Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 44 (1969)

Artikel: A Notion of Krull Dimension for Differential Rings.
Autor: Johnson, Joseph

DOl: https://doi.org/10.5169/seals-33766

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.08.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-33766
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

207

A Notion of Krull Dimension for Differential Rings

JOSEPH JOHNSON

It is known that if k is a field and if Ris a commutative ring and a finitely generated
k-algebra without zero divisors, then the dimension of R (defined to be the greatest
length of a chain of prime ideals of R) is equal to the transcendance degree of R over k.
In this paper an analogue of this theorem is shown for differential algebra. The
principal theorem proven here has the fact just mentioned as a special case if in
addition we assume that the characteristic of & is zero.

For an indication of how the theorem is actually stated, consider the special case
of an ordinary differential field ¥ of characteristic zero and let R be a finitely generated
differential algebra over . If p and q are prime differential ideals of R with gop,
call the gap between q and p large if there exists an infinite strictly descending sequence
1=0oSq21 2P of prime differential ideals between q and p. The main theorem of

this paper (at the beginning of § 2) specializes in this instance to tell us that if
p is a prime differential ideal of R and if d is the differential transcendance degree
of R/p over {,then there exists a chain p=p,c=p,<---<p, of prime differen-
tial ideals of R with the gaps from p; to p;_, large for each i and that no chain
of prime differential ideals of R all of which contain p can have more than d large
gaps.

This paper would have been substantially shorter were it not for the fact that very
little is known about differential ideals in an arbitrary differential algebra finitely
generated over a differential field. In §§ 3 and 4, some tools are developed which
allow one to deal with these to a certain extent, and consequently these sections are
quite technical in nature. Many readers will probably prefer to have an outline of the
proof of the theorem mentioned above before digging deeply into these details. In
§ 5, the results from §§ 3 and 4 which are needed are succinctly summarized near the
beginning so that one can defer reading those sections.

It is assumed that the reader is to some extent familiar with the material of [1] and
[2]. In any instance where notation is unexplained there will be an explanation in one
of these references.

§ 1. Combinatorial Type and Dimension
Let R be a ring and let U be a family of ideals of R1). Adjoin to the set of integers

Z a single element oo and extend the order on Z to Zu {00} by requiring that p< oo
‘or every peZ.

1) For the definitions and results in this section, U can be any ordered set; the ring R plays no role.
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LEMMA. There is a unique way to define an element pg(a,a’) (or u(a,a’)) of
Z U {00} for every pair (a, a')e A x WA with a>qa’ such that the following two conditions
hold: |

i) u(a,a)=-1

ii) If d is any non-negative integer, ju(a, a')>d if and only if a#a’ and there exists
an infinite sequence (;);=o.,.. of elements of W such that a=qy>a,>-->a’ and
pla;_q, a;)=d—1for i=1,2, ....

The reader can quickly prove this lemma by defining u(a, a")= oo if ii) holds for
d=0,1,2, ... and u(a, a’)=d where deZ is the largest d such that ii) holds otherwise.

It follows from i) and ii) above that u(a, a’)>0if a#a’ and that u(a, a’)=0 means
that a #a’ and that every infinite descending chain of ¥ of the form a=qy>a;:--24a’
satisfies a,=aq;,, for all sufficiently large i. On the other hand u(a, a’)>1 means that
there exists an infinite strictly descending chain of U of the form a=q, 20,2 oa'.

Define typey R (or type R) to be the least upper bound of all the p(a, a’)eZ U {o0}.
Define dimg R (or dim R) to be the least upper bound of the peZ such that there
exists a chain ay>a, >--- >a, of elements of A with u(a;-4, a;)=type R fori=1,..., p.
If A is non-empty, type R and dim R are defined. If type R< oo, then dim R>1, but
if type R= 00, we may have dim R=0. In the situations of interest here, type R will
always be finite.

§ 2. Dimension in Differential Rings

In the sequel the following theorem will be shown.

THEOREM. Let R be a differential integral domain with m derivation operators which
is a finitely generated differential algebra over a differential field § of characteristic
zero. Let W be the set of all prime differential ideals of R. Then if diff tr deggz R>0,
typeq R=m and dimg R=diff tr deggz R. If diff tr degg R=0, then typeq R<m.

As a first step toward proving this theorem it will be shown that

1) type R<m,

ii) type R<m if diff tr degg R=0 and

iii) if type R =m, dim R<diff tr degg R.

Letn,, ..., n, generate the differential algebra R over §. Let p be a prime differential
ideal of R and for the moment let 7, ..., 7], denote the images of ,, ..., 1, respectively
in R/p. Let r be an indeterminate. By the theorem in Chapter II of [1], there exists a
polynomial y,(r)eQ[r] such that x,(r)=tr deggF[O(r)7; L...0 O(r)#,] for all
sufficiently large reZ.

Given polynomials P,(t), P,(t) with rational coefficients, write P,(t)=P,(r) if
for all sufficiently large reZ, P,(r)>P,(r). If now p and q are prime differential
ideals of R with poq, then x,(r)<y,(¥). Let R=F[O(r)n, v--uO(r)n,). If
Xp(¥)=1x,(r), then trdeggz(R,/pNR,)=tr deggz(R,/qnR,) for all sufficiently large
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reZ. It follows (c.f. [3], Lemma page 75) that p=q if x,(¥)=yx,(r). It will now be
shown inductively that if u(p, q)=>p, then deg(x,(x)— x,(r))=p.

The polynomials y we are considering are numerical, that is x(r) is an integer for
all sufficiently large re Z. If x is a numerical polynomial, 4 x is also. (See [1], Chap. III
§ 2 for definition of 4y.) Let p be the degree of y and write x(r)=(a/p!)t”+a poly-
nomial of degree less than p. A simple induction shows that A7y =a. It follows that if
y is numerical, a is an integer. Also if x>0, it is clear that a>0.

To show that deg(x,(r)—x,(r))=>p when u(p, q)>p, observe that in any case
deg (x,(t)— 2,(x)) = — 1. Also if p#q, then since x,(r)—x,(r) is not the zero poly-
nomial, deg (¥, (t)}—x, (r)) >0. This demonstrates the assertion for p= — 1 and for p=0.

Now let p>0 and let p=py>p,>-:- >q be an infinite chain of prime differential
ideals of Pwith u(p;_, p;)=p—1fori=1,2,....If for some, deg (¥, () — (xp, ,(¥)=p,
then surely since x,(r)— 1, ()= x,,(¥) — Xy, , (¥), deg(x,(r)—x,(r))=p. Otherwise we
have deg(x,,(¥)—x,,_,(r))=p—1 for every i. Write y,,(t)—x,(t)=a,x?"!/(p—1)! +a
polynomial of degree <p— 1. Itis clear that a;_; <ag; for all i. Because x,— x, = Xp, — %o
for all i, the degree of x,— x, is forced to be > p proving the assertion that was made.

For any prime differential ideal p of R, deg x,(v)<m andis <m if diff tr degz R=0.
It follows that type R<m and is <m if diff tr deggz R=0. Suppose now that type R=m
and that p, > p; o --- Dp,isachain of prime differential ideals of R with u(p;-,, p;)=m
for i=1,...,d. Write x,,(t)—x,,(x)=ar"/m!+ a polynomial of degree <m with
aeZ. Then since yx, (¥)— xp,_,(tr)=ax™/m!+ a polynomial of degree <m with a; an
integer and >0, a>d. On the other hand a=4"(x, (t)—x,, (1)) <4 (x,,(x)) <
A" (X(0y(r))=diff tr degz R, so d<diff tr degz R. Hence dim R<diff tr degz R. This
completes the proof of assertions 1), ii) and iii).

Before going on to prove the rest of the theorem, let it be remarked that if x is a
differential dimension polynomial for R over &, it is not in general true that type
R=deg y. To see this take m=1, let ¥ be a differential field of constants and let x be
an algebraic indeterminate over & with x’ = 1. Then & [x] has no non-trivial differential
ideals so that type & [x]= — 1. On the other hand deg y must be zero.

The proof of the rest of the theorem starts with what is essentially the consideration
of a special case. (In the statement of the lemma, [ ] means differential ideal generated
by.) (Consult [2], § O for explanations of the notation used here.)

LEMMA.2) Let § be a differential field of characteristic zero and let y,,..., y, be
differential indeterminates. Let N be the set of all differential ideals of & {1, ..., a} of
the form [0, pic1ys--+» 0pYicry] Where p=0, 0,,...,0,€0 and 1<i(1),..., i(p)<n. Then
ypeq & {y1s.. , Yoy =m and dimyF{y,, ..., y,} =n.

%) The special choice of % makes the proof of the lemma much less awkward than it might
Stherwise be. It turns out however to be also necessary to have the lemma in this form in order to
successfully carry out the proof of the theorem.
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Because U is contained in the family of all prime differential ideals of & {y,,..., y,},
it is readily apparent from what has already been shown that typey & {»1, ..., v} <m,
and if typeg F{¥1--.» Vu} =m, then dimy F {1, ..., .} <n. Upon considering therefore
the chain [yy,..., o] 2[V1s s Yn-1] 2 2[¥:1]12(0) of U, it becomes evident that it
is enough to show that py([¥1,..., Yol [V1ses Yp—1])=m for 1<p<n. If A'=
={aeW:[y1,..., yp)2a>[¥1;..., ¥p-1]1}, it Will suffice to show that pe ([yy,..., y,],
[Vi5e0s Yp—1])=m. We have F{yi,..., Yu}/[V1se0s Vp-112 &F{Vps---» ¥u} canonically
and under this isomorphism, the set A’ is mapped order isomorphically onto the set
B consisting of all those differential ideals of §{y,, ..., y,} which are generated by the
finite subsets of @ y,. Let B’ consist of all those differential ideals of & {y,} which are
generated by finite subsets of @ y,. Because be B’ implies (b F{y,, ..., y.}) " &F{y,} =b,
it follows quickly that the map from B to B’ obtained by intersecting the elements of
B with §{y,} is an order preserving isomorphism. This reduces our problem to the
case n=1, i.e. it will suffice to show that if y is a differential indeterminate over & and
if A, is the class of all differential ideals of §{y} generated by the finite subsets of
0y, uy, ([¥), (0))=m.

Considering the chain[y]>---o[8,y] 2[5 'y]=--- =(0) of elements of UA,, it is
obvious that it will suffice to show that ug ([65,y], [0 '¥])=m—1. Similarly to
what was done before, let %; be the family of all ae?, such that [§, y]>a>[d5" 'y].
Let { be the element &,y +[8}," 'y] of the differential ring & {5,,y}/[8," 'y]. As before
one reasons that U, is order isomorphic to the family B of all differential ideals of
F{=F{0my}[65 'y] generated by finite subsets of @™~V {, where @™ Vc@ is
the subset of all those derivative operators which do not involve 4,,.

Let A" D=A—-{5,}. As the family of the §{ for 0e®™ 1 — is algebraically
independent over &, ¢ is aA™~ V-differential indeterminate. The structure of A-diffe-
rential ring on F{{} is determined by the additional condition J,{=0. It is
clear that every A™~ ') —differential ideal of {{({} generated by a finite subset
of @™~ ¢ is A-differential and generated by the same finite subset of @™~ ¢ and
the converse is true too. Consequently W is order isomorphic to the set of all
A™~D_differential ideals of ${{} generated by finite subsets of @™ D¢ so the
proof of the lemma follows by induction.

To go from the lemma that has just been demonstrated to the proof of the theorem
an analogue will be developed for differential algebra of the following very easily
proven fact of commutative algebra.

LEMMA. Let k be a field, R an algebra of finite type over R without zero divisors. If
X155 X, i @ transcendance basis for R over k, there exists a non-zero Dek[xy, ..., X,)
such that R[1/D] is an integral extension of k[xy,..., x,, 1/D].

Using this lemma one can prove the theorem for the case m=0. What it is necessary

to do is to show the existence of a chain ‘B,,:; B,-1 S2 By of prime ideals of R 0!
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length p. We have (assuming characteristic k=0) that k is infinite, so there exist
&15.ns Ep€k such that D(Ey, ..., &) #0. Let p;=(x; —&y,..., x;— &). Thenp,>p,_ D
# #

>po and D¢p,. By integrality this chain lifts to a chain of prime ideals Q,>Q,_, >
# # #

>Q, of R[1/D] (i.e., we have Q;nk[x,,..., x,]=p,). Letting P,=Q; " R we obtain
#

a chain of the desired type.
The proof of the theorem for m >0 will run along lines similar to those just given,
but is quite a bit more complicated.

§ 3. Some Preliminary Results on Differential Vector Spaces

For the time being ® will be a differential field of any characteristic. It will
however be assumed that the subfield C of ® consisting of all constants (elements ¢ of
® satisfying 6(c)=0 for all e A) contains infinitely many elements.

Let 6,,..., J,, be the elements of A. If 6eGL(m, C) is any non-singular m x m
matrix over C, A° will be the set {0], ..., oy} where J; is the formal linear combination

67= ) 0;;0;. If M isany differential vector space over ® or a differential algebra
j=1
over ®, the set A’ will be made to act on M in the obvious way, i.e. we will define
67 (x)= ), 06,;0;(x) for xe M. We have clearly that 67(6(x))=07(57(x)) since the
j=1

coefficients of ¢ lie in C. In this way ® and all differential structures over ® will be
viewed as having A or A’ as their fundamental set of derivation operators. It is clear
(since ¢ is invertible) that if M is a differential vector space over ® or a differential
algebra over ®, M is finitely generated with respect to A if and only if M is finitely
generated with respect to A°.

In the sequel when the phrase “for an appropriate choice of A” precedes a state-
ment P, this will mean that there exists a e GL(m, C) such that P holds true when A
is replaced by A’ in the manner indicated above. Similarly when the phrase “for
almost all choices of A” precedes a statement P, then there exists a non-empty
Zariski open subset U of G L(m, C) such that P holds true when A is replaced by any
A® with e U.

If 0<p<m, AP will be the set {6, ..., 6,}. Then any differential structure with A
as its fundamental set of derivation operators inherits a differential structure with
A® a5 jts fundamental set of derivation operators by simply ignoring the given action
ofd,41,..., 0, Denote by ®P the subset of @ consisting of all elements of the form
3.4 Similarly if § is a differential ring with fundamental set of derivation
operators A and if R is a differential ring extension of § with respect to A or with
respect to AP, let F{ny,..., 1.} be the AP -differential subring of R generated by
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& and ny, ..., n, whenever 7,,..., , are given elements of R. Similar uses of a super-
script ® whose meaning seems clear will be made without further explanation. The
following theorem has its origin in Theorem 6 of [4].

THEOREM. (Reduction of the number of derivation operators.)

Let M be a finitely generated differential vector space over the differential field .
Then if diff dimgz M =0 and if the field of constants of & is infinite, for almost all
choices of A, M is finitely generated as a A™~V-differential vector space.

As diff dimg M =0, all the elements of M are differentially linearly dependent over
®. Let © be the ring of linear differential operators in A with coefficients in ®, and
let n,,..., n, be a set of generators of M. It will suffice to show that if 1<i<n, then
for almost all choices of A, the differential vector space Dy; is finitely generated as a
A™~ D._differential vector space over ®. Indeed if we do this for each i=1,..., n, we
obtain non-empty Zariski open subsets Uy, ..., U, of G L(m, C) such that if we replace
A by A° with oe U,, D, is a finitely generated A™~V-differential vector space over .
Then U,n---nU, is non-empty and if €U, n---nU,, M=Dn;+---+Dpy, is a
finitely generated A~ V-differential vector space over ® when A has been replaced
by A’. It follows that it will be enough to prove the theorem when M is generated by a
single element 7.

Since 7 is differentially algebraically dependent over ®, there exists a non-zero
DeD such that Dn=0. Let r be the order of D. Consider any 6e GL(m, C) and let

t=0"'. Writing ¢;=07 we have §,= Y 1;¢;. If 6{"---8)™ with j(1)+ - +j(m)=ris
an arbitrary element of order r of ‘!

(1) gi(m) u o 5 ™ m
m m r
e, 5" ... 6 =(.thljsj) 21 ‘cmjsj) =t ... time +E,
J= J=

where E€ D, and can be written as a polynomial in ¢, ..., ¢, with coefficients in C of
degree <r and such that the coefficient of ¢, is zero. Let I be the set of all m-tuples
i=0Q),...,j(m)) with j(1),...,j(m) non-negative integers and j(1)+---+j(m)=r.
Then we can write D= Y. a;6{"...6) + D’ where D'e®,_, and the a’s belong to
®. Then jel

(*) D=Y a;v{Q...t\%e +E + D

jelI

where E’is a linear combination with coefficients in ® of elements of D which have the
properties listed above for E.

It is possible to choose a non-zero polynomial function P on G L(m, C) such that
if P(¢)#0 and if letting a= Y a;7{)...7J%W), a#0. Let D™~V be the subring of D

jel
generated by ® ande,, ..., &, ;. Because Dy =0, it follows that if «#0, &, ne D™ Vn+
+D™ Ve, p+---+ D™ Ve "1y because of the relation (x). This implies that
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DDy 4 D™Dl "1y is mapped into itself by ¢, Since it is certainly mapped
into itself by &, ..., &,_1, it must be all of M, and this proves the theorem.

COROLLARY. Let §& be a differential field of characteristic zero, ® a finitely generated
differential field extension of §&. If diff tr degg ® =0, then for almost all choices of A,
® is a finitely generated A~ V-differential field extension of .

Let Q=Qg 5 be the module of Kahler differentials of & over § and recall ([2],
§ 1) that  has a structure of differential vector space over ® such that for e A and
ne® we have d(d(n))=d(6(n)). Choose 5, ..., n,e ® such that dny, ..., dn, generate
Qasa A~ D-differential vector space, and such that,, ... n, generate G as a differential
field over F. Let $, be the A™~D-differential field extension of ¥ generated by
Niseees Ny let § be the A~ 1_differential field extension of § generated by #y, ..., 1,
0,n(M1)s -+ > Om(n,)- It Will be shown that H= G.

Letting n be one of the #,, it will suffice to show that all the d;,7 for s >0 belong to
$. Since d(3,,n)ed(9,), there exists an Fe$H,[X], X an indeterminate, such that
F(5,,n)=0 and S=dF/dX(5,n)#0. We have 0=4§,(F)=S 6.7+ an element of §.
This shows that 62n€$). Since 627,,..., 21,9, it follows that if s>2 and 65 *ne$,
then d,,n€$ so that by induction all the 3,,ne$. This completes the proof of the
corollary.

§ 4. Parametric Subrings

Let R and § be differential integral domains and suppose that R is an extension
of §. The notion of a parametric subring of R over § (or parametric subring) will be
defined by induction on m.

If m=0, a subring R, of R will be called parametric if the quotient field of R is
finite algebraic over the quotient field of R, and if there exist finitely many elements
f1s..., , Of R, algebraically independent over § and such that Ro=g[ny,..., Na])-
Observe that in this case R, is a parametric subring of R if and only if R, is a para-
metric subring of the quotient field of R.

If m>0, a subring R, of R will be called parametric if there exist elements 1, ..., 1,
of R, differentially algebraically independent over & and such that R, is a parametric
subring of R over & {n,, ..., n,} when these are considered to be differential rings with
respect to the set of derivation operators A™~ 1,

From the definition, the following proposition follows immediately by induction
on m.

PROPOSITION. Let R and § be differential integral domains, R being an extension of
&. Then

i) A subring R, of R containing § is a parametric subring of R over & if and only if
R, is a parametric subring of the quotient field of R over .

ii) If R, is a parametric subring of R over §, then R, is a polynomial ring extension
of & and.the quotient field of R is finite algebraic over the quotient field of R,.
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THEOREM. Let R and § be differential integral domains of characteristic zero, R
being an extension of §. Suppose that the quotient field of R is a finitely generated
differential field extension of the quotient field of §. Let n,,...,n,; be a differential
transcendance basis for R over . Then for an appropriate choice of A, R contains a
subring parametric over §{ny, ..., N4}

First suppose that m=0. Then the quotient field of R is finite algebraic over the
quotient field of §[#y,..., n4], and hence F[ny,..., n,] is a parametric subring of R
over .

Suppose now that m> 0. Then for almost all choices of A, the quotient field of R considered as a
A(m-1)-differential field is a finitely generated extension of the quotient field of &{n1, ..., #74}. Choose
such a A. By induction we may assume that after an appropriate change of A(-1) (and hence ulti-

mately one more change of A) there exists a subring Ro of R-parametric over §{ni, ..., 74} when
these last are considered as A{m-1)-differential rings. This establishes the theorem.

LEMMA. Let R and ¥ be differential integral domains with § a differential subring of R. Suppose
that Ro is a subring of R parametric over §. Let K be the quotient field of R, Ko the quotient field of
Ro. Let au, ..., an be a basis for K over Ko. Then there exists D € Ro — (0) such that Ro[1/D] a1+ -+
+ Ro[1/D] an is a finitely generated differential algebra over §.

Let M = Roai + +++ + Roan. It is necessary to find D e Ro — (0) such that Ro[1/D] M is a finitely
generated differential algebra over §. If m =0, it suffices to choose D such that all the Da;a; belong
to M. Suppose now that m> 0. Choose 71, ..., 7a€Ro which are differentially algebraically inde-
pendent over § and such that Ro is parametric for R over §{#, ..., 7a} when R and &{m, ..., na}
are considered as A(m-1)-differential rings. By induction there exists D € Ro — (0) such that Ro[1/D] M
is a finitely generated A(m-1)-differential algebra over & {1, ..., n4}.

It is now only a question of finding E€Ro — (0) such that Ro[1/DE] M is mapped into itself by
Om. Let {1, ..., {¢ be generators of Ro[l/D] M as a A(m-l-differential algebra over F{n, ..., 77a}.
Choose E€Ro — (0) such that Eém({1), ..., Edm({¢)€Ro[1/D] M. Now Ro[1/DE] M is closed under
Am=1)_ 1t will suffice to show that if i=1, ..., q and §€®m-1) §,,0(;e Ro[1/DE] M. But this is
clear since dm{i€Ro[1/D E] M. This completes the proof of the lemma.

COROLLARY. Suppose that R and § are differential integral domains with R a
finitely generated differential ring extension of § and suppose that R, is a ring para-
metric for R over . Then there exists De R, —(0) such that R[1/D] is a finite module
over R,[1/D].

In the lemma take a,,...a, to be in R. Choose a D as given by the lemma and let
¢y, &, generate R as a differential algebra over §. Multiply D by a non-zero
element of R, so as to get &y, ..., £,€Ry[1/D] a;+ -+ Ry[1/D] a,. Then as R[1/D]=

=Ro[1/D] a;++--+ Ry[1/D] a,, R[1/D] is a finite module over R, [1/D]. This proves
the corollary.

§ 5. Conclusion of the Proof of the Main Theorem

We return to the situation of the theorem of § 2. Hence again § is a differentiai
field of characteristic zero, and R is a differential overring of § which is finitely
generated as a differential algebra over § and without zero divisors. Let d=diff tr
degg R. Because the assertions i), ii) and iii) which immediately follow the statemen:
of the theorem have already been demonstrated, it will suffice to show that if € is thc
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class of all prime differential ideals of R and if d>0, then (m, d)<(types R, dimg R)
where Z x Z has been ordered lexicographically.

Let #,,..., n, be a differential transcendance basis for R over §. By the results of
§§ 3, 4 (corollary of § 4 and proposition of § 4), there exists a subring R, of R and a
non-zero element D of R, such that

i) R, is a polynomial ring extension of {1y, ..., 74}.

ii) R[1/D] is a finite Ry[1/D}-module.

LEMMA. Let A and B be rings with B an overring of A. Let W and B be families of
ideals of A and B respectively such that if beB, bn AeW. Suppose

a) If a, a’eW with aca’, then there exist b, b’'e B with bnA4=q, b’'n4=a’ and
bcb'.

b) If by, b,€B with by =b, and if a, e with (by N 4)<a; =(b, N 4), then there
exists b, € B such that by<b; =b, and b; n4=q;,.

Under these assumptions, (typey A, dimyq A)<(typeg B, dimyg B).

Leta, a’eWA with a’>aq, b, b’'e B with b’ >b and suppose thatbnA=aqa,b'n4=qa’.
If p>0and py(a’, a)=p, consider an infinite chain in U of the forma’=a,>0a,>--2a
with p(a;, a;-)=p—1fori=1, 2, .... By condition b) there exists an infinite chain of
B of the form b’ =b,>b; - obsuchthat fori=0, 1, ..., b;n 4 =aq,. By induction we
may assert that uy(b;, b;_;)=p—1 and hence, since b’ #Db, that u(b’, b)>p. It follows
from this and a) that typey A <typeg B.

Suppose now that typey 4 =typeg B. Any chain ay>a, 2 -+ 2a, of A with py(a;_4,
a;)=typey A fori=1, ..., d can by a) and b) be lifted to a chain of B, say byob;>-->
>b,. As pg(b;_y, b;)=typey B and as dimgy A is the least upper bound of such d, it
follows that dimg 4 <dimg B, and this completes the proof of the lemma.

LeMMA. Let B, and B be rings with B an overring of B, and integral over B,. Then
if p is a prime ideal of B, and if q is a prime ideal of B such thatqn By =D, q is a minimal
prime component of pB. Furthermore if B, is integrally closed, then any minimal prime
component q of pB lies over p.

The first assertion is an immediate consequence of [5], ITI-3, Proposition 2. As for
the second, let q" be a minimal prime component of pB and let p’=q’ N B,. Then by
[5] (I1I-5) there exists a prime ideal q of B such that q=q’ and N B, =p. Then q=q’
and p=p’, completing the proof of the lemma.

COROLLARY. Let pocp; =P, be prime ideals of a ring A, let B be an integral
extension of A and let q,, q, be prime ideals of B such that q;nA=p,, i=0, 2. Then if
A[pq is integrally closed, there exists a prime ideal g, of B such that q,<q;<qs,
91N A=p, and q, is a component of p,B.

Let 0 be an element of @ which for the moment is arbitrary and set {;=0n; (where
M15..., 1y is the differential transcendance basis we have chosen for R over {). In
F{ly-.. {4} let A be the family of all those differential ideals which are generated by
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the finite subsets of @(; U:--U@(,. If the order of 0 is sufficiently large, then for
ae, D¢a R,. It will now be assumed that 6 is so chosen.

Let B be the family of all prime differential ideals b of R[1/D] such that
bnF{,..., {4} is in A. One can canonically identify B with the family of all prime
differential ideals b of R such that D¢band b {(,, ..., {;} is in A. To complete the
proof of the theorem, it will be enough to show that (m, d)<(typeg R, dimyg R).
Referring to the first lemma of this section and the first lemma of § 2 it is seen that it
will suffice to show that a) and b) hold true when we take A= {{,..., {,} and B=R
and use the families 2 and B that have just been defined.

It is important to remark that R, being a polynomial ring over F{ny, ..., n,} is
also such over §{(;,..., {,}. Alsoif ae, Ry/a R, is a polynomial ring over § since the
ideal a R, is generated by homogeneous linear elements of R,. Consequently R,[1/D]
is integrally closed and so is Ry[1/D]/aR,[1/D] for every aeU. The verification of a)
and b) will now follow quickly.

First notice that if ae? and if b is a prime ideal of R[1/D] lying over aR,[1/D],
then b is a minimal prime component of a R[1/D] and hence is differential. (It is a
known fact that if a differential ring 4 contains Q, any minimal prime component of
a differential ideal of A is itself differential.) If a=a’, a’e?, then by integrality there
exist prime ideals b, b’ of R[1/D] such that b<b’ and bnR,[1/D]=aR,[1/D],
b’ Ry[1/D]=a’R[1/D]. Then b, b’e B and lie over a, a’ respectively; this proves a).
To show b), let by, b,eB and a,eW with bo<b, and boNF{Ls,..., (L} =a; b, N
AF{L15---> L} Let ag=boNF{y,-.., {4} By the corollary there exists a prime ideal
b, of R[1/D] such that bo<=b; =b, and b; "R, [1/D]=a, R, [1/D] and this implies b).
The proof of the main theorem is now complete.
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