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Note on Poissson's Treatment of the Euler-Maclaurin Formula1)

(To Hugo Hadwiger for his 60-th birthday)

By Alexander Ostrowski (Basel)

1. In the Euler-Maclaurin Formula

dt- *n (nèl), (1)

fi p p v=l

an expression for the remainder term was first given by Poisson [6] 1827. This is

q

(2)

where B2n+1(t) is given by

7r4
(2 n)

To obtain from hère an estimate for U2n+i(t), Poisson used the obvious bound

(3)

(4)

v=l

2. It has apparently not as yet been noticed, that the inequality (4) can be re-

placedwith
|Ua>+i(0|<1 (0^lf —1,2,...).«) (5)

x) The work on this paper was partly donc under the Contract DA J A 37-67-C-0628 of the Institute
of Mathematics, University of Basel with the US Department of the Army, European Research Office.

2) This follows immediately from the relation

ÇLn + 1)!

As to this formula, it is for n > 1 équivalent with a formula deduced by Lehmer on p. 538 of his

paper, Lehmer [2] (see the formula without number, following immediately after Lehmer's formula (18)

in his paper). However, this relation is also true for n 1, as is immediately verified, using for instance
3^

.00801875 (which is obtained from Lehmer's value ofhis Mz\ since thisthe value of Max

this is <
<

.0806.
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However, the inequality (5) can be further improved. It is easy to see that we hâve

in any case

(see section 4). <0> *}
As to the upper limit of \Us(t)\9 we will prove that we hâve

|U.(OI<1-| (^ 7). (7)

On the other hand we hâve
.496

max \U5 (01 1- y5-> (8)

.147
max|I73(f)l 1 T- (9)
<o,i> 3

3. The inequality (7) will be proved for ail real s by a rather elementary method,
making no use of the results obtained in the last décades on the zéros of the Ber-
noullian Polynomials of even order. (Nôrlund [4], Lense [3], Lehmer [2], Inkeri [1],
Ostrowski [5].) As to the values (8) and (9), they are obtained using the connection
between the Bernoullian Polynomials B5(t) and B3(t) with U5(t) and U3(t).

4. We obtain at once from (3)
00

sinv7r/2_l 1 /l 1

vs
"" ï* ""

3*
+

\5S " 7
v=l

and this proves (6).
5. In order to prove (7) we introduce

sin 1 tt. t cin %TT.t

(10)
9S *\s

and put

Then we hâve
^ (H)

v 4

xs
v=5 4
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6.

Let

Then

We are now

we hâve

iJ
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going to discuss

q>(t) yK,

r(B)._ *,?
du

J

Max \cp(t)\

.7232

y

1

K~~
y
3

I sinu

Max|<jo(/)| and to prove that

sinw, y cosu.

2<r Au2
'

2S
'

3S '

sin 3 u 2 cos 2 u

(14)

(15)

(16)

(17)

As F2(l)>(f)s"*1>0 andby Descartes' rule, F2((x) has exactly one positive zéro, cro,

which is <1. On the other hand, asF2(<F)=12(T2 + 4(|)s"1(7 + 3s"1-3, we hâve for

|cr|gl and 5^7:

^(^j * ^i) -^- 15 >0,

and we see that F2(<t) cannot hâve a zéro in < — 1, 0>.

x
7. Putting (t -j^i intoF2(cr) we obtain

x3
*+ (3-i _3)x_3*-i,

-3<0.

We see that ^(x) has exactly one positive zéro, â,, which is >1. Writing jc=1+j,
f1(x)=3F(j') we obtain

16 y3

16

For positive y it follows
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andtherefore

)>f)1 + fl>0 (,2:7).

7 0
8. Wesee that f H

^. O<0<1, (s^ 7), (18)

Since (p(f) vanishes for t =0 and f 1, the maximum of cp{t) is attained at a point
where f(u) vanishes, that is to which corresponds sin w cr0. The corresponding
values of y cos u is then

9. We now hâve from (15)

TT 2 ty
4^ +

12*
~ Ï6S

1/29/3V 2

1 + ^ 1,and by (12) and (13)

irr/Ni .7234 .2225
^

.5009

which proves (7).
It is of some interest to observe that (7) and our proof of (7) remain valid if

xî (f\ Vsin2v7r/. S? ûnlvnt
us{t) J _— ls repiaced with s— for any N ^ 3.
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9. To verify(8) and (9) we use the fact that (3) is in <0, 1> a polynomial, the so-
called Bernoullian Polynomial B2n+1(t). We hâve in particular B3(t) t3—%t2jt\t,
B5{t)^t5 -it4+%t3-±t. The maximum of |2?3(f)l in <0, 1> is attained at t =.211325

and gives \B3(0.211325)| .048113. Since -^=20.67085, we obtain Max\U8(t)\
.147

3 <0-x>
0.99454= 1 which gives (9).

The maximum of |i?5(/)l *n (fi> O *s attained at t =.240335 and the corresponding

value of \B5(t)\ is .0244582. Since — 40,8026, we obtain

which proves (8).

.496
Max \U5(01 .997958 1-
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