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Zur Storungstheorie linearer Operatoren: Relative Beschriinktheit

und relative Kompaktheit von Operatoren in Banachriumen

von PETER HESS (Ziirich)

1. S. GOLDBERG zeigt in seinem Buch [2], dass jeder lineare Operator A, der
beziiglich eines linearen Operators T kompakt ist, 7-beschridnkt ist mit 7-Schranke
null (p. 123, Korollar V.3.8.i). Dabei wird vorausgesetzt, dass der Operator 4 ab-
geschlossen — oder jedenfalls abschliessbar — ist, was im Rahmen der Stérungstheorie
linearer Operatoren eher fremd wirkt. Wird doch meist von einem leicht diskutier-
baren Operator T ausgegangen und — fiir beziiglich T geniigend kleine Stéroperatoren
A - die Abgeschlossenheit von T+ A4 aus derjenigen von T gefolgert, selbst wenn A
nicht abschliessbar ist.

In der vorliegenden Arbeit leiten wir das erwdhnte Resultat unter Bedingungen
her, die der Fragestellung der Stdrungstheorie besser entsprechen: anstelle der Ab-
schliessbarkeit von A fordern wir diejenige von 7.

Zunichst zeigen wir also, dass die 7-Beschrinktheit mit 7-Schranke null eine
notwendige Bedingung fiir die 7-Kompaktheit eines Operators ist (Satz 1). Anschlies-
send untersuchen wir, wann diese Bedingung auch hinreichend ist: Falls die Resol-
ventenmenge ¢(7) nicht leer ist, folgt aus der 7-Beschridnktheit mit 7-Schranke null
die T-Kompaktheit genau dann, wenn T eine kompakte Resolvente besitzt (Satz 3).

Dieses Resultat ergibt sich durch Spezialisierung aus einer allgemeineren Aussage
(Satz 2).

2. Es seien (X,, || |l;) und (X,, || ||,) zwei Banachrdume, d.h. lineare Rdume X,
und X, mit den Normen | ||; bzw. || ||,. Ferner bezeichnen T und A lineare Opera-
toren mit den Definitionsmengen D (T) und D(A4) in X; und mit Werten in X,. Der
Operator A4 heisst T-beschrinkt, falls D(4)>D(T) und Zahlen a=0, b(a)20 so

existieren, dass
[Aull, £ allTul, + b(a)llull,

fir alle ue D(T). Die untere Grenze der moglichen Werte a>0 wird 7-Schranke
von A4 genannt.

Fiir Vektoren ue D(T) definieren wir die 7-Norm von # durch

lully = 1T ull, + ful, .

Der Operator 4 heisst T-kompakt, wenn D (4)> D(T) und 4 jede beschrinkte Menge
des normierten Raumes (D(7), || ||¢) auf eine in (X,, || [,) relativ kompakte Menge
abbildet. Ist T abgeschlossen, so ist (D(T), || |lz) ein Banachscher Raum.
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Fiir die schwache Konvergenz einer Vektorfolge {u,} gegen ein Element u des
betreffenden Raumes verwenden wir das Symbol u, — u.

3. Wir beginnen mit einem Lemma, das fiir Operatoren in Hilbertriumen bereits
bekannt ist, und dessen Beweis sich leicht auf den Fall von Banachraumen iibertragen
lasst:

LeMMA 1 ([3], p. 356). Es sei A ein T-beschrinkter Operator. Fiir jede in (X, | |,)
schwach gegen null konvergierende Folge {u,} < D(T) mit Tu,— 0 gilt dann Au,— 0.

SATZ 1. Der Bildraum (X,, || |,) sei reflexiv, und es sei T abgeschlossen. Notwendig
fiir die T-Kompaktheit des Operators A ist dann die T-Beschrinktheit von A mit T-
Schranke null.

Beweis. Sei der Operator A T-kompakt. Als kompakter Operator (D(7T), || ||l1)—
(X3, || [l2) ist A4 T-beschrinkt. Es bleibt zu zeigen, dass die 7-Schranke null ist.
Nehmen wir an, diese Aussage sei falsch. Dann existieren ein 6 >0 und eine Folge
{u,} = D(T) mit der Eigenschaft, dass fiir alle natiirlichen Zahlen n

lAullz > 01T uyll; + nllu,lly.
Sei v,=u,/||u,|r- Es gilt
[Avall2 > ST vull; + 1 llvgll; - 1)

Da A ein T-beschriankter Operator ist und
loallr =1 )
firr alle n, ist die Folge {Av,} beschrinkt, und aus der Ungleichung

1
loally < = 14,5
n

folgt die Konvergenz v,—0 in (X, || [;)-

Nach Voraussetzung ist der Raum (X, || ||,) reflexiv, und die Folge {7v,} ist
konstruktionsgemiss beschrinkt; folglich existiert eine schwach konvergente Teil-
folge {Tw,}, {w,} ={v,}. Aus der schwachen Abgeschlossenheit des Operators T
ergibt sich Tw,—0 (vgl. [4], p. 165, Problem 5.12). Auf Grund von Lemma 1 gilt
also Aw,—0. ,

Wegen der 7-Kompaktheit von 4 und der Beziehung (2) besitzt {4 w,} eine stark
konvergente Teilfolge A w, —0. Aus (1) folgt 7w, —0, was aber im Widerspruch steht

zur Relation (2),
w.Z.b.w.

4., Wir untersuchen nun, wann die 7-Beschrinktheit eines Operators mit 7-
Schranke null hinreichend ist fiir die 7-Kompaktheit. Dazu setzen wir voraus, dass €s
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einen topologischen Isomorphismus E von (D(T), | 1) in (X,, || lI,) gibt. (Ein
solcher existiert z.B. immer, wenn die Rédume (X;, | ;) und (X5, | ) topologisch
dquivalent sind.) Mit E ~! bezeichnen wir den auf der Wertemenge von E definierten
beschriankten inversen Operator.

SATZ 2. Dafiir, dass jeder T-beschrinkte Operator mit T-Schranke null T-kompakt
ist, ist notwendig und hinreichend, dass der Isomorphismus E T-kompakt ist").

Beweis. 1. Notwendigkeit. Da E offenbar ein T-beschrdnkter Operator mit 7-
Schranke null ist, muss E 7-kompakt sein.

2. Hinlinglichkeit. Sei A ein T-beschriankter Operator mit 7-Schranke null. Zu
beliebigem 6 >0 existiert also eine Zahl b(d) derart, dass

lAull, < 61T ully + b(d) llul,

fir alle ue D(T) gilt. Es sei {u,} eine beschrinkte Folge aus (D(T), | ll7): lullrSK
fur alle n. Da der Operator E T-kompakt ist, gibt es eine Teilfolge {v,} < {u,} mit
konvergenter Bildfolge {Ev,}.

Wir zeigen, dass auch die Folge {Av,} konvergiert. Sei ¢ >0 vorgegeben. Wir
setzen 6, =¢/4 K und wihlen die Zahl N so, dass

|Ev, — Ev,ll, < &/2b(8,) IE™"|
fiir alle m, n> N. Dann ist

“A Uy — Avn”l é 61 ”T(Um - Un)"Z + b(él) ”Um - vn“l

<0 (ITvull; + I Tv,ll2) + b(8,) IE™'| |Ev, — Ev,ll, <e
fiir m, n> N,
w.z.b.w.

5. Unter der Voraussetzung

(Xls | ||1) = (Xz, I ”2) = (X’ | “)

kdnnen wir eine weitere notwendige und hinreichende Bedingung dafiir angeben,
dass jeder 7-beschrinkte Operator mit 7-Schranke null 7-kompakt ist. Das folgende
Lemma ist wohlbekannt (vgl. z.B. [1], p. 201):

LEMMA 2. Sei T abgeschlossen, und sei A in der Resolventenmenge ¢(T). Der
Operator A ist T-kompakt dann und nur dann, wenn D(A)> D(T) und A(T—2)"! ein
kompakter Operator des Raumes (X, | |) ist.

Der Einheitsoperator 1 ist unter den getroffenen Annahmen ein zuldssiger topo-
logischer Isomorphismus E. Aus Satz 2 und Lemma 2 folgt deshalb

1) Der Operator 7 braucht hier nicht abschliessbar zu sein.
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SATZ 3. Sei der Operator T abgeschlossen, und sei J in der Resolventenmenge o(T).
Der Operator (T—2)"" ist genau dann kompakt im Raume (X, | |), wenn jeder T-
beschrdnkte Operator mit T-Schranke null T-kompakt ist.

6. BEMERKUNG (20. Mirz 1969). Wir haben in Satz 1 vorausgesetzt, dass der
Operator T abgeschlossen ist. Der Beweis muss nur unbedeutend modifiziert werden,
wenn wir bloss annehmen, dass T abschliessbar ist. Dass man diese Voraussetzung
jedoch nicht weglassen kann, zeigt das folgende

Beispiel. Sei X, endlich dimensional, und sei der Operator T unbeschriankt. Dann
ist T nicht abschliessbar ([4], p. 166, Problem 5.18). Der Operator 4 = T ist
T-kompakt, aber offensichtlich ist die 7-Schranke von A nicht null.
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