus, dass die Randkom-
ponenten von R keine irreguldren Punkte beziiglich des Dirichlet-Randwertproblems
enthalten. Es gilt dann
f grad®u dm = M, (R)
R

wobei u die harmonische Funktion mit den Randwerten =0 auf D, und u=1 auf
D, ist. Wir verwenden das Verfahren, das auf die Gleichung (1.3) gefiihrt hat: Der
Ring R wird durch eine Flache F in zwei Zylinder Z,, Z, zerlegt. Von F wird voraus-
gesetzt, dass fiir jede Stromlinie s (orthogonale Trajektorie zu den Niveauflichen
u=const.) entweder s F=0 oder s F=s gilt. Von den beiden Zylindern muss ge-
zeigt werden, dass ¢ =|gradu| extremal ist, woraus dann folgt:

M,(Z) = f grad?udm i=1,2,
O:

Auf eine Ausfiihrung des Beweises kann verzichtet werden, da sich die Methode von
FUGLEDE [2] (Punkt 3° p. 202-205) auf unseren Fall iibertragen ldsst. Aus (2.4) und
(1.5) erhdlt man

M, (R) = My(Z,) + M,(Z,) < K(M,(Z}) + M,(Z3)) < KM, (R).
Besitzt nun aber D oder D, irreguldre Punkte, so kann R’ =#(R) bei vorgegebenem
¢>0 durch einen Ring R,, R,=R’, approximiert werden fiir den die Ungleichung
M,(Ry) S M;(R') + ¢ (2.3)

gilt.! Zu einem solchen R, wihlen wir einen Ring R, mit 4~!(Ry)= R, <R, dessen
Randkomponenten nur aus reguliren Punkten bestehen (z.B. den Ring, der aus den
Punkten besteht, die von A~ ! (R,) einen geeigneten Abstand haben). Wie soeben be-
wiesen wurde, ist M, (R,)< K M, (R}). Daraus folgt:

M, (R) < My (R,) < K M; (Ry) < K M, (Ro) < K M, (R) + K
da R, =R und R,< R}, und damit
M,(R) < KM, (R').

2.4)

1) Nach CHoOQUET [1] p. 146/147 ist M2(R) gleich der Kapazitit des inneren Komplementes / von

R beziiglich der Green’schen Funktion des Gebietes R U L. Da I kompakt ist, gilt
M2(R) = capl = inf capO.
0>1
Das Infimum erstreckt sich iiber die offenen Mengen O, die [ enthalten. Wegen der Monotonie des
Moduls gibt es daher einen Ring R* mit dusserer Randkomponente D;, dessen innere Randkom-
ponente Do* ganz in R liegt und fiir den
M3(R*) < M2(R) + ¢/2

gllt.'Eine Spiegelung am Einheitskreis mit dem Zentrum in 7 und nochmalige Anwendung des be-
schriebenen Verfahrens liefert das gewiinschte Resultat.
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HILFSATZ 2. Ist R ein beliebiger Ring mit innerem Komplement I, und ist R* der
durch zwei konzentrische Kugelflichen berandete Ring mit m(R)=m(R*) und

m(I)=m(I*), so gilt
Dieser Satz stammt von SzeGO [9]. Wir sagen im Folgenden, R* entstehe aus R durch

Symmetrisierung.

HILFSATZ 3. Ist R'={x' | a’' <|x'—x4|<b'}=G’', R=h"*(R’) und R* der aus R
durch Symmetrisierung entstandene Ring, so folgt aus den Voraussetzungen des Satzes 1:

K '<ala*+ K 'a'|b (2.6)
Beweis: Nach den Hilfsdtzen 1 und 2 gilt:
KM, (R') > M,(R) > M,(RY).

Sind a* und b* (a* <b*) die Radien der begrenzenden Kugelflichen von R*, so ergibt
dies zusammen mit der Gleichung (1.2)

K4n(lja' —1/b")" ! = 4n(1/a* — 1/b*)"*

und dargus 1/a’ — 1/b' < K(1)a* — 1/b%)

-1 TR ] < ry % -1 1yt
und (2.6). K " +ad/p*<a'la+ K "a'lb
Folgerungen

1) Fiir eine Folge konzentrischer Ringe R; mit
a; <1, b§=\/;§> a; und a;—0
schliesst man aus (2.6):
K™!' < ajja¥ + K“l\/z
und durch Grenziibergang:

K73 < lim inf(aj/a})® = lim inf(m (I})/m (k™" (I))) (2.7)

i=w i—ow

wo I; das innere Komplement des Ringes R ist, also eine Kugel vom Radius a;.
2) Ist b'=2¢ und a’ <, so folgt aus (2.6)

K '=ala*+K |2

und daher besteht fiir jede Kugel I’ mit Radius <e, deren Abstand zum Rand von
G grosser als ¢ ist, die Ungleichung

m(I')m(l)=(a'[a*)* 2 K™38, I=h"'(I) (2.8)

Aus diesen beiden Folgerungen ergibt sich leicht ein
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Beweis des Satzes 1: Eine Lebesgue-Nullmenge N'< G’ kann durch Kugeln iiber-
deckt werden, derart dass die Summe ihrer Inhalte beliebig klein ist. Daraus und aus
(2.8) schliesst man, dass N=h"!(N’)c G wieder eine Nullmenge ist. ™! ist also in
G’ absolut stetig. Die A~! zugeordnete Mengenfunktion 1, ! (siehe (2.1)) ist in jeder
kompakten Teilmenge von G’ beschrinkt. Nach dem Satz von Lebesgue existiert die
Derivierte (7, ') f.ii. in G’ und nach (2.7) ist f.ii.

(Th—x), < I(3

Wegen der absoluten Stetigkeit von t,”! gilt fiir alle Borelmengen B< G

m(B) = m(h™"(B)) = f (tp-1) dm
¥
Daraus folgt die Behauptung des Satzes.
SATZ 2. h sei ein Homoomorphismus G—G’. Ist dann fiir ein p>1
M,(Z) < KM,(Z')

fiir alle Zylinder in G, so ist h absolut stetig auf Linien (ACL).

Die Beweismethode dieses Satzes geht auf PFLUGER [7] zuriick. Der Fall mit
Dimension d=3 und p=d ist bei VAISALA [11] behandelt. Es geniigt hier zu bemerken,
dass der Beweis von VAISALA auch fiir d#n Giiltigkeit besitzt.

III. Lipschitz-Stetigkeit

In diesem Abschnitt wird sich herausstellen, dass die Homéomorphismen 4 von G
auf @, fiir die eine ,,zweiseitige Ungleichung

K 'M,(Z) < M,(Z') < CM,(Z) (3.1)

gilt, eine Lipschitzbedingung erfiillen. Deshalb sind diese f.ii. differenzierbar, ein
Umstand, der grundlegend ist fiir die Ubertragung der Ergebnisse aus dem ersten
Teil. Ob sich die Differenzierbarkeit f.ii. von h bereits aus der ,,einseitigen Un-
gleichung (Voraussetzung im zweiten Abschnitt) herleiten ldsst, ist eine offene Frage.
Im Gegensatz zur Theorie der quasikonformen Abbildungen in E? ist es jedoch un-
moglich, aus der einseitigen Ungleichung eine zweiseitige herzuleiten. Der Homoo-
morphismus A(r, ¢, z)=(r?, ¢,2z) (in Zylinderkoordinaten), der {x=(r, ¢,2)|
|0<z<1,0<r< 1} auf sich abbildet, belegt diese Behauptung.

SATZ 3. Gelten fiir den Homéomorphismus h:G—G' die Ungleichungen
K 'M,(2)S M,(Z')< CM,(2)
Jir alle Zylinder Z=(Q, E,, E,), <G, so erfiillt h (lokal) eine Lipschitzbedingung
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der Form

JEZPCT x =yl < h(x) = h()] < VK CP|x — y| (3.2)
KOROLLAR. h und h™? sind f.ii. differenzierbar.
Dies ist eine Folgerung des Satzes von RADEMACHER
Wir beweisen die zweite Ungleichung in (3.2). Die erste folgt dann durch Anwen-
dung auf die inverse Abbildung 4#~!. Es muss vorausgesetzt werden, dass die Verbin-
dungsstrecke der Punkte x, y, in G liegt. In diesem Sinne ist der Satz nur eine lokale
Aussage. Durch x und y legen wir sodann die Symmetrieachse eines geraden, offenen
Kreiszylinders Q, 0 =G, dessen Grund- und Deckebene E, und E, die Punkte x
bzw. y enthalten. Wir verwenden die Ungleichung (1.1), die fiir Z=(Q, E,, E,) in
Gleichheit iibergeht:
M,(Z) =m(Q)lx — y|~*
My, (Z)<m(Q)d™?

Konvergiert der Radius r des Kreiszylinders gegen Null, so strebt d gegen |4 (x)—h(y)|.
Nach Satz 1 gilt nun
m(Q) < C’m(Q),
und daraus folgt
m(Q)x —yI > =M,(Z)S KM,(Z) < Km(Q)d™*<KC’m(Q)d™*

Division mit m(Q) und anschliessender Grenziibergang r—0 fiihren auf die zweite
Ungleichung in (3.2).

Satz 3 besitzt nach FUGLEDE [2] (Beweis zu Satz 4 p. 188) folgende Umkehrung:
Aus der (lokalen) Voraussetzung:

¢Hx =yl <Ih(x) - k() <clx -yl
folgt
¢T* My () < My (I") < ¢* My (T)

fiir alle Kurvenscharen I'< G.
Aus Satz 3 ergeben sich eine ganze Reihe von Folgerungen:

1) Die partiellen Ableitungen von A, die fast iiberall existieren, sind lokal in L, denn
sie sind durch /K C? beschrankt.

2) Aus den Voraussetzungen des Satzes 3 folgt die Eigenschaft (L) (siehe p. 285) fiir
alle Punkte xeG, in denen # differenzierbar ist:

11/12 '2'3 < K 111 = /12 = 13 >0 (33)
Daraus erhilt man
Ay =K1 (3.4

Der Beweis auf p. 13/14 beniitzt nur die Differenzierbarkeit in den betreffenden
Punkten. Darum kann dieses Ergebnis auch folgendermassen formuliert werden:
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Ist der Homomorphismus # f.il. differenzierbar und gilt K ' M, (Z) <M, (Z’) fiir
alle Zylinder in G, so gilt (3.3) in allen Punkten, in denen % differenzierbar ist. Ins-
besondere ist (3.3) unabhingig von der Grosse von C. Die folgende Umkehrung
lasst sich unmittelbar von einem Ergebnis von VAISALA ([10] Satz 6.5) iibertragen:
Ist h ACL, f.ii. in G differenzierbar und gilt (3.3) in fast allen Punkten, in denen h
differenzierbar ist, so folgt daraus:

M, () < KM, (I")

fiir alle Kurvenscharen I'<G.
Weil sich die entsprechenden ,,zweiseitigen* Ungleichungen immer durch die Be-
trachtung des inversen Hoomorphismus ergeben, gilt

K™ My (I) < My (I'") < C M () (3.5)

fiir alle Kurvenscharen, sobald diese Ungleichungen fiir Zylinder bestehen.
3) Die Ungleichungen A Afin Ay <KC
AyAsfA Ay = (KC)™H (3.6)
fiir Punkte xeG, in denen 4 differenzierbar ist, sind eine direkte Konsequenz von
(3.3), (3.4) und den entsprechenden Ungleichungen fiir 2~ 1. (3.6) zusammen mit der
Differenzierbarkeit f.ii. und der absoluten Stetigkeit auf Linien bedeuten, dass ein
Homdomorphismus 4, der den Voraussetzungen des Satzes 3 geniigt, (K C)-quasi-

konform ist (im Sinne von VAISALA [10] Satz 6.13)2). Dieses Ergebnis lisst sich
auch folgendermassen formulieren:

SATz 43) Erfiillt der Homdoomorphismus h die Ungleichungen
K™ 'M,(I') < My(I") < C M, (D)
fiir alle Kurvenscharen L< G, so gilt fiir diese auch
(KC) ' M;(I') < My(I") < KC M, ()
Das Beispiel /(x,, x,, x3)=b(ax,, x,, x3), a>1 zeigt, dass die Konstante KC
nicht verbessert werden kann (KC=a?).

4) Es ist bekannt (siche MORREY [6] Kapitel 3), dass ein Homéomorphismus 4:G— G,
der (3.2) erfiillt, die Klasse der reellwertigen ACL-Funktionen u, deren partielle
Ableitungen lokal in L,(p>1) sind, invariant ldsst: u, definiert auf einem Gebiet
QcG, und ' =uoh™?!, definiert auf Q' =h(Q), gehoren gleichzeitig zur erwihnten
Klasse. Zudem besteht f.ii. in Q die Gleichung
grad u=H gradv’.

(H ist die Funktionalmatrix von A.)

%) Im Sinne von GEHRING [4], Satz 4, ist #(K C)!/2-quasikonform.
%) Dieses Resultat ist etwas besser als dasjenige, welches in den C.R. de I’Acad. Sci. Paris 266,
274 (1968) angekiindigt wurde.
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Nach derselben Begriindung wie auf Seite 286 erhilt man daraus folgendes Resul-
tat: Mit den Voraussetzungen des Satzes 3 gilt

K1 f grad®u dm < f grad®’u’ dm < C f grad®u dm
Q o’ Q
fiir alle in einem Gebiet Q<G definierten ACL-Funktionen u, deren partielle

Ableitungen lokal in L, sind.
Als Umkehrung zur Folgerung 4 beweisen wir:

SATZ 5. Ldsst der Homéomorphismus h:G— G’ die Klasse der in Teilgebieten Q von
G definierten ACL-Funktionen u, deren partielle Ableitungen lokal in L, (p>1) sind,
invariant, und gilt

f lgrad ul? dm < Kf |grad u’|? dm
Q o

fiir alle diese Funktionen, so folgt daraus
M,(Z) < K M,(Z)

fiir alle Zylinder Z=(Q, E,, E,), 0 G.

Zur Vorbereitung des Beweises von Satz 5 geben wir fiir den Modul eines Zylinders
eine zweite Definition an. Diese ldsst sich auch fiir Ringe in dieser Art formulieren,
was im Falle p=3 bereits von GEHRING [3] gezeigt worden ist.

Zweite Definition:

Der Modul eines Zylinders Z=(Q, E,, E,) ist die reelle Zahl

A,(Z)= inff lgradul’dm (p>1)
‘ Q

Das Infimum erstreckt sich iiber alle in Q definierten ACL-Funktionen u, die auf E,
und E; durch die Konstanten 0 bzw. 1 stetig fortgesetzt werden konnen.
Es muss gezeigt werden, dass 4,(Z)=M,(Z).

a) Mp(z) < A‘,(Z) ‘

Ist |gradu| in L, so ist u fiir alle ye I ;, mit Ausnahme einer Schar I'; vom p-Modul 0,
absolut stetig entlang jeder kompakten Teilkurve von y (VAISALA [10] Lemma 4.1).
Aus der Bedingung u=0 bzw. u=1 auf E,(E,) folgt daher fiir diese Kurven:

f |gradu| ds > 1
7
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Wird |gradu| durch eine Borelfunktion f mit f=|gradu| f.i. ersetzt, so gilt
ffds = f |grad u| ds
Y ?

fir alle Kurven mit Ausnahme einer Schar I', vom p-Modul 0 (FUGLEDE [2] Theorem
3d). Da I'; und I'; nichts zum Modul M, (Z) beitragen, erhilt man daraus

M,(2) < 4,(2)

b) Die umgekehrte Ungleichung stiitzt sich auf eine Konstruktion von GEHRING
[3] und auf ein Regularisierungsverfahren.
f=0 sei eine Borel-Funktion mit jfds>1 fiir alle yeI'; und jf” dm< o0, Ist die

zweite Bedingung fiir kein f erfiillt, so ist M ,(Z)= oo und daher A ,(Z)<M,(Z). Mit
¢ bezeichnen wir die in Q definierte Hilfsfunktion

e(x) = Min{1, (1/2) 6(x)}
d(x) bezeichnet den Abstand von x zum Rand von Q. g(x) ist Lipschitz-stetig:

le(x) —o(x) <271 |x — x| (3.7)

t ist ein Ortsvektor in B,={t||t|<e<1}<E® und figuriert als Parameter. Die Be-
zichung y (x)=y,(x)=x+tg(x) definiert fiir jedes ?e B, eine eineindeutige Abbildung
von Q auf sich.

Die Funktion

|
X, §) = x)) dm(t
B
ist fiir festes ¢ in x stetig, denn f'ist integrierbar und g (x) ist stetig. Zudem gilt:

f g(x, &) ds(x) = (1 + ¢/2)""

Y
fir alle yeI',, denn

[t 0500 - f B s

7 ds(x)
(B)jdm()jf(wd 2 as0)

(nach FuBini). Fiir die Transformation des Bogenelementes erhdlt man nach (3.7):

ds(y) =ds(x + t@) < (1 + |t| |grad g|) ds(x) < (1 + |1]/2) ds(x)

Jf(x + tg) dm(t)

y()
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Mit der Voraussetzung | fds>1 fiir alle yeI'; folgt daraus:
Y

1 dm (1) 1 1
— m —
m(B,) 1+¢2 14¢2
B,

j g(x, &) ds(x) >

Y

(3.9)

Fiir e—~0 konvergiert g(x, ¢) in der L,-Norm gegen f:

r | p
(165 = 7 am = [am)—o [ (654 10) = 1) am
) o R 3
<[ 2 1164100 - S am(o

1
dm (1 x+tg)— f(x)|P dm(x
3| am O [+ 100 = s ame
B. Q
Wird fin L, durch stetige Funktionen mit kompaktem Triger approximiert, so ist
ersichtlich, dass der letzte Ausdruck mit ¢ gegen 0 konvergiert. Weil Q beschrinkt ist,
konvergieren daher auch die (inx) stetigen Funktionen

_g(x¢)
1+¢/2

v(x, €)
in L, gegen f und erfiillen wegen (3.9) die Bedingung

f v(x,e)ds>1 firalleyel,
?

Wir definieren eine Funktion u(x, €) durch die Gleichung
u(x,e)= Min{l, inff v(x, &) ds (x)}
[
B

Das Infimum erstreckt sich iiber alle rektifizierbaren Kurven B in Q, die E, mit X
verbinden. Wegen der Stetigkeit von v(x, &) geniigt u(x, ¢) lokal einer Lipschitzbe-
dingung und ist daher eine ACL-Funktion mit [gradu(x, ¢)| < v(x, ¢). Damit kann zu
jeder Borelfunktion />0 mit | fds>1 fiir alle yeI'; und zu jedem 6>0 eine ACL-

7
Funktion u(x, £) angegeben werden, die sich durch 0 (bzw 1) stetig auf E, (bzw E))
erweitern ldasst und fiir die

flgradu]"dmsff”dm+5
Q Q



Uber harmonische Kapazitit und quasikonforme Abbildungen im Raum 305

gilt. Daraus schliesst man die gesuchte Ungleichung

4,(Q) < M,(Q)

Mit dieser Vorbereitung gestaltet sich der Beweis zum Satz 5 sehr einfach:
Zu einem beliebigen Zylinder Z'=(Q’, E,, E;), 0’ =G, gibt es eine Folge von ACL-
Funktionen u,=u,.h™!, die in Q' definiert sind, mit Randwerten 0 auf E, und 1 auf E,
und die

lim | |gradu,|” dm = M,(Z')

n—aoo Q,

erfiillen. Nach der Voraussetzung zu Satz 5 gilt daher

Kf |grad u,|? dm > f lgrad u,|” dm > M, (Z)
o 0

Mit dem Grenziibergang n— oo folgt daraus
KM,(Z') > M,(Z)

Gestiitzt auf Satz 3 mit den Folgerungen 2 und 4 und auf Satz 5 formulieren wir in
Analogie zum ersten Abschnitt (vgl. p. 293) folgenden

AEQUIVALENZ-SATZ. Ist h ein Homdomorphismus eines Gebietes G E® auf ein

Gebiet G' = E3, so sind folgende drei Aussagen aequivalent:

(1) K™'M,(Z2)<M,(Z')< C M, (2Z) fiir alle Zylinder Z mit Q <G

(2) hund h™? sind ACL, f.ii. differenzierbar und in den Punkten, in denen h differenzier-
bar ist, gilt C~* < ,/A; 4, <K fiir alle Permutationen (i, j, k) von (1, 2, 3)

(3) hund h™! lassen die Klasse der ACL-Funktionen, die in Teilgebieten Q von G (bzw.
Q' von G') definiert sind und deren partielle Ableitungen lokal in L, sind invariant,
und es gilt fiir diese Funktionen:

K1 fgradzu dm < J. grad’u’ dm < C f grad®u dm
0 0 0

IV. Normalfamilien-Eigenschaft

DEFINITION. Eine Familie F von stetigen Funktionen heisst normal, falls jede unend-
liche Folge {f,} in G definierter Funktionen aus F eine Teilfolge besitzt, die auf jeder
kompakten Teilmenge von G gleichmdssig gegen eine Funktion f oder gegen die Kon-
Stante + co konvergiert. Gehort f jeweils wieder zu F, so ist F eine vollstindige Normal-
Samilie,

Die Forderung, dass alle Funktionen f, auf G definiert sein miissen, kann abge-
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schwicht werden. Es sollen auch Folgen { f,} von Funktionen aus Fzugelassen werden,
deren Definitionsbereiche {G,} eine beliebige kompakte Teilmenge des Gebietes G
von einem gewissen Index an enthalten,

SATZ 6. Die Familie F der Homdéomorphismen, die den Voraussetzungen des Satzes 3
geniigen, ist eine vollstindige Normalfamilie.

Nach dem Satz von ARZELA-AScoLI ist F eine Normalfamilie, wenn die Homdo-
morphismen in F gleichgradig stetig sind. Wegen der Lipschitz-Stetigkeit (Satz 3) ist
diese Bedingung erfiillt, und es muss nur noch die Volistindigkeit gezeigt werden. Es
sei also {h,} eine Folge von HomSomorphismen aus F, die auf jeder kompakten Teil-
menge von G gleichmadssig gegen /4 konvergiert. Wir verwenden folgende Abschidtzung:

|h(x) = h(Y)| = | B, (x) = B, (V)] = 1B (x) = by (x) + B, (y) — K (V) |
Bei gegebenem ¢, 0<e<|1, gilt fiir n>n(e, x, )

[h(x) = hy(x) + by (¥) = (V)| < 1R (x) = By (¥)] + |R(y) = B, (V)]
ss\/K—:rC-:l!x—yl fiir x # y
und daher lh(x)—h(y) =1 - s)\/E‘:s_C—_:flx —y|>0 fiirx#y
h ist also wieder ein Homdomorphismus und insbesondere wieder Lipschitz-stetig.
(Die Ungleichung () — k()| < \/I_{Eé x|

folgt aus
| (x) = h(Y)| < |h(x) = by (X)] + By (x) = By ()] + By () = R(Y)])
Mit dem Satz von RADEMACHER schliesst man wieder, dass A f.ii. differenzierbar ist.
Es geniigt dann, die Ungleichungen
K 'M,(R) < My(R") < CM,(R)
nur fiir Ringe R, R<G, zu beweisen. Mit dem Beweis auf Seite 293 erhdlt man

némlich Cl< Al < K

in allen Punkten xeG, in denen h differenzierbar ist und fiir alle Permutationen

(i, j, k) von (1, 2, 3). Nach der zweiten Bemerkung Seite 305 folgt daraus (3.5) und
damit (3.1) als Spezialfall.

Zu einem beliebig gewihlten Ring R, R<G, betrachten wir die Folge der Ringe
R,=h,(R). Wir konnen voraussetzen, dass M, (R,)>K *M,(R) (vgl. Hilfsatz 1
Seite 296). Withlen wir nun nach der Beziehung (2.3) einen Ring R*, R* = R'=h(R) mit

M,(R* ) < M,(R) + ¢

so ist R* von einem gewissen Index an in R, =h, (R) enthalten. (R ist nach Definition
kompakt). Daher gilt:

M,(R) + & > M;(R*) > M, (R}) > K™' M, (R)
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Da s beliebig gewéhlt ist, folgt daraus
M,(R) = K™ M,(R).

Weil die inversen Homdomorphismen auch eine Normalfamilie bilden, gibt es eine
Teilfolge von {h™,}, die auf jeder kompakten Teilmenge in G’'=h(G) gleichmissig
gegen h~! konvergiert. Die analoge Uberlegung, angewandt auf diese Teilfolge,
liefert

M, (R’) < CM,(R)
Der Beweis ist vollstdndig.
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