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Zur Stôrungstheorie linearer Operatoren: Relative Beschrânktheit

und relative Kompaktheit von Operatoren in Banachrâumen

von Peter Hess (Zurich)

1. S. Goldberg zeigt in seinem Buch [2], dass jeder lineare Operator A, der

bezûglich eines linearen Operators T kompakt ist, r-beschrânkt ist mit T-Schranke
null (p. 123, Korollar V.3.8.i). Dabei wird vorausgesetzt, dass der Operator A ab-

geschlossen - oder jedenfalls abschliessbar - ist, was im Rahmen der Stôrungstheorie
linearer Operatoren eher fremd wirkt. Wird doch meist von einem leicht diskutier-
baren Operator Tausgegangen und - fur bezûglich Tgenùgend kleine Stôroperatoren
A - die Abgeschlossenheit von T+A aus derjenigen von T gefolgert, selbst wenn A
nicht abschliessbar ist.

In der vorliegenden Arbeit leiten wir das erwâhnte Résultat unter Bedingungen
her, die der Fragestellung der Stôrungstheorie besser entsprechen: anstelle der Ab-
schliessbarkeit von A fordern wir diejenige von T.

Zunàchst zeigen wir also, dass die T-Beschrânktheit mit T-Schranke null eine

notwendige Bedingung fur die T-Kompaktheit eines Operators ist (Satz 1). Anschlies-
send untersuchen wir, wann dièse Bedingung auch hinreichend ist: Falls die Resol-

ventenmenge q(T) nicht leer ist, folgt aus der T-Beschrânktheit mit T-Schranke null
die r-Kompaktheit genau dann, wenn T eine kompakte Resolvente besitzt (Satz 3).
Dièses Résultat ergibt sich durch Spezialisierung aus einer allgemeineren Aussage
(Satz 2).

2. Es seien (Xu || \\t) und (X2, || ||2) zwei Banachrâume, d.h. lineare Râume Xx
und X2 mit den Normen || \\t bzw. || ||2. Ferner bezeichnen Tund A lineare Operatoren

mit den DefinitionsmengenD(r) und D(A) in X± und mit Werten in X2. Der
Operator A heisst T-beschrânkt, falls D{A)=>D(T) und Zahlen a^O, b(a)^0 so

existieren, dass

fur aile ueD(T). Die untere Grenze der môglichen Werte a^O wird T-Schranke
von A genannt.

Fur Vektoren ueD(T) definieren wir die T-Norm von u durch

Der Operator A heisst T-kompakt, wenn D (A) zd D T) und A jede beschrânkte Menge
des normierten Raumes (D{T\ || ||T) auf eine in (X2, \\ ||2) relativ kompakte Menge
abbildet. Ist T abgeschlossen, so ist (D(T)9 || ||r) ein Banachscher Raum.
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Fur die schwache Konvergenz einer Vektorfolge {«„} gegen ein Elément u des

betreffenden Raumes verwenden wir das Symbol un -* u.

3. Wir beginnen mit einem Lemma, das fur Operatoren in Hilbertrâumen bereits

bekannt ist, und dessen Beweis sich leicht auf den Fall von Banachrâumen ûbertragen
lâsst:

Lemma 1 ([3], p. 356). Es sei A ein T-beschrânkter Operator. Fûrjede in (Xu || ||x)

schwach gegen null konvergierende Folge {un}cD(T) mit Tun-*0 gilt dann Aun-*O.

Satz 1. Der Bildraum (X2, || ||2) sei reflexiv, und es sei T abgeschlossen. Notwendig

fiir die T-Kompaktheit des Operators A ist dann die T-Beschrânktheit von A mit T-

Schranke null.
Beweis. Sei der Operator A J-kompakt. Als kompakter Operator (D(T)9 || \\T)->

(X2, || || 2) ist A r-beschrânkt. Es bleibt zu zeigen, dass die T-Schranke null ist.

Nehmen wir an, dièse Aussage sei falsch. Dann existieren ein <5>0 und eine Folge
{«„}<= D(T) mit der Eigenschaft, dass fiir aile natùrlichen Zahlen n

\\Aun\\2>ô\\Tun\\2 + n\\uJl.
Sei vn=uJ\\uJT. Es gilt

2 + n||i;J1. (1)

Da A ein r-beschrânkter Operator ist und

lkllr=l (2)

fiir aile n, ist die Folge {A vn} beschrânkt, und aus der Ungleichung

Hh<-U*Ji2
n

folgt die Konvergenz vn-*0 in (Xu || \\t).
Nach Voraussetzung ist der Raum (X2, || ||2) reflexiv, und die Folge {Tvn} ist

konstruktionsgemâss beschrânkt; folglich existiert eine schwach konvergente Teil-

folge {Twn}, {wn}cz{vn}. Aus der schwachen Abgeschlossenheit des Operators T

ergibt sich Twtt~*0 (vgl. [4], p. 165, Problem 5.12). Auf Grund von Lemma 1 gilt
also Awn-*0.

Wegen der T-Kompaktheit von A und der Beziehung (2) besitzt {A wn} eine stark

konvergente Teilfolge A wnk-*0. Aus (1) folgt Twnjc->09 was aber im Widerspruch steht

zur Relation (2),
w.z.b.w.

4. Wir untersuchen nun, wann die r-Beschrânktheit eines Operators mit T-

Schranke null hinreichend ist fur die T-Kompaktheit. Dazu setzen wir voraus, dass es
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einen topologischen Isomorphismus E von {D(T\ || \\t) in (X2, || ||2) gibt. (Ein
solcher existiert z.B. immer, wenn die Râume (Xl9 || \\t) und (X2, || ||2) topologisch
âquivalent sind.) Mit E ~1 bezeichnen wir den auf der Wertemenge von E definierten
beschrânkten inversen Operator.

Satz 2. Dafiir, dassjeder T-beschrânkte Operator mit T-Schranke null T-kompakt
ist, ist notwendig und hinreichend, dass der Isomorphismus E T-kompakt ist1).

Beweis. 1. Notwendigkeit. Da E offenbar ein r-beschrânkter Operator mit T-

Schranke null ist, muss E T-kompakt sein.

2. Hinlânglichkeit. Sei A ein r-beschrânkter Operator mit T-Schranke null. Zu
beliebigem <5>0 existiert also eine Zahl b(S) derart, dass

fur aile ueD{T)gùt. Es sei {un} eine beschrânkte Folge aus (D(T), || ||T): \\un\\T^K
fiir aile n. Da der Operator E jT-kompakt ist, gibt es eine Teilfolge {vn} c {un} mit
konvergenter Bildfolge {Evn}.

Wir zeigen, dass auch die Folge {Avn} konvergiert. Sei £>0 vorgegeben. Wir
setzen ôl =e/4K und wâhlen die Zahl N so, dass

\\Evm-Evn\\2^el2b(ôl)\\E-l\\

fur aile m,n>N. Dann ist

\\A vm -Avn\\2 ^ S, \\T(vm - vn)\\2 + b(S±) \\vm - vH\\t

^ 5i(HTi;J|2 + ||Ti;J|2) + b(St) HB"1» \\Evm - Evn\\2 < s

fur m, n>N,
w.z.b.w.

5. Unter der Voraussetzung

kônnen wir eine weitere notwendige und hinreichende Bedingung dafiir angeben,
dass jeder T-beschrânkte Operator mit T-Schranke null T-kompakt ist. Das folgende
Lemma ist wohlbekannt (vgl. z.B. [1], p. 201):

Lemma 2. Sei T abgeschlossen, und sei X in der Resolventenmenge q(T). Der
Operator A ist T-kompakt dann und nur dann, wenn D(A)=>D(T) undA{T-X)~l ein
kompakter Operator des Raumes (X, \\ ||) ist.

Der Einheitsoperator 1 ist unter den getroffenen Annahmen ein zulâssiger topo-
logischer Isomorphismus E. Aus Satz 2 und Lemma 2 folgt deshalb

x) Der Operator T braucht hier nicht abschliessbar zu sein.
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Satz 3. Sei der Operator Tabgeschlossen, und sei X in der Resolventenmengeq(T).
Der Operator (!T— A)"1 ist genau dann kompakt im Raume (X, || ||), wenn jeder T-
beschrânkte Operator mit TSchranke null T-kompakt ist.

6. Bemerkung (20. Mârz 1969). Wir haben in Satz 1 vorausgesetzt, dass der

Operator T abgeschlossen ist. Der Beweis muss nur unbedeutend modifîziert werden,
wenn wir bloss annehmen, dass T abschliessbar ist. Dass man dièse Voraussetzung
jedoch nicht weglassen kann, zeigt das folgende

Beispiel. Sei X2 endlich dimensional, und sei der Operator runbeschrânkt. Dann
ist T nicht abschliessbar ([4], p. 166, Problem 5.18). Der Operator A T ist

T-kompakt, aber offensichtlich ist die T-Schranke von A nicht null.
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