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liber eine Klasse von Polyederfunktionalen

Peter Scherk

Ein konvejces Polyeder im fc-dimensionalen euklidischen Raume Ek ist die konvexe
Huile einer endlichen nicht leeren Punktmenge. Ein Polyeder ist die Vereinigungs-

menge von endlich vielen konvexen Polyedern gleicher Dimension in Ek. Dièse Dimension

heiBt die Dimension des Polyeders. Bezeichne

nk={A,B,...}
die Menge der Polyeder in Ek,

Ein Polyederfunktional q> ordnet jedem A eTlk eine réelle Zahl q> {A) zu. Wir nennen
cp bewegungsinvariant, wenn q> (A) <p (B), falls A und B kongruent sind. Gilt

(p(A u B) + cp(A nB) q>(A) + (p(B)

fur aile A, B in TIk mit
dimB 1 4- dim(^4 n B),

so nennen wir (p additiv; vgl. jedoch (1, S. 36). SchlieBlich nennen wir (p homogen vom
Grade m, wenn

cp(kA) km(p(A) fur aile k > 0 und aile AeIIk.

Hier entsteht À A aus A durch eine Streckung am Ursprung im Verhâltnis 1 : À.

Die Polyederfunktionale in 17k, die bewegungsinvariant, additiv und homogen vom
Grade m sind, bilden einen Vektorraum $kmi dessen Nullvektor das Funktional 0 ist,
welches jedes Polyeder auf die Zahl 0 abbildet. Bezeichne (pknh den Unterraum aller

pe^, fur die (p(A) 0, wenn dimA<h. Wir beweisen

Satz I:
0 m£{0, 1,..., k}

dim < 1 fur m e {0, k - 1, k} ; vgl. (1, S .79)

oo me{l,2,...,/c-2}; vgl. (1,S.50).

In der obersten Zeile braucht m nicht ganz zu sein,

Wegen Satz I kônnen wir die Untersuchung der Vektorrâume $%, auf die Fâlle

me{l,2 k-2} (1)
beschrânken. Aus ihm folgt

{0} <fc+1 ci <*>** c.c: <m+1 ci &mm <Pkm. (2)

Hadwiger bewies (1.66), - und wir werden einen zweiten Beweis dièses Satzes vor-
schlagen, -



192 PETER SCHERK

Satz II: ^ ^ fUrm-E.k_1 (mod2), 1 < m < fc - 2.

Wegen Satz II kann man (2) leicht verschârfen zu

wo jedes zweite Mal das Gleichheitszeichen steht. Es erhebt sich somit die Frage nach
der Struktur des Diagramms ds«+2 _ <f>m+2 /hm+2

hÏj fil i *r Irlj ffï i »3 fHj rrl r ^ /fi, «î *i X

^ </ ***$ "l ¦" ** ftwf fit i™ "F ITtf ff% ™T" «3 "*9 ¦" *" ™ fil y Wl "¦ X

Man zeigt leicht

dm (**/** ,m+1) =1 fur k> m + 1.

Wir ordnen jetzt jedem Polyederfunktional cp in Ek das Funktional

Lcp

Satz IV: S« g

(i) <*_„ ^ <;*-/. /Sr k s m + 1 (mod2)

(ii) #t.*-*/*i*^*i:*-* /«>fc^m (mod2).

Korollar V: 5e/ A gerade; 2^h^k—m-2. Dann ist

<m+ ./<m + /, + 2^C,+m + (4)

Insbesondere hat der Quotientenraum (4) unendliche Dimension.

1. ZyBnder in £*

Der Beweis von Satz I benutzt im wesentlichen Ideen, die bereits in (1) dargestellt
sind. Wir skizzieren daher nur die Schritte.

Hier und im folgenden bezeichne /* den A-dimensionalen Einheitswiirfel;
h l,2,...,k. Ùberdies sei 7° ein Punkt. Man bestâtigt leicht

Lemma 1.1 : Sei q> ein additives bewegungsinvariantes Funktional. Sei r eine natiir-
liche Zahl. Dann gilt

cp(rl")

Aus Lemma 1.1 folgt unmittelbar
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Korollar 1.2: Sei <pe<Pkm. Sei m${0, 1,..., k) oder <p(J*) O. Dann gilt

<?(/*) 0 /Srfe O, l,...,fc.
Mit Hilfe dièses Korollars und unter Benutzung der Additivitât von cp beweist man

Lemma 1.3: Unter den Voraussetzungen von Korollar 1.2 ist ç(A)=0 fiir jedes

rechtwinklige Parallelotop A.
SchlieBlich folgt aus Lemma 1.3 mittels einer Routinekonstruktion

Lemma 1.4: Unter den Voraussetzungen von Korollar 1.2 ist cp (A)= 0 fiir jedes

Parallelotop A.
Die Définition der /j-Zylinder findet sichin(l; S. 19). Bezeichne Z* die Klasse der

/i-Zylinder in Ek, also

Da jedes Dreieck sich durch ein kongruentes zu einem Parallelogramm ergânzen lâfit,
folgt aus Lemma 1.4 sofort

Lemma 1.5: Unter den Voraussetzungen von Korollar 1.2 ist
Mittels der Hadwigerschen Simplotope (1; 17) zeigt man

Lemma 1.6: Sei ce$km. Gilt

und ist h^m,so gilt <p(Z£) 0. [fiir h=l setzen wir Zko~x=IIk~1].
Bemerkung 1.7: Aus den beiden letzten Lemmas folgt, daB cp(iJk)=O, wenn

(p e $km und entweder (i) m # {0, 1,..., k) oder (ii) m e {0, k — 1, k} und ç (Ik)=0. Hieraus
und aus der Existenz von Volumen und Oberflâche ergeben sich sofort die beiden
ersten Teile von Satz I. Die Fâlle m k-1 und m k finden sich bereits in (1, S. 79).
Fiir m k setzt Hadwiger statt der Bewegungsinvarianz sogar nur die Translationsin-
varianz voraus.

Fur den Rest dieser Arbeit durfen wir voraussetzen, dafi

2. Abschlufi des Beweises von Satz I
Lemma 2.1 : dim&kmk=<x)fur m=k (mod2).
Beweis: (1, S. 50).
Wir benutzen hier und spâter die folgende Konvention: Ist AeIIk9 so durchlâuft A*

die A-dimensionalen Seiten von A.

Lemma 2.2: dim<Pknk_1 oofurmE=k+l (mod2).
Der Beweis benutzt ein Argument, das wir spâter verallgemeinern werden. Jedem
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^7fc-i ordnen wir mittels

jilftf-1) fûr
< k

ein Funktional q> in JfJk zu. OfFensichtlich ist cp bewegungsinvariant und homogen
vom Grade m. Da \j/(A)=O fûr dimA<k— 1, gilt das gleiche fur cp. Hieraus folgt
leicht die Additivitât von (p. Somit ist (pe4>knk_1. Da die Abbildung \l/-+cp einein-

deutig ist, ergibt sich hieraus unsere Behauptung.
Mit den Lemmas 2.1 und 2.2 ist Satz I bewiesen.

3. Ûber einen zweiten Beweis von Satz II
Die Ortsvektoren au...9ak seien linear unabhângig. Sei

Bt |Z A,n, | X kt < t; 0 < Xh^ 1 fûr aile /il; (3.1)

Dann ist also

k |i | i (3.2)Bx =Sk \Y,Aiai\YdÀi < 1; A^Ofûralle/i>

ein À>Simplex, und Bk ist ein Parallelotop. Man bestâtigt sofort, daB

Bf u Ya ai ~~ ^k-« ^\l /
und

Nehmen wir also das von Satz II unabhângige Lemma 4.5 vorweg, so folgt aus

Lemma 1.4

Lemma 3.1 : Sei (pe$kmk. Dann gilt

cp(Bt) + <p{Bk_t) cp(Bk) 0; t 1, 2,..., k - 1.

Man bestâtigt unschwer

Lemma 3.2: Sei l^t^k. Dann ist

t-l /k

wo die pt die nichtnegativen ganzen Zahlen durchlaufen.
Aus Lemma 3.2 folgt unmittelbar
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Korollar 3.3: Sei q>e$kmk. Dann gilt

h=0

Wir geben an ohne Beweis

Lemma 3.4: Sei k>m + 39k m+l (mod2). Dann hat das homogène lineare

Gleichungssystem
t-1

Çt + Çk-t 0; t

nur die triviale Lôsung.

(3.3)

Bemerkung: Aus Lemmas 2.1. und 3.3 folgt, daB (3.3) nichttriviale Lôsungen hat,
wenn k>m + 3, k=-m (mod2).

Sei jetzt <pe$kmk9m k-\ (mod2), k>m+\. Dann folgt aus Lemma 3.1, Korollar

3.3 und Lemma 3.4, daB <p(*S*)=O; vgl. (3.2). Da Sk ein beliebiger fc-dimensionaler

Simplex sein kann, ist cp(A) 0 fur beliebige konvexe Polyeder A der Dimension k,
somit auch fur aile Polyeder. Hiermit ist Satz II auf Lemma 3.4 zuruckgefûhrt.

Korollar 3.5: Formel (3) der Einleitung.
Beweis: Sei h ungerade, l^h^k-m--l;(pG<Pkmfm+h. Wenden wir Satz I fur h 1

und Satz II fur h>\ an, so erhalten wir

Somit ist

4. Eine Kennzeichnung der Vektorrâume <Pkmh

Offensichtlich gilt
Lemma 4.1 : Sei q> additiv und bewegungsinvariant, q> (Zk) 0. Dann ist q> {Z\Z {)=0.

Korollar 4.2 : Sei cp e #*. Fur einh^k-mgelte q> (Zl-h) 0. Dann ist q> (ZZ+h)=0.

Lemma 4.3: Sei q>e<Pkm. Fur ein h^m sei <p(Z£)=0. Dann ist q>=0.
Der Beweis benutzt doppelte Induktion nach k und h. Nach Lemma 4.1 ist

(P(Zh-ï)=0. Aus der Induktionsannahme fur k bzw. aus Bemerkung 1.7 folgt daher,
daB ç>(j7*-i)=o. Jetzt leistet Lemma 1.6 den Induktionsschritt von h-\ nach h.

Aus Korollar 4.2 und Lemma 4.3 erhalten wir

Lemma 4.4: Seih^k-m. Sei <pe#*, (f)(Zl_h)=0. Dann ist ^
Wir besprechen jetzt eine Umkehrung von Lemma 4.4. Zunâchst der Fall h= 1.
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Lemma 4.5: Sei (pe<Pkmm+l. Dann ist <p(Z^_1)=O.
Beweis: VoraussetzungsgemâB ist <p(/fc) 0 fur h 0, l,...,m. Aus Lemma 1.1

folgt, daB <p(Ih) auch fur h m+l9...9k verschwindet. Lemma 1.5 ergibt dann die

Behauptung.

Lemma 4.6: Sei q>e$kmim+h, wo h^k-m und ungerade. Dann ist cp(Zk_h)=0.
Beweis: Nach Lemma 4.5 ist dièse Behauptung richtig fur A l. Sie sei bis h —2

bewiesen. Sei h jetzt fest. Ist k m + h, so folgt die Behauptung aus Satz II. Die Induk-
tion nach k wird durch zweimalige Anwendung von Lemma 1.6 ausgefûhrt.

Wir fassen Lemmas 4.4. und 4.6 zusammen.

Satz 4.7: Sei <pe$km. Sei h^k — m und ungerade; vgl. (3). Dann gilt

KOROLLAR 4.8: #„,, m + 1

Beweis: vgl. Lemma 1.5.

5. Der Kern von L

StiO<h<k — m. Wir definierten den Homomorphismus

indem wir jedem <pe$km,m+h ^as Funktional

zuordneten. Wir bestâtigen zunâchst einen Sonderfall von Satz IV.

Lemma 5.1 : Sei k=-m+1 (mod2), k>m+1. Dann gilt

Beweis: Fur jedes ^e#£,, *-i definieren wir LT1^ mittels

Dann folgt aus dem Beweis von Lemma 2.2, daB 17x ein Monomorphismus von

®m~k-i in ^m,ft-i ist. Offensichtlich ist LUV ^-
Ist (pG$knk..1, so ist durch

-il?^"1) fiir
di

Uf di

ein Funktional /€$£,_t definiert. Nach Satz II ist x~^- Somit ist q>—L"lL(p, und

L"1 ist ein Isomorphismus von $m7*-i au^ ^m,t-i ^^ ^er Inversen L.
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Korollar 5.2: Sei k m + l (mod2), k>m+\, <pe$m,k-v Dann gilt

<p(A) i £ (p(Akrl) fur dimA k.

Lemma 5.3: Sei k>m + \. Dann gilt

(0
\<ï>

fc-m + l(mod2)
k m (mod 2).

Beweis: Sei

Dann ist insbesondere p(^I)
Ist /ï ungerade, so ist nach Satz 4.7 cp(Zkc_h) 0. Ist /î gerade, so folgt aus (3) und

Satz 4.7, daB wenigstens (p(Zk_h+1) 0. In beiden Fàllen erhalten wir mittels wieder-
holter Anwendung von Lemma 1.6, daB

o (KzJU+i) <K^U) •••= ?(zLi).
Nach Satz 4.7 ist daher (pe^J^fc-i- Unsere Behauptung ergibt sich somit fur k m+l
(mod2) aus Lemma 5.1 und fur k m (mod2) aus Satz II mit k— 1 statt k und aus (3).

6. Die Quermassintegrale

Bezeichne TI'k die Menge der konvexen Polyeder in Ek. Ferner bezeichne <P* bzw.
<Pfkh den Vektorraum der auf 17'* definierten additiven bewegungsinvarianten Funk-
tionale, die homogen vom Grade m sind, (und die fur jedes AeWk mit dim^4<A
verschwinden].

Lemma 6.1 : Ist q>re$'m [Ist ç'e<P'kh], so gibt es ein undnur ein (pe$km [ein undnur
ein <f>e$kmh], so dafi q>ln* (pr.

Der Beweis ergibt sich unmittelbar aus einer Konstruktion von Volland; vgl. (2).
Beweis von Satz III. Liegen ç und \j/ in #£,\^m, m+1> so sin<i <P (Ik) und <A (^*) yon 0

verschieden. Ferner ist

Wegen x(/fc) 0 ist x^^,m+il vg1- Korollar 4.8. Somit ist

(/:-m)-te Quermassintegral 9'* liegt in ^^. Nach Lemma 6.1 lâBt es sich auf
genau eine Weise zu einem Funktional (pkmE^km erweitern. Wegen

ist

Hiermit ist Satz III bewiesen.

DefinitionsgemâB ist <phh(Ahï) das A-dimensionale Volumen von A\.
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Sei AeII/k; dimA>h. Wir legen durch einen relativ inneren Punkt/? von A) das

(fc-/i)-flach Ek"h senkrecht zu A); also Ek~hnAeIl'k~h. Die Strahlen von/? nach den

Pimkten von (Ek~hnA)\{p} bilden einen konvexen Kegel. Wir konstruieren den in
Ek~h zu diesem polaren Kegel und schneiden letzteren mit dem Einheitsball um p.
Bezeichne Xkhi{A) das Volumen dièses {k —/*)-dimensionalen Durchschnittes. Indem
wir (p\ umnormieren, nâmlich mit (J) multiplizieren, kônnen wir dann wegen der

Steinerschen Formel (1; S. 214) setzen

<p\{A) I XkhM)'(phh{Ahd\ h 1, 2,..., k - 1. (6.1)
i

Wir beachten, daB

Àkh.lti(A)=l furdim,4 À:. (6.2)

Im folgenden bezeichne coh das Volumen des /z-dimensionalen Einheitsballes. Man
bestâtigt leicht

Lemma 6.2: Sei Aell'1"'1; 1 ^h^dimA. Dann gilt

ht âim.A=h+1, sofolgt wegen a>1=2 aus Lemma 6.2 und Formel (6.2), dafi

Àhi(A) -Àhi {A) iœk_h. (6.3)

Lemma 6.3: Sei m<h<k, sei \lf€$hmh. Fur aile AeIItk setzen wir

<p'(A)
EXkki(A)\l/(AÎ) dimA>h

fur
(6.4)

Dann ist durch (6.4) gemâfi Lemma 6.1 ein Funktional (pe$hmh definiert.
Beweis: Mit \\f ist q>f bewegungsinvariant und homogen vom Grade m. Es bleibt

die Additivitât von cp' nachzuprûfen.
Sei

{A, B, C} c nfk, AkjB=C,Ac\B D,
div&A dimB 1 + dimD.

Wir haben zu zeigen, daB

<p' (A) + q>' (B) - q>' (C) - q>' (D) 0. (6.5)

Fur dim A<h ist die Additivitât von (p1 trivial. Sei zunâchst dimA>h+\.
(i) Kommt eine Seite C\ etwa nur als Seite von A vor, so haben C\ und das ent-

sprechende A) den gleichen Koeffizienten A*f.
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(ii) Sei C^A'luB'l, dim(ChinD)<h. Dann ist wegen ^|£h_i 0

Ferner ist dann
4i(C) A*^) ^(B).

(iii) Jedes D\ ist auch ein A\ und ein B\. Tritt D\ nicht als /z-dimensionale Seite

von C auf, so definieren wir kkh t (C) 0. Dann folgt aus der Définition der kkh „ dafl stets

In allen drei Fâllen ist der Beitrag der entsprechenden A-dimensionalen Seiten zur
linken Seite von (6.5) gleich null.

Es bleibt der Fall, daB dim A h+1, also dim D h. Dann wird etwa D Ahj Bhj9

jedoch ist D nicht Seite von C. Da (i) und (ii) gultig bleiben, folgt aus (6.3), daB die
linke Seite von (6.5) gleich

ist.

7. Beweis von Satz IV

Ist 1 ^h<dimA<k, so ist nach Lemma 6.2

(A)

unabhângig von A:. Nach (6.2) ist

Lik_lti(A) i fûrdim^ /c. (7.2)

Sei jetzt m<h^k, \l/e$f!nh9 AeII'k. Ist dim A < /z, so interpretieren wir den zunâchst
sinnlosen Ausdruck ^ AX dh,L»hM)il/(AÎ)

i

als \I*(A). Dann kônnen wir Lemma 6.3 folgendermaBen umschreiben:

Lemma 7.1 : Sei m<h<k,\\fS^hmW Dann ist durch

<P'(A) S ixht(A) (A(^l?) fur aile Azïl'k
i

ein Funktional (pe<Phmh definiert. [Fur den Fait h k-1 vgl. (7.2) und (5.1)].
Wegen Lemma 5.3 folgt Satz IV unmittelbar aus

Lemma 7.2: Sei 1 ^h^k-m-l. Dann ist

L:$km^h^$km:U
ein Epimorphismus.

Wir beweisen Lemma 7.2 mittels Induktion nach h gleichzeitig mit



PETER SCHERK200

Satz7.3: Seih k—m(mod2), \^h^k—m—l. Danngibteszujedemq>e<Pkn k_h
eine eindeutig bestimmte Folge von Funktionalen

re*m,fc-/t + 2r, > r— 1, Z, I—

so dafi
(p(À) ]T iik~hfi(A) (p(Ak~~h)

(7.3)

fur aile Aell'K
Fur /t= 1 erhalten wir Lemma 7.2 aus Satz II fur k m (mod2) und aus Lemma

5.1 fur k^m+1 (mod2). Satz 7.3 mit A= 1 folgt aus Korollar 5.2 und (7.2). Unsere

Behauptungen seien bis A —1 bewiesen.

Zu Lemma 7.2: Sei

Ist h k-m+1 (mod2), so ist nach (3)

In diesem Falle ergibt sich der Induktionschritt unmittelbar aus der Induktionsan-
nahme fur Lemma 7.2.

Sei jetzt h^k — m (mod2). Dann gibt es nach Induktionsannahme fur Satz 7.3

eindeutig bestimmte Funktionale

so daB das durch

x(A) £ nk_hi(A) ^{A^"h)
(7.4)

zunâchst in 17'* definierte Funktional x in II*'1 mit \j/ ûbereinstimmt. Nach Lemma
7.1 ist xe$m,k-h- Wegen Lx ^ ist hiermit Lemma 7.2, also Satz IV fur h bewiesen.

Zu Satz 7.3: Sei q>e^kmk^h. Wâhlen wir in (7.4) \l/=Lcp9 so erhalten wir

L(cp — x) 0. (7.5)

Ist h ungerade, also k=zm+l (mod2), so folgt aus (7.5) und Satz IV (i), daB <p=X-
Sei h gerade, also kzzm (mod2). Nach Satz IV (ii) gibt es dann ein eindeutig be-

stimmtes Xh/i^^tk* so daB <p=x+Xh/2- In beiden Fâllen erhalten wir eine eindeutige

Darstellung (7.3).
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Beweis von Korollar V. Aus Satz IV folgt, daB

fur l^h^k — m — 2. Ersetzen wir in dieser Formel k der Reihe nach durch k—\9
k—2,..., m + h + 2, so erhalten wir

Da h^l und gerade ist, ist ^,+m+/+1 {°} nacn Satz H. Nach Lemma 5.1 ist

Somit ist die rechte Seite von (7.6) isomorph zu <PÎJÎ)+mh+/»-
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