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Note on Poissson’s Treatment of the Euler-Maclaurin Formula?!)
(To Hugo Hadwiger for his 60-th birthday)

By ALEXANDER OSTROWSKI (Basel)

1. In the Euler-Maclaurin Formula

q q n
’ B,, - v
Zf(u) =J-f(t) dt + (—é—zﬁ(f‘“ Y@-fTV@)+ R, (n2), (1)
u=p p v=1
an expression for the remainder term was first given by PoissoN [6] 1827. This is
q
R,= ——— | Byt () f*" V(1) dt, 2
(2n+1)!j 21 (O ST @
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where B, ,.,(t) is given by

sin2vmt

2
an+1(t)=(2—1‘t—)7;;iUzn+1(t)9 Us(t)*':Z“";s— (s> 1). 3)

v=1

To obtain from here an estimate for U, , . (¢), PoissoN used the obvious bound

0

1
Uz ns1 (0] = Zv—zm 4)

v=1

2. It has apparently not as yet been noticed, that the inequality (4) can be re-
placed With 1y . @OI<1 (OStS1, n=1,2.)2 )

1) The work on this paper was partly done under the Contract DA J A 37-67-C-0628 of the Institute
of Mathematics, University of Basel with the US Department of the Army, European Research Office.
2) This follows immediately from the relation

B2 a+1(2) 2
QRn+ 1! ~ (Qn)ntl
As to this formula, it is for n > 1 equivalent with a formula deduced by LEHMER on p. 538 of his

paper, LEHMER [2] (see the formula without number, following immediately after LEHMER’s formula (18)
in his paper). However, this relation is also true for n = 1, as is immediately verified, using for instance

the value of Max Es (t)ll = ,00801875 (which is obtained from LEHMER’S value of his M3), since this
<0, 1)

1
this is < W = 0806.

O=t=1Lnz.
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However, the inequality (5) can be further improved. Itis easy to see that we have
in any case
1
max [U,()] > 1 — 7 (s>1) 6)
(see section 4). 0.4
As to the upper limit of |U,(¢)|, we will prove that we have

o

IUs(t)I<1—3S (s27). @)
On the other hand we have 496
max |Us ()] = 1 — '~3~5— , (3)
<0, %>
147
max |U3 (t)l =1- —33“ . (9)
<0, 4>

3. The inequality (7) will be proved for all real s by a rather elementary method,
making no use of the results obtained in the last decades on the zeros of the Ber-
noullian Polynomials of even order. (NORLUND [4], LENSE [3], LEHMER [2], INKERI [1],
OsTROWSKI [5].) As to the values (8) and (9), they are obtained using the connection
between the Bernoullian Polynomials Bs(¢) and B;(t) with Us(¢) and U, (2).

4. We obtain at once from (3)

[eo]

in 2 1 1 1 1 1
Us(i—)=ZSl v/ ___+(__«)+...>1_3_s (s > 1),

vs = ls 3S 58 7S
v=1
and this proves (6).
5. In order to prove (7) we introduce
sin2nt sin3mwt

p(t)=sinnt + >+ 3 (10)

and put ©
U, (t/2) = (1) + R(t), R(t)= 2 vavsm. 11

v=4

Then we have

1 1 1 dx

ROIS-+ ) - <-4+ | =

()‘—48 sz 4S+ xs
4

(s=7). (12)



204 ALEXANDER OSTROWSKI

6. We are now going to discuss Max |¢(?)| = Max|¢(?)| and to prove that

(-1,1) {0,1>
7232
lp()I =1 - ¥ (t=1,s27). (13)
Let
14 T .
u=-é-—nt, Oglulgi, g=sinuy, 7y=cosu. (14)
Then we have
=yK, K=1-1429.47 (15)
PE=TR B 3¥ 28 3’
d 3sin3u  2cos2u
i=— —@(t)=sinu — — , 16
3 s—1 3 s—1
F,(0):=3"'f(u)=40>+ 2(5) o +(3 ' -3¢ —(i) (17)

As F,(1)>(3)*"*>0 and by Descartes’ rule, F,(o) has exactly one positive zero, oy,
which is <1. On the other hand, as F,(6)=12¢*+4(3)*"'o+3°"! -3, we have for
lo|=<1and s=7:

3 s=1
IFz’(a)lgss'1~3_12_4(,2_> =3s-1(1_

1 15
—)-152729-=—-15>0,
2 16

and we see that F, (o) cannot have a zero in {—1, 0).

. X . ;
7. Putting o= 551 into F,(o) we obtain

3

3 s—1
Fl(x):=6s"f(u)=§—_~;,_+2<2) x4+ (3F T -3)x-3"1,

1 35—1
4s-—2+22 -3 <0.

We see that F,(x) has exactly one positive zero, &, which is >1. Writing x=1+y,
F,(x)=3F(y) we obtain

16y T16 8/3\7] ,
FO)=—"-+|=+-(=
=3 4s+[4s+9(4)]y

L6, 1603Y 1. 161 83y
#79\a) o ¥ 34 o\a) |

For positive y it follows

F()>@E3¥-1)y-(1-%3))

F1(1)=
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)3—2—>0 (s27).

and therefore - 5 2 73\ L 8 /3
)7 9\2 ola) "2
20
8. We see that§=1+-?:—s—,
2 4
6o=—4+0—-, 0<O<l, (s=7), (18)
22 4
: (19)

2 20 2 1 2
= (1+ " )<1+=)=Z{1+ = s27).

70 23( " 23) = 25( " 26) 28( 64) (s27)

Since ¢(¢) vanishes for t =0 and ¢ =1, the maximum of ¢(¢) is attained at a point
where f(u) vanishes, that is to which corresponds sinu=g,. The corresponding

values of y=cosu is then
\/1——0'(2,<1—0'(2)/2<1——4;.

9. We now have from (15) )
o1 <(1- 3 )%

20, 4¢3 20 20
4] 0= 0(1+ . 0)

1
3S 1 1 2s 35 2S (_E)s
1 + 3 4 37
— — {1 <{l1+=]=<-
43(”64)( + 37) ( 56)45 45
K<1 1+{-‘Z
3s 4s’
2 I 1 22 2 8t
o (1) ( 4)( . L
i 1+1 29 3s+2 - 1+1 29(;)7%2_)
3 33121(4 #)=" 3 F\14\4) &)
o () <1 1+.2766_1 7234
(P 38 3s - 3s ’

7234 2225 5009
+ a1

and by (12) and (13)
U(t 1-
LAV 3* 3° 3°

N

which proves (7).
It is of some interest to observe that (7) and our proof of (7) remain valid if
sin2vnt

Z —— for any N = 3.

vs

Vs
v=1

sin2vmt
U,(t)= Z is replaced with
v=1
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9. To verify (8) and (9) we use the fact that (3) is in <0, 1) a polynomial, the so-
called Bernoullian Polynomial B, ,,(¢). We have in particular B;(t)=13—31%+1¢,
Bs(t)=t>—41t*+5+3—1¢ The maximum of | B;(¢)| in €0, 1) is attained at £ =.211325

2 3
and gives |B,(0.211325)] =.048113. Since {:— —20.67085, we obtain Max|U,(r)|=
147 ©.1>

0.99454=1— ETL which gives (9).

The maximum of |Bs(¢)| in €0, 1) is attained at ¢ =.240335 and the corresponding
5

2
value of |Bs(f)] is .0244582. Since ~17;—=4O,8026, we obtain

496
Max |Us () = 997958 = 1 ==,

<0, 1) 3
which proves (8).
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