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Beitrâge zur Théorie der limitierten Vektorrâume

Simon Courant (Bern)

Prof. Dr. H. Hadwiger zum 60. Geburtstag gewidmet

0. Einleitung

Die Struktur der limitierten Vektorrâume wurde zumeist nur untersucht, um
Aussagen zu sichern, die man zum Aufbau einer Differentialrechnungin nicht normier-
ten Vektorrâumen, zur Untersuchung von Abbildungsrâumen etc. verwenden wollte.
Imfolgendensolleneinige Fragen, die dabei offen geblieben sind,beantwortetwerden.

Limites von Systemen limitierter Vektorrâume werden in kategorialer Weise

definiert. Die Konstruktionen der Limites zu gegebenen Systemen, die meist als

Definitionen verwendet werden, dienen nun als Beweise von Existenzaussagen: Jedes

direkte System limitierter Vektorrâume hat einen induktiven Limes (2.1.), jedes
inverse System besitzt einen projektiven Limes (2.2.), die Summe einer Familie
limitierter Vektorrâume existiert immer (2.3.). Ein limitierter Vektorraum ist genau
dann Summe einer Familie von Unterrâumen, wenn er algebiaisch Summe dieser

Unterrâume ist und die Projektionen auf dièse Unterrâume stetig sind (Satz 2.3.3.).
Im vierten Kapitel wird die Kommutativitât der wichtigsten Operatoren untersucht,

die limitierten Vektorrâumen oder Systemen von solchen wieder limitierte
Vektorrâume zuordnen.

Jeder vollstândige Unterraum eines separierten limitierten Vektorraumes ist abge-
schlossen (5.1.), eine nichtverschwindende Linearform auf einem limitierten Vektorraum

ist genau stetig, wenn die durch sie bestimmte Hyperebene abgeschlossen ist (5.2.).
In dritten und sechsten Kapitel werden endlichdimensionale limitierte Vektorrâume

betrachtet. Die natùrliche Topologie ist die einzige zulâssige separierte Limitierung
eines solchen Raumes (Sâtze 3.2. und 6.1.). In 3.1. finden sich Beispicle eindimensio-
naler nicht topologischer limitierter Vektorrâume. Aile ausgeglichenen endlich-
dimensionalen limitierten Vektorrâume sind topologisch, was zeigt, dass die For-
derung der Ausgeglichenheit stark ist.

In 1.4. wird ein Verfahren angegeben, zu einer gegebenen zulâssigen Topologie
auf einem Vektorraum mittels eines Mengensystems Limitierungen zu konstruieren.
Nach 6.5. lâsst sich jede zulâssige Limitierung eines endlichdimensionalen Vektorraumes

so durch eine Topologie und ein System von Teilmengen des Raumes erhalten.

1. Grundlagen
U. Limitierte Vektorrâume

Unter Vektorraum (VR) wird im folgenden immer VR iiber dem Kôrper R der
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reellen Zahlen verstanden. Wir verwenden zumeist die Definitionen und Bezeich-

nungen von [9], insbesondere fur die Begriffe limitierter Vektorraum (LVR), Unter-
raum, Produktraum, Stetigkeit, Hûllenoperator ([9] p. 278) und die auftretenden
Ordnungsrelationen. % bezeichne die Kategorie der LVR und der stetigen linearen
Abbildungen. Ist E ein LVR, so bezeichnet E den zugrundegelegten Vektorraum und
£ die Menge seiner Punkte. Konvergiert ein Filter 3feF(is) beziiglich der Limitierung
von E gegen xeE, so schreiben wir wie in [11]: %[XE. Fur %1QE setzen wir g j£
und sagen, $f konvergiere in E, oder sei Is-konvergent.

Satz 1.1. ([9] p. 296): Ist E ein VR und i0ety(F(E)), dann gibt es genau einen

LVR E iiber Emit%[Eo ftexQ, falls t0 diefolgenden Eigenschaften hat:

gerO, ©eT0=> g a ©etO (1)

geiO, g<©=>©erO (2)
(3)

(4)
xeE=>YxezO (5)

AeR, g€TO=»AgetO. (6)

Dièse Limitierung ist dann gegeben durch:

%LEo(%-x)exO. (7)

Dabei bezeichnet V den Nullumgebungsfilter des Raumes R der reellen Zahlen
mit der natûrlichen Topologie. Im folgenden werden wir Limitierungen auf einem VR
E meist durch Angabe einer Teilmenge von F(Zs) mit den Eigenschaften (1) bis (6)

definieren, ohne die Festsetzung (7) zu wiederholen.

1.2. Zugeordnete Limitierungen

1.2,1. Der Funktor °. Ist E ein LVR, so bezeichnet E° den assoziierten lokalkonvexen
topologischen Vektorraum, der durch die Menge F(E) der 2s-stetigen Seminormen
definiert ist. Weil mit/:£-»Fauch/:£°->F° linear und stetig ist, ist ° ein Funktor von
% in die Kategorie der lokalkonvexen topologischen Vektorrâume. E und E° haben

insbesondere dieselben stetigen Linearformen.

1.2.2. Der Funktor #. Nach [11] heisst ein Filter %e¥(E) ausgeglichen (equable),
falls gilt Vg 3f. Ein LVR E heisst ausgeglichen, falls der Filter der gegen 0e£
konvergenten Filter eine Basis aus ausgeglichenen Filtern besitzt. # bezeichne den

Funktor, der dem LVR E den ausgeglichenen LVR E9, mit 2fJ,£*:o(es existiert

©eF(£), © ausgeglichen, ©<5, ©i^), der stetigen linearen Abbildung/^-^die
ebenfalls stetige Abbildung/:£"*-^F* zuordnet.

1.2.3. Schnittlimitierung. Sei E ein VR, {Es}seS eine Familie von LVR ûber E.

seS: %IES) definiert eine zulâssige Limitierung auf E, die Schnitt-
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limitierung der Familie. Wir bezeichnen E—\/\Es und fur S: {1, 2} :E= :El a E2.
s

1.2.4. Finale und initiale Limitierung. Sei E ein VR, {Es}seS eine Familie von LYR,
{fs:Es-*E}seS eine Familie linearer Abbildungen. Dann ist die Familie {Et}teT der
LVR auf E bezûglich der aile fs stetig sind nicht leer und enthâlt ihr Supremum

/\Et=:E. Die Limitierung von E heisst finale Limitierung bezûglich der Abbildungs-
T

familie {/5}seS.

Satz 1.2.: Ist E ein LVR, {Es}sbS eine Familie von LVR und {fs:Es-+E}ses eine

Familie linearer Abbildungen, so hat E genau dann die finale Limitierung bezûglich
dieser Abbildungsfamilie, fails gilt:

$IE o (es existiert eine endliche Teilmenge S*^ 0 von S und zu jedem se S* ein

Filter 3fs|£s, so dass g ^ A /s&). Sei E ein VR, {Es}seS eine Familie von LV R und
s*

{fs:E-+Es}seS eine Familie linearer Abbildungen, so ist durch:

%lE:o aile seS:fs%lEs

die grôbste zulâssige Limitierung auf E, so dass aile fs stetig sind, die initiale
Limitierung bezûglich der Abbildungsfamilie, gegeben.

1.3. Separiertheit

Satz 1.3.1.: Zwei Punkte x, y eines LVR E haben dieselben oder keine gemeinsamen

gegen sie konvergenten Filter. Die Menge U(E): {x\%lxEo ^lE} ist ein linearer

Unterraum von E und es gilt U(E) {0}.
Ist U(E) {0}, gilt also g^E, giy£=> x=y so heisst der LVR E nach [8]

separiert.

Satz 1.3.2.: Mit einem LVR E istjeder seiner Unterrâume separiert.

Satz 1.3.3.: Ist H Unterraum des LVR E, so ist der Quotientenraum £y//([10]
p. 363f.) genau dann separiert, wenn H in E abgeschlossen ist.

1.4. Konstruktion von Limitierungen zu gegebenen Topologien

Satz 1.4.: Ist E ein topologischer VR mit Nullumgebungsfilter U undaaty(E) ein

Mengensystem mit den Eigenschaften:
(a) a*0,0£a,
(b) Aea, AeR=> XAea,
(c) A, Bea => in a existiert C mit AvBcC,
(d) A9 Bea => in a existiert C mit A+BczC,
(e)
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so ist durch:

o in a existiert A, so dass g^fXJ + U ein LVR ilber E definiert. Es gilt

Im allgemeinen ist Ea^E: Ist etwa E separiert und a nicht reduziertauf {{0}}, so
ist Ea nicht separiert.

Beispiel: Die Menge a der nichtleeren endlichen Teilmengen eines topologischen
VR E erfullt (a)-(e). Falls E nicht indiskret ist, ist Ea echt grôber als E. Ea hat die

feinste Limitierung, die grôber als die Topologie von E ist und {0} £ erfullt.
Ûber nicht endlichdimensionalen VR gibt es nach [12] p. 145 eine zulâssige

Limitierung, die echt feiner als jede zulâssige Topologie ist. Also sind nicht aile LVR
nach 1.4. durch Mengensysterne definierbar.

2. Limites

2.1. Induktiver Limes

{Es,fss>}seS heisst ein direktes System der Kategorie ï, falls:
(1) S eine gerichtete Indexmenge ist.

(2) Zu allen se S ein LVR Es gegeben ist.

(3) Zu .s^s' dnfss,:Es^>Es, linear und stetig gegeben ist.

(4) /ss id£s fur aile seS gilt.
(5) Aus s^s'^s* /ss»=/sv;/ss' folgt.
Ein LVR E heisst induktiver (oder direkter) Limes des direkten Systems

{EsJss'Us, E= : ind Es9 falls erfullt sind:
-+s

(ILi) Zu se S ist eine stetige lineare Abbildung/S :iis-*i? gegeben, so dass

(IL2) fur s<s' gilt/,/„.=/..
(IL3) Fur jeden LVR Z und jede Familie {gs:Es-*Z}seS von linearen stetigen

Abbildungen, so dass fur aile £<•$' gilt gs>fss>=gs, existiert genau eine stetige lineare

Abbildung g:E-*Z mit gs==gfs fur aile seS.
Jedes direkte System hat bis auf Isomorphismen hôchstens einen induktiven

Limes. Die/S heissen kanonische Abbildungen des Limes.

Satz 2.1.: In der Kategorie der LVR und stetigen linearen Abbildungen hat jedes

direkte System einen induktiven Limes.
Beweis: Sei {Es,fss,}seS ein direktes System der Kategorie I, W:= U(£sx W)

disjunkte Summe der Mengen £s. Wir definieren auf W eine Aequivalenzrelation

~ durch:

(x,s)~(x',s'):oln S existiert s*>s,s' mit fss»x=fs,s»x'. %\=*W\~ sei die

Menge der Aequivalenzklassen. Fur seS scifs:Es~>£ gegeben durch/sx:=cls(x, ^)-

Dann gilt £= [Jfs£s, so dass zu xeE ein se S und ein xse£s existierten mit x=fsxs.
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Das erlaubt, E durch die Festsetzungen :

+ :E*E-+E-(x9y)'+x+y:=fir(fSfXs+fs.s»y8.)9 wo x=fsxa9y=fs,ys. gilt mit ge-
eigneten s, s'eS, xseEs, ys>eEs, und s"eS so dass s"^s, s\ sowie

• : R x £->£:(A, x)->Àx: =fskxsfur geeignete seS und xseEs mit/sxs x
zu einem VR E zu machen. Alle/S sind linear, so dass E mit der finalen Limitierung
bezûglich der Familie {fs}seS ein LVR E ist.

Mit Satz 1.2. und weil in S jede endliche Teilmenge eine obère Schranke hat, ergibt
sich:

g j£ <* es gibt seS, &eF(£s), & j£s mit/sgs<g. (ILJ und (IL2) sind erfùllt;
ist Z ein LVR und {gs: Es-*Z}seS eine Familie von stetigen linearen Abbildungen, so
dass fur s^s' gilt gS'fss>=gs, so ist mit g:E-+Z:gx:=gsxs fur seS, xseEs, so dass

x=fsxs, auch (IL3) erfûllt.

2.2. Projektiver Limes

{E\fttr}teT heisst ein inverses System der Kategorie I, falls folgendes gilt:
(1) !Tist eine gerichtete Indexmenge.
(2) Fur teT ist ein LVR £' gegeben.

(3) Zu tf^t ist/"':£"->£'' linear und stetig gegeben.

(4) Fur teTgilt f'=idm.
(5) Aus t'^t'^tîoX&F^ff.
Ein LVR £ heisst projektiver (oder inverser) Limes des inversen Systems

{£',/"'},er, £=proj£", falls erfùllt sind:
*-T

(PLt) Zu reTist eine stetige lineare Abbildung/'.-iwiï'' gegeben, so dass gilt:
(PL2) Fw t'^t istff=f.
(PL3) Fur jeden LVR Z und jede Familie {gt\Z-^Et}tBT von linearen stetigen

Abbildungen, so dass fur aile t'^t gilt/"' gt=gt, existiert genau eine lineare stetige

Abbildung g\Z-*E, so dass fur aile t e Tgilt gt=ftg.
Die f heissen kanonische Abbildungen des projektiven Limes. Jedes inverse

System hat bis auf Isomorphismen hôchstens einen projektiven Limes.

Satz 2.2.: In der Kategorie % der LVR und linearen stetigen Abbildungen hat jedes
inverse System einen projektiven Limes.

Beweis: (Man vergleiche [10] p. 373f.) Ist {Et,ftt'}teT ein inverses System, so

erfûllt der Unterraum

E: {x | xe f[ E\ t' < t => p/x /"' pr'x}
T

des Produktraumes Y\E' zusammen mit der Abbildungsfamilie {/r:=prf|E}feT aile
T

Forderungen. (PL3) wird erfûllt mit gi^Ylsf. E trâgt dann die initiale Limitierung
T

bezuglich der Familie {f},eT und es gilt: gj£<s>(alle teT:
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Anmerkung: Die Définition eines inversen Systems làsst sich abschwâchen durch
Ersetzung von (1) durch

(1') Auf T ist eine transitive und reflexive Relation ^ (préordre) erklârt.
Satz2.2. und die Aussagen in 4.4-4.9. bleiben giiltig, hingegen geht folgende Eigen-
schaft verloren:

Ist E ein LVR und {E\ft'}teT ein inverses System mit Et E fur aile teT und

/" =id£ fur aile t'^t, dann ist E projektiver Limes des inversen Systems.

2.3. Summen limitierter Vektorrâume

Ist {Es}seS eine Familie von LVR, so heisst ein LVR E Summe dieser Familie,
E=:®ES, falls eine Familie {fs'-Es->E}seS von linearen stetigen Abbildungen so

s
existiert, dass es fur jeden LVR Z und jede Familie {gs:Es-+Z}seS von stetigen
linearen Abbildungen genau eine stetige lineare Abbildung y:is-»Z gibt, so dass fur
aile se5 gilt:gs=jr/s.

Zu jeder Familie gibt es bis auf Isomorphismen hôchstens eine Summe.

Satz 2.3.1.: In der Kategorie der LVR und stetigen linearen Abbildungen hat jede
Familie {Es}s e s eine Summe.

Beweis: Ist E: ®ES algebraische Summe der Familie {Es}seS und E der LVR
5

uber E mit der finalen Limitierung bezûglich der Abbildungsfamilie {fs:Es-*E}seS,
wo fur xse Esfsxs : © xt, mit xt : 0 fur t # s, gesetzt ist, so ist E Summe der Familie :

s
Fur te S sei nt:E^Et definiert durch nt(® xs): xt. Dann ist fur s, s'eS, s¥=s':nsfs

s

=id£s, nsfS' 0. Nach 1.2. existiert zu 512s eine endliche TeilmengeS^cSund zu seS*
ein Fïlter &!£,, so dass g^ A/Sgs. Also gilt nt%^nt Afs%s^ A^/sgs gtAÔ

s* s s*

(oder gleich Ô, falls t$S*9 oder gleich $f falls S* {t}). Also sind die nt stetig. Ist nun
Z ein LVR und {gs:Es-*Z}seS eine Familie linearer stetiger Abbildungen, so ist

j:E-*Z durch7: ^^s7rs linear definiert. Fur se S ist jfs=gs erfûllt. j ist stetig: Zu
s

5 J, E existiert S*czS, S* endlich und zu se S* existiert gs [Es mit $> Afs^s; somit
s*

folgt: /3f>X A/,ÎSf,)= S&«. A/,&= E?s A «,/,g,= Eft(8f, a Ô) (oder gleich
te S* seS te S* se S te S* t e S*

gt%t9 falls S* {t}). Es folgt die Konvergenz von yg gegen OeZ.

Satz 2.3.2.: Ist {E5}S€S eine endliche Familie von LVR, so ist ihr Produkt Summe

der Familie.
Beweis: Fur se S i$tfs:Es-*YlEs> definiert durch prs/s: id£s und prs/s:=0 fur

s

s^s\ stetig und linear, denn fur %se¥(Es) gilt/s(5fs= YiÏÏt ™t &=Ô fur tïs. Ist Z
teS

ein LVR und {gs:Es~+Z}seS eine Familie von stetigen linearen Abbildungen, so
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sindmit j\\\Es-+Z, y: J] gs prs a^e Forderungen der Summendefinition erfiillt.
s s

Aus dem Beweis zu 2.3.1. ergibt sich:

Ist E ein LVR, E algebraisch Summe einer Familie {£s}S6s von Unterrâumen,
E=®Es> so darf ®ES E angenommen werden. ®ES ist dann feiner als E. Fur aile

jtel: existiert eine eindeutige Darstellung x — £ xs9 xseEs. Fur te S sei nt:E->Es durch

s

Satz 2.3.3.: Ist E ein LVR, E algebraisch Summe der Familie {E^\seS von
Unterrâumen so ist E genau dann Summe der Familie {Es}seS, wenn aile Abbildungen ns

stetig sind.

Beweis: Die Notwendigkeit der Bedingung ergibt sich aus dem Existenzbeweis fur
Summen. Ist sie erfullt, so ist j:E-+®Es, j: Y, hns> mit den Inklusionen is:Es^>E

s s

stetig. Wegeny';c ;c fur xeE=®Es ist dann ®ES auch grôber als E.
s s

Eine lineare Abbildung u eines VR E in sich heisst ein Projektor, falls uu u

erfiillt ist. H: uE ist linearer Unterraum von E. u heisst dann Projektor auf H.

Satz 2.3.4.: Sei E ein LVR, {us}seS eine endliche Familie stetiger Projektoren fur
die £ws id£ und usus> — 0fur s, s'eS, s^s' gilt, so ist E Summe der Familie {usE}S€S

s

von Unterrâumen von E und fur se S gilt: us ns.

Der Beweis von prop. 11, [4] 1.1. gilt sinngemâss.

Satz 2.3.5. : Ist H Unterraum des LVR E, so gibt es genau einen Unterraum H'
von E, so dass E isomorph zu H®Hr ist, wenn in E ein stetiger Projektor u auf H
existiert. Es gilt dann Hr u~1(0).

Beweis: Der Satz folgt aus 2.3.4., weil mit u auch u': =id£ — u ein stetiger Projektor
ist, fur den uu' 0 und u + u'=idE gilt.

3. Limitierungen von R

3.1. Beispiele

Z\xr Ordnung 2(R) der mit der VR-Struktur von R vertrâglichen Limitierungen
gehôren die indiskrete Topologie i und die natûrliche Topologie œ. Wir bezeichnen
R: =(R, co) und R,: =(R, i). Im folgenden sollen drei weitere zulâssige Limitierungen
aufgewiesen werden.

3.1.1. (W. Bûcher) Fur <5eR, (5>0 bezeichne Iô:=(-ô, ô) das durch <5 bestimmte
offene IntervalL Die Menge fi: {/,| <5eR, <5>0} erfullt die Bedingungen von Satz 1.4.
Somit existiert ein eindimensionaler LVR W. Es gilt:

<=> Es existiert <5eR, ô>0: Iôe^o^ enthâlt eine co-beschrânkte Menge.
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3.1.2. Ist v die Menge der nichtleeren endlichen Teilmengen von R und Rv der

nach 1.4. existierende LVR mit 5J,Rv<:>in v existiert A, so dass 3f^[^4]+V, so

konvergiert ein Filter in Rv genau gegen Null, wenn er feiner ist als der Schnitt der
Umgebungsfilter beziiglich der natùrlichen Topologie von endlich vielen Punkten
von R.

3.1.3. Sei (Tcz^}(R) das System der Teilmengen von R, die nicht leer, abzâhlbar
und co-kompakt sind. a erfûllt die Bedingungen von Satz 1.4., so dass durch

5iRff: o (Es existiert eine nicht leere, abzâhlbare, a>-kompakte Teilmenge A von
R, so dass g^ [A] + V) ein LVR Ra auf R definiert ist.

Der Hauptfilter [/J konvergiert beziiglich W, nicht jedoch beziiglich Ra oder Rv,

der Hauptfilter [{0} u {\fn\neN}'] konvergiert in Rff nicht jedoch in Rv, so dass die

Limitierungen fi, a und v verschieden sind.

3.2. Separiertheit eindimensionaler LVR

Satz 3.2. : Die naturliche Topologie co ist die einzige separierte zulâssige Limitierung
aufR.

Beweis (a contrario): Sei RT ein separierter LVR auf R. Aus 1.2.(6) folgt mit
Vi=ViRT:RT<R. Falls nun RVR, so existiert ein Filter g|RT und <5eR, ô>0
mit Iô$%. Dann existiert auch ein Ultrafilter © der R^4 enthâlt, feiner ist als $ und
also in RT konvergiert. © enthâlt keine co-kompakte Menge: Ist nâmlich Ke(&
ca-kompakt, so hat auch Kn(R + Iô) dièse Eigenschaften, so dass 0£j£ angenommen
werden darf. Da RT separiert ist, kann © nicht feiner sein als der co-Umgebungsfilter
eines Punktes von K, so dass zu xeK eine offene co-Umgebung L^ mit l/x£© existiert.

{Ux\xeK} ist eine co-offene Oberdeckung von K. Es gibt eine endliche Teiliiber-
deckung {Uj\j=l,...,«}. Da © Ultrafilter ist, gilt fur j^n:R+Uje(&9 somit F:

n

C\(R-i- Uj)e(S. Aber Fist disjunkt zu Ke ©, was unmôglich ist. © enthâlt auch keine
i=i
û)-beschrânkte Menge, denn sonst mûsste ihr co-kompakter co-Abschluss zu ©
gehôren. Wegen 1.1.(4) konvergiert mit © auch V© {R} in RT. Also gilt R'^R,,
was der Separiertheit von RT widerspricht.

3.3. Ordnung der Limitierungen von R

Satz 3.3.: Es gilt Rl<R/i<Rff<Rv<R undfurjede weitere zulâssige Limitierung

3.4. Ein Konstruktionsverfahren fur Limitierungen aufR

Sei/^0 eine Menge von Folgen von reellen Zahlen, die gegen Null konvergieren
und deren erstes Glied 0 ist. Wir definieren F/: {{A/}}ieN|AeR, {fj}jefief}. F™

neN setzen wir iVr: {l,...,«}. Ist v wieder die Menge der nichtleeren endlichen
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Teilmengen von R, so setzen wir fur Eev, neN: $(E, n): (Ff)(ExN) (<P(E, n) ist die

Menge der Abbildungen von E x N in Ff). Fur ae$(E, n), xeE, ieN ist dann a(x, i)
eine Folge aus Ff, die wir mit {#}(x)}ieN bezeichnen. Ferner sei NN die Menge der

Abbildungen von Nin N. Ist Eev, neN und ae $(E, n), so definieren wir Teilmengen
A(E, n, a) von R durch:

A(E, n, a): jx + t apk(p) (x)\xeE, keNN\.

û/: {4(£, n, fl

ist dann der Menge/ein System von Teilmengen von R zugeordnet.

Satz 3.4. : Istf eine Menge von Nullfolgen aus R, deren Anfangsglied verschwindet,
so erfullt a/c^î(R) die Bedingungen von Satz 1.4. mit U:=V, also ist durch g|Ra/:
o (es existiert Aeaf: 5^ [A"] + Vj e/«^zulàssige LimitierungaufR definiert. Statt Ra^

setzen wir R-^.

Beweis: (a) Wegen/^0 folgt {0}ea/, somit a/^0.
Aus 0^v, 0^/ergibt sich 0^êa/.

(c) Zu v4(E, «, a) und A(E'9 m, 6) definieren wir ce<I>(EkjEr, n + m) durch

a (x, p) falls p ^ n, xeE
b(x, p — n) p > n, xeE'
{0}jeN sonst.

c(x,p):

Danngilt A(E9 n, a)uA(E\ m, b)cA(EuE\n + m, c): Ist zeA(E\ m, b), sogibt
m

es xe£", A:eNM, so dass gilt: r x+2>£(p)0). Mit ik*eNN+M, &*(/?): 1 fûr/?<«,

(p): k(p-n) fur p>n ist z x+^] c^(p)(x), also zeA(EvE',n + m, c).
P=i

(d) Zu ^(^ «, a) und ^4(£", m, Z?) aus a/definieren wir de<P(E-\-E\ n + m) durch

- n) p>n.
Dann gilt A(E, n, a) + A(E', m, b)czA(E+Ef, n + m, d). Ist nâmlich zeA(E, n, a) +
A(E\ m, b), so existieren xeE, yeE', keNN, k'eNM, so dass gilt:

n

Mitk*eNN+M,k*(p):=k(p)îùrp^n,k*(p):=k'(p-n)îùrp>ngi\tz=x+y+
also zeA(E+E', n + m, d).

(e) Jede Folge aus Ff ist co-beschrânkt, also auch aile A(E,n9a). Damit gilt
fur Aeaf
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(b) ergibt sich aus der Konstruktion von Ff.
Als Beispiel soll eine weitere Limitierung von R aufgezeigt werden:
Sei r die Folge der reziproken naturlichen Zahlen abgeândert durch rx : =0./: {/•}

definiert einen LVR R' auf R. Fur Eev, neN ae$(E, n), xeE, ieN ist a(x, i)
{0, A/2, A/3,...} durch ein AeR festgelegt, so dass A(E, n, a) durch eine Abbildung
von Ex N in R, (x, ï)-+Xl (x) bestimmt ist:

A(E, n, a) L + £ (Xp(x)/np)\xeE9 h

Jede Menge dieser Form ist nicht leer, co-beschrânkt und hat abzâhlbaren Ab-
schluss. Deshalb ist jeder Rr-konvergente Filter R^-konvergent. Jedoch ist R/^R<r.
Ist nâmlich A (E, n, Àp(x)) in û/, so liegen aile seine Punkte im Erweiterungskôrper
Q\_Eu{Xp(x)}\xeE,peN"] des Kôrpers Q der rationalen Zahlen, also in einem

Erweiterungskôrper von Q, der algebraisch oder von endlichem Transzendenzgrad
ist. R besitzt Teilmengen C, die abzâhlbar, co-abgeschlossen und co-beschrânkt sind,

so dass Q\C] nichtendlichen Transzendenzgrad hat. (Man vergleiche etwa [18].) Die
Filter [C] + V konvergieren in Rff, nicht jedoch in Rf. Anderseits ist R-^ echt grôber als

Rv, denn der Durchschnitt aller Mengen eines Rv-konvergenten Filters ist endlich,

was nicht fur aile R-^-konvergenten Filter zutrifft. Wegen 3.3. ist Rf von allen bisher

aufgewiesenen eindimensionalen LVR verschieden. Die vorhergehenden Ûberle-

gungen lassen vermuten, das I(R) nicht endlich ist und dass die auf £(R) erklârte

Ordnung keine Totalordnung ist.

4. Vertauschungseigenschaften

4.1.1. Unterraume und Fiinktoren ° und *. Ist E ein LVR, E' ein Unterraum und

bezeichnen EOf resp. E*r die durch E' bestimmten Unterraume von E° resp. E* so

gelten: E°'^E'°, E'* E*' und E°*^E*°. Ist 0<p<\ und E ein Lp-Raum ([6]
p. 161f.) gilt E°'^E'° fur einen eindimensionalen Unterraum, ist E der Raum Rv von
3.1.2. gilt£

4.2.1. Unterraum und Schnittlimitierung. Ist {Es}seS eine Familie von LVR ûber

demselben VR £, E' ein linearer Unterraum, A Es)r der zugehôrige Unterraum von

A£s,sogilt: s

4.2.2. Schnittlimitierung und Funktor °. Ist {Es}seS eine Familie von LVR ûber dem-

selbenVRI.se gilt: (Aiy>A(lÇ).
S S

Ein Gegenbeispiel fur Gleichheit beim Schnitt zweier Limitierungen wurde von

W. Bûcher angegeben.
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4.2.3. Schnittlimitierung und Funktor*. Ist wieder {Fs}seS eine Familie von LVR ûber
demselben VR £, dann gilt: / A £ \* A^s s

Beweis: — Zu 3f|(A Esf existiert ein grôberer ausgeglichener Filter © der in
s

A Es, damit in allen Es und El konvergiert. Mit ihm konvergiert auch $ in A (El).
s s

- Konvergiert 3f bezûglich A (El), so existiert zu se S ein grôberer Filter 5S der
s

ausgeglichen ist und in El und Es konvergiert. {(~) Fs\Fse^s9 Fs^E fur endlich viele
s

""

se S} ist Basis eines Filters © der grôber als 5, aber feiner als aile $s ^ und a^so i*1

A j&s konvergiert. Nach Verifikation der Ausgeglichenheit von © ergibt sich die
s

Konvergenz von g in A Esf.
s

4.2.4. Schnittlimitierung und Schnittlimitierung. Fur eine doppelt indizierte Familie

M-ergibt sich:
A A *,_ A A *,. A £.
S T T S SxT

4.3.1. Unterrâume und Produktraum. Ist {Es}seS eine Familie von LVR, {^}seS eine

Familie von Unterrâumen und {is'.El-+Es}seS die Familie der Inklusionsabbildungen,
so ist J"J El isomorph zum Unterraum (Y\ is) (Y[ K) von II E*-

s s s s

4.3.2. Produktraum und Funktor °. Fur eine Familie {Es}seS von LVR ist

Ist die Indexmenge S endlich folgt Gleichheit. Insbesondere gilt fur zwei LVR E
und F die von H. H. Keller behauptete Beziehung:

(E xF)° E° xF°.
Beweis: Als lokalkonvexe topologische VR lassen sich beide Râume durch ihre

stetigen Seminormen definieren. Zu zeigen ist, dass jede (E x F)°-stetige Seminorm
p;ExF-+R auch (E° xF°)-stetig ist. p ist jedenfalls (ExF)-stetig. Ist p^E-^R
definiert durch ptx:=p(x, 0), so ist/?! 2s-stetige Seminorm und deshalb jEo-stetig.
Ebensoist/?2 :F-+Rmitp2y: =p(0,y) F°-stetig. Dann ist/?! +/?2 : E° x F°->R (E° x F>
stetig. Aus der Dreiecksungleichung fur Seminormen folgt /?i+/?2^/? und daraus die
E°x F°-Stetigkeit von p in 0 und also allgemein.

4.3.3. Produktraum und Funktor *. Ist {Es}seS eine Familie von LVR, so gilt:
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4.3.4. Schnitt- und Produktlimitierung. Sei {£s}seS eine Familie von VR und zu

se S {El}teT eine Familie von LVR liber £s, dann ergibt sich

T S S T

4.3.5. Produktlimitierung und Produktlimitierung. Ist {EljHl eine doppelt indizierte
Familie von LVR, so sind die Abbildungen

rinnn nn
S T T S T S

und

^nn^^ n %> *•• n kw*
S T S*T SxT

Isomorphismen.

4.4.1. Induktiver Limes und Unterraum. {Es9fss>}seS und {FS9fs's,}seS seien zwei

direkte Système aus ï und {is'Fs-^Es}seS eine Familie von stetigen linearen
Abbildungen, so dass fur s<s' giltfss>is iS'fs's<. Sind E und F die induktiven Limites,
{fs}ses und {fs }ses die Familien der kanonischen Abbildungen in E und F, so ist

i:F^E,ix:=fsisxs fur xeF,seS, xseFs9 so dass/s'x5 x, stetigund linear. Sind aile

ia injektiv, so auch /. Sind insbesondere die is Inklusionen, so ist die Limitierung des

induktiven Limes der Unterrâume Fs feiner als die vom induktiven Limes E auf
seinem zugehôrigen Unterraum induzierte Limitierung. Im allgemeinen sind die

beiden Limitierungen nicht isomorph, wie sich aus folgendem Gegenbeispiel ergibt:
Sei E: f| R topologisches Produkt, {Fs}seS das System der endlichdimensionalen

N

Unterrâume von E, S gerichtet durch s^s': oFsc=:Fs, und/sV:Fs->Fs, fur jO' die

Inklusion. {Fs,fsfs>}seS ist ein direktes System aus ï. Fur seS sei ES:=E gesetzt mit

/SS':=id£ fur s^s'; dann ist auch {Es,fss,}seS ein direktes System, das Zs indlss
s

erfûllt. Mit is:Fs-*E fur se S sind aile Voraussetzungen gegeben. F ist algebraisch

isomorph zu E, jedoch ist nach [12] p. 145 die Limitierung auf F keine Topologie.

4.4.2. Projektiver Limes und Unterraum. Ist {Et,ftt'}teT ein inverses System aus ï
und fur t e T ein Unterraum F* von E* mit der Inklusion it\F-^Et so gegeben, dass

fur t'Kt gilt/"'Ffc=Ff', dann ist {F\gttf}teT mit •gtr;Ft->Ft9 i'g"':=/"'\Ft fur

t't^t ebenfalls ein inverses System aus ï und F: projFt ist isomorph zu einem

Unterraum von E: projE1. *~T

4.5.1. Induktiver limes und Funktor °. Ist {Es9fss>}seS ein direktes System der Kate-

gorie %, so bildet {E°,fss>}seS ein direktes System der Kategorie der lokalkonvexen

topologischen VR und stetigen linearen Abbildungen. In dieser Kategorie hat jedes
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direkte System einen induktiven Limes lim. Nach [10] p. 368 gilt:

4.5.2. Projektiver Limes und Funktor °. Ist {Et9ftt'}teT ein inverses System der

Kategorie X, so ist proj (Eto) nach [10] p. 374 eine lokalkonvexe Topologie, also

zugleich projektiver Limes von {E*0,/1 }t e T in der Kategorie X und in der Kategorie
der lokalkonvexen topologischen VR, wobei proj (2£'°)<(proj Ef)° gilt.

4.6.1. Induktiver Limes und Funktor*. Fur ein direktes System {Es,fss,}SfBS der

Kategorie X gilt:

4.6.2. Projektiver Limes und Funktor*. Ist {Et,ftt}teT ein inverses System der

Kategorie X, so gilt:
(proj £<)*

4.7.1. Induktiver Limes und Schnittbildung. Sei {£S}S6S eine Familie von VR und fur
se S sei {El}teT eine Familie von LVR ûber Es, ferner sei S gerichtet und fur s^s'
sei fss,;Es-+Es, eine lineare Abbildung, so dass fiir aile teT {El,fss,}seS ein direktes
System ist. Dann ist { A El9fss>}seS ebenfalls ein direktes System und es gilt:

T ->S

Die beiden Râume sind jedenfalls dann isomorph, wenn T endlich ist und aile
fss> Injektionen sind:

ind(A£î)= A(ind£î).
->S T T -*S

n

Nachweis: Gilt $i A (ind JE1/), so konvergiert g in allen ind Ejs, so dass zuj^n
j=l -+S ->S

ein Sj e S und ein Filter g; lE^ existierten, mitfSj gj < 8f• Ist ^o e S grôsser als aile sp so
n

konvergierenalle/^^g,. in £/0. Wegender Injektivitâtder/sjSo ist {nfsjSoFj\Fj^dj}
n

Basis eines Filters © der bezuglich allerj in J£/o konvergiert. Dann gilt auch © | A EJSQ

n /=1
und wegen/so©^g auch ^| ind A E{.

-+s j=i

4.7.2. Projektiver Limes und Schnittbildung. Unter analogen Voraussetzungen fiir
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inverse Système gilt die Isomorphie allgemein:

proj A El A proj E\.
«-T S S <-T

4.8.1. Induktiver Limes und Produktlimitierung. Sei {f^JUs eine doppelt indizierte
Familie von LVR, wobei S gerichtet sei und fur teT {^»/L}ses ein direktes System
bilde. Sind fliEl-* ind E*s die kanonischen Abbildungen, prliflE^El die Pro-

jektionen und istfaM.: f[ ^s^FI ^ definiert durch prlfaa.:=fi, prj, so ist {[[ £'s,
T T

fSS'}ses wiederein direktes System. Ist nunfûr seSgs: f] Efs~* f] ind El durch pr'gs:
T T -+S

fl Prl gegeben, so gilt fur s<s':gs=gs,fss,, so dass aus (IL3) von 2.1. die eindeutige
Existenz einer linearen stetigen Abbildung j: ind J^[ £*-» J| ind El folgt, so dass

-+s t t -*s

jfs=gs fur se S ist. Offenbar kann nur durch y ein Morphismus zwischen ind Y[ El
-+s t

und Yl i°d El in natûrlicher Weise gefunden werden. Gegenbeispiele zeigen jedoch,
t -*s

dass j im allgemeinen weder injektiv noch surjektiv ist.

4.8.2. Projektiver Limes und Produktlimitierung. Sei {2s£}fSe5 eine doppelt indizierte
Familie von LVR und T gerichtet, /"'lEl-^El' fur t'^t eine Familie von linearen

Abbildungen, so dass fur .seS {Ets9f*t'}teT ein inverses System aus ï ist. Bezeichnen

fl: proj EI-+EI die kanonischen Abbildungen und ist fur t'^t /"': 11^"* 11^'
->r s s

definiert durch pr*'/"' : =//* pr^, so bildet auch {Y[ El,fu }teTein inverses System.
s

Dann ist jifl proj i^-^proj Y\ El, 7- 0 Tifs Prs &n Isomorphismus.
s <-t «-r s t s

4.9.1. Induktiver Limes und induktiver Limes. {El,fss,,//''YS%TS sei ein System von
LVR und stetigen linearen Abbildungen, so dass fur aile seS{El,f^'}teTtin direktes

System und fur teT {El,fsS>}SBS ebenfalls ein direktes System aus X ist. Ferner gelte

fur s<s', t^t'ify'f^ffsfj''. Ist{//:£!-> indJ^}^ das System der kanonischen

Abbildungen, so lassen sich fur s^s' Abbildungen fss<: ind El~+ ind El durch
->r -+t

fss>x:~fs'fL'xl fur xeindEfs und xleEl mitflxl =x so definieren, dass {ind^,

fss'}Ses wieder ein direktes System wird. Ist nun I: SxT gerichtet durch (s9t)4:

<(/, t'): o(s^s'xmdt^t')so ist auch {^,/s"'/,V}(,,06/ein direktes System. Diedrei
Râume ind ind E\ ind ind E*s und ind El sind isomorph.

-*S -*T -*T ->S -+I
Bezeichnet nâmlich fur seS fs: ind El~+ ind ind E*s die kanonische Abbildung,

so gibt es zur Abbildungsfamilie {f.fliEl^ ind ind El}seS nach 2.1. (IL3) eine
-?S -+T
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stetige lineare Abbildungy: ind Ef^> ind ind E*s. Man verifiziert, dass y ein Isomor-
phismusist. "*' ~*s "T

4.9.2. Projektiver und projektiver Limes. {El fsl\ //,,} \\ Ts sei ein System von LVR und
stetigen linearen Abbildungen, so dass fur aile seS{Ets,f*t'}teT und fur aile teT
{ElJLlses ein inverses System ist. Ferner gelte fur s'^s, t'^V.f"'&=/!,,/?'. Ist
{//: proj El^ElY^Js das System der kanonischen Abbildungen, so lassen sich fur

s'^s Abbildungen/ss,: proj El-+ proj f& durch *pT\>fSS'\=f*s, f\ so definieren, dass

{proj El,fss>}SBS wieder ein inverses System wird. Ist I: SxT gerichtet durch

(s\ t')^(s, t):o(s'^s und f'<f),soist auch {Elf^f" }(S)t)eI ein inverses System.
Die drei Râume proj proj Efs9 proj proj El und proj El sind isomorph. proj El ist

+-s <-t <-t <-s <-/ *-i
nâmlich Unterraum von Yl El proj proj El ist isomorph zu einem Unterraum von

i <-s *-t
Y\ n El und der Isomorphismus 1 von 4.3.5. vermittelteinenlsomorphismus zwischen
S T

den beiden Unterrâumen.

4.9.3. Induktiver Limes und projektiver Limes. {£s,/y ,/sV}ses sei ein System von
LVR und stetigen linearen Abbildungen, so dass fur aile seS{Ets9f**'}teT ein inverses

System und fur aile teT {Es9f*s,}seS ein direktes System ist. Ferner gelte fur s^s',
*'<*:& fS-f//:,. Seien {g's:E's^ ind£JK|ï und {//rprqjfMÎK'.S die

Système der kanonischen Abbildungen. Fur ^<5-' definieren wir fss>: proj E*-*

// und fûr *'<* f":indEi->ind E^f"' x:=£fï'xs fur
-S -S

xe ind E*s9 seS und xseEfs, so dass gfsxs x. Damit ist {ind El,fu' }teT ein inverses

Systemaus I und {proj El,fss,}seS ein direktes Systemaus I. k: ind proj 2?J-+ proj ind
<-r ->s *-t *-t -*s

Ets,k(x): 1[lgts Prlxs fiir se S, xseproj E[ mit/sxs jc ist natûrlich definicrt, linear,
r <-r

stetig, aber im allgemeinen weder injektiv noch surjektiv.

5. Zwei allgemeine Sâtze

Zum Beweis von Satz 6.1., wonach die natûrliche Topologie die einzige zulâssige
separierte Limitierung des Rw ist, benôtigen wir die folgenden Verallgemeinerungen
von Aussagen der Théorie der topologischen Vektorrâume.

5d. Vollstândigkeit

Ein Filter %e"B{E) auf einem LVR E heisst ein Cauchy-Filter9 falls g-g in E
gegen Null konvergiert.
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Konvergiert g gegen xeE, so ist $ Cauchy-Filter.
Ein LVR E heisst vollstândig, falls in ihm jeder Cauchy-Filter gegen mindestens

einen Punkt des Raumes konvergiert.
Eine Teilmenge A des LVR E heisst nach [9] Is-abgeschlossen, wenn gilt Â=A,

wenn also aus 3feF(£), %1XE9 Ae^ folgt xeA.

Satz 5.1.: Ist E ein separierter LVR und H ein vollstândiger Unterraum von E,
so ist H abgeschlossen in E.

Die Aussage verallgemeinert [2] II.3, prop. 8.

Beweis (a contrario): Ist x$H und ^[XE mit He%, so induziert $ auf H einen

Cauchy-Filter ©. H ist vollstândig, so dass je/fexistiert mit © [yH. Danngilt [©] [yE,
aber wegen [©] ^ $f auch [©] [XE im Widerspruch zur Separiertheit von E.

5.2. Stetigkeit von Linearformen und Abgeschlossenheit von Hyperebenen

Satz 5.2.:f:E-+R sei eine nicht verschwindende Linearform auf dem LVR E und

if:=/~1(0) Hyperebene in E. Folgende Aussagen sind gleichwertig :
a. /w/ E-stetig.
b. /&/ E°-stetig.
c. if m1* E-abgeschlossen.
à. H ist E°-abgeschlossen.
Beweis: Aus [9] p. 297, Satz 11 und [4] I.2.th.l ergibt sich die Aequivalenz von

a., b. und d. Wegen E°^E folgt c. aus d. Es geniigt also zu zeigen, dass aus c. a. folgt.
Ist H 2s-abgeschlossen, so ist nach 1.3.3. E/H separiert. E/H ist eindimensional

und also wegen Satz 3.2. isomorph zu R. Ist n:E-+E/H die kanonische Abbildung
auf den Quotientenraum und h:E/H-+R die durch h:=fch~1 definierte Linearform,
so gilt/=/*7i. Jede Linearform auf E/H ist stetig, mit h und n ist dann auch /stetig.

6. Limitierungen von R"

6.1. Separierte Limitierungen von Rn

Satz 6.1.: Jeder separierte n-dimensionale LVR ist isomorph zum Rw (mit der

naturlichen Topologie).
Beweis: Sei Em ein separierter w-dimensionaler LVR. Wir fûhren den Beweis

induktiv nach n. Der Satz gilt nach 3.2. fur n \. Er sei bewiesen fur m<n. Ist

{xi}i=i,...n ejine Basis des En, so bezeichne H den von {xt} aufgespannten eindimensi-

onalen Unterraum, H' sein algebraisches Komplement mit der Unterraumlimitierung.
H' ist («— l)-dimensional und als Unterraum eines separierten Raumes nach 1.3.2.

separiert. Aus der Induktionsannahme folgt die Isomorphie von Hr und R""1. H' ist

vollstândiger Unterraum eines separierten Raumes und nach 5.1. abgeschlossen in En.
n

Die Linearform f:En-+R, definiert durch /(£ XjXj):=Xt ist wegen Satz 5.2. und



Beitrâge zur Théorie der limitierten Vektorrâume 265

f~1(0) H' stetig. H ist separiert und eindimensional, also isomorph zu R, deshalb

istg:JL-+H:gA.: Ax1 stetig. Ist ii:H-^En die stetige Einbettimg, so ist u: i1gf
ein stetiger Projektor in En auf H. Aus Satz 2.3.4. ergibt sich die Isomorphie von En

mit HxH', also mit Rxff'^R".
6.2. Ausgeglichene endlichdimensionale LVR

Nach 1.2.2. heisst ein LVR E ausgeglichen, falls E% E gilt.

Satz 6.2.1.: Ausgeglichene zulâssige Limitierungen auf endlichdimensionalen VR
sind Topologien.

Korrolar 6.2.2. : Ist der n-dimensionale LVR E ausgeglichen, so existiert m,

O^m^n, so dass En isomorph zw RJ" x Rw"m ist. (R™ ist mit der indiskreten Topologie
auf Rm versehen.)

Beweis: (a) n—\. Der Filter der gegen Null konvergenten Filter eines ausge-

glichenen LVR besitzt eine Basis aus ausgeglichenen Filtern. In F(R) sind nur die drei
Filter {R}<V<Ô ausgeglichen. Aile môglichen Basen daraus definieren Topologien.

(b) En sei ein w-dimensionaler ausgeglichener LVR und der Satz sei bewiesen

fur m<n. Ist En separiert, so ist er nach 6.1. topologisch, ist En nicht separiert,
so existiert xeEn, x^O, sowie geF(£rt), g V3f, %[En, ^[xEn. g-x konvergiert
gegen 0. Ist © ein grôberer ausgeglichener Filter der gegen 0 konvergiert, so liegt — x
in allen Mengen von ©, da © ausgeglichen ist enthâlt f\ G auch kx fur aile AeR. ©

induziert auf dem durch {x} bestimmten eindimensionalen Unterraumi/die indiskrete
Topologie. Ist H' algebraisches Komplement von H und {Xi}i=l^n eine Basis von

n

En mit xt x9 so ist u:En-^En, u( £ ÀjxJ):=À1x1 ein stetiger Projektor auf H. Aus

Satz 2.3.5. folgt die Isomorphie von En mit H®H'. H' ist als Unterraum eines

ausgeglichenen LVR ausgeglichen, nach der Induktionsannahme also ein topologischer
VR.

6.3. Abspaltung eines Unterraumes mit indiskreter Topologie

Satz 6.3. : Jeder endlichdimensionale LVR En ist Limesprodukt eines indiskreten
Unterraumes und eines Unterraumes, der aufkeinem seiner Unterrâume die indiskrete
Topologie induziert.

Beweis: Die Menge H der Punkte xeEn, so dass En auf dem durch x bestimmten
eindimensionalen Unterraum die indiskrete Topologie induziert ist ein Unterraum
mit indiskreter Topologie. Eine Projektion von En auf diesen Unterraum ist also

stetig. Der Satz folgt mit 2.3.5.

6.4. Abspaltung eines Unterraumes mit naturlicher Topologie

Satz 6.4.1. : Jeder endlichdimensionale LVR E ist Limesprodukt eines Unterraumes
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H mit naturlicher Topologie und eines Unterraumes H', auf demjede nicht verschwin-
dende Linearform unstetig ist.

Beweis: «=1. Jede Limitierung auf R ist separiert oder hat keine nicht ver-
schwindende stetige Linearform, sie ist Produkt von sich mit dem nulldimensionalen

topologischen VR.
— Der Satz sei bewiesen fur m<n. En sei ein w-dimensionaler LVR. Besitzt En

keine stetige nicht verschwindende Linearform, so ist En isomorph zu {0} x En. Ist
n

f:En-+R stetige Linearform und {xjf „ eine Basis, so dass/( £ ÀjXj) Xu so ist

wegen der Stetigkeit der skalaren Multiplikation g:En-+En:gx:=fx-xl ein stetiger

Projektor auf den durch {xj erzeugten eindimensionalen Unterraum H. H ist

separiert, also isomorph zu R. Die Behauptung folgt mit 2.3.5. aus der Induktiousan-
nahme.

Korrolar 6.4.2. : Ist En ein n- dimensionaler LVR, so gibt es zwei ganze Zahlen

m9r9 O^m, r^n, m + r^n, so dass En isomorph zu RmxRJxFist, wo F ein (n-m-r)-
dimensionaler LVR ist, der auf keinem seiner Unterrâume eine Topologie induziert,

derart, dass En* isomorph zu Rw"r x R' und En° isomorph zwRmxR""m ist.

6.5. Darstellung endlichdimensionaler LVR durch Mengensysterne

Satz 6.5. : Ist En ein n-dimensionaler LVR, so gibt es ein Mengensystem a ci ty(En)
mit den Eigenschaften (a)-(e) von Satz 1.4. so, dass ein Filter 3 genau dann in En gegen
0 konvergiert, wenn in a ein A so existiert, dass 5 flirter ist als [A] + 11, wo U der

Nullumgebungsfilter der Topologie von Ent ist.

Beweis: Ist En=EmxEn~m nach 6.3. so zerlegt, dass En~m ein maximaler Unterraum

mit indiskreter Topologie ist, so ist En* isomorph zu RmxR""m. Gilt der Satz

fur Em und En~m mit Mengensystemen bc ^(Em) und af cz^(En~m), so auch fur En

mit dem System b x a', denn jeder I^-konvergente Filter ist feiner als ein Filter

g x ©, wo % in Em9 © in En~m konvergiert. {En~m} :a' bestâtigt aber die Aussage

fur En~m.

Der Satz ist also noch zu beweisen fur Em und den metrischen Nullumgebungsfilter

Vm der natûrlichen Topologie com von Em. Fur AczEm bezeichne Â den œm-

Abschluss von A. Wir definieren B;¥(Em)->y>(Em) durch £($):= f)F und

b: {£(3f)|gi£m}. Das Mengensystem b erfùllt die Bedingungen (a) bis (e) von
Satz 1.4. :

(b) ergibt sich aus B(X%)~XB{%) fur AeR, 3f|£m.
(c) und (d) folgen aus Satz 1.1. mit B(% A©)=>£(g)u#(®) und

(e) fordert, dass fur %lEmB(%) com-beschrânkt ist. Falls JÇ eine o)w-beschrânkte

Menge enthâlt, trifFt das zu. Die Annahme, dass %lEm keine c»m-beschrânkte Menge
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enthâlt, fiihrt zu einem Widerspruch: Wegen Em^Em* gilt \mlEm, also gilt mit
©: vgf + Vm:©j£m. © enthâlt auch keine aT-beschrânkte Menge. Em induziert
auf keinem Unterraum die indiskrete Topologie, deshalb enthâlt i?(©) keinen
eindimensionalen Unterraum und zu xeEm existiert AeR, A^O und Ge®, so dass

lx$G, Weil © ausgeglichen ist, gilt x£(l/A)(je®. Ist {xt}i=1 tt_ m eineBasisvon

Em und K: {y£é}tjXj\XjG'R9 £ |Aj| l}, so gibt es insbesondere zu jedem xeK eine

Menge H^e®, so dass x$Hx gilt. Hx darf com-abgeschlossen angenommen werden, da
© eine Basis aus a/"-abgeschlossenen Mengen besitzt. {Em-7-Hx\xeK} ist eine com-

offene Oberdeckung der œm-kompakten Menge K. Fur eine endliche Teilûber-
q

deckung {E+Hj\j= 1, q} ist //: Ç\ Hj in © und ist disjunkt zu K. Da © aus-
i=i

geglichen ist, existieren H\H"e(S, sowie eeR, e>0, so dass H' Ie H" Teilmenge
von H ist. Aus H' n K=0 folgt die aABeschrânktheit von H', also ein Widerspruch.

(a) Wegen Ô |£ folgt b ï 0.

Nach Nachweis (e) existiert zu 51^m eine <am-beschrânkte Menge Foe^. Wâre

£(g) 0, mûsste zu xeF0 ein Fxeg mit x$Fx existieren. {Em + Fx\xeF0} wâre eine
com-offene Oberdeckung der o>m-kompakten Menge Fo. Fur eine endliche Teil-

q

ùberdeckung {Em + Fj\j=\,..., q} mùsste F*:=f>\FJ zu 5 gehôren, was wegen
F*nFo 0falschist. J 1

Damit gibt es jedenfalls einen LVR Eb mit Eb Em und g |£b o (es existiert

©i£m: gf ^ [#(©)]+ Vm). Zu beweisen bleibt die £b-Konvergenz jedes jE:w-kon-

vergenten Filters und die £'m-Konvergenz jedes E^-konvergenten Filters. Das ergibt
sich aus der Ungleichung:

g^3^[£(5)] + Vm^ + Vm 8 + Vm fur %lEm,

wo 5 den von der Filterbasis {F | Fe 5} bestimmten Filter bezeichnet. Die erste

Ungleichung ist trivial. Vm besitzt die Filterbasis

; IjXj I ^eR, f |Ay|^r| | reR,r>o
Sei reR so gewâhlt, dass iî^+ ^ci^egf gilt, was môglich ist, da g eine œm-

beschrânkte Menge enthâlt. Ist nun Fe[iî(8f)] + Vm, so existiert eeR, 0<e<l, mit
H: Kr + (B(%) + Ke) ist cow-kompakt und nicht leer. Fur xeH ist

also existiert Gxe%:x$Gx. {Em + Gx\xeH} ist eine com-offene Ùberdeckung

von H. Fur eine endliche Teilûberdeckung {Em + &,\j=\,..., q) ist G0:

disjunkt zu if. Da GonKr û)m-abgeschlossene Teilmenge von B{%) + KB ist und zu $
gehôrt, ergibt sich Fe $ und damit die zweite Ungleichung. Die dritte ist trivial, die
Gleichheit folgt aus FczFc:F+Ks fur Feg, eeR, e>0.
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