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Beitriige zur Theorie der limitierten Vektorriume
SiMON COURANT (Bern)
Prof. Dr. H. Hadwiger zum 60. Geburtstag gewidmet

0. Einleitung

Die Struktur der limitierten Vektorrdume wurde zumeist nur untersucht, um
Aussagen zu sichern, die man zum Aufbau einer Differentialrechnung in nicht normier-
ten Vektorrdumen, zur Untersuchung von Abbildungsrdumen etc. verwenden wollte.
Im folgenden sollen einige Fragen, die dabei offen geblieben sind, beantwortet werden.

Limites von Systemen limitierter Vektorrdume werden in kategorialer Weise
definiert. Die Konstruktionen der Limites zu gegebenen Systemen, die meist als
Definitionen verwendet werden, dienen nun als Beweise von Existenzaussagen: Jedes
direkte System limitierter Vektorriume hat einen induktiven Limes (2.1.), jedes
inverse System besitzt einen projektiven Limes (2.2.), die Summe einer Familie
limitierter Vektorrdume existiert immer (2.3.). Ein limitierter Vektorraum ist genau
dann Summe einer Familie von Unterrdumen, wenn er algebraisch Summe dieser
Unterrdume ist und die Projektionen auf diese Unterrdume stetig sind (Satz 2.3.3.).

Im vierten Kapitel wird die Kommutativitdt der wichtigsten Operatoren unter-
sucht, die limitierten Vektorrdumen oder Systemen von solchen wieder limitierte
Vektorrdume zuordnen.

Jeder vollstindige Unterraum eines separierten limitierten Vektorraumes ist abge-
schlossen (5.1.), eine nichtverschwindende Linearform auf einem limitierten Vektor-
raumist genau stetig, wenn die durch sie bestimmte Hyperebene abgeschlossen ist (5.2.).

In dritten und sechsten K apitel werden endlichdimensionale limitierte Vektorrdume
betrachtet. Die natiirliche Topologie ist die einzige zuldssige separierte Limitierung
eines soichen Raumes (Sétze 3.2. und 6.1.). In 3.1. finden sich Beispiele eindimensio-
naler nicht topologischer limitierter Vektorriume. Alle ausgeglichenen endlich-
dimensionalen limitierten Vektorriume sind topologisch, was zeigt, dass die For-
derung der Ausgeglichenheit stark ist.

In 1.4. wird ein Verfahren angegeben, zu einer gegebenen zuldssigen Topologie
auf einem Vektorraum mittels eines Mengensystems Limitierungen zu konstruieren.
Nach 6.5. lasst sich jede zulissige Limitierung eines endlichdimensionalen Vektor-
raumes so durch eine Topologie und ein System von Teilmengen des Raumes erhalten.

1. Grundlagen
1.1. Limitierte Vektorridume

Unter Vektorraum (VR) wird im folgenden immer VR iiber dem Korper R der
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reellen Zahlen verstanden. Wir verwenden zumeist die Definitionen und Bezeich-
nungen von [9], insbesondere fiir die Begriffe limitierter Vektorraum (LVR), Unter-
raum, Produktraum, Stetigkeit, Hiillenoperator ([9] p. 278) und die auftretenden
Ordnungsrelationen. T bezeichne die Kategorie der LVR und der stetigen linearen
Abbildungen. Ist E ein LVR, so bezeichnet E den zugrundegelegten Vektorraum und
E die Menge seiner Punkte. Konvergiert ein Filter F€F(F) beziiglich der Limitierung
von E gegen xeE, so schreiben wir wie in [11]: & |, E. Fiir § |, E setzen wir | E
und sagen, §§ konvergiere in E, oder sei E-konvergent.

SATz 1.1. ([9] p. 296): Ist E ein VR und t0e‘B(F(E)), dann gibt es genau einen
LVR E iiber E mit & | E <> §e10, falls ©0 die folgenden Eigenschaften hat:

Fe10, Ger0=F A BHer0 €))

Fet0, F<O=Ger0 2)

Fet0, Ger0=>F+ Ger0 3)

Fet0=VFer0 4

xeE=Vxe10 (5)

AeR, Fet0=AiFe10. (6)

Diese Limitierung ist dann gegeben durch:

FlE<=(F— x)er0. ™

Dabei bezeichnet V den Nullumgebungsfilter des Raumes R der reellen Zahlen
mit der natiirlichen Topologie. Im folgenden werden wir Limitierungen auf einem VR
E meist durch Angabe einer Teilmenge von F(E) mit den Eigenschaften (1) bis (6)
definieren, ohne die Festsetzung (7) zu wiederholen.

1.2. Zugeordnete Limitierungen

1.2.1. Der Funktor °. Ist E ein LVR, so bezeichnet E° den assoziierten lokalkonvexen
topologischen Vektorraum, der durch die Menge I'(E) der E-stetigen Seminormen
definiert ist. Weil mit /: E— F auch f: E°— F° linear und stetig ist, ist ° ein Funktor von
T in die Kategorie der lokalkonvexen topologischen Vektorriume. E und E° haben
insbesondere dieselben stetigen Linearformen.

1.2.2. Der Funktor #. Nach [11] heisst ein Filter FeF(E) ausgeglichen (equable),
falls gilt V¥ =F. Ein LVR E heisst ausgeglichen, falls der Filter der gegen 0O€E
konvergenten Filter eine Basis aus ausgeglichenen Filtern besitzt. # bezeichne den
Funktor, der dem LVR E den ausgeglichenen LVR E¥, mit ¥ | E*:<>(es existiert
®eF(E), ® ausgeglichen, <, ® | E), der stetigen linearen Abbildung f: E—F die
ebenfalls stetige Abbildung f: E*— F* zuordnet.

1.2.3. Schnittlimitierung. Sei E ein VR, {E,},.s eine Familie von LVR iiber E.

FLE: <> (alle seS: F|E,) definiert eine zuldssige Limitierung auf E, die Schnitt-
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limitierung der Familie. Wir bezeichnen E =: A E;und fiir S:={1, 2}:E=:E; AE,.
s

1.2.4. Finale und initiale Limitierung. Sei E ein VR, {E},. s eine Familie von LVR,
{fs:E,— E};.s eine Familie linearer Abbildungen. Dann ist die Familie {E,},. der
LVR auf E beziiglich der alle f, stetig sind nicht leer und enthilt ihr Supremum
A E,=: E. Die Limitierung von E heisst finale Limitierung beziiglich der Abbildungs-
T

familie {f}},cs-

SATZ 1.2.: Ist E ein LVR, {E},.s eine Familie von LVR und {f;:E,—E},., eine
Familie linearer Abbildungen, so hat E genau dann die finale Limitierung beziiglich
dieser Abbildungsfamilie, falls gilt:

& | E <> (es existiert eine endliche Teilmenge S*+ 0 von S und zu jedem seS* ein
Filter &, E,, so dass § = A f,&,). Sei E ein VR, {E},.s eine Familie von LV R und

5+

{f;:E—~E}.s eine Familie linearer Abbildungen, so ist durch:
SlE:< alle seS:f,§lE,

die grobste zuldssige Limitierung auf E, so dass alle f; stetig sind, die initiale Limi-
tierung beziiglich der Abbildungsfamilie, gegeben.

1.3. Separiertheit

SATZ 1.3.1.: Zwei Punkte x, y eines LVR E haben dieselben oder keine gemeinsamen
gegen sie konvergenten Filter. Die Menge U(E):={x|& |, E <> | E} ist ein linearer
Unterraum von E und es gilt U(E)={0}.

Ist U(E)={0}, gilt also §|,E, §l,E=x=y so heisst der LVR E nach [8]
separiert.

SATZ 1.3.2.: Mit einem LVR E ist jeder seiner Unterrdume separiert.

SA1z 1.3.3.: Ist H Unterraum des LVR E, so ist der Quotientenraum E[H([10]
p. 363f.) genau dann separiert, wenn H in E abgeschlossen ist.

1.4. Konstruktion von Limitierungen zu gegebenen Topologien

SATZ 1.4.: Ist E ein topologischer VR mit Nullumgebungsfilter W und a< B (E) ein
Mengensystem mit den Eigenschaften:

(@) a#0, 0¢aq,

(b) Aea, AeR = AAea,

(c) A4, Bea = in a existiert C mit AuB<C,

(d) A4, Bea = in a existiert C mit A+ B<C,

(e) dea=V-[4]=1,
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So ist durch:

FLE®: < in a existiert A, so dass F=[A]+U ein LVR iiber E definiert. Es gilt
E°<E.

Im allgemeinen ist E°# E: Ist etwa E separiert und a nicht reduziert auf {{0}}, so
ist E* nicht separiert.

Beispiel: Die Menge a der nichtleeren endlichen Teilmengen eines topologischen
VR E erfiillt (a)-(e). Falls E nicht indiskret ist, ist E® echt grober als E. E°® hat die

feinste Limitierung, die grober als die Topologie von E ist und {5} =E erfillt.

Uber nicht endlichdimensionalen VR gibt es nach [12] p. 145 eine zulissige
Limitierung, die echt feiner als jede zuléssige Topologie ist. Also sind nicht alle LVR
nach 1.4. durch Mengensysteme definierbar.

2. Limites
2.1. Induktiver Limes

{E,, f;s'}ses heisst ein direktes System der Kategorie T, falls:

(1) S eine gerichtete Indexmenge ist.

(2) Zu allen seS ein LVR E; gegeben ist.

(3) Zu s<s' ein f,.: E,~E,. linear und stetig gegeben ist.

(4) fss=idg, fiir alle se S gilt.

(5) Aus s<5'<s”  figo=fo o fss foOlgt.

Ein LVR E heisst induktiver (oder direkter) Limes des direkten Systems
{Egfss'}ses» E=: ind E,, falls erfiillt sind:

-S

(IL,) Zu seS ist eine stetige lineare Abbildung f;: E,— E gegeben, so dass

(IL,) fiir s<s’ gilt f;.f,5 =1,

(IL;) Fiir jeden LVR Z und jede Familie {g,: E,—~Z},.s von linearen stetigen
Abbildungen, so dass fiir alle s<s’ gilt g,.f;, - =g,, existiert genau eine stetige lineare
Abbildung g: E—~Z mit g,=gf, fiir alle seS.

Jedes direkte System hat bis auf Isomorphismen hoéchstens einen induktiven
Limes. Die f heissen kanonische Abbildungen des Limes.

SATZ 2.1.: In der Kategorie der LVR und stetigen linearen Abbildungen hat jedes
direkte System einen induktiven Limes. '
Beweis: Sei {E,, f,;};cs ¢in direktes System der Kategorie I, W:= |J(E, x {s})
S

disjunkte Summe der Mengen E,. Wir definieren auf W eine Aequivalenzrelation
~ durch:

(x,5)~(x',s'): <> In S existiert s">s,s" mit f,ox=f,x". E:=W|~ sei di
Menge der Aequivalenzklassen. Fiir se S sei f,:E,—E gegeben durch fx:=cls(x, 5)-
Dann gilt E= \Jf.E,, so dass zu xeE ein seS und ein x,€E, existierten mit x =/, X;-

S



Beitridge zur Theorie der limitierten Vektorrdume 253

Das erlaubt, E durch die Festsetzungen:

+iEXE=E:(x, y)ox+ty:=fo(fioXtfioYe) WO x=fix,y=fuy, gilt mit ge-
eigneten s, s'€S, x,eE,, y,.€E,. und s"€ S so dass s"=s, s', sowie

-t RxE-E:(4, x)->Ax:=f,Ax,fiir geeignete s€ S und x,e E; mit f,x, = x

zu einem VR E zu machen. Alle f; sind linear, so dass E mit der finalen Limitierung

beziiglich der Familie {f,},.s ein LVR E ist.

Mit Satz 1.2. und weil in S jede endliche Teilmenge eine obere Schranke hat, ergibt
sich:

&L E < es gibt se 8, F,eF(E)), &, | E, mit f(F,<F. (IL;) und (IL,) sind erfiillt;
ist Z ein LVR und {g,: E,;—Z}, s eine Familie von stetigen linearen Abbildungen, so
dass fiir s<s’ gilt g, f; =8, s0 ist mit g:E—>Z:gx:=g.x, fir seS, x,€E,, so dass
x=f,x,, auch (IL,) erfiillt.

2.2. Projektiver Limes

{E', f'"}, 1 heisst ein inverses System der Kategorie I, falls folgendes gilt:

(1) T 1st eine gerichtete Indexmenge.

(2) Fiir teT ist ein LVR E* gegeben.

(3) Zu t’'<tist f'":E'> E" linear und stetig gegeben.

(4) Fiir teT gilt f** =id g,

(5) Aus t"<t'<t folgt f*"" =f"V'f1.

Ein LVR FE heisst projektiver (oder inverser) Limes des inversen Systems
{E% f*" Y, e, E=proj E', falls erfiillt sind:

«T

(PL,) Zu €T ist eine stetige lineare Abbildung /*: E— E* gegeben, so dass gilt:

(PL,) Fiir ¢'<tist /1 f'=f".

(PL;) Fiir jeden LVR Z und jede Familie {g':Z—E"'},.; von linearen stetigen
Abbildungen, so dass fiir alle ¢’ <z gilt " g'=g", existiert genau eine lineare stetige
Abbildung g: Z—E, so dass fiir alle re T gilt g'=f"g.

Die f* heissen kanonische Abbildungen des projektiven Limes. Jedes inverse
System hat bis auf Isomorphismen héchstens einen projektiven Limes.

SATZ 2.2.: In der Kategorie T der LVR und linearen stetigen Abbildungen hat jedes
inverse System einen projektiven Limes.

Beweis: (Man vergleiche [10] p. 373f) Ist {E’, f*"'},.r ein inverses System, so
erfiillt der Unterraum

E:={x|xe[[E, " <t=rprx=f" pr'x}
T
des Produktraumes [] E* zusammen mit der Abbildungsfamilie {f*:=pr’ 3}, r alle
T
Forderungen. (PL,) wird erfiillt mit g:= [1g" E trigt dann die initiale Limitierung
T
beziiglich der Familie {f*},., und es gilt: | E <> (alle teT: pr' | EY).
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Anmerkung: Die Definition eines inversen Systems ldsst sich abschwéichen durch
Ersetzung von (1) durch

(1) Auf T ist eine transitive und reflexive Relation > (préordre) erklirt.
Satz 2.2. und die Aussagen in 4.4-4.9. bleiben giiltig, hingegen geht folgende Eigen-
schaft verloren:

Ist E ein LVR und {E',f*"'}, 7 ein inverses System mit E'=E fiir alle teT und
[ =idy fiir alle ¢’<¢, dann ist E projektiver Limes des inversen Systems.

2.3. Summen limitierter Vektorrdume

Ist {E};.s eine Familie von LVR, so heisst ein LVR E Summe dieser Familie,
E=:@E, falls eine Familie {f;:E,—~FE},.s von linearen stetigen Abbildungen so
S

existiert, dass es fiir jeden LVR Z und jede Familie {g,: E,~Z}, s von stetigen
linearen Abbildungen genau eine stetige lineare Abbildung j: E—Z gibt, so dass fiir
alle se S gilt: g,=jf..

Zu jeder Familie gibt es bis auf Isomorphismen hochstens eine Summe.

SATZ 2.3.1.: In der Kategorie der LVR und stetigen linearen Abbildungen hat jede
Familie {E } . s eine Summe.
Beweis: Ist E:=@E, algebraische Summe der Familie {E },.s und E der LVR
S

iiber E mit der finalen Limitierung beziiglich der Abbildungsfamilie {f;:E,—E}.s
wo fiir x,eE,f,x,:=® x,, mit x,: =0 flir #+#s, gesetzt ist, so ist £ Summe der Familie:
S

Fiir te S sei n,: E—E, definiert durch =,(@® x,): =Xx,. Dann ist fiir 5, s'e S, s#s":7,f,=
s

=idg,, 7, f;,=0. Nach 1.2. existiert zu ¥ | E eineendliche Teilmenge $* = S und zu s S*
ein Filter §,|E,, so dass = A £, &, Alsogilt n,F=>n, A £ &2 A7, [, =& A0
S* h S*

(oder gleich 0, falls ¢ S*, oder gleich &, falls S*={¢}). Also sind die =, stetig. Ist nun

Z ein LVR und {g,:E,—~Z},.s eine Familie linearer stetiger Abbildungen, so ist

J:E—Z durch j:=Y g, linear definiert. Fiir s€S ist jf,=g, erfiillt. j ist stetig: Zu
A

& | E existiert S*< S, S* endlich und zu se $* existiert §,| E; mit F> A f,§F,; somit
S*
folgt: j ¥ 2]( A f;i}t)z ngsns /§ fi&= Z g N T fi &= Zs gt(c(?t A 0) (oder gleich
se teS* teS*

teS* seS teS*

8, &, falls S*={r}). Es folgt die Konvergenz von j§ gegen O Z.

SATZ 2.3.2.: Ist {E},.s eine endliche Familie von LVR, so ist ihr Produkt Summe
der Familie.
Beweis: Fiir seS ist f,:E,—~ []E,, definiert durch pr, f,:=idg, und pr,.f,:=0 fir
S
s#s’, stetig und linear, denn fiir §,eF(E,) gilt f, F, =[] &, mit F =0 fiir r#s. Ist Z

teS
ein LVR und {g,:E,—~Z}, s eine Familie von stetigen linearen Abbildungen, SO
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sind mit j:[[E,~Z, j:=) g, pr, alle Forderungen der Summendefinition erfiillt.
s S

Aus dem Beweis zu 2.3.1. ergibt sich:
Ist E ein LVR, E algebraisch Summe einer Familie {E},.s von Unterrdumen,

E= @}_Zs, so darf @ E,=E angenommen werden. @ E, ist dann feiner als E. Fiir alle
S

er existiert eine eindeutige Darstellung x= Z x,, x,€ E,. Fiir te S sei n,: E— E, durch
n,(z ,): =X, gegeben.

SATZ 2.3.3.: Ist E ein LVR, E algebraisch Summe der Familie {E}, s von Unter-
rdumen, so ist E genau dann Summe der Familie {E} s, wenn alle Abbildungen r,
stetig sind.

Beweis: Die Notwendigkeit der Bedingung ergibt sich aus dem Existenzbeweis fiir
Summen. Ist sie erfiillt, so ist j: E->@® E,, j:=) i,n,, mit den Inklusionen i;: E,—~FE

s S

stetig. Wegen jx=x fiir xeE=@® E; ist dann @ E, auch grober als E.
s s

Eine lineare Abbildung u eines VR E in sich heisst ein Projektor, falls uu=u
erfiillt ist. H:=uE ist linearer Unterraum von E. u heisst dann Projektor auf H.

SATz 2.3.4.: Sei E ein LVR, {u,},.s eine endliche Familie stetiger Projektoren fiir
die Y u,=idg und usu, =0 fiir s, s'€S, s#s' gilt, so ist E Summe der Familie {u,E} .
3

von Unterrdumen von E und fiir s€S gilt: u,=mn,.
Der Beweis von prop. 11, [4] I.1. gilt sinngemdss.

SAtz 2.3.5.: Ist H Unterraum des LVR E, so gibt es genau einen Unterraum H'
von E, so dass E isomorph zu H®H' ist, wenn in E ein stetiger Projektor u auf H
existiert. Es gilt dann H' =u~"'(0).

Beweis: Der Satz folgt aus 2.3.4., weil mit u auch «': =idg—u ein stetiger Projektor
ist, fiir den uu'=0 und u+u’ =id; gilt.

3. Limitierungen von R
3.1. Beispiele

Zur Ordnung T(R) der mit der VR-Struktur von R vertriglichen Limitierungen
gehoren die indiskrete Topologie : und die natiirliche Topologie w. Wir bezeichnen
R:=(R, w) und R;:=(R,1). Im folgenden sollen drei weitere zulissige Limitierungen
aufgewiesen werden.

3.1.1. (W. BucHer) Fiir 6eR, 6>0 bezeichne I;:=(—J, §) das durch & bestimmte
offene Intervall. Die Menge u: = {I;|6€R, 6> 0} erfiillt die Bedingungen von Satz 1.4.
Somit existiert ein eindimensionaler LVR R*. Es gilt:

& | R* < Es existiert 5eR, 6>0: ;e ¥ < ¥ enthilt eine w-beschrinkte Menge.
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3.1.2. Ist v die Menge der nichtleeren endlichen Teilmengen von R und R” der
nach 1.4. existierende LVR mit ¥ |R’ < in v existiert 4, so dass F=[4]+V, so
konvergiert ein Filter in R* genau gegen Null, wenn er feiner ist als der Schnitt der
Umgebungsfilter beziiglich der natiirlichen Topologie von endlich vielen Punkten
von R.

3.1.3. Sei 0= ‘P(R) das System der Teilmengen von R, die nicht leer, abzihlbar
und w-kompakt sind. o erfiillt die Bedingungen von Satz 1.4., so dass durch

& L R%: <> (Es existiert eine nicht leere, abzihlbare, w-kompakte Teilmenge 4 von
R, so dass F=[A]+V)ein LVR R’ auf R definiert ist.

Der Hauptfilter [I;] konvergiert beziiglich R¥, nicht jedoch beziiglich R’ oder R’,
der Hauptfilter [{0} U {1/n|neN}] konvergiert in R’ nicht jedoch in R®, so dass die
Limitierungen p, o und v verschieden sind.

3.2. Separiertheit eindimensionaler LVR

SATZ 3.2.: Die natiirliche Topologie w ist die einzige separierte zuldissige Limitierung
auf R.

Beweis (a contrario): Sei R® ein separierter LVR auf R. Aus 1.2.(6) folgt mit
Vi=V |R:R’<R. Falls nun R*#R, so existiert ein Filter &|R" und JeR, §>0
mit I;¢ . Dann existiert auch ein Ultrafilter ® der R + I; enthilt, feiner ist als & und
also in R® konvergiert. ® enthilt keine w-kompakte Menge: Ist nidmlich Ke®
w-kompakt, so hat auch Kn (R +I;) diese Eigenschaften, so dass 0¢ K angenommen
werden darf. Da R’ separiert ist, kann ® nicht feiner sein als der w-Umgebungsfilter
eines Punktes von K, so dass zu xe K eine offene w-Umgebung U, mit U, ¢ ® existiert.
{U,|xeK} ist eine w-offene Uberdeckung von K. Es gibt eine endliche Teiliiber-
deckung {U;| j=1, ..., n}. Da ® Ultrafilter ist, gilt fiir j<n:R+U,;e®, somit V:=

n

N(R-+U;)e®. Aber Vist disjunkt zu Ke ®, was unméglich ist. ® enthilt auch keine
j=1
w-beschrinkte Menge, denn sonst miisste ihr w-kompakter w-Abschluss zu ©®

gehoren. Wegen 1.1.(4) konvergiert mit ® auch V®={R} in R". Also gilt R"=R,,
was der Separiertheit von R* widerspricht.

3.3. Ordnung der Limitierungen von R

SATZ 3.3.: Es gilt R,<R*<R’°<R"<R und fiir jede weitere zuldissige Limitierung
7 auf R: R* <R <R".
3.4. Ein Konstruktionsverfahren fiir Limitierungen auf R

Sei f#0 eine Menge von Folgen von reellen Zahlen, die gegen Null konvergieren
und deren erstes Glied 0 ist. Wir definieren Ff:={{Af;};.n|A€R, {f;};cnef}. Fur
neN setzen wir N:={l, ..., n}. Ist v wieder die Menge der nichtleeren endlichen
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Teilmengen von R, so setzen wir fiir Eev, neN: ®(E, n): =(Ff)E*NM (®(E, n) ist die
Menge der Abbildungen von E x N in Ff). Fiir ac ®(E, n), x€E, ie N ist dann a(x, i)
eine Folge aus Ff, die wir mit {a}(x)};cn bezeichnen. Ferner sei NV die Menge der
Abbildungen von N in N. Ist Eev, neN und ae @ (E, n), so definieren wir Teilmengen
A(E, n, a) von R durch:

A(E, n, a): = {x + Y aky (x)|x€E, keNN}.
p=1

Durch af:={A(E,n,a)|Eev,neN, ae®(E, n)}

ist dann der Menge f ein System von Teilmengen von R zugeordnet.

SATZ 3.4.: Ist f eine Menge von Nullfolgen aus R, deren Anfangsglied verschwindet,
so erfiillt af< P(R) die Bedingungen von Satz 1.4. mit W:=V, also ist durch ¥ |R*”:
<> (es existiert Aeaf: & =[A]+V ) eine zuliissige Limitierung auf R definiert. Statt R*/
setzen wir R/,

Beweis: (a) Wegen f#0 folgt {0}ea f, somit af#0.

Aus O¢v, O0¢f ergibt sich O¢af.

(c) Zu A(E, n, a) und A(E’, m, b) definieren wir ce ®(E U E’, n+ m) durch

a(x, p) falls p<n,xeE
c(x,p):=1b(x,p—n) p>n,xeFE’
{0};cn sonst .

Dann gilt A(E, n,a)VA(E’, m,b)c A(EVE’, n+m, c): Ist ze A(E’, m, b), so gibt
es xeE', keNM, so dass gilt: z=x+ ) bl (x). Mit k*eN"*M k*(p):=1 fir p<n,
pr=1

nt+m

k*(p):=k(p—n) fir p>nist z=x+ ) cfu,)(x), also ze A(EVE’, n+m, c).
p=1
(d) Zu A(E, n, a) und A(E’, m, b) aus af definieren wir de ®(E+ E’, n+m) durch

: a(x, p) fir p<n
di(x+y,p): =
(x + 5, p) {b(y,p——n) p>n.
Dann gilt A(E, n,a)+A(E’, m,b)c A(E+E’, n+m,d). Ist nimlich ze A(E, n, a)+
A(E’, m, b), so existieren xeE, yeE’, keNV, k’eNM, so dass gilt:

z=x+ 21 ab,y (X)+y + 21 b (7).
p= q=
n+m

Mit k*eN¥*M k*(p): =k(p) fiir p<n, k*(p):=k'(p —n) fir p>n giltz=x+y+ .

p=1
df@(p)(x +), also ze A(E+E’, n+m, d).
(¢) Jede Folge aus Ff ist w-beschrinkt, also auch alle A(E, n,a). Damit gilt
V[A]>V fiir Aeaf.
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(b) ergibt sich aus der Konstruktion von FY.

Als Beispiel soll eine weitere Limitierung von R aufgezeigt werden:

Sei r die Folge der reziproken natiirlichen Zahlen abgedndert durch r, : =0. f: = {r}
definiert einen LVR R’ auf R. Fiir Eev, neN ae ®(E, n), xeE, ieN ist a(x,i)=
{0, /2, A/3, ...} durch ein AeR festgelegt, so dass A(E, n, a) durch eine Abbildung
von Ex N in R, (x,i)—A’ (x) bestimmt ist:

A(E, n,a)= {x + 2’1 (A?(x)/n,)| x€E, npeN}.

Jede Menge dieser Form ist nicht leer, w-beschrinkt und hat abzdhlbaren Ab-
schluss. Deshalb ist jeder R/-konvergente Filter R%-konvergent. Jedoch ist R/ #R°.
Ist ndmlich 4 (E, n, A’(x)) in a f; so liegen alle seine Punkte im Erweiterungskdrper
Q[Eu{A?(x)}|xeE, peN] des Korpers Q der rationalen Zahlen, also in einem
Erweiterungskorper von Q, der algebraisch oder von endlichem Transzendenzgrad
ist. R besitzt Teilmengen C, die abzihlbar, w-abgeschlossen und w-beschrinkt sind,
so dass Q[ C] nichtendlichen Transzendenzgrad hat. (Man vergleiche etwa [18].) Die
Filter [C]+ V konvergieren in R?, nicht jedoch in R’. Anderseits ist R/ echt grober als
R’, denn der Durchschnitt aller Mengen eines R’-konvergenten Filters ist endlich,
was nicht fiir alle R/-konvergenten Filter zutrifft. Wegen 3.3. ist R’ von allen bisher
aufgewiesenen eindimensionalen LVR verschieden. Die vorhergehenden Uberle-
gungen lassen vermuten, das T(R) nicht endlich ist und dass die auf T(R) erklérte
Ordnung keine Totalordnung ist.

4. Vertauschungseigenschaften
4.1.1. Unterriume und Funktoren ° und *. Ist £ ein LVR, E’ ein Unterraum und
bezeichnen E° resp. E* die durch E’ bestimmten Unterrdume von E° resp. E* so

gelten: E“<E’™, E*=E" und E**<E™. Ist 0<p<1 und E ein L’-Raum ([6]
p. 161f.) gilt E®’ # E’° fiir einen eindimensionalen Unterraum, ist E der Raum R’ von
3.1.2. gilt E°*# E™,

4.2.1. Unterraum und Schnittlimitierung. Ist {E}, s eine Familie von LVR iiber
demselben VR E, E’ ein linearer Unterraum, (/\ E,)" der zugehorige Unterraum von

/\Es, so gilt: /\(E) (/\E)

4.2.2. Schnittlimitierung und Funktor °. Ist {E }, s eine Familie von LVR iiber dem-
selben VR E, so gilt: ( A Es)o > A (E).
s s

Ein Gegenbeispiel fiir Gleichheit beim Schnitt zweier Limitierungen wurde von
W. BUCHER angegeben.
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4.2.3. Schnittlimitierung und Funktor *. Ist wieder {E,},.s eine Familie von LVR iiber
demselben VR E, dann gilt: (A Es)# — A(E).
s s

Beweis: — Zu (N E,)* existiert ein groberer ausgeglichener Filter & der in
A E,, damit in allen E; lsmd E konvergiert. Mit ihm konvergiert auch & in A (EF).
i - Konvergiert § beziiglich A (EY), so existiert zu se S ein groberer Filtersi”s-s der
ausgeglichen ist und in E¥ und SES konvergiert. {Q F,|F,e{,, F,#E fiir endlich viele

seS} ist Basis eines Filters ® der grober als §, aber feiner als alle ; ist und also in
N Eg konvergiert. Nach Verifikation der Ausgeglichenheit von ® ergibt sich die
S

Konvergenz von § in (A E,).
s

4.2.4. Schnittlimitierung und Schnittlimitierung. Fiir eine doppelt indizierte Familie
Et teT = s .
{E},% s ergibt sich ANE=AAE = A E.
S T T S SxT
4.3.1. Unterriume und Produktraum. Ist {E}, s eine Familie von LVR, {E.}, s eine

Familie von Unterrdumen und {i;: E;— E}.s die Familie der Inklusionsabbildungen,
soist [] E; isomorph zum Unterraum ([] i) (] E;) von [] E,.
3 s s s

4.3.2. Produktraum und Funktor °. Fiir eine Familie {E },.s von LVR ist
By > [T ).

Ist die Indexmenge S endlich folgt Gleichheit. Insbesondere gilt fiir zwei LVR E
und F die von H. H. KELLER behauptete Beziehung:

(ExF)° =E° x F°.

Beweis: Als lokalkonvexe topologische VR lassen sich beide Rdume durch ihre
stetigen Seminormen definieren. Zu zeigen ist, dass jede (E x F)°-stetige Seminorm
P:ExXxF-R auch (E°x F°)-stetig ist. p ist jedenfalls (Ex F)-stetig. Ist p;:E-R
definiert durch p, x:=p(x, 0), so ist p, E-stetige Seminorm und deshalb E°-stetig.
Ebensoist p,: F»Rmitp, y:=p(0,y) F°-stetig. Dannistp, +p,: E° x F°—>R (E° x F°)-
stetig. Aus der Dreiecksungleichung fiir Seminormen folgt p, +p, > p und daraus die
E® x F°-Stetigkeit von p in 0 und also allgemein.

4.3.3. Produktraum und Funktor *, Ist {E,}, s eine Familie von LVR, so gilt:
([IE =TT ().
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4.3.4. Schnitt- und Produktlimitierung. Sei {E },.s eine Familie von VR und zu
seS {E;}, . r eine Familie von LVR iiber E,, dann ergibt sich

ATTE;=]] A Es.
T S S T

4.3.5. Produktlimitierung und Produktlimitierung. Ist {E!}'¢ T eine doppelt indizierte
Familie von LVR, so sind die Abbildungen

k:TTTIE:— TTT1E:, k:=[II]pr:pr,
S T T S T S

und

TTTTEs—~ [] E:, I:= [] pripr
s T

SxT SxT
Isomorphismen.

4.4.1. Induktiver Limes und Unterraum. {E, f,,},cs und {F,f/ }scs seien zwei
direkte Systeme aus ¥ und {i;: F;—E,},.s eine Familie von stetigen linearen Abbil-
dungen, so dass fiir s<s’ gilt f,.i;=i,. f. Sind E und F die induktiven Limites,
{fs}ses und {f};cs die Familien der kanonischen Abbildungen in E und F, so ist
i:F-E, ix:=f,i,x, fir xeF, seS, x,eF,, so dass f, x,=x, stetigund linear. Sind alle
i, injektiv, so auch 7. Sind insbesondere die i, Inklusionen, so ist die Limitierung des
induktiven Limes der Unterrdume F, feiner als die vom induktiven Limes E auf
seinem zugehorigen Unterraum induzierte Limitierung. Im allgemeinen sind die
beiden Limitierungen nicht isomorph, wie sich aus folgendem Gegenbeispiel ergibt:

Sei E:= || R topologisches Produkt, {F,}.s das System der endlichdimensionalen

N

Unterrdume von E, S gerichtet durch s<s': < F,cF,, und f,,:F,—F,, fiir s<s’ die

Inklusion. {F,, f;;}cs ist ein direktes System aus . Fiir se S sei E;:=FE gesetzt mit

fosri=idg fiir s<s’; dann ist auch {E, f,},.s €in direktes System, das Exind E
S

erfiillt. Mit i,: F,— E fiir seS sind alle Voraussetzungen gegeben. F ist algebraisch
isomorph zu E, jedoch ist nach [12] p. 145 die Limitierung auf F keine Topologie.

4.4.2. Projektiver Limes und Unterraum. Ist {E’, f**},_ ; ein inverses System aus T
und fiir zeT ein Unterraum F* von E* mit der Inklusion i*: F*—>E' so gegeben, dass
fiir t'<t gilt f'"F'c F", dann ist {F', g'"},cr mit g :F'>F", i'g'" ="y, fir
t'<t ebenfalls ein inverses System aus ¥ und F:= proj F* ist isomorph zu einem

Unterraum von E: = proj E. T
«T

4.5.1. Induktiver Limes und Funktor °. Ist {E,, f;, },.s ein direktes System der Kate-
gorie T, so bildet {E;, f, }ss ein direktes System der Kategorie der lokalkonvexen
topologischen VR und stetigen linearen Abbildungen. In dieser Kategorie hat jedes
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direkte System einen induktiven Limes lim. Nach [10] p. 368 gilt:
(ind E,)° = lim (Ey).
-S ~S

4.5.2. Projektiver Limes und Funktor °. Ist {E',f'"},.; ein inverses System der
Kategorie T, so ist proj (E*°) nach [10] p. 374 eine lokalkonvexe Topologie, also
zugleich projektiver Limes von {E*°, f* },. 1 in der Kategorie ¥ und in der Kategorie
der lokalkonvexen topologischen VR, wobei proj (E*°)<(proj E*)° gilt.

«T «T

4.6.1. Induktiver Limes und Funktor’. Fiir ein direktes System {E,,f,, };cs der
Kategorie T gilt:
(ind E,)* = ind (E}).
) -+S

4.6.2. Projektiver Limes und Funktor’. Ist {E' f'"},.; ein inverses System der
Kategorie I, so gilt:
(proj E')* = proj (E'%).
+«T «T

4.7.1. Induktiver Limes und Schnittbildung. Sei {E,}, s eine Familie von VR und fiir
seS sei {E;};.r eine Familie von LVR iiber E,, ferner sei S gerichtet und fiir s<s’
sei fy,: E;—E,. eine lineare Abbildung, so dass fiir alle teT {E, f,, }scs €in direktes
System ist. Dann ist { A\ E;, f;, }scs ebenfalls ein direktes System und es gilt:

T

ind (A Ei) > A (ind Ej).
-5 T T s

Die beiden Rdume sind jedenfalls dann isomorph, wenn 7 endlich ist und alle
/s Injektionen sind:
ind (A Ei) = A (ind E).
-5 T T -8

n
Nachweis: Gilt §| A (ind E}), so konvergiert & in allen ind Ej, so dass zu j<n
j=1 =S -S

ein s;€S und ein Filter ;| E;, existierten, mit f; §; < §. Ist s, S grosser als alle s;, so

konvergieren alle f, 5085 I E]. Wegen der Injektivitit der f, ,, ist {{) f;,s F;| F;€ &}
j=1

n

Basis eines Filters ® der beziiglich aller j in E,’; konvergiert. Dann gilt auch ® | A Es’;,
n j=1
und wegen f, &< auch F|ind A E;.

-8 j=1

4.7.2. Projektiver Limes und Schnittbildung. Unter analogen Voraussetzungen flr
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inverse Systeme gilt die Isomorphie allgemein:
proj A E; = A proj E;.
«T § S T
4.8.1. Induktiver Limes und Produktlimitierung. Sei {E: ;z’g eine doppelt indizierte

Familie von LVR, wobei S gerichtet sei und fiir rteT {E., f* }se s ein direktes System
bilde. Sind fi:Ei— md E! die kanonischen Abblldungen prt: H E!-E; die Pro-

jektionen und ist f;,.: H E‘—-»H E; definiert durch pri f,, := fss prs, so ist {[] Ei,
fos'}ses Wiederein dlrektes System. Ist nunfiir se S g,: [| Es—[]ind E} durch prg,: =
T T -S

S pri gegeben, so gilt fiir s<s':g,=g, f,, s0 dass aus (IL;) von 2.1. die eindeutige

Existenz einer linearen stetigen Abbildung j: mdl_[E‘—-»]_Imd E! folgt, so dass
=S T

jfi=g, fiir seS ist. Offenbar kann nur durch j ein Morphlsmus zwischen ind [] E;
-5 T

und [] ind E; in natiirlicher Weise gefunden werden. Gegenbeispiele zeigen jedoch,
T =8
dass j im allgemeinen weder injektiv noch surjektiv ist.

4.8.2. Projektiver Limes und Produktlimitierung. Sei {E!}S% eine doppelt indizierte
Familie von LVR und T gerichtet, f’": E!—E! fiir t'<t eine Familie von linearen
Abbildungen, so dass fiir se S {Ef, f!*}, . r ein inverses System aus T ist. Bezeichnen
fi: proj E{>E! die kanonischen Abbildungen und ist fiir ¢'<¢ f™: [] Ei-»[] Ef
-T S S
definiert durch prl f** : = f;* pri, so bildet auch {[] E., /*"'},r ein inverses System.
S
Dann ist j:[] proj Ei—proj [ E;, j:=][]]1f: pr, ein Isomorphismus.
S «T «T S T S

4.9.1. Induktiver Limes und induktiver Limes. {E., 17, f!*}.<% sei ein System von
LVR und stetigen linearen Abbildungen, so dass fiir alle se S{EL, fi*},.  ein direktes

System und fiir teT {E;, fs}s ebenfalls ein direktes System aus ¥ ist. Ferner gelte
fiir s<s', <t f20 flo=flo fE . Ist{f}: E!— ind E1} ‘%% das System der kanonischen
-T

Abbildungen, so lassen sich fiir s<s’ Abbildungen f,,.:ind Ei— ind E, durch
-T -T
figx:i=fg fi.x! fir xe md E! und x!eE! mit f1x! =x so definieren, dass {ind Ej,
=T

Ses'}ses Wieder ein dlrektes System wird. Ist nun I:=S x T gerichtet durch (s, )<
<(s', t'): <> (s<s'und t<t')soistauch {E;, £+" f¥o} . 1y 1 €in direktes System. Die drei
Riume ind ind E', ind ind E: und md E! sind isomorph.

-S =T -T -5
Bezeichnet ndmlich fiir seS§ f;: md Ei- ind ind E! die kanonische Abbildung,
-8 -T

so gibt es zur Abbildungsfamilie { f, fi:Ei— ind ind EJ}, s nach 2.1. (IL,) eine

-8 -7
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stetige lineare Abbildung j: 1nd E'— ind ind E;. Man verifiziert, dass j ein Isomor-
phismus ist. o8 =T

4.9.2. Projektiver und projektiver Limes. {E., 1", f!.}'< 7 sei ein System von LVR und

stetigen linearen Abbildungen, so dass fiir alle se S{E., f'"},.r und fiir alle teT

{E% fis}ses ein inverses System ist. Ferner gelte fiir s'<s, ¢ <t:f5" flo=f f1Y. Ist

{f,: proj E!-»E!N'cT das System der kanonischen Abbildungen, so lassen sich fiir
«T

s’<s Abbildungen f,,.: proj Ei— proj E! durch prl f.,.:=f!, f so definieren, dass
«T «T

{pr?j E,, fys'}ses wieder ein inverses System wird. Ist I:=SxT gerichtet durch

(s, )< (s, £): <> (s'<s und #'<¢),soist auch {Ef, fio f7"} s, 1y €N inverses System
Die drei Riume proj proj E., proj proj E! und pI‘OJ E! sind isomorph. pI‘OJ E! is

«S «T «T «S
ndmlich Unterraum von H E, proj proj E! ist 1somorph Zu einem Unterraum von
«S «T

[T]] E: und der Isomorphlsmus 1 von4.3.5. vermittelt einen Isomorphismus zwischen
S T

den beiden Unterrdumen.

4.9.3. Induktiver Limes und projektiver Limes. {E., ", fI.}'S7% sei ein System von

LVR und stetigen linearen Abbildungen so dass fiir alle se S{E", f "'}, ein inverses

System und fur alle teT { }se s €in dlrektes System ist. Ferner gelte fiir s<s ;
—-S «T

Systeme der kanonischen Abbildungen. Fiir s<s’ definieren wir f,,.: proj E'—
—=proj E, foo =[] fis f{ und fir ¢'<t f* :ind E!> ind EL f'Y x:=g' f1'x, fiir
«T T

xeind E, se S und x,eE!, so dass gix,=x. Damlt ist {1nd EL " },c1 ein inverses
-8 -5

System aus ¥ und {pI‘O_] E%, f.s'}ses €in direktes System aus X. k: ind proj E;— proj ind

=S «T «T =8
E;, k(x):=]] g! prix, fiir seS, x,eproj EL mit f,x,=x ist natiirlich definiert, linear,
r «T

stetig, aber im allgemeinen weder injektiv noch surjektiv.

5. Zwei allgemeine Siitze

Zum Beweis von Satz 6.1., wonach die natiirliche Topologie die einzige zuldssige
separierte Limitierung des R” ist, bendtigen wir die folgenden Verallgemeinerungen
von Aussagen der Theorie der topologischen Vektorrdume.

J.1. Vollstindigkeit

Ein Filter FeF(E) auf einem LVR E heisst ein Cauchy-Filter, falls F—& in E
gegen Null konvergiert.
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Konvergiert & gegen xeE, so ist § Cauchy-Filter.

Ein LVR E heisst volistindig, falls in ihm jeder Cauchy-Filter gegen mindestens
einen Punkt des Raumes konvergiert.

Eine Teilmenge 4 des LVR E heisst nach [9] E-abgeschlossen, wenn gilt A=A,
wenn also aus FeF(E), |, E, AeF folgt xe A.

SAT1z 5.1.: Ist E ein separierter LVR und H ein vollstindiger Unterraum von E,
so ist H abgeschlossen in E.

Die Aussage verallgemeinert [2] I1.3, prop. 8.

Beweis (a contrario): Ist x¢ H und & |, E mit He{, so induziert § auf H einen
Cauchy-Filter ®. H ist vollstindig, so dass ye Hexistiert mit ® |, H. Dann gilt [®] | , E,
aber wegen [®]>§ auch [®] |, E im Widerspruch zur Separiertheit von E.

5.2. Stetigkeit von Linearformen und Abgeschlossenheit von Hyperebenen

SATZ 5.2.: f: E-R sei eine nicht verschwindende Linearform auf dem LVR E und
H:=f~"1(0) Hyperebene in E. Folgende Aussagen sind gleichwertig :

a. fist E-stetig.

b. fist E°-stetig.

c. H ist E-abgeschlossen.

d. H ist E°-abgeschlossen.

Beweis: Aus [9] p. 297, Satz 11 und [4] 1.2.th.1 ergibt sich die Aequivalenz von
a., b. und d. Wegen E° < E folgt c. aus d. Es genligt also zu zeigen, dass aus c. a. folgt.

Ist H E-abgeschlossen, so ist nach 1.3.3. E/H separiert. E/H ist eindimensional
und also wegen Satz 3.2. isomorph zu R. Ist n: E—E/H die kanonische Abbildung
auf den Quotientenraum und 4: E/H—R die durch h:=fcls™! definierte Linearform,
so gilt f=hmn. Jede Linearform auf E/H ist stetig, mit # und =# ist dann auch f'stetig.

6. Limitierungen von R"

6.1. Separierte Limitierungen von R"

SATZ 6.1.: Jeder separierte n-dimensionale LVR ist isomorph zum R" (mit der
natiirlichen Topologie).

Beweis: Sei E™ ein separierter n-dimensionaler LVR. Wir fithren den Beweis
induktiv nach n. Der Satz gilt nach 3.2. fiir n=1. Er sei bewiesen fiir m<n. Ist
{x;};=1,..» cine Basis des E", so bezeichne H den von {x,} aufgespannten eindimensi-
onalen Unterraum, H' sein algebraisches Komplement mit der Unterraumlimitierung.
H' ist (n—1)-dimensional und als Unterraum eines separierten Raumes nach 1.3.2.
separiert. Aus der Induktionsannahme folgt die Isomorphie von H’ und R"~!. H' ist
vollstindiger Unterraum eines separierten Raumes und nach 5.1. abgeschlossen in E”.

n
Die Linearform f:E"—R, definiert durch f( ), 4;x;):=4, ist wegen Satz 5.2. und
j=1
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f~1(0)=H' stetig. H ist separiert und eindimensional, also isomorph zu R, deshalb
ist g:Ro>H:gA:=Ax, stetig. Ist i;: H-E" die stetige Einbettung, so ist u:=i,gf
ein stetiger Projektor in E" auf H. Aus Satz 2.3.4. ergibt sich die Isomorphie von E"
mit Hx H’, also mit RxR""!1=R".

6.2. Ausgeglichene endlichdimensionale LVR
Nach 1.2.2. heisst ein LVR E ausgeglichen, falls E* =E gilt.

SATZ 6.2.1.: Ausgeglichene zulissige Limitierungen auf endlichdimensionalen VR
sind Topologien.

KORROLAR 6.2.2.: Ist der n-dimensionale LVR E ausgeglichen, so existiert m,
0<m<n, so dass E" isomorph zu RT" x R"™™ ist. (R]" ist mit der indiskreten Topologie
auf l_i"' versehen.)

Beweis: (a) n=1. Der Filter der gegen Null konvergenten Filter eines ausge-
glichenen LVR besitzt eine Basis aus ausgeglichenen Filtern. In F(R) sind nur die drei
Filter {R} <V <0 ausgeglichen. Alle mdglichen Basen daraus definieren Topologien.

(b) E" sei ein n-dimensionaler ausgeglichener LVR und der Satz sei bewiesen
fiir m<n. Ist E" separiert, so ist er nach 6.1. topologisch, ist E” nicht separiert,
so existiert xe E”, x#0, sowie FeF(E"), §F=V&, FLE", Fl.E" §—x konvergiert
gegen 0. Ist ® ein groberer ausgeglichener Filter der gegen 0 konvergiert, so liegt —x

in allen Mengen von ®, da ® ausgeglichen ist enthélt () G auch Ax fiir alle AeR. ®
Ge®

induziert auf dem durch {x} bestimmten eindimensionalen Unterraum H die indiskrete

Topologie. Ist H' algebraisches Komplement von H und {x;};-, ., eine Basis von

E" mit x, =x, so ist u: E">E", u( ), A;x;):=A,x, ein stetiger Projektor auf H. Aus
j=1

Satz 2.3.5. folgt die Isomorphie von E" mit H®H'. H' ist als Unterraum eines

ausgeglichenen LVR ausgeglichen, nach der Induktionsannahme also ein topologischer

VR.

6.3. Abspaltung eines Unterraumes mit indiskreter Topologie

SATZ 6.3.: Jeder endlichdimensionale LVR E" ist Limesprodukt eines indiskreten
Unterraumes und eines Unterraumes, der auf keinem seiner Unterrdume die indiskrete
Topologie induziert.

Beweis: Die Menge H der Punkte xe E”, so dass E" auf dem durch x bestimmten
eindimensionalen Unterraum die indiskrete Topologie induziert ist ein Unterraum
mit indiskreter Topologie. Eine Projektion von E" auf diesen Unterraum ist also
stetig. Der Satz folgt mit 2.3.5.

6.4. Abspaltung eines Unterraumes mit natiirlicher Topologie

SATZ 6.4.1.: Jeder endlichdimensionale LVR E ist Limesprodukt eines Unterraumes
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H mit natiirlicher Topologie und eines Unterraumes H', auf dem jede nicht verschwin-
dende Linearform unstetig ist.

Beweis: n=1. Jede Limitierung auf R ist separiert oder hat keine nicht ver-
schwindende stetige Linearform, sie ist Produkt von sich mit dem nulldimensionalen
topologischen VR.

— Der Satz sei bewiesen fiir m<n. E" sei ein n-dimensionaler LVR. Besitzt E"
keine stetige nicht verschwindende Linearform, so ist E” isomorph zu {0} x E". Ist

n
f:E"-R stetige Linearform und {x;}; , eine Basis, so dass f( ) 4;x;)=A4,, so ist
j=1

wegen der Stetigkeit der skalaren Multiplikation g: E"—>E":gx:=f x-x; ein stetiger
Projektor auf den durch {x,} erzeugten eindimensionalen Unterraum H. H ist
separiert, also isomorph zu R. Die Behauptung folgt mit 2.3.5. aus der Induktionsan-
nahme.

KORROLAR 6.4.2.: Ist E" ein n- dimensionaler LVR, so gibt es zwei ganze Zahlen
m, r,0<m, r<n, m+r<n, so dass E" isomorph zu R™ xR x F ist, wo F ein (n-m-r)-
dimensionaler LVR ist, der auf keinem seiner Unterrdume eine Topologie induziert,
derart, dass E™ isomorph zu R"™" x R’ und E™ isomorph zu R™ x R* ™™ ist.

6.5. Darstellung endlichdimensionaler LVR durch Mengensysteme

SATZ 6.5.: Ist E" ein n-dimensionaler LVR, so gibt es ein Mengensystem ac P (E")
mit den Eigenschaften (a)—(e) von Satz 1.4. so, dass ein Filter § genau dann in E" gegen
0 konvergiert, wenn in a ein A so existiert, dass § feiner ist als [A]+ U, wo U der
Nullumgebungsfilter der Topologie von E™ ist.

Beweis: Ist E"=E™x E""™ nach 6.3. so zerlegt, dass E"~™ ein maximaler Unter-
raum mit indiskreter Topologie ist, so ist E™ isomorph zu R™ x R" ™™, Gilt der Satz
fir E™ und E"~™ mit Mengensystemen b P(E™) und a’ = P(E"~™), so auch fiir E”
mit dem System bxa’, denn jeder E"-konvergente Filter ist feiner als ein Filter
Fx®, wo & in E™, ® in E"~™ konvergiert. { E"™ ™} =:q’ bestiitigt aber die Aussage
fiir E*™,

Der Satz ist also noch zu beweisen fiir E™ und den metrischen Nullumgebungs-
filter V™ der natiirlichen Topologie w™ von E™. Fiir AcE™ bezeichne A den o™
Abschluss von 4. Wir definieren B:F(E™)—PB(E™) durch B(F):= (N F und

. Fe§

b:={B(F)| & | E™}. Das Mengensystem b erfiillt die Bedingungen (a) bis (¢) von
Satz 1.4.:

(b) ergibt sich aus B(AF)=AB(g) fiir AeR, F|E™.

(c) und (d) folgen aus Satz 1.1. mit B(F A ®)>B(F)uB(®) und B(F+6)=
B(&)+B(6). |

(e) fordert, dass fiir | E™ B(§) w™beschrinkt ist. Falls & eine w™-beschrinkte
Menge enthilt, trifft das zu. Die Annahme, dass & | E™ keine w™-beschrinkte Menge
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enthilt, fiihrt zu einem Widerspruch: Wegen E™<E™ gilt V™| E™, also gilt mit
G:=VF+V™": G| E™ ® enthilt auch keine w™-beschrinkte Menge. E™ induziert
auf keinem Unterraum die indiskrete Topologie, deshalb enthdlt B(®) keinen
eindimensionalen Unterraum und zu xe E™ existiert AeR, A#0 und Ge ®, so dass
Ax¢ G. Weil ® ausgeglichen ist, gilt x¢(1/4)Ge®. Ist {x;},-, . . eine Basis von

E™und K:={) A;x;|4;€eR, Y |1;|=1}, so gibt es insbesondere zu jedem xeK eine
i=1 j=1

Menge H e ®, so dass x¢ H, gilt. H, darf w™-abgeschlossen angenommen werden, da
® eine Basis aus w™-abgeschlossenen Mengen besitzt. {E™+ H,|xeK} ist eine w™-

offene Uberdeckung der w™kompakten Menge K. Fiir eine endliche Teiliiber-
q

deckung {E+H;|j=1, ..., q} ist H:= () H; in ® und ist disjunkt zu K. Da ® aus-
j=1

geglichen ist, existieren H', H"e ®, sowie ¢eR, ¢>0, so dass H'=I, H" Teilmenge

von H ist. Aus H' n K=0 folgt die w™Beschrianktheit von H’, also ein Widerspruch.
(a) Wegen 0] E folgt b#0.
Nach Nachweis (e) existiert zu & | E™ eine w™-beschrinkte Menge F,e . Wire
B(§)=0, miisste zu xe F, ein F.e & mit x¢F, existieren. {E™=+F,|xeF,} wire eine
w™offene Uberdeckung der w™kompakten Menge F,. Fiir eine endliche Teil-

q
iberdeckung {E™+F;|j=1,..., q} miisste F*:=(\F; zu § gehdren, was wegen
F* N F,=0 falsch ist. =1
Damit gibt es jedenfalls einen LVR E® mit E*=E™ und {|E® < (es existiert
GlE™: F=[B(®)]+V™). Zu beweisen bleibt die E°-Konvergenz jedes E™-kon-
vergenten Filters und die E™-Konvergenz jedes E°-konvergenten Filters. Das ergibt
sich aus der Ungleichung:

F>F2[B@EI+V'2F+V"=F+V" fir FlLE",

wo & den von der Filterbasis {F|Fe®} bestimmten Filter bezeichnet. Die erste
Ungleichung ist trivial. V™ besitzt die Filterbasis

{K,: ={Z Aix; | AeR, Y 14l Sr} | rel_{,r>0}.
i=1 i=1

Sei reR so gewihlt, dass B(F)+K;cK,eF gilt, was moglich ist, da § eine w™-
beschrinkte Menge enthilt. Ist nun Fe[B(F)]+ V™, so existiert eeR, 0<e<1, mit
FoB(¥)+K,. H:=K,+(B(F)+K,) ist w™kompakt und nicht leer. Fiir xeH ist
x¢ B(), also existiert G.€ F:x¢G,. {E™+ G, |xe H} ist eine w™-offene Uberdeckung

q
von H. Fiir eine endliche Teiliberdeckung {E™+G,|j=1,...,q} ist Go:=G;
j=1

j=
disjunkt zu H. Da G, K, w™-abgeschlossene Teilmenge von B(F)+ K, ist und zu F
gehort, ergibt sich Fe ¥ und damit die zweite Ungleichung. Die dritte ist trivial, die
Gleichheit folgt aus F< Fc F+ K, fiir Fe, ¢cR, e>0.
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