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Einige Kongruenzsitze fiir geschlossene k-dimensionale

Flédchen in n-dimensionalen Riemannschen Riumen

von HEINZ BRUHLMANN

Einleitung

In der vorliegenden Arbeit wird versucht, dhnliche Sitze fiir k-dimensionale
Flachen in n-dimensionalen Riemannschen Rdumen zu beweisen, wie sie von H. Hopr
und K. Voss [1] fiir Abbildungen von Flachen im dreidimensionalen Euklidischen
Raum, bei denen die Verbindungsgeraden Punkt — Bildpunkt untereinander parallel
sind, K Voss [2] fiir gleiche Abbildungen von Hyperflichen in Euklidischen Riumen
und A. AeppLI [3] fiir Abbildungen von Hyperflichen in Euklidischen Rdumen, bei
denen die Verbindungsgeraden entsprechender Punkte p und Bildpunkte p durch
einen festen Punkt O gehen, gegeben wurden.

Der Hauptsatz in der Arbeit von H. HopF und K. Voss lautet folgendermas-
sen:

F und F seien orientierte geschlossene Flichen, die unter Erhaltung der Orien-
tierung so aufeinander abgebildet sind, dass erstens die Verbindungsgeraden ent-
sprechender Punkte p und j untereinander parallel sind, und dass zweitens F und F
in je zwei entsprechenden Punkten p und p die gleiche mittlere Kriimmung haben;
ferner setzen wir voraus, dass die Fldchen keine Zylinderstiicke enthalten, deren Er-
zeugende parallel zu den Geraden pp sind. Dann geht F aus F durch eine Translation
hervor. (d.h. die Entfernungen pp sind konstant.)

In der Arbeit von A. AEppLI lautet die Bedingung fiir die mittlere Kriimmung
r H=FH, wobei r bzw. 7 den Abstand des Punktes p bzw. p von O bedeutet, wihrend
die Schlussfolgerung 7/r=konst. ist.

Es liegt nun nahe, zu versuchen, einen Satz zu beweisen, der diese beiden Sétze
als Spezialfall enthdlt. Dies ist in einer Arbeit von Y. KATSURADA [4] ausgefiihrt
worden. Zur Formulierung ihres Resultates betrachten wir eine einparametrige Trans-
formationsgruppe @ (¢, p) (pe R", t=Parameter) eines Riemannschen Raumes R" und
zwei Hyperflichen F und F, die unter Erhaltung der Orientierung durch p= & (f(p), p)
aufeinander abgebildet seien, wobei f(p) eine differenzierbare Funktion auf F sei.
Es sei nun jy=®(f(po), po). Der Punkt p, liegt dann nicht nur auf der Fliche F,
sondern auch auf der Fliache Fpo, die wir erhalten, in dem wir auf jeden Punkt peF
die Transformation @ (f(p,), p) anwenden. Damit liegt 5= (f(p), p) auch auf der
Fliche F,. Die Bedingung = H bei H. HoPF und K. Voss und r H=7H bei A. AEPPLI
lautet dann in dieser Formulierung: H=H.

Mit diesen Definitionen lautet nun der Kongruenzsatz von Y. KATSURADA [4]:
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Seien F und F zwei durch eine einparametrige Transformationsgruppe @ (z, p)
wie oben aufeinander abgebildete, orientierte geschlossene Hyperflichen im R". Sc F
sei die Menge derjenigen Punkte p, in denen der Tangentialvektor an die Kurve
®(t,p) —e<t<e, &> 0,im Tangentialraum von F liegt. Falls nun erstens H=H ist,
zweitens S nirgends dicht in F liegt und drittens @ (z, p) eine homothetische Trans-
formationsgruppe (Verallgemeinerung der bei A. AEPPLI [3] betrachteten Abbildung,
die als Spezialfall die Isometrien enthélt, genaue Definition im Abschnitt 3) ist, so
ist f(p)=Kkonstant.

Zur Herleitung dieses Satzes wird von der Autorin von Anfang an ein spezielles
Koordinatensystem verwendet, was z.B. bei Fixpunkten der Transformationsgruppe
nicht moglich ist. Auch scheint mir die Darstellung, die sich an den Ricci-Kalkiil
von Schouten anlehnt, ziemlich umstindlich.

Zur Herleitung des oben formulierten Kongruenzsatzes benotigen wir in dieser
Arbeit eine Integralformel, die wir mit Hilfe einer Methode herleiten, die in jedem
Punkt der Flidche ein spezielles orthonormiertes n-Bein beniitzt, und zwar so, dass
e,, der n-te Vektor des n-Beins, senkrecht zur Fliche steht, also mit der Flachen-
normale zusammenféllt. Sodann beniitzen wir eine von H. FLANDERS [5] gegebene
Verallgemeinerung des dusseren Differentialoperators auf Tensoren, die sowohl in
den kovarianten als auch in den kontravarianten Indizes schiefsymmetrisch sind.
Die Indizes der Tensoren werden immer beziiglich des speziell gewdhlten n-Beins von
Vektoren und des dazu dualen n-Beins von 1-Formen geschrieben; dabei brauchen
wir zur Herleitung der Integralformel diese Indizes, in der Schlussformel erscheinen
aber keine Indizes mehr.

In einer Arbeit von R. E. STONG [6] wurde der Kongruenzsatz fiir geschlossene
k-dimensionale Flichen im n-dimensionalen Euklidischen Raum und Abbildungen
wie bei H. Hopr und K. Voss [1] und A. AeprL1 [3] bewiesen. Mit Hilfe des oben
erwihnten Formalismus konnte ich nun den Satz von Y. KATSURADU auf k-dimen-
sionale geschlossene Flichen im n-dimensionalen Riemannschen Raum verallgemei-
nern, wobei die Bedingung fiir die mittlere Kriimmung nun als Bedingung fiir die
mittleren Kriimmungsvektoren auftritt,

Im Abschnitt 1) werden die algebraischen, im Abschnitt 2) die analytischen
Grundlagen dargelegt. Wir stiitzen uns dabei im wesentlichen auf die Arbeit von
FLANDERS [5], doch wird der Beweis fiir die Existenz des erweiterten dusseren Dif-
ferentialoperators nach einer anderen Methode gegeben, die lokale Koordinaten be-
nutzt. Im Abschnitt 3) werden die Definitionen der konformen, homothetischen und
isometrischen Transformationen sowie der Lie-Ableitungen zusammengestellt. Ab-
schnitt 4) enthilt den Beweis des Kongruenzsatzes fiir homothetische und gewisse
konforme Abbildungen von Hyperflichen in Riemannschen Rdumen und abschlies-
send wird in Abschnitt 5) der Kongruenzsatz fiir dieselben Abbildungen von k-dimen-
sionalen Flichen im n-dimensionalen Riemannschen Raum formuliert und bewiesen.
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1. Der Raum der (p, q)-Vektoren

Wir beginnen mit dem Tensorprodukt von reellen Vektorrdaumen. Falls U und V
zwei Vektorriume sind, so nennen wir einen Vektorraum 7 zusammen mit einer
bilinearen Abbildung 6: U x V—-T ein Tensorprodukt von U und V, falls gilt:

a) Das Bild (U x V) spannt T auf.

b) Falls ¢:Ux V— W eine bilineare Abbildung in einen Vektorraum W ist, so
existiert eine lineare Abbildung A:7— W, so dass ¢ =A4-0.

Durch diese beiden Bedingungen ist das Tensorprodukt zweier Vektorrdume bis
auf Isomorphie eindeutig bestimmt. Auch zeigt man leicht, dass die Abbildung 4,
die der bilinearen Abbildung ¢ nach b) zugeordnet ist, eindeutig ist.

Zum Beweis der Existenz des Tensorproduktes betrachtet man den freien Vektor-
raum, welcher erzeugt wird von den Elementen von U x V; d.h. den Vektorraum U
aller endlichen Summen der Gestalt

Y A(u,v) weU, veV, A =reelle Zahl.
i=1

R sei der Teilraum von U, der erzeugt wird von folgenden Elementen:

A(u, v) — (Au, v)

A(u, v) — (u, Av)
(u+v',v)—(u,v) — (v, v)
(u, v+ v') — (u, v) — (u, v')

Der Faktorraum 7= U/R ist dann ein Tensorprodukt von U und V: T=U®V. Falls
ue U, veV, so bezeichnen wir die Klasse von (u, v) in U® V mit u®v und setzen
O(u,v)=u®v.

Dann folgt sofort, dass die Abbildung 6 bilinear ist und dass 6(U x ¥) den Raum

U®V aufspannt.
Sei nun ¢ eine bilineare Abbildung U x V- W. Dann definieren wir eine Abbil-

dung 1: U— W, indem wir setzen
A(u, v) = ¢ (u, v)

und diese Abbildung durch Linearitit auf ganz U ausdehnen. Da ¢ bilinear ist,
folgt 2(R)=0, also induziert 1 eine lineare Abbildung A:

AU@V->W, mit ¢=4-0.

Ausser dem Tensorprodukt zweier Vektorriume bendtigen wir im folgenden noch
das r-fache dussere Produkt eines Vektorraumes V fiir 0<r<n=dim V. Zur Defi-
nition des dusseren Produktes gehen wir wie beim Tensorprodukt aus von dem freien
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Vektorraum U, dessen Erzeugende die Elemente von V' x V' x --- x ¥ sind. R ist nun

r

der Teilraum von U, erzeugt durch folgende Elemente:

Ay s ) — (Vg5 eees AV ey 1)
(Vg5 eees U+ Uy ooy 0,) — (Vg 0y Uy ooy ) — (Vg s U5 ooty D)
(I1<i<r, veV, A=reelle Zahl)
(035 Vigs +ves 1) — siBN.TT(Vy, U, ..., V)

wobei sign. © das Vorzeichen derjenigen Permutation n von r Elementen ist, die
(1,2,...,r)in (i, i5, ..., i,) Uiberfiihrt. Dann bilden wir wiederum den Faktorraum

OR=AV.
A"V wird das r-fache dussere Produkt von ¥ genannt. Falls (v,,...,,)eVx - x V,
so bezeichnen wir die Klasse von (vy,..., v,) in ¥ mit v, A --- A v, und setzen:

9(01, oy l),.) = Ul A A v,..

Jedem Element 7 der Permutationsgruppe von r Elementen ordnen wir nun eine
. y
Abbildung T: ¥V x:-- x V- ¥V x - x V zu, indem wir setzen:

r r

T—t(l]l, ceey v,.) = (Un(l), vn(z), caey Un(r)).

Eine Abbildung ¢: ¥V x:-- x V- W nennt man symmetrisch, falls ¢-T=¢, und

e— ———
r

alternierend, falls ¢ T =sign.n- .
Analog zum Tensorprodukt haben wir nun fiir das dussere Produkt folgende
charakterisierende Eigenschaften:
1) 0(Vx---x V) spannt A" auf.
e e

2) Falls ¢: V' x --- x V- W eine alternierende, multilineare Abbildung ist, so exis-

tiert eine und nur eine lineare Abbildung

AiATVoW mit ¢ =A4-0.

Aus der Definition des dusseren Produktes A"V eines Vektorraumes V folgt nun,
dass, falls (e,, e,, ..., e,)=Basis von ¥, die Elemente

e, ANe, AN Ne IS <i;<<i,<n

eine Basis von A" ¥ bilden. A" ¥ hat also die Dimension (’:) und jedes Element aus

A"V ldsst sich immer in der Form

A A g

A‘ii i2eecip ei1 iy

darstellen. Lsip<iy<ra<i-Zn



168 HEINZ BRUHLMANN

Eine Element A€ A" V ldsst sich nun aber auch mit einem Element ueA°*V multi-
plizieren, das so entstehende Element A A u liegt in A™**V und es gilt:

Anp=(—1)"uni
Zum Beweis dieser Tatsache betrachten wir folgende Rdume und Abbildungen:

(Vxox V)x(Vx-xV)S AV

Iol fez
A"V AV
Da 6(4, u)=0 fiir AeVx--xV,ue¥Vx - x ¥V mit 0,(1)=0 oder 0,(u)=0, in-

L —
r S

duziert 6 eine bilineare Abbildung
| O:AVXAVaATV
Das Bild 0’ (1', u'), A'€ A"V, u’ € A°V nenenn wir das dussere Produkt von A’ und u':
A, u)y=41 Ay
Nun betrachten wir ausser dem urspriinglichen Vektorraum ¥ noch den dualen
Raum V* und bilden die Rdume
T? = A1V* @ APV
Falls (ey,..., e,) eine Basis von V, (0y,..., 6,) die dazu duale Basis von V* ist,

so bilden die Elemente
A AR AN e,
I<ij<ipy<<i<n 1<j;,<j,<<j,<n

eine Basis von T/; also haben die Rdume T die Dimension (n)(n) und jedes
Element aus T? hat die Form: P/ \4

Jredp g1 o4, iq
YALdP et A Ad " ®e, AN .

Zur Erweiterung des oben definierten Produktes von p und g-Vektoren auf Ele-
mente aus den Riumen T? bzw. T7 betrachten wir folgende Abbildung

fiAVEXA VXAV x AP Vs AT V¥ Q@ APV
P ;

gegeben durch
fEnCn)=CAl®@nAny.
LeATV*, neA’V, (eATV*, yeA”V.

Diese Abbildung ist bilinear in (¢, 1), also existiert eine und nur eine in { ® n lineare

Abbildung
P (ATV*QAPV) x AT V* x AF V> A V* Q@ APP Y
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mit ’ ’ ’ ’
0, C®n, L, n)Y=f(nC\n).

f ist aber auch bilinear in ({’, '), also auch ¢,, d.h. es existiert genau eine in {®m,
{'®n’ lineare Abbildung

0 (AMTV*QA'V) x (AT V*R@ A" V) > AT V* @ AP*P' Y
PN ®N) =0 ((®n, ' ') =f(l,n, {'s 1)
@, ist also nach Konstruktion eine bilineare Abbildung
@5 T) % Tq‘f’ - np:q’,"
0@ T @N)=C{Al®@nAn.
Wir beniitzen fiir das so definierte Produkt wieder das Zeichen A, d.h. wir schreiben:
P,6®N®N) =@M AL ®N)=CAT@n AN,

Wie man leicht sieht, gilt fiir dieses Produkt:

CRMAE®N)=(=1"" (' ®n) A ((®n)
CedV*, nedPV, UeAV*, n'eA’V,

Mit dieser Definition konnen wir auch schreiben:
(@n=C®DA1®n)=CAn fir {eA?V*, neA’V.

mit

wobei

2. Der erweiterte Differentialkalkiil auf Mannigfaltigkeiten

M" sei eine C* Mannigfaltigkeit der Dimension n. (Unter Differenzierbarkeit
verstehen wir in Zukunft immer Differenzierbarkeit der Klasse C*). Der Tangential-
raum T'(p) eines Punktes pe M" ist definiert als Menge der Aequivalenzklassen von
differenzierbaren Abbildungen ¢ eines offenen Intervalls (—¢, +¢)< R in die Mannig-
faltigkeit M™ mit ¢ (0)=p. Zwei solche Abbildungen ¢ (¢) bzw. ¢’ () werden dabei
als dquivalent betrachtet, falls in einer Koordinatenumgebung U(p) ¢(¢) bzw. ¢'(?)
gegeben sind durch Koordinaten x*(¢) bzw. x*'(¢) und

dx’ dx”

dt,.o dt
Die Menge der so definierten Aequivalenzklassen kann dann zu einem n-dimensiona-
len Vektorraum 7'(p) gemacht werden, den Tangentialraum von M" im Punkte p.
Die Klasse, in der die Abbildung x'(f)=4!-¢ liegt, bezeichnen wir mit (3/0x7),, die
Tangentialvektoren (/0x"),...(8/0x"), bilden dann eine Basis von T'(p) und

[0
T(p) = {Z A (——;) } A' = reelle Zahlen.
: ox'/,

1

t=0
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Diese spezielle Basis von T(p) nennen wir eine Koordinatenbasis, die dazu duale
Basis bezeichnen wir mit (dx'),, ..., (dx"),.

Ein differenzierbares Vektorfeld auf M”" besteht aus einem Tangentialvektor in
jedem Punkte p, der differenzierbar vom Punkte p abhingen soll, d.h. in lokalen

Koordinaten x!,..., x", 5
w0 =(c3),
x

sollen die v* differenzierbare Funktionen von x', ..., x" sein. Analog besteht ein (r, s)-
Vektorfeld in der Vorgabe eines (r, s)-Vektors £e T (p) in jedem Punkte p, also in
lokalen Koordinaten

) ; o o
f(p) A{: ,’;(dx )p ARAEA (dx s)p A (axh)p A A (6xj")p

wobei die A{!"{~ differenzierbare Funktionen von x',..., x" sind.

Die Funktionen A{**/~ sind in dieser Darstellung nur fiir 1<i; <i, <+ <ig<n
und 1<j; <j, <:--<j,<n definiert. Wir konnen aber durch Schiefsymmetrie A{j ,"
fiir alle i;,j, mit 1 <i,<n, 1<j;<n definieren. Dann sind die 4!/ Komponenten
eines r-fach kontravarianten, s-fach kovarianten Tensors, der sowohl in den ko-
varianten als auch in den kontravarianten Indizes total antisymmetrisch ist. Wir be-
zeichnen im folgenden die Menge der (r, s) Vektorfelder mit 7.

Die (0, s)-Vektorfelder entsprechen den s-Formen auf M”". Fiir die s-Formen
existiert nun bekanntlich ein Operator d, der jeder s-Form eine (s+ 1)-Form zuordnet
und durch folgende 4 Eigenschaften eindeutig festgelegt ist:

1) d(w,+0,)=do,+dw,. o, w,et]

2) d(o, Awy)=do; A+ (—1)f 0, Adw, €T, w1

3) fallsf=F unktlon auf M, soist df das Differential von f, in lokalen Koordinaten

also
af (p) = Z (@

4) d(df)=0

Wir nehmen nun zusitzlich noch an, dass auf M" ein linearer Zusammenhang
gegeben sei. Das ldsst sich auch so ausdriicken, dass auf M" ein Operator D gegeben
ist, der jedem Vektorfeld auf M" ein (1, 1)-Vektorfeld zuordnet, wobei gilt:

1) D(v+w)=Dv+Dw. v, werg ‘

2) D(fv)=dfAv+f-Dv. wobei df=Differential von f.
Der Operator D entspricht der kovarianten Ableitung von Vektorfeldern, in lokalen
Koordinaten haben wir: 5"

v—v———
ox'

Dv = dv' a+ ip
= U/\‘—'— U it
v= ox' ox'
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Dabei ist dv'=(0v*/0x’) dx’, ausserdem setzen wir

0
=Fjidx1/\"—“

D 0
ox*

ox'
und erhalten:
ov* . .0
Dv=|—,+TI%0 )dx) A —.
<6x’ ! ) ox*
Nach FLANDERS [5] kénnen nun die Operatoren d und D zu einem einzigen Opera-
tor zusammengefasst werden; er bewies folgenden

SATZ: Auf einer n-dim. Mannigfaltigkeit mit linearem Zusammenhang D existiert
ein und nur ein Operator, den wir wieder mit d bezeichnen, mit folgenden Eigenschaften:

1) d({+n)=dl+dn {,ner;

2) d(am)=dian+(=1FLadn  Let) net.

3) d stimmt mit dem gegebenen linearen Zusammenhang D auf t und mit dem
dusseren Differentialoperator d auf t}, iiberein.

Beweis: Es sei U eine Koordinatenumgebung von M, Koordinaten x’,..., x".
Dann gilt fiir { et}

o : 0
= Jdredr gyt A .. is
C=Mlmlndx™ A A dx™ A w7 A A >
oder
. 0 0 .
(=" A —— A A —, tirer?
oxIt axjr

Falls nun ein Operator d mit den obigen Eigenschaften existiert, muss gelten

A 0 0 r . 0 0
— 1ee-Jr . — S j]... r e e
d{ = dw’t/ A A A_axj’+( 1) k=§1a) J pw ADaxjk/\ AT

Daraus siecht man sofort, dass der Operator d in U eindeutig ist und dass d{et,., ,
in U. Damit haben wir aber auch die globale Existenz bewiesen, da aus der Eindeutig-
keit in U folgt:

(dC | U)UnV = (dC { V)UnV =dl|UnV,

wobei d{/U die Restriktion von d{ auf U bedeutet. Wir haben nun nur noch die
Eigenschaft 2) zu verifizieren. Sei also

Cer;Q ﬂG‘C;: d.h.

0
J1eeodr
C = R ves A .
ax.ll axlr
0 0
~kq.. Ky
n=aw — A A -
ax* ox*r
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A=t Agh — A A 6'/\_(2_/\ 0
ox't ox’r axh ax""
0 0 0 0
d( d (97 A @F*) A A x T &
(C Y]) (w ) ax_n axlr axkl axk,.
+ (= 1 @it A @t
0 o 0 0 0 0
e g A < = A —= A T
ax ax“ ax.lr oxk oxr
+ z:.l 1)s+s’ wfl---.lr A d-')h N~
0 0 0 B 0 P,
A s K ewo i eomman b ceems M wan B [ K onns K
axfl ox’r 6xk1 axkz axkr'
Nun ist =1
d(a)jl-..,]r A d’)kl kr) dwjllr A Cbkl...kr’ + (__ l)s wjl...j,- A da-jki.,.kr,.
ausserdem gilt
~K1. Kyt 6 D a 3
(4] v A — A" A — A A .
ax‘“ ax'" ax-"‘
0 0
== _13' A /\D""—/\' /\*‘“”/\(Z)klukr
( ) axll axn ax"
da
d 0 0
T A AD— A A €T

Daraus folgt:
4 0 0 d
d( An)= do’ I — Ao A — A <a")""“""_~— T )

axt ox’r dxkt ox* )
r
- 0 0 0
+ — 1) @/t —_— A A D — A A —-
( ) axll ax_“ axlr
=1
0 0
"'kl.-.kr'
Alw —_—— A A
( ox*t ox*r

.0 0 s 0
+(_ l)s (a)jl.--.lra,__x_.f1 A A 5__];) A dwk I é?; A A

X
0 0
+( 1)( jl Jr x‘A”.Aa_ﬁ>

. 0 0 0
A (__ l)s Cbkl...kr' 5;171 A A D__; Avoe A ——

=1

=d{An+ (=1 Adn.
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Im folgenden werden wir ein spezielles (1, 1) Vektorfeld immer wieder brauchen,
es ist dies der sogenannte Verschiebungsvektor dP. Er ist folgendermassen definiert

0
dP = &} dx' A —
ox’
Diese Definition ist unabhingig von der speziellen Basis im Tangentialraum, d.h.
es gilt auch
dP = 6‘: O'i A ej

wobei die ¢; (i=1, ..., n) irgend eine Basis des Tangentialraumes und die ¢ (i=1,..., n)
die dazu duale Basis bilden. Falls nun die Mannigfaltigkeit M" affin zusammen-
hingend ist, also die I'%; in der Darstellung von D in Koordinaten symmetrisch in
j und i sind, so gilt
d(dP)=0.
Beweis

.0 S 0
—_ J i _ i
d(dP)»-d(cSi dx A——axj)———éf dx /\Dé;»-;., also

. 0 : 0
d(dP)=,—5{dx'/\F{‘jdx'A5;7‘=—Fﬁdx’/\dx'/\b—g,

woraus man sofort sieht:
d(dP) = 0<>I}; symmetrisch in j und I.

Die Wichtigkeit des dusseren Differentialoperators d kommt im wesentlichen im
Satz von STOKES zum Ausdruck. Um den Satz von Stokes im folgenden anwenden zu
konnen, miissen wirh ihn etwas anders als iiblich formulieren. Diese Formulierung
hat nur in Mannigfaltigkeiten mit Riemannscher Metrik einen Sinn. Wir werden also
im folgenden ausschliesslich Riemannsche Mannigfaltigkeiten betrachten. Unter D
verstehen wir von nun an immer den eindeutig bestimmten, mit der Riemannschen
Metrik vertriglichen affinen Zusammenhang.

Vorerst fithren wir im Tangentialraum eines jeden Punktes durch das Schmidtsche

Orthogonalisierungsverfahren eine orthonormale Basis ein, wir bilden also, indem
wir v; fiir /0x® setzen,

v, 0
el=m ||01||=+\/(a i _) +\/g11

b
b, =v,—(v3,e)e; und e, = 2.
A
und so weiter, b, ergibt sich, falls wir e, ..., e,_, konstruiert haben, als

by

=y U, €¢)e; und e =—.
by k™ Z(k i) k “bk"
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Da bei diesem Verfahren nur algebraische Operationen ausgefiihrt werden, konnen

0
wir die Vektorfelder Fo U in einer Koordinatenumgebung U in allen Punkten
x
gleichzeitig orthogonalisieren und erhalten so » in U orthonormierte Vektorfelder
€1s.ees €pe

Fiir eine Riemannsche Mannigfaltigkeit gilt nun, falls e, ..., e, n orthonormierte
Vektorfelder in einer Umgebung U, ¢, ..., 6" die dazu dualen 1-Formen sind, d der
durch die dussere Ableitung und den affinen Zusammenhang D bestimmte erweiterte
Differentialoperator ist,

dle; Arne)=0

und
6! A Ao"=dV dV = Volumelement
Beweis
a) Es gilt
de, = wfe, = 1-Formen
und

d(ei, el) = (dei, ej) + (ei, de]) = 0,
da (e, e;)=0, ;. Daraus erhilt man
O = ((D::Cek, ej) -+ (e,-, (D?ek) = w{ + 0)3,

also w}=schiefsymmetrisch. Weiterhin ist
n
dles A-Ane)=) e A-Ade A Ae,
i=1
n
=Y eg A Ae_ AW A e A Ae,.

Da aber ein dusseres Produkt O ist, falls zwei gleiche Faktoren auftreten, tritt nur
der Fall k=i auf, und wir erhalten

dlenne)=Q o)e Ane=0,
‘ i

da o} schiefsymmetrisch.
b) o'=ajdx’ (dx',dx))=g' (d',07)=6")
Daraus folgt
o' A A 6" =a} dx" A aj, dx* A A @ dx
=sign(jy, ..., jn) aj, a2, ... a}, dx' A+ A dx
= det(a}) dx* A+ A dx".

Ausserdem gilt

det (31) = 1 = (det(af))? det (g) = (det (2’ —

det(g; j)
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also
g = det(g;;) = (det(a}))’
woraus man
o' A A a"=+\/g dx' A A dx"=dV
erhilt.

Nun sei M" eine orientierbare, differenzierbare Mannigfaltigkeit mit Riemannscher
Metrik ; wir konnen also auf M" in der Umgebung eines jeden Punktes » orthonor-
mierte Vektorfelder e, ..., e, so auswihlen, dass, falls U eine Umgebung mit Vektor-
feldern e,,..., e,, ¥ eine Umgebung mit Vektorfeldern e},..., ¢, ist und Un¥V #0, in
UnV gilt

’ '

eq A AE, =€ A A e,
Ein Element {e7} ldsst sich dann folgendermassen schreiben
{=wAne A-Ne,,

wobei w eine eindeutig bestimmte k-Form ist. Durch diese Schreibweise wird jedem
(n, k)-Vektorfeld { eine k-Form w=on({) zugeordnet. Ausserdem gilt

di=done Are,+(—1D)orndle, Ane)=done A Ae,,

woraus folgt

on(d¢) = d(on({)),

wobei d links der erweiterte Differentialoperator, angewendet auf (n, k)-Vektorfelder,
und rechts der dussere Differentialoperator, angewendet auf k-Formen, ist.
Falls nun F**?! eine orientierte (k+ 1) dimensionale Mannigfaltigkeit in M" ist,

so gilt nach dem Satz von Stokes
(.

w=J dw
oder OFk+1 Flk+1
"
[ on@= [ onta.
OFk+1 Fk+1

3. Einparametrige Transformationsgruppen

Wir erinnern zuerst an die Definition einer einparametrigen Transformations-
gruppe:
Eine Familie @, von Diffeomorphismen M"—>M" wird eine einparametrige Gruppe
von. differenzierbaren Transformationen von M" genannt, falls die Abbildung
D:Rx M™>M", definiert durch

@(t,p)=¢,(p) peM, teR, R =reelle Zahlen.
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folgende drei Eigenschaften erfiillt:

1) & ist differenzierbar.

2) &(s, ®(t,p))=D(s+1¢,p) dh. @,,,=¢,° ¢, fiir alle ¢ und s.

3) (0, p)=p, d.h. ¢,=Identitit.

¢,(p) —c<t<+e, p fest, ¢>0, definiert eine Kurve auf M™. v sei der Tangential-
vektor an diese Kurve im Punkte p. In lokalen Koordinaten gilt dann, falls in U(p)
die Kurve ¢,(p) gegeben ist durch die Koordinaten x*(¢):

x*‘(z)-xf(O)(a) X _ (ai)

ox'), ot

Eine differenzierbare Abbildung ®: M— M induziert eine Abbildung ®.: T,— Ty, »
der entsprechenden Tangentialriume, und zwar wird, falls ¢:(—¢, +&)->M den
Tangentialvektor v(p) reprisentiert, &, (v) durch die Abbildung ®°¢:(—¢, +¢)—M
reprasentiert.

Im folgenden werden wir noch die Lie-Ableitung von Vektorfeldern brauchen.
& (¢, p) sei eine einparametrige Transformationsgruppe, w ein in einer Umgebung
des Punktes p definiertes Vektorfeld, v der Tangentialvektor an die Kurve ¢,(p).
Dann definieren wir

v, = lim
t—0 t

(gv (W)),, = lim ((0:' (W))p — Wy = lim ((P-—t)* Woep) — Wp
t—0 t t~0
und nennen diese Grosse die Lie-Ableitung von w beziiglich v. Man zeigt leicht, dass
&£, (w) wieder ein Vektorfeld ist. Durch Ausrechnen (siehe [7], Seite 93) erhilt man fiir

0 L0
b=t w=w
Z (w)=(aw.jvi—(a—~1)1wi)i
v ox' ox' ) ox’

Zum Abschluss dieses Abschnittes geben wir noch die Definitionen der konformen,
homothetischen und isometrischen Abbildungen von Riemannschen Mannigfaltig-
keiten an.

Eine differenzierbare Abbildung &: M — M wird konform genannt, falls eine dif-
ferenzierbare Funktion ¢ (p)>0 auf M existiert, derart, dass fiir alle Vektorfelder v,
v et Mgl (842, 24 W)oip = 9(7) (0 W)y-

Falls ¢ in der obigen Definition konstant ist, so wird @ eine Homothetie genannt,
falls ¢ (p)=1, so ist @ eine Isometrie.

Eine einparametrige Transformationsgruppe & (#, p) nennen wir konform bzw.
homothetisch bzw. isometrisch, falls jede Abbildung ¢,(p)=® (¢, p), ¢ fest, konform
bzw. homothetisch bzw. isometrisch ist.
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4. Der Kongruenzsatz fiir Hyperfliichen

Fiir Flachen im dreidimensionalen euklidischen Raum gelten folgende Formeln
(siehe [1])
di x dX=2ndA d%¥xdn=-2HndA.

Diese Formeln wollen wir nun verallgemeinern. F"~! bedeute im folgenden eine
Hyperfliche im Riemannschen Raum R", lokal gegeben durch die Darstellung
x'=x'(u"), wobei die x’ (i=1, ..., n) Koordinaten im R", die u* (x=1,..., n—1) Koor-
dinaten auf der Hyperfliche sind. Dabei setzen wir voraus, dass die Matrix (0x*/du®)
in jedem Punkt den Rang n—1 habe, d.h. dass die Fliche wirklich die Dimension
n—1 habe. In einer Umgebung eines jeden Punktes von F"~! wihlen wir nun ein
orthonormiertes #-Bein e, ..., e, so, dass e, die Normale n der Fliche ist. Fiir das
dazu duale n-Bein ¢’,..., 6" gilt dann ¢"=0 auf F*~1. Als Verallgemeinerung von
d%=X,; du’ nehmen wir dP=35; dx’ A (0/0x"), auf F"~! ist dann dP=0"Ace,.
Auf F*~! ist dann

dPA---AdP=06" Ae, A"AOC" ' ANe, =0

orttr————— ———
n—1

An-1

wobei 1 <a; <n—1. Da alle a; voneinander verschieden sein miissen, muss

a1

o

an —

A A O n—1

t=sign (g, .y %y_1) G At A G
und
€y N A€y =8IgN(0Ag, ., 0y q) €y At Ay
sein. Damit wird
dPA-AdP=(n—1)!dAAe A NAey ;.
e e

n—1

Das ist die Verallgemeinerung der ersten der beiden am Anfang dieses Abschnittes
angefiihrten Formeln, statt n steht darin der im Sinne der dusseren Algebra zur
Normalen e, duale (n—1)-Vektor e; A--- Ae,_;.

Zur Verallgemeinerung der zweiten Formel beniitzen wir folgende Relation

dn = de, = — bjc® A e,

wobei bg den gemischten Tensor der 2. Fundamentalform beziiglich der Basis ey, ..., e,
darstellt.

Dann wird
= — b2 gP a *2 %n -2

dn AdP A+ A dP = bgo" Ae, Ad* Ae, AOCTF A, A AT A g,
(n—2)

=—bja’ NG A AGTTIAC A, AN e

Un-2"°

Hier sind «,, ..., a,_ , (n—2) voneinander verschiedene Zahlen zwischen 1 und (n—1),
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ebenso gilt 1<a, f<(n—1) und a#a,, f#o; fir 1 <k<(n—2), woraus folgt, dass
o= f§ sein muss, also

— & & %1 I On -2 e
dn AdP A AdP ==Y bi6" NG A" AC™TIANEAE A A e,
(n=2) N
= 2 1
= — ) bi(sign(a, ot..., #,-2))’ 6" AcA @
a

"lAe AAe,_,

=—(m=2)1Y bic' A-nd" " Ae A Ae,
a

dh. dnAdPA-~AdP=—(n—1)!HdAANe A Ae,_,,
wobei wir

He Ve 1 spuree
== [ u
o1/, = g Spur (o)

gesetzt haben; damit haben wir auch eine Verallgemeinerung fiir die zweite der obigen

Formeln gefunden.

Nun gehen wir iiber zum Kongruenzsatz. Der gegebenen Hyperfliche F"~! sei
durch eine einparametrige Transformationsgruppe ®(z, p) eine zweite Hyperfliche
F"~1! so zugeordnet, dass

Fr='={®(f(p), p) | peF""'},

wobei f(p) eine Funktion auf F*~! ist. Von der Transformationsgruppe @ (¢, p) setzen
wir bis auf weiteres nur voraus, dass jede Abbildung ¢, reguldr sei, d.h. dass @
fiir jeden Punkt p eine Abbildung des Tangentialraumes 7'(p) auf den Tangentialraum
T(¢,(p)) sei; Fixpunkte von @(z,p) sind also nicht ausgeschlossen. Ausser der
Fliche F"~! betrachten wir noch die in der Einleitung definierten, jedem peF" ™1
zugeordneten Flichen 7~ *,

Fyt={a(f(p). p) | p'eF"'}.

7i bezeichne die Normale von F"~! im Punkte j, /i die Normale von F}~! im Punkte
B, p=2(f(p), p). Mit w bezeichnen wir den Vektor e/® v, wobei v der Tangential-
vektor an die Kurve & (¢, p), —e<t< +¢, ist. Dann betrachten wir, um zu einer
Integralformel zu gelangen, den Ausdruck

(A—A)AwWAdP A---AdP.
n~2)

Die Anwendung des Operators 4 auf diesen Ausdruck ergibt

d((A—R)AwWAdPA---AdP=diAwAdPA--AdP
™=2) e
—diAwWAdPA--AdP+(i—F)AdwAdP A---AdP.

Nemmrme—— —————
(n—-2) (n—2)
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Hierin ist, falls wir e;; statt &;; und o’ statt G/ schreiben,

diAwWAdP A AdP=(n—1)'HdAAwWAEe AAe,_;
(n—2)

=(n—D) (=1 "HWw,nA)dAdAre A Ae,.

Um auch diAwAdP A --- AdP zu berechnen, setzen wir dii= —b.' 6* A ¢;; und er-
(n~2)

halten

diAnwAdP A ANdP=—Db}c"Ae, AW e;nC" Aey A Ad™ e,
=—bPWe* AT A AT A egNhe, Ney A Ae,
—bBIWOT AT A ARG A A AN g, ,,

also

diAnwAdP A--AdP
= (= 1 = D A (E ) — (W dA g A ey

Nun suchen wir den Zusammenhang zwischen Z b’% und H. Fiir irgend ein Vek-
torfeld y im R" gilt
dy = yio A e,

fir die Differentiation lings F"~1! also
dy = y,0" A e,

da ¢”"=0 auf F"~!. Sei nun j ein Punkt auf F”~!, der nicht in der Ausnahmemenge S
liegt, d.h. in p soll der Stromungsvektor v nicht im Tangentialraum der Fliche F"~!
liegen. Dann haben wir in einer Umgebung von j ein Vektorfeld #, gegeben als
Normalenfeld an die Flichenschar

o (F*™") f(p)—e<t<f(p)+e, &>0.

fi ist dann einerseits =&, und andererseits =7i'e;, womit wir auf F"~! erhalten:

dii = — b 6* A e;;
und auf F% 1
dii = — b6
Andererseits gilt aber im R”
dii=—bje' A e=—b,6'n¢,

woraus (Z b= (E b!) folgt, wegen der Invarianz der Spur. Ausserdem ist )=

da (df, n) 0; daraus erhilt man

(n—1) A= Zb“ Y B =Y b =Y b+ by
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In den Punkten je S ist nun 5. noch nicht bestimmt, doch kénnen wir diese Grosse
dort durch Stetigkeit definieren, da S nirgends dicht in F"~1 sein soll. Damit ergibt
sich
diAnwAdPA-AdP=(=1)""(n—-1)! HWw,A)dA re, A Ae,
— (=1 (n=2)1 (byW)dA A e A A e,
Zur Berechnung von
(A—A)yAdwAdP A---AdP

brauchen wir noch eine Zwischenbetrachtung. In Koordinaten gilt lokal
1) auf =1 yi(u®)=0'(f(u®), x’ (u))
2) auf F271: yi(u)=@' (f(@), x7 (u7))
u*=Koordinaten auf F* !,
x! (u*)=Einbettung von F*~! in R".
#*=Koordinaten von p.
Daraus folgt fiir die Basisvektoren 8/du’, ..., 8/6u" ! auf F"~1

o 8| (oo axf+a<p" of
ourly oy, lox! aut ot out

und fiir die Vektoren 8/du', ..., 6/ou"~* auf Fy~!

o o (oo ox!
ou’|5 oy 5 |0x’ ou®
woraus
aF off o
o, ~ o +a“f‘
folgt. “leo s “
Also ist 5 IF 5 i
dP= —| Adu*=_—| Adu+vAdf=dP+vAdf
ou’|; ou’|s

woraus folgt
dPA--ANdP=dPA--AdP—(n—1)vAdf AdP A--- A dP.

n—1 n—1 n—-2

Damit haben wir

{dPA--AdP —dP-A--- A dP)
(n—1) (n—1) _
=(m—2)!{dAAe; A Aeyy—dAANE AN AE_},
nach der ersten Formel, die wir im Abschnitt 4) hergeleitet haben.
Nun ist dw=e’ dv+e’ df A v, also

(A—A)AdwAdP A---A dP
=ef(Ai—RA)AdoAdPA--ANdP+e(i—R)Adf AvAdPA--ndP.

1
vAdf AdPA--AdP =
S (R —~1)
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Der zweite Term auf der rechten Seite ergibt nun nach unserer Zwischenbetrachtung

ef(A—A)ndf AvoAdPA--AdP
=e@—-A)y(n—2) {dAdrne A nNeyy—dANE A--NE,_,}.
=el(n-2)1(=1y"'(1 = (A A)(dA+dA) A e A Ae,.

Fiir den ersten Term auf der rechten Seite erhalten wir mit dv=v.c* A ¢,
ANAVANAP A AdP=(—1)"""(n=2)1Q ¥)dAd Ae, A+ A e,
ANndoAdP A AdP=(=1)"""(n=2)'Q o)) (A, A)dA A e, A

+(=1D)"2(n =2 "A"dAAe, A Ae,,
also

(Ai—A)AdwAdP A---AdP

=(—1""n=-2)1e(1 = (A A)(dA+dA) e, A A e,
+ (=) m=-2e QA =-GEA)Q B)dAAe, A A e,
+ (=)' n=-2) e dANe, A Ae,.

Zusammenfassend erhalten wir damit

d((i—A)AwAdPA---ANdP
=(-1)"'"n—-1)W(H-H(Ww,A)ddAe, A Ne,
+ (=1 mn=-2)e' (1 — (A A)(dA+dA) e, A A e,
+ (=)' (n=-2)e{(1 - (A, n))Zv: + A — bV} dA e Ane

n

Den Ausdruck D= (1— (@, #i)) z v+ v "+ b"v’ wollen wir jetzt noch etwas um-
formen. Zunichst ist

(T o) (1= ) = (o) (1 = G 1) = o + 27
und

(Z;: v}) = divo.

Daraus ergibt sich fiir D:

D = (1 — (A, A))dive + v}# + b}"v’ — v}
Andererseits ist
L, fi=— (b} + vi#) e

wobei £, die in Abschnitt 3) erwihnte Lie-Ableitung lings v bedeutet; also ist
v} + b v = — (L, #, ).
Nun definieren wir fiir ein Vektorfeld w=w'e; und irgend einen Vektor y=y’e,:

d,w=wye, S
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wobei w J' der gemischte Tensor in dw= w}a" Ae; ist. Falls w und y Vektorfelder sind,
gilt
dw—-d,y=Lw=—2L,y.
Daraus folgt
v: = (d,—,l}, ﬁ) = (dvﬁ’ ﬁ) - (“?vﬁ’ ﬁ) =- ("?vﬁ, ﬁ)s

da (d, 7, 7)=0; wir erhalten damit fiir den Ausdruck D:
D =(1- (A, A)dive + (&, (7 — A), 7).
Zusammenfassend erhalten wir daraus mit dem Satz von Stokes:
on((i—A)AwAdPA---AdP)
oFn-1

=(= 1" (n-1)! f (H- H)(w,n)d4d
Fn-1

+(— 1)""1(n——2)!{f ef(l——(ﬁ,ﬁ))(dA-+d/T)
Fn—l
+ f ef((l—~(ﬁ,ﬁ))divv+(,Z’,,(ﬁ—ﬁ),ﬁ))dl}.

Frn-1
Falls nun F"~! geschlossen und auf F"~! H=H ist, so ist die linke Seite sowie der

erste Term auf der rechten Seite der obigen Gleichung=0, womit wir den folgenden
Satz erhalten:

SATZ: Falls F*~1 geschlossen ist und auf F*~* gilt H=H und

D=(1— (A, A)dive + (&, (@ — 7),n) =0,
50 ist
1—-(a,#A)=0, also A=A#.

Falls auf F"~! aber iiberall (1 —(#, #)) divv+ (&, (A—#A), 7)< 0 ist, so betrachten
wir statt der Transformationsgruppe @ (¢, p) die Transformationsgruppe @’ (7, p)
=@ (—t, p); wir haben dann

F*' = (& (- f(p), P) pe F""1}.

Im ersten Integral auf der rechten Seite der obigen Integralformel, das nicht ver-
schwindet, falls #=H, steht dann e/ =e ™7 statt e/, sonst dndert sich nichts, wihrend
im andern Integral zudem noch v durch v'= — v ersetzt werden muss. Nun ist divv’
= —divv und (&, (Ai—A), i)= — (&L, (Ai—A), Ai); wir erhalten also das Resultat i=7#
auch fiir diesen Fall.
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Aus ri=7i folgt aber, da e; A - Ae,=& A A€,

ey A ANe,_1=E AANE_y

und
clAnd" =6 A AT
also
AP A---ANdP=dP A---A dP
(n—1) (n—1)
Nun ist
dP A ANdP=dPA--AdP—(n—1)vAdf AdP A--AdP,
CREY) =1 ==
woraus

vAdfAdPA--AdP=0
folgt. Ausgerechnet ergibt das

D b — ;.8 a ay On -2 .
VAAfANAP A ANdP=1"f,6°" NG A-"AG" P Aegne AN e

an -2

+ 0" f, 6" A" A ANGT"TEANE, AN Ane, =0,

somit

Vfo0* NG A ATTEANE A A A e,
=(—1)"'"n=2)v"f,dAdne, ne, A AEAAE_;=0
also
v"f,=0

fiir alle «. Falls wir einen Punkt p¢S betrachten, so ist v"#0, also f,=0, woraus
df|ouf =0, also f=konstant folgt. Also gilt f=konstant auf F*~!— 3§, somit f=kon-
stant auf ganz F"~! wegen der Stetigkeit von £, da S nirgends dicht auf F"~! voraus-
gesetzt wurde.

Zum Abschluss dieses Abschnittes zeigen wir noch, dass fiir gewisse konforme
Abbildungen, die als Spezialfall die homothetischen sowie die isometrischen Abbil-
dungen umfassen, gilt:

D=(1-(@,#A)divo+ (&,(A—7),7) =0 (bzw. <0)

Es ist
divv = Z (de, v, ei) == Z (gv € ei)
und ¢ :
(Z,¢e), = lim (@-)x (ei)i:' - (ei)ﬁ
-0 t
wobei

p= (Pt(ﬁ)'

Weiterhin gilt fiir konforme Transformationen nach Abschnitt 3)

Pux (e)p = + /0 (1, B) (e)y = ¥ (1, D) (&)
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wobei wir (2, p)= +\/ @ (2, p) gesetzt haben. Also ist

(@-dx (e)y =¥ (—1,0') (e)5,
und aus @;0 @, =09, , folgt

V(s 0)v(6p) =¥ (s+6p) I =o¢(p)

also
b=t p) =
M)
somit
.1 1 1 |// (0, p)
Z,e); =1 ) =—
n=tm (555 5w ) P e p
Durch genaue gleiche Uberlegungen erhilt man auch
~ v’ (0, §)
('gvn)i) - F(O’ ) (n )P
Damit ergibt sich fiir konforme Transformationen
V(0.0 s o 5 oy ¥ (0. p)
D = 1- ——t
"ie.p ! T EM UG e

¥’ (0, )
(0, )
Es ist also D>0 (bzw. D<0), genau dann, wenn y'(0, 5)=>0 (bzw. <0). Ist nun
& (¢, p) homothetisch, so ist ¥ unabhingig von p, also ist y'(0, p) auf F*~! eine
Konstante; ist ®(p, t) isometrisch, so ist ¥ (¢, p)=1, also D=0. Damit haben wir
folgenden Kongruenzsatz bewiesen:

F* 1 und F"~! seien zwei geschlossene, orientierte Hyperflichen in einem Rie-
mannschen Raum R"; dabei sei F"~* auf F*~' mittels einer einparametrigen konformen
Transformationsgruppe ®(t, p) unter Erhaltung der Orientierung so abgebildet, dass

' ={o(f(p), p) | peF"""}

wobei f(p) eine gegebene differenzierbare Funktion auf F*~! ist. Falls dann H=H ist
und die Menge der Punkte pe F"~', in denen der Tangentialvektor v an die Stromlinien
der Transformationsgruppe im Tangentialraum der Hyperfiiche F"~! liegt, nirgends
dicht auf F"~! ist, sowie Y'(0,5)=0 (bzw. <0) iiberall auf F"~', so ist f(p) eine
Konstante. Dabei ist  (, p) -—:\/ @ (t, p) und ¢ (1, p) der in der Definition der konformen
Transformationen auftretende Faktor (siehe Abschnitt 3).

=(n—1)(1 — (4, 7))
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5. Der Kongruenzsatz fiir k-dimensionale Fléichen im R"

In diesem Abschnitt bezeichne F* eine orientierbare k-dimensionale Fliche in
einem orientierbaren Riemannschen Raum R”. Dabei sei nun, falls

¥=x'w) 1<i<n, 1<a<k

die lokale Darstellung der Flidche ist, die Matrix

ox'
ou*

in jedem Punkt vom Rang k. Weiterhin widhlen wir wiederum in der Umgebung

jedes Punktes peF* n orthonormierte Vektorfelder ey,..., e, so, dass ej,..., e, im

Tangentialraum von F* und e,,,,..., e, senkrecht zu F* sind, damit haben wir

o*l=...=¢g"=0 auf F".
Aus k

dP =Y d¢*Ae,
a=1

folgt
AP A---ANdP=k!dA Ne A A g

k

wobei die Berechnung genau gleich wie bei Hyperflichen verlduft. Um auch eine
Formel fiir die mittlere Kriimmung zu bekommen, setzen wir zuniichst auf F*

— ) P
de; = wigo” A e
womit wir fiir die e, bekommen

B B

de,=wjz0" Ae;j=wlz0" Ae, + bly0° Ae,.

Dabei haben wir w},=5bj,; gesetzt, und fiir die Indizes soll immer 1<a, B, y<k,
n
I<ij<nund k+1<s,t<n gelten. ), b e, sind in dieser Formel die vektorwer-
s=k+1
tigen Komponenten der zweiten Fundamentalform auf F*.
Weiterhin gilt mit

N=ek+1 /\"'/\en

n
dPA-AdPAdAN= Y o™ Ae A-AG*'Ae
(k=~1) s=k+1

wey N Cr1 Ao Ade A A e,

n
also dPA--AdPAdN= Y 0" AAG™* AP Ae, AAe
Nm— ——— e
(k“l) s=k+1

A ek+1 VANRRRVAN es_l A ea A es+1 A A e,,.



186 HEINZ BRUHLMANN

Nun folgt aus (e;, de;)+ (de;, e;)=0, dass
w{k + w_i’-k = 0,
also

-4 S S
Wsp == Wep =" Dap,
womit wir erhalten

dP A--AdPAdN=(k-=1)! Y (=1 Qb )dArne  A--AE A Ne,,
*k=1) . s=k+1 a
=k! ¥ (=1 *HdAAne, A-AE A Ne,.

s=k+1

In der obigen Formel haben wir den mittleren Kriimmungsvektor

1 z :
H= - b3
k ( aa) eS
eingefiihrt.

Im folgenden seien nun F* und F* orientierbare k-dimensionale Flichen im Rie-
mannschen Raum R”, die unter Erhaltung der Orientierung durch eine einparametrige
Transformationsgruppe @ (7, p) so aufeinander abgebildet sind, dass

F*={®(f(p), p) | peF*} oder F‘={®(- f(p).p)|peF"}.

S bezeichne wiederum die Menge derjenigen Punkte auf F*, fiir die der Strdmungs-
vektor v im Tangentialraum von F* liegt. S soll wie bisher nirgends dicht in F* liegen.
w(p) bezeichnet wieder den Vektor e/®- v, und die F} seien wie bisher definiert. Dann
betrachten wir in Analogie zum (n— 1)-dimensionalen Fall den Ausdruck
wAdPA---AdP A (N-N)

R e W
(k—-1)

und berechnen die Wirkung des Operators d auf diese Grosse. Dann wird

n
WAdAPA-AdPAdN=k! Y (—1)*H*dAw e, ne A--AE A Ae,

*<1) s=k+1

=kl (=1 (A,w)dAdre A ne,.

Zur Vereinfachung der weiteren Rechnung legen wir nun das n-Bein €1y.-s €y
genauer fest. Wie fiir Hyperflichen berechnet man

dPA--AdP=dPA-AdP—k-vAdf AdP A---A dP
3] 03] *=~1)

somit
vAdPA--AdP=vAdPA--AdP
(k) )
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also
AAANVAE A ANE=dAANVAE A Ae,

woraus folgt, dass der Vektorraum aufgespannt von v, &y,..., &, derselbe ist wie
derjenige, aufgespannt von v, e,..., .. In den Punkten ¢S wihlen wir nun das

n-Bein e,..., e, so, dass e,..., ¢,,,; im Vektorraum aufgespannt von v, ey,..., €,
und die e, (1 <a < k) im Tangentialraum von F* liegen. Dann kénnen wir fiir s >k +2
k+1

die & so wihlen, dass &,=e,, womit &, ;= Y #i'e; wird.
Mit diesen Festsetzungen wird =1

N=e¢ Ae A Ae
und k+1 k+2 n

wAdP A---AdP AdN
(k=1)
—_ Jj 4 A — 1 ~
=we;Ac" ANe, A AT Ay ANdé i Aeyy ArA e,

n
J a g —
+ Y we A" Ae, A AT T AC (NG A Ade AN e,
s=k+2

Mit dé, ., = —b/o*Ae;, de,=wl, 0% Ae;, i#s, s=k+2 ergibt sich daraus

WAdPA---AdP A dN
(k—1)
=(_ l)k{wjb;ia“ A AG* 1A GEA €ay NN €y A E; Ae e ArAe,
— Wl 6" A ACFT NG A, A Ay NCA G A A ey
AeAeg g AN e,

In dieser Formel ist der zweite Summand rechts gleich Null, da w/=0 und #/ =0 fiir
Jj2k+2 und zudem i+#s. Damit ergibt sich

WAAP A AdP A dN
(k—1)
=(= 1) "Wt plo" A AP AG A A A e

+ (= D) w bt ™ A AT T AT A, AAE

-1 A eﬂ A ek+1 A A e,,
A ea/\ ek+1 VANRERIVAN e",

somit
WAdP A AdPAdN=(—= 1" (k=)W (b )dAdAne Ao Aee,
=) @

+ (= Dk =1 b ' w*dAd Aey A- e,
Ausserdem gilt wiederum im R"
de,.,=—blo' ne,=—b6 re,
zudem ist (e, 4 5, ..., €,)= (84425 ..., &,) und B+ 1 =0, woraus man

2 b;a + b;ck++1l — z 5: = k H**1
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erhilt, wobei A**! die (k+1). Komponente von A in der Darstellung
H = ﬁ i e,«
ist. Zusammenfassend haben wir damit gezeigt

WAdPA-AdPAAN =(— 1) k! (W, er) (A, 8 )dANe A e,
+ (=D k=1 Wb} dAAe A ne,.

Die weitere Rechnung verlduft nun gleich wie bei Hyperflichen. Aus

VAdfAdAP A AdP=(k—-1)!(dANe, ANe—dANE A AE)
[CaEY)

folgt
vAdfAAP A AdPA(N=N)=(k—-1)!1(dAd+dA)(1 — (A, A) Ae, A Ae,

(k—1)

wobei wir 7 fiir e, , und 7 fiir &,,, gesetzt haben. Ausserdem ist mit

dv = v,0" A ¢

dvAdP A AdPAN=(k-1)!Q})dAdne A Ae,

(k=1) *
und
doAdP A AdPAN=(k-1)!Q o)A ddre Anne,
(k=1) *
— (k=D dA A e A A e,

Mit dw=e’ dv+e’ df A v folgt daraus
dw P A dP A (= )= & (k= D= (. A) (B4 d A Ao n 6
m—— ——— «

1)
+ef(k—=1)1av*  dAdne A ne,

+el(k—1)1-(1 — (@A) (dA+dA) A ey A Ae,.
Fassen wir nun diese Rechnungen zusammen. Wir haben
dwAdPA---AdP A(N—-N)
N—— ———

(k—1) o~
=dwAdPA-AdPAN-N)+(=1)"'wAadPA---AdPAd(N-N),
somit

d(wAdP A---A dP A (N — N))
\———(-F:-i-r——-«
=kl (w,7) {(H,7)—(H,A)}dAre, rnre,
+k-1)e(1— @A) (dAd+dA) e, A Ae,
+k=-1)e{(1-@GAR)Q ) +AvET + b dAdAe AN ey
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Der Ausdruck D=(1— (7, 7)) (Z B +atvit ! +v/b ! lasst sich wieder umformen

zu
k+1

D= (1~ A) (L o)+ (£~ 7),7)

und wird fiir konforme Abbildungen nach genau gleicher Rechnung wie bei Hyper-
flachen

¥’ (0, )
v?(0, p)

Mit dem Satz von Stokes erhalten wir daraus fiir konforme Transformations-
gruppen & (¢, p) die folgende Integralformel:

D=kl = (5, 7) 5 2

fon(W/\dP'/\---/\dP/\(N—N))

oFk

k! f (A, ) — (A, 7))} (w, 7) d4
Fx

+ (k — 1)! f e (1 — (4, n)){d/i'+ dA + klljz( p)dff}
) V(0. 5)
Falls nun F* geschlossen ist und wir voraussetzen, dass fiir alle Punkte p¢S (H, 7i)=
=(H, 7i) ist und ¥’ (0, ) von konstantem Vorzeichen auf F* ist, folgt aus dieser In-
tegralformel wie bei Hyperflichen i=7 und daraus f(p)=konst. auf F*.

Die Voraussetzung (H,7)=(H,#) bedeutet dabei, dass die beiden mittleren
Kriimmungen, bezogen auf die im Vektorraum aufgespannt vom Tangentialraum an
die Fliche F bzw. F% und dem Strémungsvektor v liegenden Normalen, gleich sind.

Zusammenfassend haben wir also den folgenden Satz bewiesen:

F* und F* seien zwei geschlossene, orientierte k-dimensionale Flichen in einem
Riemannschen Raum R", die durch eine einparametrige Transformationsgruppe & (¢, p)
unter Erhaltung der Orientierung mit Hilfe einer Funktion f(p) auf F* so aufeinander
abgebildet sind, dass

={o(f(p), ) | PeF};

zudem seien zu jedem Punkt poe F* Flichen F 24 , folgendermassen definiert:

FY = {®(f(po), P) | peF*}

H und H seien die entsprechenden mittleren Kriimmungsvektoren in p, S sei die Menge
der Punkte j, in denen der Tangentialvektor v an die Stromlinien ®(t, p)—e<t< +e
im Tangentialraum von F* liegt. In den Punkten p¢ S seien i bzw. fi die Normalen an
die Fliche F* bzw. F" die im Vektorraum aufgespannt von den Tangentialvektoren von
F* und dem Vektor v liegen.



190 HEINZ BRUHLMANN

Falls dann S nirgends dicht auf F* liegt sowie (H, ii)=(H, 7i) fiir jeden Punkt p¢ S
gilt, und @ (t, p) eine konforme Transformationsgruppe mit ' (0, p)=0 (bzw. <0) auf

F* ist, wobei Y (t, p)=+/ @ (t, pi und ¢ (t, p) der in der Definition der konformen Ab-
bildung auftretende Faktor ist, so ist f(p)=konstant,d.h. F* und F* sind kongruent be-
ziiglich der Transformationsgruppe & (t, p).
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