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Einige Kongruenzsâtze fur geschlossene A -dimensionale

Flâchen in /z-dimensionalen Riemannschen Râumen

von Heinz Brùhlmann

Einleitung

In der vorliegenden Arbeit wird versucht, âhnliche Sâtze fur ^-dimensionale
Flâchen in «-dimensionalen Riemannschen Râumen zu beweisen, wie sie von H. Hopf
und K. Voss [1] fur Abbildungen von Flâchen im dreidimensionalen Euklidischen
Raum, bei denen die Verbindungsgeraden Punkt - Bildpunkt untereinander parallel
sind, K Voss [2] fur gleiche Abbildungen von Hyperflâchen in Euklidischen Râumen
und A. Aeppli [3] fur Abbildungen von Hyperflâchen in Euklidischen Râumen, bei

denen die Verbindungsgeraden entsprechender Punkte p und Bildpunkte p durch
einen festen Punkt O gehen, gegeben wurden.

Der Hauptsatz in der Arbeit von H. Hopf und K. Voss lautet folgendermas-
sen:

F und F seien orientierte geschlossene Flâchen, die unter Erhaltung der Orien-

tierung so aufeinander abgebildet sind, dass erstens die Verbindungsgeraden
entsprechender Punkte p und p untereinander parallel sind, und dass zweitens F und F
in je zwei entsprechenden Punkten p und p die gleiche mittlere Krùmmung haben ;

fernersetzenwir voraus, dass die Flâchen keine Zylinderstûcke enthalten, deren Er-
zeugende parallel zu den Geraden/?/? sind. Dann geht F aus F durch eine Translation
hervor. (d.h. die Entfernungen pp sind konstant.)

In der Arbeit von A. Aeppli lautet die Bedingung fur die mittlere Kriimmung
rH=fff, wobei r bzw. f den Abstand des Punktes/? bzw. p von O bedeutet, wâhrend
die Schlussfolgerung fjr=konst. ist.

Es liegt nun nahe, zu versuchen, einen Satz zu beweisen, der dièse beiden Sâtze

als Spezialfall enthâlt. Dies ist in einer Arbeit von Y. Katsurada [4] ausgefûhrt
worden. Zur Formulierung ihres Résultâtes betrachten wir eine einparametrige Trans-

formationsgruppe $(t9p) (peR", *=Parameter) eines Riemannschen Raumes Rn und

zwei Hyperflâchen F und F, die unter Erhaltung der Orientierung durch p=4> (f(p), p)
aufeinander abgebildet seien, wobei f(p) eine differenzierbare Funktion auf F sei.

Es sei nun Po~${f{Po)>Po)- Der Punkt p0 liegt dann nicht nur auf der Flâche F,

sondern auch auf der Flâche FPo, die wir erhalten, in dem wir auf jeden Punkt peF
die Transformation ${f{Po\p) anwenden. Damit liegt p $(f(p),p) auch auf der

Flâche Fr Die Bedingung#=# bei H. Hopf und K. Voss und r H= fff bei A. Aeppli
lautet dann in dieser Formulierung: ff=Ê.

Mit diesen Definitionen lautet nun der Kongruenzsatz von Y. Katsurada [4] :
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Seien F und F zwei durch eine einparametrige Transformationsgruppe 0 (t, p)
wie oben aufeinander abgebildete, orientierte geschlossene Hyperflàchen im Rn. Sa F
sei die Menge derjenigen Punkte p, in denen der Tangentialvektor an die Kurve
<P(t,p) -&<t<e,e>0,im Tangentialraum von Fliegt. Falls mm erstens H=Ëist,
zweitens S nirgends dicht in F liegt und drittens $(t,p) eine homothetische
Transformationsgruppe (Verallgemeinerung der bei A. Aeppli [3] betrachteten Abbildung,
die als Spezialfall die Isometrien enthâlt, genaue Définition im Abschnitt 3) ist, so

ist/(p) konstant.
Zur Herleitung dièses Satzes wird von der Autorin von Anfang an ein spezielles

Koordinatensystem verwendet, was z.B. bei Fixpunkten der Transformationsgruppe
nicht môglich ist. Auch scheint mir die Darstellung, die sich an den Ricci-Kalkûl
von Schouten anlehnt, ziemlich umstândlich.

Zur Herleitung des oben formulierten Kongruenzsatzes benôtigen wir in dieser

Arbeit eine Integralformel, die wir mit Hilfe einer Méthode herieiten, die in jedem
Punkt der Flàche ein spezielles orthonormiertes «-Bein benûtzt, und zwar so, dass

en, der «-te Vektor des «-Beins, senkrecht zur Flâche steht, also mit der Flâchen-
normale zusammenfallt. Sodann benutzen wir eine von H. Flanders [5] gegebene

Verallgemeinerung des âusseren Differentialoperators auf Tensoren, die sowohl in
den kovarianten als auch in den kontravarianten Indizes schiefsymmetrisch sind.
Die Indizes der Tensoren werden immer bezuglich des speziell gewâhlten «-Beins von
Vektoren und des dazu dualen «-Beins von 1-Formen geschrieben; dabei brauchen
wir zur Herleitung der Integralformel dièse Indizes, in der Schlussformel erscheinen
aber keine Indizes mehr.

In einer Arbeit von R. E. Stong [6] wurde der Kongruenzsatz fur geschlossene
fc-dimensionale Flâchen im «-dimensionalen Euklidischen Raum und Abbildungen
wie bei H. Hopf und K. Voss [1] und A. Aeppli [3] bewiesen. Mit Hilfe des oben
erwâhnten Formalismus konnte ich nun den Satz von Y. Katsuradu auf fc-dimen-
sionale geschlossene Flâchen im «-dimensionalen Riemannschen Raum verallgemei-
nern, wobei die Bedingung fur die mittlere Kriimmung nun als Bedingung fur die
mittleren Krûmmungsvektoren auftritt.

Im Abschnitt 1) werden die algebraischen, im Abschnitt 2) die analytischen
Grundlagen dargelegt. Wir stutzen uns dabei im wesentlichen auf die Arbeit von
Flanders [5], doch wird der Beweis fur die Existenz des erweiterten âusseren
Differentialoperators nach einer anderen Méthode gegeben, die lokale Koordinaten be-
nutzt. Im Abschnitt 3) werden die Definitionen der konformen, homothetischen und
isometrischen Transformationen sowie der Lie-Ableitungen zusammengestellt.
Abschnitt 4) enthâlt den Beweis des Kongruenzsatzes fiir homothetische und gewisse
konforme Abbildungen von Hyperflàchen in Riemannschen Râumen und abschlies-
send wird in Abschnitt 5) der Kongruenzsatz fiir dieselben Abbildungen von fc-dimen-
sionalen Flâchen im /î-dimensionalen Riemannschen Raum formuliert und bewiesen.
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1. Der Raum der (/?, g)-Vektoren

Wir beginnen mit dem Tensorprodukt von reellen Vektorrâumen. Falls U und V
zwei Vektorrâume sind, so nennen wir einen Vektorraum T zusammen mit einer
bilinearen Abbildung 0: Ux V-~*T ein Tensorprodukt von U und V, falls gilt:

a) Das Biid 9(UxV) spannt T auf.
b) Falls q>:Ux V-+W eine bilineare Abbildung in einen Vektorraum W ist, so

existiert eine lineare Abbildung A:T-> W, so dass cp À-0.

Durch dièse beiden Bedingungen ist das Tensorprodukt zweier Vektorrâume bis

auf Isomorphie eindeutig bestimmt. Auch zeigt man leicht, dass die Abbildung A,

die der bilinearen Abbildung q> nach b) zugeordnet ist, eindeutig ist.
Zum Beweis der Existenz des Tensorproduktes betrachtet man den freien Vektorraum,

welcher erzeugt wird von den Elementen von UxV; d.h. den Vektorraum 0
aller endlichen Summen der Gestalt

m

X) A,- (uh vt) ^ e U, Vf e V9 kt réelle Zahl.
i=i

R sei der Teilraum von 0, der erzeugt wird von folgenden Elementen:

A (m, v)-(àu9 v)

1(u,v)-(u,àv)
(u + u\ v) - (u, v) - (u\ v)

(m, v + v') - (m, v) - (u, t/)

Der Faktorraum T= tJjR ist dann ein Tensorprodukt von U und V: T= U® V. Falls

ueU, veV, so bezeichnen wir die Klasse von (m, t;) in U®V mit u®v und setzen

0(u, v) u ® v.

Dann folgt sofort, dass die Abbildung 9 bilinear ist und dass 9 (UxV) den Raum

U® V aufspannt.
Sei nun q> eine bilineare Abbildung Ux V-+W. Dann definieren wir eine Abbildung

1:0-* W9 indem wir setzen

I(w, v) cp(u9 v)

und dièse Abbildung durch Linearitât auf ganz tJ ausdehnen. Da q> bilinear ist,

folgt l(i?)=0, also induziert I eine lineare Abbildung A:

1:U®V->W9 mit cp A-0.

Ausser dem Tensorprodukt zweier Vektorrâume benôtigen wir im folgenden noch

das r-fache âussere Produkt eines Vektorraumes V fur 0^r<« dimF. Zur
Définition des âusseren Pro<luktes gehen wir wie beim Tensorprodukt aus von dem freien
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Vektorraum Û, dessen Erzeugende die Elemente von Fx Vx ••• x Fsind. R ist nun
r

der Teilraum von 0, erzeugt durch folgende Elemente :

X(vl9..., vr) - (vu Xvh vr)

(vl9..., vt + v'i9..., vr) - (vu vi9..., vr) - (vl9 v'h vr)

(l^i^r, v^V, X réelle Zahl)
(vil9 vi2,..., vir) - sign.TT^i, i?2,..., vr)

wobei sign. tt das Vorzeichen derjenigen Permutation n von r Elementen ist, die

(1, 2,..., r) in (/l9 /2,..., /r) ûberfuhrt. Dann bilden wir wiederum den Faktorraum

yT F wird das r-fache âussere Produkt von V genannt. Falls (vl9...,vv)eVx ••• x F,
so bezeichnen wir die Klasse von (t?t,..., yr) in F mit t^ a ••• a vr und setzen:

0(i?1?...,î;r) t?! a— a vr.

Jedem Elément n der Permutationsgruppe von r Elementen ordnen wir nun eine

Abbildung n: Vx ••• x V-+Vx ••• x Fzu, indem wir setzen:

Eine Abbildung <jp: Fx--- x V-+W nennt man symmetrisch, falls (p'û (p9 und
r

alternierend, falls <p*7Ï sign.7r*(p.

Analog zum Tensorprodukt haben wir nun fur das âussere Produkt folgende
charakterisierende Eigenschaften :

1) 0(Fx x F) spannt Ar auf.

r
2) Falls cp: Vx •«« x V-*W eine alternierende, multilineare Abbildung ist, so exis-

r
tiert eine und nur eine lineare Abbildung

X:ArV->W mit (p X-0.

Aus der Définition des âusseren Produktes Ar V eines Vektorraumes F folgt nun,
dass, falls (el9 el9...9 ert)=Basis von F, die Elemente

eh a eh a ••• a eîr 1 < /x < i2 <••• < ir < n

eine Basis von Ar V bilden. Ar V hat also die Dimension 1 und jedes Elément aus

iï F lâsst sich immer in der Form

darstellen. i<ii<i2< ••<»><»
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Eine Elément XeArV lâsst sich nun aber auch mit einem Elément jàgAsV multi-
plizieren, das so entstehende Elément X a \i liegt in Ar+S V und es gilt:

X A /X (- l)fSJI A X

Zum Beweis dieser Tatsache betrachten wir folgende Râume und Abbildungen :

(Vx-"X F) x(Fx-x V)-^Ar+sV
r s

ArV ASV

Da 0(A,ju) O fur XeVx — x F^eFx-.-x F mit 01(X) 0 oder 02(/x)=O, in-
r s

duziert 9 eine bilineare Abbildung

O':ArVxA'V^Ar+MV

Das Bild 9'{X'9 fi'), X'eAr F, \i'eAs V nenenn wir das âussere Produkt von X' und y! \

Nun betrachten wir ausser dem urspriinglichen Vektorraum V noch den dualen

Raum F* und bilden die Ràume

tp X* F* (g) Ap V

Falls (eu...9en) eine Basis von V,(au...,on) die dazu duale Basis von F* ist,

so bilden die Elemente
<jH a---a a

eine Basis von T/; also haben die Râume T€p die Dimension )•( j und jedes

Elément aus T/ hat die Form: ^ ^
I ^:.ip crfl a -. a <r'« ® ^ a .- a ejp.

Zur Erweiterung des oben definierten Produktes von p und #-Vektoren auf
Elemente aus den Râumen T/ bzw. T$ betrachten wir folgende Abbildung

/: Aq F* x Ap V x Aq' V* x Ap' F-> Aq+9' F* ® Ap+P' V

gegeben durch

/(C,if, C, ifO C a C®if a if'.
ÇeAqV*9 rjeApV9 Ç'eAq'V*9 ti'eAp'V.

Dièse Abbildung ist bilinear in (Ç, tj), also existiert eine und nur eine in Ç® rj lineare

Abbildung
Vt : (Aq F* ® Ap F) x yl€' F* x Ap> V-> Aq+qf F* ® Ap+P' V
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mit

/ist aber auch bilinear in (C */'), also auch <pu d.h. es existiert genau eine in (®rç,
Ç'®rjf lineare Abbildung

<p2 : (Aq F* ® Ap F) x (A*' F* ® /L*' F) -? >1«+*' F* ® /lp+p' F
mit

<p2 ist also nach Konstruktion eine bilineare Abbildung

<Pi:T;xT$-
wobei

®rir) C a £'®rç ai;'.
Wir benûtzen fur das so definierte Produkt wieder das Zeichen a d.h. wir schreiben:

Wie man leicht sieht, gilt fur dièses Produkt:

(C®f0 a (f® ij') (- l)pp'+"'(C'®iy0 a
Ce^F*, fye^F, C'e^'F*, tj'eApV9

Mit dieser Définition kônnen wir auch schreiben:

CAfj fur ÇeAqV*, r}eApV.

2. Der erweiterte Differentialkalkiil auf Mannigfaltigkeiten

Af" sei eine C00 Mannigfaltigkeit der Dimension «. (Unter Differenzierbarkeit
verstehen wir in Zukunft immer Differenzierbarkeit der Klasse C00). Der Tangential-
raum T(p) eines Punktes^eAf1 ist definiert als Menge der Aequivalenzklassen von
differenzierbaren Abbildungen q> eines offenen Intervalls — e, +e)c:R in die
Mannigfaltigkeit Mn mit q>(0)=p. Zwei solche Abbildungen cp(t) bzw. ç' (t) werden dabei
als âquivalent betrachtet, falls in einer Koordinatenumgebung U(p) q>{t) bzw. <p'(t)

gegeben sind durch Koordinaten xl(t) bzw. xv (t) und

dxl dx

dt t=0 dt

Die Menge der so definierten Aequivalenzklassen kann dann zu einem n-dimensiona-
len Vektorraum T(p) gemacht werden, den Tangentialraum von Mn im Punkte p.
Die Klasse, in der die Abbildung *'(f)=<5j-f liegt, bezeichnen wir mit (d/dxj)p, die
Tangentialvektoren (d/dxl)p...(dldxn)p bilden dann eine Basis von T(p) und

T(p) |V Ji U-\ j kl réelle Zahlen.
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Dièse spezielle Basis von T(p) nennen wir eine Koordinatenbasis, die dazu duale
Basis bezeichnen wir mit (dx1)p,..., (dxn)p.

Ein differenzierbares Vektorfeld auf Mn besteht aus einem Tangentialvektor in
jedem Punkte p, der differenzierbar vom Punkte p abhângen soll, d.h. in lokalen
Koordinaten x1,..., xn9

sollendie vl differenzierbare Funktionen von je1,..., xn sein. Analog besteht ein (r, s)-
Vektorfeld in der Vorgabe eines (r,^)-Vektors £eTsr(/?) in jedem Punkte/?, also in
lokalen Koordinaten

wobei die k{\'"(* differenzierbare Funktionen von x1,..., xn sind.
Die Funktionen A// ;Jar sind in dieser Darstellung nur fur 1<ï1</2 <•••</«<»

und l<:ji<J2<"'<jr^n definiert. Wir kônnen aber durch Schiefsymmetrie Mi'.'.'.u

fur aile ik9jt mit l</fc<«, l^j^n definieren. Dann sind die Mî'.'Js Komponenten
eines r-fach kontravarianten, s-fach kovarianten Tensors, der sowohl in den ko-
varianten als auch in den kontravarianten Indizes total antisymmetrisch ist. Wir
bezeichnen im folgenden die Menge der (r, s) Vektorfelder mit xrs.

Die (0, s)-Vektorfelder entsprechen den .y-Formen auf Mn. Fur die s-Formen
existiert nun bekanntlich ein Operator d, der jeder s-Form eine (s+ 1)-Form zuordnet
und durch folgende 4 Eigenschaften eindeutig festgelegt ist :

2) d(co1 a(o^^dcùi aco2 + (—1)sû>i adœ2
3) falls/= Funktion auf M, so ist df/das Differential von/, in lokalen Koordinaten

also „
4) d(df)=O
Wir nehmen nun zusâtzlich noch an, dass auf Mn ein linearer Zusammenhang

gegeben sei. Das lâsst sich auch so ausdrûcken, dass auf Mn ein Operator D gegeben

ist, der jedem Vektorfeld auf Mn ein (1,1)-Vektorfeld zuordnet, wobei gilt:

2) D (fv)=dfA v +/• Dv. wobei df= Differential von /.
Der Operator D entspricht der kovarianten Ableitung von Vektorfeldern, in lokalen
Koordinaten haben wir:

v-viTldx
ô d

Dv dv1 A—j + tfD—.
dx dx
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Dabei ist dvi (dvijdxi) dx\ ausserdem setzen wir

d
k

d

D^r"dxJA8?
und erhalten :

Nach Flanders [5] kônnen nun die Operatoren d und D zu einem einzigen Opera-
tor zusammengefasst werden ; er bewies folgenden

Satz: Auf einer #-dim. Mannigfaltigkeit mit linearem Zusammenhang D existiert
ein und nur ein Operator, den wir wieder mit d bezeichnen, mit folgenden Eigenschaften:

1)

2)

3) d stimmt mit dem gegebenen linearen Zusammenhang D auf xxQ und mit dem

âusseren Differentialoperator daufx\ uberein.

Beweis: Es sei U eine Koordinatenumgebung von M, Koordinaten x1,..., x".
Dann gilt fur £ei£

C Hit dx- A-Atf'A^A.-A ~
oder

Falls nun ein Operator d mit den obigen Eigenschaften existiert, muss gelten

dœJl~jr a —r a-a—r +(-l)s Y a-a—r a-aD—* a-a—7ôxh dxJ dxJ

Daraus sieht man sofort, dass der Operator d in U eindeutig ist und dass dÇeirs+l
in U. Damit haben wir aber auch die globale Existenz bewiesen, da aus der Eindeutig-
keit in C/folgt:

wobei dyu die Restriktion von dÇ auf U bedeutet. Wir haben nun nur noch die

Eigenschaft 2) zu verifizieren. Sei also

d.h.
d d

A ••• A -
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#,/-*,*. ô d d ô

5 5 5

dxf- A 5?
¦'-•'' A àkl-kr'

5 ô d
d(C A >/) d(0)Ji"Jr A <5'lilV) A r A ••• A ,- A —y A ••• Av y v ' Sx-" dxJr ôxkl

— A ¦•• A A —r A ••• A
5x*' '5x-

+ (- 1)S
+ S' CÛJl-Jr A «j*'-*''

r'
v^ ^ ô d _

d
A D_5x^" '5x-'5x*'x "*5x*' "ôx*"

Nunist l-1
¦¦'r a eâ*1 ¦"*•¦') d(aJx"'ir a â>kl-kr' + (— IVtoil"'Jr a dwki'kr'.

ausserdem gilt

k k
d

da
5 5 5

A...A£> A...A eTl.
Daraus folgt:

d(C A Vf) d(OJ1'Jr—y A---A —^ A (&*»"•*-' — A---A

-_A-Afl71

5
A ••• A

5x'Ar'

A- A D^ A-A
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Im folgenden werden wir ein spezielles (1, 1) Vektorfeld immer wieder brauchen,
es ist dies der sogenannte Verschiebungsvektor dP. Er ist folgendermassen definiert

e
dP ôj dxl a —.

dxJ

Dièse Définition ist unabhàngig von der speziellen Basis im Tangentialraum, d.h.

es gilt auch

wobei die et (i= 1,...,«) irgend eine Basis des Tangentialraumes und die a1 (/ 1,...,«)
die dazu duale Basis bilden. Falls nun die Mannigfaltigkeit Mn afïin zusammen-

hângend ist, also die rkn in der Darstellung von D in Koordinaten symmetrisch in

j und i sind, so gilt
d(dP) 0.

Beweis

d (dP) d (ô{ dxl a —j J - ô{ dxl a D -^, also

d(dP) - ô{ dxl A I*j dxl A —, - J* dxl A dxl A —r,dx dx

woraus man sofort sieht:

d(dP) Oorfj symmetrisch in j und /.

Die Wichtigkeit des âusseren Differentialoperators d kommt im wesentlichen im
Satz von Stokes zum Ausdruck. Um den Satz von Stokes im folgenden anwenden zu
kônnen, mûssen wirh ihn etwas anders als ûblich formulieren. Dièse Formulierung
hat nur in Mannigfaltigkeiten mit Riemannscher Metrik einen Sinn. Wir werden also
im folgenden ausschliesslich Riemannsche Mannigfaltigkeiten betrachten. Unter D
verstehen wir von nun an immer den eindeutig bestimmten, mit der Riemannschen
Metrik vertrâglichen affinen Zusammenhang.

Vorerst fiihren wir im Tangentialraum eines jeden Punktes durch das Schmidtsche

Orthogonalisierungsverfahren eine orthonormale Basis ein, wir bilden also, indem
wir vt fur d/ôx* setzen,

^2 V2 ~~ \V2> ei) ei und e2 ——

und so weiter, bk ergibt sich, falls wir el9...9 ek-t konstruiert haben, als

k~1 h
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Da bei diesem Verfahren nur algebraische Operationen ausgefûhrt werden, kônnen
d d

wir die Vektorfelder —-r,...,-— in einer Koordinatenumgebung U in allen Punkten
dx dx

gleichzeitig orthogonalisieren und erhalten so n in U orthonormierte Vektorfelder

eu-..,en.
Fur eine Riemannsche Mannigfaltigkeit gilt nun, falls el9...9enn orthonormierte

Vektorfelder in einer Umgebung U9 o*1,..., on die dazu dualen 1-Formen sind, rfder
durch die âussere Ableitung und den affinen Zusammenhang D bestimmte erweiterte

Differentialoperator ist,

d(et a-a en) 0

und
a1 a ••• a a11 dV dV= Volumelement

Beweis

a) Es gilt
det (o\ek (ù\ 1-Formen

und
à(ei9 ej) (dei9 ej) + (ei9 de3) 0,

da (ei9 e^)=54y. Daraus erhâlt man

0 (cof ek9 ej) + (ei9 œ) ek) œ{ + œ),

also coj=schiefsymmetrisch. Weiterhin ist

n

d(et a— a en)= "£ et a •••a det a---a en

n

£ *! A —A 6,-i A O)^k A ei+l A---A^.

Da aber ein âusseres Produkt 0 ist, falls zwei gleiche Faktoren auftreten, tritt nur
der Fall k i auf, und wir erhalten

d(ex A-AeB) £û)j)e1 a-a en 0,
i

da (£>{ schiefsymmetrisch.
b) al=a} dxJ (dx\ dxj)~gij {a\ a*)^*

Daraus folgt
a1 a ••• a a11 a)t dxh a a)% dxh a ••• a anSn dxJn

sign(ju.,.,jn)a)la2h...anjn dx1 a ••• a dxn
1

Ausserdem gilt
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also

g=det(gfj.) (det(a}))2
woraus man

a1 A ••• a an + Vfg dxl a ••• a dxn dV
erhâlt.

Nun sei Mn eine orientierbare, differenzierbare Mannigfaltigkeit mit Riemannscher

Metrik ; wir kônnen also auf Mn in der Umgebung eines jeden Punktes n orthonor-
mierte Vektorfelder eu..., en so auswâhlen, dass, falls U eine Umgebung mit Vektor-
feldern eu...9en, F eine Umgebung mit Vektorfeldern éu...,ern ist und [/nF^O, in
Un V gilt

et a ••• a en e[ a ••• a e'n.

Ein Elément CerJ lâsst sich dann folgendermassen schreiben

C co a et a ••• a en,

wobei co eine eindeutig bestimmte k-Fovm ist. Durch dièse Schreibweise wird jedem
(«, A:)-Vektorfeld Ç eine ^-Form co on(() zugeordnet. Ausserdem gilt

dÇ dœ a ex a--- a en + (— l)fc co a d(et a ••• a en) — dco a et a ••• a ^n,

woraus folgt

wobei d links der erweiterte Differentialoperator, angewendet auf (n, k)-Vektorfelder,
und rechts der âussere Differentialoperator, angewendet auf A>Formen, ist.

Falls nun Fk+1 eine orientierte (fc+1) dimensionale Mannigfaltigkeit in Mn ist,
so gilt nach dem Satz von Stokes

I a) I dœ

oder

J on(C)= J on(dC).

dFk+1 Fk+1

3. Einparametrige Transformationsgruppen

Wir erinnern zuerst an die Définition einer einparametrigen Transformations-
gruppe:
Eine Familie cpt von Diffeomorphismen Mn-+Mn wird eine einparametrige Gruppe
von, differenzierbaren Transformationen von Mn genannt, falls die Abbildung
#: R x Mn-*M\ definiert durch

»P) <Pt(p) peM, rejR, R réelleZahlen.
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folgende drei Eigenschaften erfûllt:
1) 0 ist differenzierbar.
2) $(s9 $(t9p)) $(s+t9p) dh. <ps+t==<Pso<Pt fur aile t und s.

3) $(0,p)=p9 d.h. <po Identitât.
(pt(p)-c<t<+c9p fest, c>09 definiert eine Kurve auf Mn. v sei der Tangentialvektor

an dièse Kurve im Punkte p. In lokalen Koordinaten gilt dann, falls in U(p)
die Kurve (pt(p) gegeben ist durch die Koordinaten xl(t):

vn lim

Eine differenzierbare Abbildung <P:M-+Minduziert eine Abbildung <P*:Tp->T0(p)
der entsprechenden Tangentialrâume, und zwar wird, falls cp:( — e, + e)-*M den

Tangentialvektor t? (/?) reprâsentiert, $*(v) durch die Abbildung &°(p:( — s, +e)-+M
reprâsentiert.

Im folgenden werden wir noch die Lie-Ableitung von Vektorfeldern brauchen.
<&(t,p) sei eine einparametrige Transformationsgruppe, w ein in einer Umgebung
des Punktes p definiertes Vektorfeld, v der Tangentialvektor an die Kurve <pf(p).

Dann definieren wir

«-?0 ^ r-*0

und nennen dièse Grosse die Lie-Ableitung von w bezùglich v. Man zeigt leicht, dass

&v (w) wieder ein Vektorfeld ist. Durch Ausrechnen (siehe [7], Seite 93) erhâlt man fur

Zum Abschluss dièses Abschnittes geben wir noch die Definitionen der konformen,
homothetischen und isometrischen Abbildungen von Riemannschen Mannigfaltig-
keiten an.

Eine differenzierbare Abbildung <P:M-+M wird konform genannt, falls eine

differenzierbare Funktion q>(p)>0 auf M existiert, derart, dass fur aile Vektorfelder v,

w auf M gilt: t / w \

Falls q> in der obigen Définition konstant ist, so wird # eine Homothetie genannt,
falls <p(p)= 1, so ist # eine Isometrie.

Eine einparametrige Transformationsgruppe <P(t9p) nennen wir konform bzw.

homothetisch bzw. isometrisch, falls jede Abbildung (pt(p)=$(t,p)91 fest, konform
bzw. homothetisch bzw. isometrisch ist.
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4. Der Kongruenzsatz fiir Hyperflâchen

Fur Flâchen im dreidimensionalen euklidischen Raum gelten folgende Formeln
(siehe [1])

dx xdx 2ndA dx x dît - 2Hn dA.

Dièse Formeln wollen wir nun verallgemeinern. F"'1 bedeute im folgenden eine

Hyperflâche im Riemannschen Raum Rn, lokal gegeben durch die Darstellung
x1 xi(u*), wobei die xi (i= 1,..., n) Koordinaten im Rn, die ux (oc 1,...,«— 1) Koor-
dinaten auf der Hyperflâche sind. Dabei setzen wir voraus, dass die Matrix (dxljdua)
in jedem Punkt den Rang /z— 1 habe, d.h. dass die Flâche wirklich die Dimension
n— 1 habe. In einer Umgebung eines jeden Punktes von F"'1 wâhlen wir nun ein
orthonormiertes «-Bein el9...9 en so, dass en die Normale n der Flâche ist. Fur das

dazu duale n-Bein ex1,..., a" gilt dann Gn 0 auf Fn~1. Als Verallgemeinerung von
dx xt du1 nehmen wir dP=ô) dxj a (djdx% auf Fn "1 ist dann dP=G*Aea.

Auf F""1 ist dann

dP A— A dP Gai A eai A-" A G*n~l A etXn_l G*1 A---A G*"-1 A eai A--A ^.^
wobei 1 ^afc<«— 1. Da aile cck voneinander verschieden sein mûssen, muss

Gai a ••• a Gan~l sign(a1,..., ccn-i) g1 a ••• a a""1
und

eai a —a ean_1 sign(a1,...,all_1)^i a —Ae,,-!
sein. Damit wird

dP a ••• a dP (n — 1)! dA a et a ••• a en^x.

Das ist die Verallgemeinerung der ersten der beiden am Anfang dièses Abschnittes
angefiihrten Formeln, statt n steht darin der im Sinne der âusseren Algebra zur
Normalen en duale (n- 1)-Vektor e1A~-Aen.1.

Zur Verallgemeinerung der zweiten Formel benûtzen wir folgende Relation

dn den — fcj gp a ea

wobei b% den gemischten Tensor der 2. Fundamentalform bezûglich der Basis ei9..., en
darstellt.

Dann wird

dn a dP a ••• a dP — — b°pGp a ea a g*1 a eai a g*2 a ea2 a ••• a cra"~2 a ean_2

— b"pGfi A G*1 A ••• A 0"an"2 A6aA eai A ••• A ean_2.

Hier sind ai9..., an_2 (n—2) voneinander verschiedeneZahlenzwischen 1 und (n— 1),
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ebenso gilt l^oc,/?^(«-l) und <x^ak,f}^ock fur 1 **&<(«-2), woraus folgt, dass

a=j8 sein muss, also

dn A dP A ••• A dP — £ ^a0"8 A °"ai A ••• A (Tan"2 A ea A £ai A ••• A £an_2

Lfe(i(al'-"'a«-2))2(Tl A--A d""1 A ^ A —A eH-t

wobei wir

-(n--2)!]>»1 A-Ad"'1 Aet a-a *?„_!
a

d.h. dn a <2P a— a dP -{n- l)\H dA a ^ a---a £„_!,

gesetzt haben; damit haben wir auch eine Verallgeïneinerung fur die zweite der obigen
Formeln gefunden.

Nun gehen wir uber zum Kongruenzsatz. Der gegebenen Hyperflâche i7""1 sei

durch eine einparametrige Transformationsgruppe <P(t,p) eine zweite Hyperflâche
F"'1 so zugeordnet, dass

wobei/(p) eine Funktion aufF""1 ist. Von der Transformationsgruppe ${t,p) setzen

wir bis auf weiteres nur voraus, dass jede Abbildung q>t regulâr sei, d.h. dass (pt*

fur jeden Punkt/? eine Abbildung des Tangentialraumes T(p) auf den Tangentialraum
T(cpt(p)) sei; Fixpunkte von <P(t9p) sind also nicht ausgeschlossen. Ausser der
Flâche Ftt~x betrachten wir noch die in der Einleitung definierten, jedem peF""1
zugeordneten Flâchen Fp'1,

n bezeichne die Normale von Fn~x im Punkte p, h die Normale von F^~l im Punkte

p9p=<P(f(p),p). Mit w bezeichnen wir den Vektor ef{p) v, wobei v der Tangential-
vektor an die Kurve <P(t,p), —s<t<+e, ist. Dann betrachten wir, um zu einer

Integralformel zu gelangen, den Ausdruck

(n — n) a w a dP a ••• a dF.

Die Anwendung des Operators d auf diesen Ausdruck ergibt

d((n — n) a w a dP a ••• a dP dn a w a dP a ••• a dP

- dn a w a dF a ~* a dP + (n - n) a dw a dP a--- a dF.
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Hierin ist, falls wir et; statt êt; und aj statt <rJ schreiben,

dn a w a dP a ••• a dP (n — 1)! H dÂ awa^a-a en^1

(n-l)!(- l)""1^^,»)^ a eY A---A *>„,

Um auch dh a w a dP a • • • a dP zu berechnen, setzen wir dn=— V* a* a ef ; und er-

halten

dh a w a dP a -" a dP — b'al(ra a et a wjej a g*1 a eai a ••• a o<tn~2eaLn_1

- b'/wnG* a a*1 a ••• a aan~2 a ^ a en a eai a ••

- b'"wPa" A (T*1 A---A <7an-2 A ^n A ^ A eai A---A
also

(- îr'C - 2)! {(w, n) (Z K) - WWy-dÂ a ei a - a «„.
a

Nun suchen wir den Zusammenhang zwischen 5] b'\ und jff. Fur irgend ein Vek-
torfeld y im Rn gilt a

dy y)aj a eu

fur die Differentiation lângs F11"1 also

da (Tw 0 auf F1'1. Sei nun ^ ein Punkt auf F"'1, der nicht in der Ausnahmemenge S
liegt, d.h. in p soll der Strômungsvektor t? nicht im Tangentialraum der Flâche F"'1
liegen. Dann haben wir in einer Umgebung von p ein Vektorfeld n, gegeben als

Normalenfeld an die Flâchenschar

<Pt{Fn~X) f(p) -e<t< f(p) + c, e > 0.

n ist dann einerseits =ën und andererseits =nleh womit wir auf F"'1 erhalten:

dh — — b^G* a e{\
und auf Fn-~x

dn -fyôfi Aëa.
Andererseits gilt aber im Rn

dn - Vf aj a et — ty ôJ a êt,

woraus Q]*'{) (][)5{) folgt, wegen der Invarianz der Spur. Ausserdem ist 5j=0,
da {dn, n)=0; daraus erhâlt man

i i
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In den Punkten peS ist nun b™ noch nicht bestimmt, doch kônnen wir dièse Grosse

dort durch Stetigkeit definieren, da S nirgends dicht in F""1 sein soll. Damit ergibt
sich

dnAWAdPA-"AdF (- l)""1 (n - 1)! ff(w, n) dÂ a ex a ••• a en

- (- l)""1 (n - 2)! (b'?wj) dÂAe.A - a en.

Zur Berechnung von
(n — n) a dw a dF a • • • a dP

brauchen wir noch eine Zwischenbetrachtung. In Koordinaten gilt loka)

1) auf Fn~l : y1 (wa) &(/(««), xj(u*))
2) auf Fnp~x : y1 (u*) &(f(û% xJ(u*))
ua=Koordinaten auf Fn "x,
xJ'(Ma) Einbettung von F""1 in Rn.

à*=Koordinaten von p.
Daraus folgt fur die Basisvektoren d/du1,..., d/du""1 auf/"1"1

d

dû1

JPn-l

dyl

ôxj df

und fur die Vektoren e/du\...9 d/du"'1 auf JR"1

ai
woraus

folgt.
Also ist

d

dû'

d

dû'

a du" —

+ v

a du* + v a df dP + v a df

woraus folgt

dP A'--AdF dP A---A dP-(n- l)v a df a dP a---a dP'.

n-2

Damit haben wir

v a df a dP a---a dF {dP A-AdP-dP A-AdP}
n-2

a ^b-i(n — 2)! {dJ" a gj a--- a en_x — Jyî a ëx a

nach der ersten Formel, die wir im Abschnitt 4) hergeleitet haben.

Nun ist dw—é dv+ef dfA v, also

(n-n) a dw AdP A---A dP
ef{n - n) a dv a dP a ••• a dP + e?{n - n) a df a v a dP a ••• a dP.



Kongruenzsatze fur geschlossene Flâchen in Riemannschen Raumen 181

Der zweite Term auf der rechten Seite ergibt nun nach unserer Zwischenbetrachtung

ef(n - n) a df a v a dP a ••• a dP
ef(n — n)(n — 2)! {dÂ a et a ••• a en^1 — dÂ a ëx a ••• a ën_l}.
ef(n - 2)! (- l)""1 (1 - (n, n))(dÂ+dÂ) a^a ••• a en.

Fur den ersten Term auf der rechten Seite erhalten wir mit àv—v^G* a et

fiAdvAdPA--AdP (- l)""1^ - 2)! (X vl) dÂ a ex a ••• a en,

n a dv a dP a ~AdF (- if'Hn - 2)\ (t t>3 (n9 n) dÂ a^a ••• a en

+ (- l)n-2(n - 2)1 vin* dÂAe.A ». a en9

also

(n — n) a dw a dP A--- a dP

(- l)""1 (n - 2)! ef(l - (n, n)) (dÂ + dÂ) et a - a en

+ (- îy^O - 2)! efvnan* dÂ a e*A ••• a en.

Zusammenfassend erhalten wir damit

d((n - n) a w a dP a • • • a dP

(- l)""1 (n - 1)! (H-H)(w, n) dÂ a ^t a ••• a en

+ (- l)""1 (n - 2)! ef(l - (n, n)) (dÂ + dÂ) e, a »• a en

+ (- l)""1 (n - 2)! ^{(1 - (n, n)) J] ^ + t;aw«a - 6;V} d^ a et a - a

Den Ausdruck D (l — (n, n)) Y, vl-{-v^nai + brJnvj wollen wir jetzt noch etwas um-
formen. Zunàchst ist a

(I «9 (i - (*, «)) Œ »D (i - (*. «)) - < +
a i

und

Daraus ergibt sich fur D :
l

D (1 - (n, n)) àivv + ^wJ + fc^V - t;".
Andererseits ist

wobei <^fy die in Abschnitt 3) erwâhnte Lie-Ableitung lângs v bedeutet; also ist

vnjnJ + bt?v3 -(&vnin).
Nun definieren wir fiir ein Vektorfeld w wiel und irgend einen Vektor y=yJej:
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wobei Wj der gemischte Tensor in dw=w)o3 a et ist. Falls w und y Vektorfelder sind,

gilt
dyw - dwy &yvt - &wy.

Daraus folgt
vnn (</,!>, jî) (dvn9 n) - (JP.n, n) - (<?vn9 n)9

da (dvn, n)=0; wir erhalten damit fur den Ausdruck D:

D (1 - (n9 n)) divi> + (^(/î - »), n).

Zusammenfassend erhalten wir daraus mit dem Satz von Stokes:

on((n — h) a w a dP a ••• a dP)

(^l)-i(n_l), J {R-ft)^n)dÀ

+ (- l)»-1 (n - 2)! | J ^(1 - (n, n)) (dA + dÂ)

J ^ ((1 - («, «)) div v + (^ (« - n), n)) dÀ.
n-1

0F»-

+

Falls nun Fn~l geschlossen und auf F"'1 H=ffist9 so ist die linke Seite sowie der

erste Term auf der rechten Seite der obigen Gleichung=O, womit wir den folgenden
Satz erhalten:

Satz : Falls Fn~x geschlossen ist und aufF"'1 gilt R=É und

D (1 - (n, H)) divt; + (X9(n - n), n) > 0,
so ist

1 — («, n) 0, also n n.

Fails auf Fn~l aber uberall (1 -(w, «)) divy + ^^^-w), «)<0 ist, so betrachten

wir statt der Transformationsgruppe ${t9p) die Transformationsgruppe <P'(t,p)
<&( — t9p); wir haben dann

Im ersten Intégral auf der rechten Seite der obigen Integralformel, das nicht ver-

schwindet, falls Ë=Ê9 steht dann ef'=e~~f statt ef9 sonst ândert sich nichts, wâhrend

im andern Intégral zudem noch v durch v'= — v ersetzt werden muss. Nun ist div v'

« —divv und («JSf^(w—n), «)= — (^(«—«), «); wir erhalten also das Résultat w=#

auc^fûr diesen Fall.
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Aus n h folgt aber, da et a • • • a en ët a • • • a ëm

ex a---a en_1 =ëx a---a ën_l
und

a1 a ••• a on~l a1 a---a â"'1
also

dF A--a dP=dP a~-a dP

(n-D (n-D
Nun ist

dP A--- a dP dP A->A dP-(n-l)v a df a dP a— a dP,

woraus
v a df a dP A--A dP 0

folgt. Ausgerechnet ergibt das

v a df a dP a ••• a dP vp faaa a g"1 a ••• a <ran~2 a ^ a eai a ••• a ean_2

somit + ""/>" a (Tai a a (Ta-2 a en a e^ a - a e,]_2 0,

vnfaaa a <xai a ••• a <Tan"2 a en a eai a ••• a ean_2

(- l)"'1 (ft - 2)i VnfadÂ A 6W A 6t A •- A ?a A A £„_! 0
also

»V« o

fiir aile a. Falls wir einen Punkt p$S betrachten, so ist vn^0, also/a 0, woraus
df/dup 0, also/=konstant folgt. Also gilt/=konstant auf Fn~l-S, somit/=kon-
stant auf ganz Fn~i wegen der Stetigkeit von/, da S nirgends dicht auf Fn~1 voraus-
gesetzt wurde.

Zum Abschluss dièses Abschnittes zeigen wir noch, dass fur gewisse konforme
Abbildungen, die als Spezialfall die homothetischen sowie die isometrischen Abbil-
dungen umfassen, gilt:

D (1 - («, «)) div v + (<&v (n - «), n) ^ 0 (bzw. < 0)
Es ist

und

wobei

P <Pt(P)'

Weiterhin giit fur konforme Transformationen nach Abschnitt 3)

<Pt* (ei)p + y/<P(t>P) («iV - ^ (t, P) (et)r
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wobei wir \l/(t9p) +J(p(t,p) gesetzt haben. Also ist

und aus (pso(pt (ps+t folgt

also

somit

Durch genaue gleiche Ûberlegungen erhàlt man auch

Damit ergibt sich fur konforme Transformationen

Es ist also D^O (bzw. Z>^0), genau dann, wenn \j/f(O,p)^O (bzw. <0). Ist nun

$(t9p) homothetisch, so ist ij/ unabhângig von p, also ist \j/f (09p) auf F"'1 eine

Konstante; ist $(p,t) isometrisch, so ist \l/(t,p)==l, also D=0. Damit haben wir
folgenden Kongruenzsatz bewiesen:

F11"1 und F"'1 seien zwei geschlossene, orientierte Hyperflâchen in einem Rie-
mannschen Raum Rn; dabei sei Fn~x aufFn~ * mittels einer einparametrigen konformen
Transformationsgruppe $ (t, p) unter Erhaltung der Orientierung so abgebildet, dass

wobei f(p) eine gegebene differenzierbare Funktion auf F*'1 ist. Falls dann H=Ê ist

und die Menge der Punkte peF""1, in denen der Tangentialvektor v an die Stromlinien
der Transformationsgruppe im Tangentialraum der Hyperflâche F"'1 liegt, nirgends
dicht auf F""1 istf sowie ^'(0,^)^0 (bzw. <0) uberall auf F""1, so ist f(p) eine

Konstante. Dabei ist \j/ (t, p)~yj(p (t, p) und q> (t, p) der in der Définition der konformen
Transformationen auftretende Faktor (siehe Abschnitt 3).
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5. Der Kongruenzsatz fîir fc-dimensionale Flachen im Rn

In diesem Abschnitt bezeichne Fk eine onentierbare fc-dimensionale Flache in
emem onentierbaren Riemannschen Raum Rn Dabei sei nun, falls

xl xl(ua) l^i^n, l<a^/c
die lokale Darstellung der Flache ist, die Matrix

duc

in jedem Punkt vom Rang k Weiterhin wahlen wir wiederum in der Umgebung
jedes Punktes peFk n orthonormierte Vektorfelder el9 en so, dass el9 ek im
Tangentialraum von Fk und ek+1, ,en senkrecht zu Fk sind, damit haben wir

Aus k

dP= E^Ae,
a=l

folgt
dP a a dP — k} àA a e1 a a ek

î
'

wobei die Berechnung genau gleich wie bei Hyperflachen verlauft Um auch eine
Formel fur die mittlere Krummung zu bekommen, setzen wir zunachst auf Fk

dex œJlfi crp a e}
womit wir fur die ea bekommen

dea co{p a0 a ej œyaft ap a ey 4- Kp gp a es

Dabei haben wir cosap bsaP gesetzt, und fur die Indizes soll immer l^a, jS, y^k,
n

l^ij^n und k +1 ^s, t<n gelten £ bsaPes sind in dieser Formel die vektorwer-
s k+l

tigen Komponenten der zweiten Fundamentalform auf Fk

Weiterhin gilt mit

ff A A dP A dN J] (Tai A g4l A A (J***1 A eafc-1 A ek+l A A^.A A é?w,

N ek+l a Aen

(fc-iT" s=k+i

n
also dP a a dP a dN £ û)^<rai a a or"*"1 a o

a £*+! a a ^v_i a ea a e.+ 1 a a en
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Nun folgt aus (ei9 deJ)Jt{dei, ej)=0, dass

also

womit wir erhalten

n

dP a •" a dP a dN (k - 1)! £ (- l)5"* (£ bsao) dA a et a •

'^" s fc+l a

^' Z ("" If* H$ dA a et a ••• a es a •••

In der obigen Formel haben wir den mittleren Krûmmungsvektor

eingefûhrt.
Im folgenden seien nun Fk und jF* orientierbare /c-dimensionale Flâchen im Rie-

mannschen Raum Rn, die unter Erhaltung der Orientierung durch eine einparametrige
Transformationsgruppe # (t, j?) so aufeinander abgebildet sind, dass

Fk {<P(f(p),p)\peFk} oder F* {#(-/(#,£) |/?e/*}.

S bezeichne wiederum die Menge derjenigen Punkte auf Fk, fur die der Strômungs-
vektor v im Tangentialraum von Fk liegt. S soll wie bisher nirgends dicht in Fk liegen.

w(p) bezeichnet wieder den Vektor e/(p) • v, und die Pk seien wie bisher definiert. Dann
betrachten wir in Analogie zum («— l)-dimensionalen Fall den Ausdruck

W AdP A'-AdP A(N-N)

und berechnen die Wirkung des Operators d auf dièse Grosse. Dann wird

w AdP a-AdP a dfî=k\ £ (-lY~kB'dÂwJeJAe1 a-a£5 a-a en

fe!(~ if'^R, w)dÂ a et a-a en.

Zur Vereinfachung der weiteren Rechnung legen wir nun das «-Bein eu...,en
genauer fest. Wie fur Hyperflâchen berechnet man

dP a '•- a dP dP a ••• AdP- k-v a df a dP A->AdF

somit
v a dP a--- a dP v a dP a ••• a dP

(k) (F)
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also

dA a v a ëx a • " a ëk dÂ a v a e^ a • • • a ek,

woraus folgt, dass der Vektorraum aufgespannt von v, ëu...,ëk derselbe ist wie

derjenige, aufgespannt von v9ei9...9ek. In den Punkten p$S wahlen wir nun das

«-Bein el9...9en so, dass el9...9ek+1 im Vektorraum aufgespannt von v9el9...9ek
und die ea(1 ^a =^k) im Tangentialraum von Fk liegen. Dann kônnen wir furs'&k + l
die ës so wahlen, dass ës — eS9 womit ëk+1= £ nlet wird.

Mit diesen Festsetzungen wird I== x

und

w a ^/jP a • • • a dP a dN
lfc-1)

W7'^ A (Jai A eai A ••• A a"*"1 A ^afc_1 A ^efc+1 A ek + 2 A---A

^. a d"1 a eai a "• a d^'1 a eak.j a ^+1 a ••• a des a • • • a en.

Mit dëk+l—— b'J a* a ev des co^a aa a ^, rV s, s ^ A: + 2 ergibt sich daraus

W AdP A'-'A dP A dN

(— ^{w'b^ff011 A ••• A (7afc"1 A G* A eai A ••• A e^.j A gy A ef A ek + 2 A #" A 6n

— WJ CO*
a

Cai A • • • A Gak~l A G* A eai A • • • A £afc_ t A ej A ëk+1 A • • • A es_t

AetAes+l a---a ej
In dieser Formel ist der zweite Summand rechts gleich Null, da wj 0 und fij 0 fur
7>/c + 2 und zudem i^s. Damit ergibt sich

w a dP A--- a dP a dN

(- If'1 Wk+1bffGai A---A G*k-1 A Ga A eai A— A eotk_i A ^ A efc+1 A--A en

+ (-l)kw*b'k+lGai A'-ag**-1 a g* a eai A'"Aeah_% Aea

somit

w AdP a-a dP a dfî= (- l)'"1^ - 1)! w*+1(I i>ia) dÂAetA '- a en

+ (- if(k - 1)! fe;k+1 wa dÂ a ex a a eH.

Ausserdem gilt wiederum im Rn

dëk+i - b'JGj a et - fyâ3 a ei9

zudem ist (ek+2,..., eB)=(^+2,..., O und 5^îî 0, woraus man
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erhâlt, wobei/ï*+1 die (fc+1). Komponente von//in der Darstellung

ff=Hiei
ist. Zusammenfassend haben wir damit gezeigt

w a dP a -• a dP a dÏÏ=(- lf'1 kl (w, ek+1) (H, ëk+1) dÂ a ex a ••• a en

+ (- lf(k - 1)! wjb'ï+1 dÂAe^A ••• a <?„.

Die weitere Rechnung verlâuft nun gleich wie bei Hyperflâchen. Aus

v a df a dP a---a dP (k- 1)1 (dÂ a et a —a ek-dÂ a ëx a---a ëk)

folgt

v a df a dP A--- a dP a (fî - N) (jfc - 1)! (dÂ + dÂ) (1 - (», w)) a ^ a ••• a ^rt

wobei wir n fur efc+1 und « fur ^k+ x gesetzt haben. Ausserdem ist mit

dv vlaaa a et

dv A dP A'"AdP A N (k - 1)! (X Vl) dÂAexA ••• A en

und
dv AdP A-'AdP Aiï=(k- 1)1 (£ t£) «k+1 dlA^A ••• A eM

-(fc-l^'^^lA^ A-A eB.

Mit dw—e* dv+ef dfA v folgt daraus

dw a dP A---a dP a (N - If) ef(k - 1)1 -(1 - («, w)) Q] p«) dÂ a ex a ••• a en

(l)f./ï«^+1^A ei A-A en

+ ^(fc - 1)!-(1 - (n, n)) (dÂ + dÂ) a ^i a ••• a eH.

Fassen wir nun dièse Rechnungen zusammen. Wir haben

d(w A dP A'-AdP A(N-N)
dw AdP A - A dP A (N-N) + (- l)*-1 W A dP A-A dP A d(N~N),

somit

d(w AdP a -AdP a(N- tt))

k\ (w, n) {(#, n) - (ff9 h)} dÂAexA ••• a en

+ (k - l)i /(l - (S, «)) (dif + di) ^ a - a e.
+ (ik - l)i ^{(1 - («, «)) (£ O + «¦»î+1 + vjb'ï+1) dÂAe.A - a en.
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Der Ausdruck D (l-(n, n)) (£ vl) + n*vk+1 + vjb'jk+1 lâsst sich wieder umformen

zu
k+i

D (l- (n, n)) £ vj) + {SPv{n - «), îi)

und wird fur konforme Abbildungen nach genau gleicher Rechnung wie bei Hyper-
flâchen

Mit dem Satz von Stokes erhalten wir daraus fiir konforme Transformations-

gruppen <P(t,p) die folgende Integralformel:

f on(w a dP a ••• AdPA(N- N))

k\j {(H,n)-(H,n)}(w,n)dÂ
pu

Falls nun Fk geschlossen ist und wir voraussetzen, dass fiir aile Punkte p$S (H, n)

(//, n) ist und \l/'(0,p) von konstantem Vorzeichen auf Fk ist, folgt aus dieser

Integralformel wie bei Hyperflâchen n n und daraus /(/?) konst. auf Fk.

Die Voraussetzung (H,n) (H,n) bedeutet dabei, dass die beiden mittleren
Krûmmungen, bezogen auf die im Vektorraum aufgespannt vom Tangentialraum an
die Flâche Fk bzw. Fk und dem Strômungsvektor v liegenden Normalen, gleich sind.

Zusammenfassend haben wir also den folgenden Satz bewiesen:
Fk und Fk seien zwei geschlossene, orientierte k-dimensionale Flâchen in einem

Riemannschen Raum Rn, die durch eine einparametrige Transformationsgruppe $ (t, p)
unter Erhaltung der Orientierung mit Hilfe einer Funktionf(p) auf Fk so aufeinander
abgebïldet sind, dass

Fk {<l>(f(p),p)\peFk};

zudem seien zujedem Punkt poeFk Flâchen F^folgendermassen definiert:

H undÈ seien die entsprechenden mittleren Krummungsvektoren in p, S sei die Menge
der Punkte p, in denen der Tangentialvektor v an die Stromlinien <P(t,p)~e<t<+s
im Tangentialraum von Fk liegt. In den Punkten p$S seien il bzw. n die Normalen an
die Flâche Fk bzw. Fk, die im Vektorraum aufgespannt von den Tangentialvektoren von
Fk und dem Vektor v liegen.
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Falls dann S nirgends dicht auf Fk liegt sowie (H, n) (ff, h) fur jeden Punkt p$S
gilt, und <P(t9p) eine konforme Transformationsgruppe mit ^'(0,/?)^0 (bzw. ^0) auf
Fk ist, wobei il/(t,p)=y/(p(t,p) und q>(t9p) der in der Définition der konformen Ab-
bildung auftretende Faktor ist, so ist f(p)=konstant, d.h. Fk und Fk sind kongruent be-

zuglich der Transformationsgruppe 0 (t, p).
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