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Uber eine Klasse von Polyederfunktionalen

PETER SCHERK

Ein konvexes Polyeder im k-dimensionalen euklidischen Raume E* ist die konvexe
Hiille einer endlichen nicht leeren Punktmenge. Ein Polyeder ist die Vereinigungs-
menge von endlich vielen konvexen Polyedern gleicher Dimension in E¥, Diese Dimen-
sion heiBt die Dimension des Polyeders. Bezeichne

Im*={4,B,...}

die Menge der Polyeder in E*,
Ein Polyederfunktional ¢ ordnet jedem A elIl* eine reelle Zahl ¢ (4) zu. Wir nennen
@ bewegungsinvariant, wenn ¢ (A)=q@ (B), falls 4 und B kongruent sind. Gilt

(A v B)+ ¢(A n B) = ¢(4) + ¢(B)

fiir alle 4, B in IT* mit
dimA = dimB = 1 + dim(4  B),

so nennen wir ¢ additiv; vgl. jedoch (1, S. 36). SchlieBlich nennen wir ¢ homogen vom

Grade m, wenn
@(AA)=A"@(A) firalle > 0undalle AeIT*.

Hier entsteht A4 aus A durch eine Streckung am Ursprung im Verhéltnis 1: 4.

Die Polyederfunktionale in IT*, die bewegungsinvariant, additiv und homogen vom
Grade m sind, bilden einen Vektorraum @%, dessen Nullvektor das Funktional O ist,
welches jedes Polyeder auf die Zahl 0 abbildet. Bezeichne &%, den Unterraum aller
pedy, fiir die ¢ (4)=0, wenn dim 4 <h. Wir beweisen

SATZ I:
0 mé¢{0,1,..., k}
dim®k =11 fir me{0,k—1,k}; vgl. 1,S.79)
0 me{l,2,...,k—2}; vgl.(1,S.50).

In der obersten Zeile braucht m nicht ganz zu sein.
Wegen Satz I kénnen wir die Untersuchung der Vektorriume &% auf die Fille

mefl,2,..., k — 2} 1)
beschrinken. Aus ihm folgt

{0}=¢fn,k+1c¢:‘nkc"'c¢:‘n,m+1Céfnm=¢fn' ()

Hadwiger bewies (1.66), — und wir werden einen zweiten Beweis dieses Satzes vor-
schlagen, —
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Satz II: M_{O} firm=k—1(mod2),1<m<k-2.

Wegen Satz II kann man (2) leicht verschérfen zu
@ D¢m m+1 = ¢y’it,m+2:3¢£¢n,m+3=¢:Cn,m-{»-43"'5 (3)

wo jedes zweite Mal das Gleichheitszeichen steht. Es erhebt sich somit die Frage nach
der Struktur des Diagramms P2 Fmt2 i o gmt2

mm+2 = Fmom+1
{0} = @$+n?+3 < ¢:,+m3+2 = ¢$,+m3+1 < &
¢r':+m4+4 = di:: m+3 & ¢:+m4+2 = ¢::+m4+1 < ¢$;4
{0} = ¢$,+m5+5 < <15$ m+4 = ‘p:+m5+3 ¢: m+2 = ¢:'nl+m5+1 < 45%5

Man zeigt leicht

Satz I1I: dim (@%/®L ..)=1 firk>m+1.

Wir ordnen jetzt jedem Polyederfunktional ¢ in E* das Funktional

. Lo = -
zu. Dann zeigt man @ = @|pe-1

SATZ IV: Sei 1 <h<k—m—1. Dann gilt
(i) ok . ,,_45,,,,, N fiir k=m + 1 (mod?2)
(ii) Ok R =L, firk=m  (mod2).
KOROLLAR V: Sei h gerade' 2<h<k—m-2, Dann ist

m m+h/¢m m+h+2 — @z,t:u- (4)
Insbesondere hat der Quotientenraum (4) unendliche Dimension.

1. Zylinder in E*

Der Beweis von Satz I benutzt im wesentlichen Ideen, die bereits in (1) dargestellt
sind. Wir skizzieren daher nur die Schritte.

Hier und im folgenden bezeichne I" den h-dimensionalen Einheitswiirfel;
h=1,2,..., k. Uberdies sei I° ein Punkt. Man bestitigt leicht

LEMMA 1.1: Sei ¢ ein additives bewegungsinvariantes Funktional. Sei r eine natiir-
liche Zahl. Dann gilt

o) = o)~ (1) = Do)
h 2 k=2 (7h—2\ - h h 0
+(2)(r—1) P21 F ok (= 1 (= 1) o (1)

Aus Lemma 1.1 folgt unmittelbar
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KOROLLAR 1.2: Sei pe®%. Sei m¢{0, 1,..., k} oder ¢ (I*)=0. Dann gilt
e(I"=0 firh=0,1,..,k.
Mit Hilfe dieses Korollars und unter Benutzung der Additivitdt von ¢ beweist man

LEMMA 1.3: Unter den Voraussetzungen von Korollar 1.2 ist ¢ (A)=0 fiir jedes
rechtwinklige Parallelotop A.
SchlieBlich folgt aus Lemma 1.3 mittels einer Routinekonstruktion

LEMMA 1.4: Unter den Voraussetzungen von Korollar 1.2 ist ¢(A)=0 fiir jedes
Parallelotop A.
Die Definition der 4-Zylinder findet sichin (1; S. 19). Bezeichne Z; die Klasse der
h-Zylinder in E¥, also
ZkcZt [ c.cZtcZt =11,

Da jedes Dreieck sich durch ein kongruentes zu einem Parallelogramm erginzen 1aBt,
folgt aus Lemma 1.4 sofort

LEMMA 1.5: Unter den Voraussetzungen von Korollar 1.2 ist ¢ (Zx_,)=0.
Mittels der Hadwigerschen Simplotope (1; 17) zeigt man

LEMMA 1.6: Sei pe®X. Gilt

¢(Zi=1) = ¢(Z4+1) =0
und ist h#m, so gilt ¢ (Z{)=0. [fiir h=1 setzen wir Z§~ ' =IT*"1].

BEMERKUNG 1.7: Aus den beiden letzten Lemmas folgt, daB ¢ (I1*)=0, wenn
@e® und entweder (i) m¢{0, 1,..., k} oder (ii) me {0, k—1, k} und ¢ (I*)=0. Hieraus
und aus der Existenz von Volumen und Oberfliche ergeben sich sofort die beiden
ersten Teile von Satz I. Die Fille m=k—1 und m=k finden sich bereits in (1, S. 79).

Fiirm=k setzt Hadwiger statt der Bewegungsinvarianz sogar nur die Translationsin-
varianz voraus.

Fiir den Rest dieser Arbeit diirfen wir voraussetzen, dafs

me{l,2,...,k —2}.

2. AbschluB des Beweises von Satz I

LEMMA 2.1: dim &%, = oo fiir m=k (mod?2).

Beweis: (1, S. 50).

Wir benutzen hier und spiter die folgende Konvention: Ist AeII*, so durchliuft 4"
die h-dimensionalen Seiten von A.

LEMMA 2.2: dim &%, ,_, = oo fiir m=k+1 (mod2).
Der Beweis benutzt ein Argument, das wir spiter verallgemeinern werden. Jedem
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Yyedt ! | ordnen wir mittels

3 Yvy . dimd=k
¢(A)_{¢(A) fur dimAd <k

ein Funktional ¢ in IT* zu. Offensichtlich ist ¢ bewegungsinvariant und homogen
vom Grade m. Da ¢ (4)=0 fiir dimA4 <k—1, gilt das gleiche fiir ¢. Hieraus folgt
leicht die Additivitit von ¢. Somit ist (pedif,,,k_l. Da die Abbildung y—¢ einein-
deutig ist, ergibt sich hieraus unsere Behauptung.

Mit den Lemmas 2.1 und 2.2 ist Satz I bewiesen.

3. Uber einen zweiten Beweis von Satz IT

Die Ortsvektoren a,,..., a, seien linear unabhéngig. Sei

k
B,={Zliai|21i<t; 0 < A, < 1 fiir alle h}; (3.1)
1

t=1,2,...,k
Dann ist also

k
B1=Sk={22iai‘21i<1; A,,;Ofiiralleh} (3.2)
1

ein k-Simplex, und B, ist ein Parallelotop. Man bestitigt sofort, dafl

k
Bt v <Z ai - Bk"‘t) = Bk
1
und
k
dim [B, N (Z a; — Bk_,)] <k-1.
1
Nehmen wir also das von Satz II unabhidngige Lemma 4.5 vorweg, so folgt aus
Lemma 1.4
LEMMA 3.1: Sei oe®%,. Dann gilt
@(B)+ ¢(Bi_)=0(B)=0; t=1,2,..,k—1.
Man bestétigt unschwer
LEMMA 3.2: Sei 1 <t<k. Dann ist
t—1 k
tS*=U U (Z pia; + Bt—h)s
h=0 ZIp;=h \1

wo die p; die nichtnegativen ganzen Zahlen durchlaufen.
Aus Lemma 3.2 folgt unmittelbar
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KOROLLAR 3.3: Sei pe®* ,. Dann gilt

m t—1 k+h—1
t(p(s")=h§0( " ><p(B,_,,); t=1,2,..., k.

Wir geben an ohne Beweis

LEMMA 3.4: Sei k>m+3,k=m+1 (mod2). Dann hat das homogene lineare

Gleichungssystem
t—1

3
mE = 2 (’”Z"’l) £ 1=2,3,..,k
h=0 3.3)

' k
&+ & =0; t=1,2,...,[5]

nur die triviale Losung.

BEMERKUNG: Aus Lemmas 2.1. und 3.3 folgt, daB (3.3) nichttriviale Lésungen hat,
wenn k>m+3, k=m (mod 2).

Sei jetzt pe B, , m=k—1 (mod2), k>m+ 1. Dann folgt aus Lemma 3.1, Korol-
lar 3.3 und Lemma 3.4, daB ¢ (S*)=0; vgl. (3.2). Da S* ein beliebiger k-dimensionaler
Simplex sein kann, ist ¢ (4)=0 fiir beliebige konvexe Polyeder 4 der Dimension &,
somit auch fiir alle Polyeder. Hiermit ist Satz IT auf Lemma 3.4 zuriickgefiihrt.

KOROLLAR 3.5: Formel (3) der Einleitung.

Beweis: Sei h ungerade, | <h<k—m—1; pe®, .., Wenden wir Satz1 fiirh=1=
und Satz 11 fiir h>1 an, so erhalten wir

¢|E'"+he¢'r:,-|-n’:+h = {0}

Somit ist
k
PEDy min+1-

4. Eine Kennzeichnung der Vektorriume &,

Offensichtlich gilt
LEMMA 4.1: Sei ¢ additiv und bewegungsinvariant, ¢ (Zf)=0. Dann ist ¢ (Z;~1)=0.

KOROLLAR4.2: Seipe® . Fiireinh<k—mgelte p (Z¥_,)=0. Dannist ¢ (Zn*")=0.

LeMMA 4.3: Sei pe @k, Fiir ein h<m sei ¢ (Z})=0. Dann ist ¢=0.

Der Beweis benutzt doppelte Induktion nach k und A. Nach Lemma 4.1 ist
®(Z;~1)=0. Aus der Induktionsannahme fiir kK bzw. aus Bemerkung 1.7 folgt daher,
daB @ (IT*~1)=0. Jetzt leistet Lemma 1.6 den Induktionsschritt von A—1 nach A.

Aus Korollar 4.2 und Lemma 4.3 erhalten wir

LEMMA 4.4: Sei h<k—m. Sei pe®*, ¢(Zk_,)=0. Dann ist e Pk, pmip+1-
Wir besprechen jetzt eine Umkehrung von Lemma 4.4. Zunichst der Fall h=1.
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LEMMA 4.5: Sei pe®%, ... Dann ist ¢ (Z_,)=0.
Beweis: VoraussetzungsgemiB ist ¢ (I*)=0 fir A=0, 1,..., m. Aus Lemma 1.1
folgt, daB ¢ (I") auch fiir A=m+1,..., k verschwindet. Lemma 1.5 ergibt dann die

Behauptung.

LEMMA 4.6: Sei pe®%, ..., wo h<k—m und ungerade. Dann ist ¢ (Zj_,)=0.

Beweis: Nach Lemma 4.5 ist diese Behauptung richtig fiir A=1. Sie sei bis A—2
bewiesen. Sei & jetzt fest. Ist k=m+ h, so folgt die Behauptung aus Satz II. Die Induk-
tion nach k wird durch zweimalige Anwendung von Lemma 1.6 ausgefiihrt.

Wir fassen Lemmas 4.4. und 4.6 zusammen.

SATZ 4.7: Sei pe®*. Sei h<k—m und ungerade; vgl. (3). Dann gilt
PEDp min<> ¢(Zi-p) =0,

KOROLLAR 4.8: & .., ={ped% | o (IY)=0}.
Beweis: vgl. Lemma 1.5.

5. Der Kern von L
Sei 0 <h<k—m. Wir definierten den Homomorphismus
L: ¢fn,m+h =3 qun,_nlwh )
indem wir jedem @e®}, ,,,, das Funktional
Lo = ¢lp-1€ Py men
zuordneten. Wir bestitigen zunédchst einen Sonderfall von Satz IV.
LEMMA 5.1: Sei k=m+1 (mod2), k>m+1. Dann gilt
By = Py
Beweis: Fiir jedes ye®f, ,_, definieren wir L™ 'y mittels

=1 _ ‘}Z‘/’(A:‘—l) . dimA=k;
(L ‘/’)(A)"{://(A) fr Gim4 < k. (5-1)

Dann folgt aus dem Beweis von Lemma 2.2, da L™! ein Monomorphismus von
okl in ®% . ist. Offensichtlich ist LL™ 'y =y.
Ist pe® ,_,, so ist durch

_fo(A)—1Y o(47Y) . dimA=k
X(A)"{O fir  yimd <k

ein Funktional ye®% , definiert. Nach Satz II ist y=0. Somit ist ¢=L""L¢, und
L™! ist ein Isomorphismus von &}/ ; auf & ,_, mit der Inversen L.



Uber eine Klasse von Polyederfunktionalen 197

KOROLLAR 5.2: Sei k=m+1(mod2), k>m+1, oe®%, ,_,. Dann gilt

e(A)=1> (A" fiirdim4 = k.
LemMMA 5.3: Sei k>m+ 1. Dann gilt

_Jo . k=m+1(mod?2)
kerL_{difnk fiir k=m (mod ?2).

Beweis: Sei (pG(D',;,mH,, Lo=0.

Dann ist insbesondere ¢ (Z% 1)=0.

Ist 4 ungerade, so ist nach Satz 4.7 ¢ (Zf_,)=0. Ist h gerade, so folgt aus (3) und
Satz 4.7, daB wenigstens ¢ (Z_,, ;)=0. In beiden Fillen erhalten wir mittels wieder-
holter Anwendung von Lemma 1.6, dal3

0= (P(ZZ—};H) = ¢(Z,1:—h) == ¢(an+1)-

Nach Satz 4.7 ist daher (pedi',‘,,, «—1- Unsere Behauptung ergibt sich somit fiir k=m+1
(mod2) aus Lemma 5.1 und fiir k=m (mod?2) aus Satz II mit k£ — 1 statt k und aus (3).

6. Die Quermassintegrale

Bezeichne IT’* die Menge der konvexen Polyeder in E*. Ferner bezeichne &% bzw.
®.%, den Vektorraum der auf IT’* definierten additiven bewegungsinvarianten Funk-
tionale, die homogen vom Grade m sind, [und die fiir jedes Aell’* mit dimA<h
verschwinden].

LEMMA 6.1: Ist ¢'e X [Ist ¢'e D.¥,], so gibt es ein und nur ein ¢ € D~ [ein und nur
ein 9ed,,,], so daf ¢[g=¢'.

Der Beweis ergibt sich unmittelbar aus einer Konstruktion von VOLLAND; vgl. (2).

Beweis von Satz I11. Liegen ¢ und  in ®%\®%, ... 1, so sind ¢ (I¥) und ¢ (I*) von 0

verschieden. Ferner ist
(=¥ 0 — oI yed,.
Wegen y (I*)=0 ist ye &, ,,.; vgl. Korollar 4.8. Somit ist
dlm(¢:‘nl¢fn, m-+ l) < 1 *

Das (k—m)-te Quermassintegral ¢’* liegt in ®'*. Nach Lemma 6.1 148t es sich auf
genau eine Weise zu einem Funktional ¢ e ®* erweitern. Wegen

Pk (1Y) = @k (I") #0
ohedi\d: ...

ist

Hiermit ist Satz IIT bewiesen.
DefinitionsgemiB ist ¢"(4") das h-dimensionale Volumen von 4.



198 PETER SCHERK

Sei AeIl’*; dim A> h. Wir legen durch einen relativ inneren Punkt p von 4% das
(k—h)-flach E*~" senkrecht zu A"; also E*~*n Ae II’*~*, Die Strahlen von p nach den
Punkten von (E*~* A)\{p} bilden einen konvexen Kegel. Wir konstruieren den in
E** zu diesem polaren Kegel und schneiden letzteren mit dem Einheitsball um p.
Bezeichne Af;(4) das Volumen dieses (k —h)-dimensionalen Durchschnittes. Indem
wir @} umnormieren, nimlich mit () multiplizieren, konnen wir dann wegen der
Steinerschen Formel (1; S. 214) setzen

Oh(A) =T (4 Gh(4D); h=1,2, k1. 6.)

Wir beachten, daB
Mi-1.:(A)=1 firdimA=k. (6.2)

Im folgenden bezeichne w, das Volumen des A-dimensionalen Einheitsballes. Man
bestitigt leicht

LEMMA 6.2: Sei AcIl’™*'; 1<h<dimA. Dann gilt

Wy —p

Aai(4) = A (A).

Wy —p-1
Ist dimA=h+1, so folgt wegen w,=2 aus Lemma 6.2 und Formel (6.2), daf8
—p Wp_p—q1 O
By(d) = -k DAmhol B2t (g) = b, . 6.3)
O —p—1 Wg—p-2 Wy

Lemma 6.3: Sei m<h<k, sei ye®" ,. Fiir alle AcII’* setzen wir

mL k k .
o' (4) =) o,_, ZA“(A) V() fiir dimd > (6.4)
Y (A4) dimA < h.

Dann ist durch (6.4) gemdfB Lemma 6.1 ein Funktional pe®" , definiert.
Beweis: Mit y ist ¢’ bewegungsinvariant und homogen vom Grade m. Es bleibt
die Additivitdt von ¢’ nachzupriifen.
Sei
{4,B,C}cI",AUB=C,AnB=0D,
dimA =dimB=1+dimD.

Wir haben zu zeigen, daB
¢'(4) + ¢'(B) — ¢'(C) — ¢' (D) =0. (6.5)

Fiir dim A <h ist die Additivitit von ¢’ trivial. Sei zundchst dimA4 >#A+ 1.
(i) Kommt eine Seite C* etwa nur als Seite von A vor, so haben C* und das ent-
sprechende 4" den gleichen Koeffizienten A%,
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(i) Sei C}=A"U B, dim(C"~ D)<h. Dann ist wegen ¢/|gs_1=0
¥ (C) =y (A7) + ¥ (BY).
Ferner ist dann A (C) = 4k (4) = 45 ,(B).

(iii) Jedes D% ist auch ein A" und ein B®. Tritt D" nicht als A-dimensionale Seite
von C auf, so definieren wir A} ;(C) =0. Dann folgt aus der Definition der A}, daB stets

Ani(A) + A:(B) = 4;,(C) + 4;:(D).

In allen drei Fillen ist der Beitrag der entsprechenden A-dimensionalen Seiten zur
linken Seite von (6.5) gleich null.

Es bleibt der Fall, daB dim A=#h+ 1, also dim D=h. Dann wird etwa D= 4"= B,
jedoch ist D nicht Seite von C. Da (i) und (ii) giiltig bleiben, folgt aus (6.3), daB die
linke Seite von (6.5) gleich

P Y (D) + ¥ (B) — v (CD) + (G 2¥ (D)~ ¢'(D) =3 L 0+0=0
ist.
7. Beweis von Satz IV

Ist 1<h<dimAd <k, so ist nach Lemma 6.2

1 I,
ti(A4) = ﬂﬁ.-(A)= Ang t(4) =+ (7.1)
k—h Wp-h-1
unabhéngig von k. Nach (6.2) ist
Mi-1,i(A)=1% firdimA4 =k. (7.2)

Sei jetzt m<h<k, yed!,, Aell’*. Ist dimA<h, so interpretieren wir den zunichst

sinnlosen Ausdruck
> i (A) ¥ (41)

als ¥ (4). Dann kénnen wir Lemma 6.3 folgendermaBen umschreiben:
LEMMA 7.1: Sei m<h<k, ye®" ,. Dann ist durch
o' (A)=Y m:i(A) Y (4} furalle AcIT™

ein Funktional pe®" , definiert. [Fiir den Fall h=k—1 vgl. (7.2) und (5.1)].
Wegen Lemma 5.3 folgt Satz IV unmittelbar aus

LEMMA 7.2: Sei 1 <h<k—m—1. Dann ist
L: ¢:‘n,k—h - q)’;:,_kl—h
ein Epimorphismus.
Wir beweisen Lemma 7.2 mittels Induktion nach A gleichzeitig mit
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SATZ 7.3: Sei h=k—m (mod2), | <h<k—m—1. Dann gibt es zu jedem (pe(bm k—~h
eine eindeutig bestimmte Folge von Funktionalen

h
Xre¢k l:l+h2-:2r’ r=132a'--,[“}9

2
so daf
@(4)= Z Pic—n, i(4) @ (47 ")
’ —h+2r 7.3
+ 1<}—‘_<,h/2Zﬂk—h-&’zr,i(A)'Xr(A? Py (7-3)
fiir alle AeIT’™,

Fiir h=1 erhalten wir Lemma 7.2 aus Satz II fiir k=m (mod2) und aus Lemma
5.1 fiir k=m+1 (mod?2). Satz 7.3 mit h=1 folgt aus Korollar 5.2 und (7.2). Unsere
Behauptungen seien bis #— 1 bewiesen.

Zu Lemma 7.2: Sei

‘/’E‘p k h—¢m(k 1)~(h=1)"
Ist A=k—m+1 (mod?2), so ist nach (3)

k
@, kh—‘pmk —p+1 und 4’mk h-q)mk h+1-

In diesem Falle ergibt sich der Induktionschritt unmittelbar aus der Induktionsan-
nahme fiir Lemma 7.2,

Sei jetzt hA=k—m (mod2). Dann gibt es nach Induktionsannahme fiir Satz 7.3
eindeutig bestimmte Funktionale

h—1
XrEQ:‘nTl?jhz-JZr’ r=1a 29'--3 [T]a

so daB das durch
1(4) =% te—n (A Y (47"
+ Z Zuk—h+2r,i(A).Xr(A?—h+2r)

1srs(h—-1)/2 i

(7.4)

zunichst in JT'* definierte Funktional y in IT’*~! mit y iibereinstimmt. Nach Lemma
7.1 ist xecbf,,, x—p Wegen Ly=1y ist hiermit Lemma 7.2, also Satz IV fiir A bewiesen.
Zu Satz 7.3: Sei ped” ,_,. Wihlen wir in (7.4) Y =L, so erhalten wir

L(p —x)=0. (7.5)

Ist 4 ungerade, also k=m+ 1 (mod2), so folgt aus (7.5) und Satz IV (i), daB ¢ =x.

Sei h gerade, also k=m (mod2). Nach Satz IV (ii) gibt es dann ein eindeutig be-
stimmtes x,,,zeﬂ‘,, 1 S0 daB @ =+ x;,. In beiden Fillen erhalten wir eine eindeutige
Darstellung (7.3).
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Beweis von Korollar V. Aus Satz IV folgt, daB

k k k—1 k—1
‘pm,m+h/¢m,m+h+1 =~ djm,m+h ‘pm,m+h+1

fiir 1<h<k—m-—2. Ersetzen wir in dieser Formel k der Reihe nach durch k—1,
k—2,...,m+h+2, so erhalten wir

an, m+h/¢fn, m+h+1 = Qr':,t::hl/@xfn?:hl*- 1 (76)
Da h>2 und gerade ist, ist <15$+,,f1 #+1=1{0} nach Satz II. Nach Lemma 5.1 ist

m+h+1 m+h
@ o

~/

m,m+h — ,m+h-
Somit ist die rechte Seite von (7.6) isomorph zu @} "¢, ..
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