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138
Marinescu-Raume

von HANs JARCHOW (Ziirich)

0. Einleitung

Im Mittelpunkt dieser Arbeit steht eine Klasse von Limesvektorrdumen, die bei
der Begriindung einer Differentialrechnung fiir lokalkonvexe Rdume eine wichtige
Rolle spielt, siche H. H. KELLER [8], [9]. Diese Rdume wurden unter dem Namen
,,pseudotopologische Vereinigungen lokalkonvexer Rdume** bereits von G. MARI-
NESCU [11] eingefiihrt, wir wollen sie Marinescu-Rdume nennen.

Im ersten Kapitel skizzieren wir die Theorie der Limesrdume nach H. R. FISCHER
[5]. Wichtig ist vor allem der Begriff des induktiven Limes von Limesrdumen. Das
zweite Kapitel behandelt Limesvektorrdume. Der Begriff des Marinescu-Raumes
wird eingefithrt, und das Tensorprodukt von Limesvektorriumen (Marinescu-
Réaumen) wird projektiv zu einem Limesvektorraum (Marinescu-Raum) gemacht. Im
letzten Kapitel werden Rdume stetiger linearer und multilinearer Abbildungen
zwischen Marinescu-Rdumen nach einem aus [8] abgeleiteten Verfahren mit Mari-
nescu-Limitierungen versehen. Wir zeigen, dass alle von H. H. KELLER in [9] gestellten
Forderungen erfiillt sind, so dass eine gewisse berechtigte Hoffnung besteht, sogar
eine Differentialrechnung fiir Marinescu-Rdume begriinden zu kénnen.

1. Limesriume -
1.1 Aligemeine Begriffe

Dieser Abschnitt enthélt Begriffe und Aussagen aus der Theorie der Limesrdume,
die spédter benétigt werden. Eine ausfiihrlichere Darstellung findet man bei H. R.
FiscHER [5] oder J. WLOKA [12].

Fiir eine nichtleere Menge M sei B(#(M)) die Potenzmenge der Menge F (M)
aller Filter auf M. Eine Limitierung A auf M ist eine Abbildung i: M—P(F(M)),
die fiir jedes xeM folgende Eigenschaften besitzt:

(L1) ®ei(x), yeF (M), ®cy=yei(x).

(L2) Pei(x), Yyei(x)=>Pnyel(x).

(L3) xei(x).
X ist der von xeM erzeugte triviale Ultrafilter in M. Das Paar (M, 1) heisst ein
Limesraum, die Filter aus A(x) heissen konvergent gegen xe M. Geniigt eine Menge

von Filtern in M den Axiomen (L 1) und (L 2), so heisst sie ein Filterideal.
Der Limesraum (M, 1) (die Limitierung A) heisst separiert, wenn in M jeder Filter
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gegen hochstens einen Punkt konvergiert. Das ist genau dann der Fall, wenn fiir
(x, y)eM x M aus x#y stets folgt: A(x)nA(y)=0.

Jeder topologische Raum (X, .7") ist in natiirlicher Weise ein Limesraum (X, 1):
Fiir jedes xeX besteht das Filterideal 1(x) gerade aus allen Oberfiltern des 7 -Um-
gebungsfilters von x in X. Wir werden Topologien immer mit den zugehorigen
Limitierungen identifizieren.

(M, 2) und (N, p) seien Limesrdume. Eine Abbildung f: M— N heisst (4, p)-stetig
im Punkte xeM, wenn aus ®eA(x) immer f(®)epu(f (x)) folgt. Damit definiert man
wie iiblich Begriffe wie (4, u)-Stetigkeit (global) und (4, u)-Hom6omorphie. Wir
sagen auch, f sei stetig bzw. ein Homdomorphismus, wenn klar ist, um welche
Limitierungen es sich handelt. Gilt M =N, so schreiben wir u <A oder 1> u (u grober
als A oder A feiner als u), wenn die Identitdt von M eine (4, p)-stetige Abbildung ist.
p<A gilt genau dann, wenn A(x) < u(x) fir jedes xe M.

Gegeben seien nun eine nichtleere Menge M, eine Familie ((M,, 4,)),c4 voOR
Limesrdumen (4 #0) und zu jedem ae 4 zwei Abbildungen g,: M,—» M und f,: M— M,.
Unter allen Limitierungen auf M, fiir die jedes g, stetig ist, gibt es eine feinste 1%, und
unter allen Limitierungen auf M, fiir die jedes f, stetig ist, gibt es eine grobste 4,.
Wir nennen A° die finale Limitierung von (g,),. . und A, die initiale Limitierung von
(f2)ac - Fiir ein xe M wird das Filterideal A°(x)erzeugt von x und allen Filtern der
Form g,(¢,) mit y,e4,(»,) und y,eg, '(x), ac A. Dagegen konvergiert ein Filter ®
auf M genau dann beziiglich A, gegen ein xe M, wenn f,(®)eA,(f,(x)) fiir jedes ac 4
gilt. Ist (X, ¢) ein weiterer Limesraum, so ist eine Abbildung f: M— X genau dann
(4°, o)-stetig, wenn fiir jedes ac 4 die Komposition f g, eine (4,, ¢)-stetige Abbildung
ist. Eine Abbildung g: X— M ist hingegen genau dann (g, 4,)-stetig, wenn fiir jedes
ae 4 die Komposition f,.g eine (g, 4,)-stetige Abbildung ist. Sind alle 4, Topologien,
so ist A, stets eine Topologie. Dies muss fiir A° nicht wahr sein.

Man erhélt hieraus durch Spezialisierung den Begriff der Quotientenlimitierung
auf dem Quotienten M/R fiir einen Limesraum (M, A) und eine Aquivalenzrelation
R auf M, ferner den Begriff des Limesunterraumes eines gegebenen Limesraumes und

schliesslich den Begriff der Produktlimitierung [] A, auf dem kartesischen Produkt
aed

I] M, einer nichtleeren Familie ((M,, 4;))ac4 von Limesrdumen. Fir x=(x,),c4€
aeA

[1 M, wird dabei (J]4,) (x) erzeugt von allen Produktfiltern ] &, mit ,€4,(x,). Esist

ae A
[T genau dann separiert, wenn jede der Limitierungen A, separiert ist. Ist (¥, ) Limes-
unterraum des Limesraumes (M, 1), so nennen wir u oft auch die von A auf N indu-
zierte Limitierung. Fiir Einzelheiten und Beweise sei auf H. R. FISCHER [5] verwiesen.

1.2 Induktiver und projektiver Limes

(M, 4) und (N, p) seien Limesrdume, M sei Teilmenge von N. Ist die Inklusion
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M- N eine (4, u)-stetige Abbildung, so schreiben wir
(M’ A’)<(Na M)‘

Wir betrachten eine nichtleere Familie ((M,, 4,)),.4 von Limesrdumen, deren
Indexmenge A4 durch eine Ordnungsrelation ,, <‘“ gerichtet ist und verlangen:

(IND) ((a,d')ed x A, a<a)=>(M,A)<(M,, ).
Die finale Limitierung A auf M:=|_ M, der Familie der Einbettungen M,— M, ac A,

aed
heisst der induktive Limes von (4,),., und wird bezeichnet mit
A=1ind 4,.

ac A

Wenn wir in Zukunft den soeben geschilderten Sachverhalt meinen, werden wir dies
immer durch die Schreibweise
(M, A) = ind (M,, 4,)

acA
ausdriicken.

Ist speziell A=N die Menge der natiirlichen Zahlen und ist (M,, 4,) Limesunter-
raum von (M, ,, A,+,) fiir jedes neN, so heisst A=ind A, der strikte induktive Limes
der Folge (4,),en- neN

Sind in (M, A)=ind(M,, 4,) alle 4, Topologien, so muss deswegen A noch keine

ac A
Topologie sein; siehe etwa [8] oder (2.2) dieser Arbeit. Man beachte, dass wir in der

Kategorie der Limesrdume arbeiten!
In (M, A)=ind(M,, A,) bezeichnen wir die Inklusionsabbildungen M,—M mit

ae A
i,, ac A. Die konvergenten Filter von (M, A) sind wie folgt charakterisiert (siehe [5]):

1.2.1 SATz: Ein Filter ® auf M konvergiert genau dann beziiglich ind A, gegen xe M,
wenn es ein ac A und einen Filter @, auf M, gibt, so dass gilt: ae4d

(D xeM,, AI) ¢,ei,(x), (1) i,(P,)=

Wegen (111) ist @, Basis von @ in M, mindestens ein Element aus d) liegt also in M, !
Mit Hilfe dieses Satzes zeigt man (siehe [5]):

1.2.2 SATZ: Der induktive Limes indA, ist genau dann separiert, wenn jede der
Limitierungen A, separiert ist. acd
Wir zeigen weiter, dass die universelle Eigenschaft von ind A, sogar punktweise
: A
gllt: ae

1.2.3 LemMaA: Ist (N, u) ein Limesraum, so ist eine Abbildung f: M — N genau dann
(A, p)-stetig in xe M, wenn die Restriktion f, von f auf M,(2,, u)-stetig ist in x fiir jedes
a €A, fiir welches xe M, gilt.
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Beweis: Es sei A’ die Menge aller ae A, fiir welche xe M, gilt. £, sei (4,, u)-stetig in
x fiir jedes ae A’. Zu ®e A(x) gibt esnach (1.2.1) ein ae A’ und einen Filter @, auf M, mit
@ € A,(x), so dass @, Basisvon @ in M ist. Wegen f(®)=1,(D,)eu(f(x))ist fstetigin x.

Uber die Stetigkeit von Abbildungen mit Werten in induktiven Limites von
Limesrdumen ldsst sich in Verallgemeinerung des entsprechenden Resultats aus
[8] folgendes aussagen:

1.2.4 LEMMA: Gegeben seien (M, 2)=ind(M,, A,) und ein topologischer Raum

ae A

(N, ). Eine Abbildung g:N— M ist genau dann (t, A)-stetig in x€ N, wenn es ein ac A
sowie eine Umgebung U von x in (N, ) gibt, so dass gilt:

(1) g(U)=M,.

(2) Die durch g bestimmte Abbildung g,:U— M, ist (ty, A,)-stetig in xe€ U; dabei
ist Ty die von © auf U induzierte Topologie.

Beweis: Wenn (1) und (2) erfiillt sind, so ist g (t, A)-stetig in x, weil U Umgebung
ist von x in (N, 7). Ist umgekehrt g (7, A)-stetig in x und %, der Umgebungsfilter von
x in (N, 1), so gibt es wegen g(%,)eA(g(x)) ein ae A und einen Filter @, auf M,, so
dass g(x)eM,, ®,€4,(g(x)) und &, Basis von g(%,) in M ist. Fiir mindestens ein
Ue%, ist also g(U)=M,, und der von %, auf U induzierte Filter liefert unter gy
eine Basis von g(%,) in M, q.e.d.

In der Kategorie der Limesrdume ist die Bildung des induktiven Limes nur ver-
tauschbar mit der Bildung endlicher kartesischer Produkte:

1.2.5 SATZ: ((M,, 1,))ac 4 Sei eine endliche Familie von Limesrdumen, und fiir jedes
aeA sei (M,, A,)= ind (M,,, A,,) ein induktiver Limes. Dann gilt:

ba€ B,
(H M,, H ]“a) =i“d(n M,,, H A'ba)'
ae A aeAd beB acAd aecA
Darin ist B:=[| B, und b:=(b,),c 4.
ac A
Beweis: Wir setzen M:= [| M,, My:=[] M,_, A:= []A,und 4,:=[] A,,. Auf B defi-
ae A ac A ae A acA

nieren wir durch (b,)<(b.):<>(b,<b, Vae A) eine Ordnungsrelation ,,<*. Dann ist

(B, <) gerichtet, und man iiberlegt sich leicht, dass A':=ind A, auf M existiert. Uber
beB

die universelle Eigenschaft von Produktlimitierungen folgt A <A!. Man erhilt A'<4,

wenn man fiir beliebiges x=(x,)e M einen Produktfilter =[] &,eA(x) betrachtet,
acA

P,€,(x,) VaeA. Zu jedem ae A gibt es ein b,e B, und einen Filter &, auf M, , so
dass x,eM, @, €4y (x,) und &, von &, erzeugt wird. Es ist [ | &, €4,(x) Basis von
®in M, also de!(x), weil A endlich vorausgesetzt wurde! <4

Die Bildung des induktiven Limes ist bei Limesriumen vertauschbar mit der
Quotientenbildung :
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1.2.6 SATZ: Gegeben seien (M, A)=ind(M,, A,) und eine Aquivalenzrelation R in

ae A
M. Fiir jedes ac A sei R, die von R auf M, induzierte Aquivalenzrelation. Sind y bzw.

U, die Quotientenlimitierungen auf M/R bzw. M,/R,, so gilt:
(MIR, 1) = ind (M,/Ry ).
ae

Beweis: Die Existenz einer Limitierung u’ =ind p, auf M/R ist trivial. u' <pu folgt
ac A

aus der universellen Eigenschaft von 4, und u<py! folgt aus der universellen Eigen-
schaft von y, fiir jedes ae 4.

Die hier angegebene Definition des induktiven Limes ist nicht die allgemeinste,
die moglich ist. Sie reicht fiir unsere Zwecke jedoch aus. Eine allgemeinere Definition
findet man z.B. bei H. R. FiscHER [5].

Wir bendtigen noch den Begriff des projektiven Limes von Limesrdumen. Zu seiner
Definition gehen wir wieder aus von einer Familie ((M,, 4,)),.4 von Limesrdumen,
deren Indexmenge A(#0) durch eine Ordnungsrelation ,,<‘* gerichtet ist. Wir ver-
langen:

(PROJ) Fiir jedes (a, a')e A x A mit a<a’ existiert eine (A, A,)-stetige Abbildung
hyy: M, — M,, so dass gilt:
Fiir a<a’'<a" ist hypo=h,p 0%, 4 a, a'y a"€ A. Fiir jedes ac A ist h,, die
Identitdt von M,

Die Restriktion der natiirlichen Projektion [[ M,— M, auf
aed

M: = {(xa)aeA ! xaEMa; Xg = haa’(xa’) fl.ll' a < a,}
soll A, heissen. Fiir a<a’ ist dann h,=h,, - h,. Die initiale Limitierung A von (%,), 4
auf M heisst der projektive Limes von (1,), 4, Wir wollen ihn mit

A = proji,

acAd

bezeichnen. In Zukunft soll die Schreibweise

(M, '{) = pr(}] (Ma’ ;l'a)
immer als Abkiirzung fiir den soeben geschilderten Sachverhalt dienen. Wir kdnnen
zumeist auf eine ausdriickliche Angabe des definierenden Abbildungssystems ver-
zichten. Unmittelbar aus der universellen Eigenschaft des projektiven Limes ergibt
sich:

1.2.7 SaTZ: In (M, A)=proj(M,, A,) ist A identisch mit der von ([] M,, [] 4.) af
M induzierten Limitierung. “<4 acA  acd
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Ist also A, separiert fiir jedes ae A4, so ist proj 4, separiert. Sind alle 4, Topologien,

ac A
so ist auch proji, eine Topologie. proj4, ist eine metrisierbare Topologie, wenn A
ae A ae A .
abzihlbar ist und alle 4, metrisierbare Topologien sind.

2. Marinescu-Riume

Wir beginnen mit einer Zusammenstellung von Begriffen und Aussagen aus der
Theorie der Limesvektorraume, die wir spiter bendtigen. Anschliessend betrachten
wir induktive und projektive Limites von Limesvektorrdumen und fithren den Begriff
des Marinescu-Raumes ein. Auf dem Tensorprodukt von Limesvektorrdumen und
speziell von Marinescu-Rdumen definieren wir schliesslich projektiv vertrdgliche
Limitierungen und beweisen einige ihrer Eigenschaften.

2.1 Limesvektorriume

Unter einem Vektorraum (abgekiirzt VR) soll hier stets ein solcher iiber dem
Korper R der reellen Zahlen verstanden werden. Ein Limesvektorraum oder limitierter
Vektorraum (abgekiirzt LVR) ist ein Limesraum (E, 1) bestehend aus einem VR E
und einer Limitierung 4 auf E, so dass die algebraischen Operationen in FE stetig sind.
Dabei trigt R seine natiirliche Topologie 1g. Den Nullumgebungsfilter in (R, tg) be-
zeichnen wir mit V. Die Limitierung 4 des LVR (E, 1) nennen wir vertrdglich oder
eine VR-Limitierung. J ist translationsinvariant, durch das Ideal A(0) also bereits
bestimmt. Eine lineare Abbildung von einem LVR in einen anderen ist also genau dann
stetig, wenn sie stetig ist im Nullpunkt.

Die Frage nach der Vertriglichkeit von Limitierungen auf Vektorrdumen wird
durch folgenden Satz beantwortet (s. [5]):

2.1.1 SATz: Eine Limitierung . auf einem VR E ist genau dann eine V R-Limitierung,
wenn sie translationsinvariant ist und den folgenden Bedingungen geniigt:

(1) 4(0) + A(0) < A(0). ) r-A(0) = A(0)VreR.
(3) V-4(0) < 4(0). (4) V-xei(0)VxeE.

Insbesondere ist jeder topologische Raum in natiirlicher Weise ein LVR. Sind
weiter E ein VR, ((E,, A,));c4 ¢ine LVR-Familie und (u,),., eine Familie linearer
Apbildungen u,.E— E,, so ist die initiale Limitierung von (u,),., auf E eine VR-
leitierung. Das kartesische Produkt einer LVR-Familie ist also ein LVR, jeder
lfneare Limesunterraum eines LVR ist ein LVR. Ist noch (E, A) ein LVR und H ein
llr_learer Teilraum von E, so ist auch die Quotientenlimitierung von E/H eine VR-
Limitierung. Sie ist sogar eine Topologie, wenn A eine Topologie ist.

In dieser Arbeit soll fiir ,lokalkonvex immer die Abkiirzung Jlc. verwendet
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werden. Ist (E, A) ein LVR, so gibt es unter allen Ic. Topologien auf E, welche grober
sind als A, eine feinste k(). Sie heisst die zu A assoziierte lokalkonvexe Topologie.
Eine definierende Seminormenfamilie fiir (1) bilden z.B. alle fiir A stetigen Semi-
normen von E. Die konvexen Mengen des Filters () {®#€A(0)} bilden eine Null-
umgebungsbasis in (E, k(4)). Es ist k(1) genau dann separiert, wenn es zu jedem
x€E mit x #0 eine konvexe Menge V, in () {®eA(0)} gibt, so dass x ¢ V,, vgl. auch [6].
Der folgende Satz findet sich in [5]:

2.1.2 SATZ: Eine lineare Abbildung von einem LVR (E, 1) in einen lc. VR (F, kp)
ist genau dann (A, kg)-stetig, wenn sie (x (1), kg)-stetig ist.

Der Operator x ist vertauschbar mit der Bildung kartesischer Produkte von
endlich vielen LVR:

2.1.3 SATz: Fiir LVR (E,, ;) und (E,, 1,) gilt stets
k(A x Ay) =x(4y) xk(4,).

Beweis: k() xk(4,)<x(4; x 4,) folgt aus der (44 x 4,, 4;)-Stetigkeit der Projek-
tionen E, x E, - E,, i=1, 2. Umgekehrt sind die Inklusionsabbildungen E; - E; x E,
linear und (4;, 4; x 4,)-stetig, also auch (x(4,), k(4 x 4,))-stetig. x(4; x A,) <x(4y) x
Kk(4,) ergibt sich, wenn man (E; x E,, x(4,) x k(4,)) identifiziert mit der Ic. direkten
Summe der (E;, x(4,)).

Ist (E, Ag) ein LVR und F ein linearer Teilraum von E, so ist die assoziierte lokal-
konvexe Topologie der von Ag auf F induzierten Limitierung jedenfalls feiner als die
von k(4z) auf F induzierte Topologie. Gleichheit kann aber nicht behauptet werden,
vgl. die Bemerkung im Anschluss an (2.2.3). Aus der Separiertheit von x(4g) folgt
aber wenigstens immer die Separiertheit von k(4z), wobei Ap die von Az induzierte
Limitierung ist.

2.2 Induktiver und projektiver Limes

Es seien (A4, <) eine gerichtete Halbordnung und ((E,, 4,)),c4 €ine mit A4 indi-
zierte LVR-Familie. Fiir (a, a’)e4 x 4 und a<da’ sei (E,, 4,)<(E,, 4,-). Wir wollen
stillschweigend voraussetzen, dass Inklusionen bei Vektorrdumen immer linear sein

sollen. Dann ist E:= | E, in natiirlicher Weise ein VR, und A:=ind 4, ist eine VR-
acA acA

Limitierung von E. Diesen Sachverhalt denken wir uns von nun an immer als ge-
geben, wenn wir die Schreibweise

(E, 2) = ind (E,, A;)

ac A

fiir LVR benutzen. — Sind alle 4, VR-Topologien, so heisst (E, 1) in Anlehnung an
G. MARINESCU [11] eine pseudotopologische Vereinigung oder kurz ein PTV-Raum.
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Sind alle 4, lokalkonvexe Topologien, so nennen wir (E, 1) einen Marinescu-Raum
und A eine Marinescu-Limitierung.

Nach (1.2.5) ist nur die Bildung des endlichen kartesischen Produktes von LVR
vertauschbar mit der Bildung induktiver Limites von LVR. Wir werden aus diesem
Grunde in der Kategorie der Marinescu-Réume eine weitere Produktlimitierung ein-
fithren. — Nach (1.2.6) ist die Bildung des induktiven Limes von Limesvektorraumen
vertauschbar mit der Quotientenbildung nach linearen Unterrdumen. Es folgt (ver-
gleiche die Anmerkung im Anschluss an (2.1.1)), dass jeder Quotient eines Marinescu-
Raumes (PTV-Raumes) nach einem linearen Teilraum in natiirlicher Weise wieder
ein Marinescu-Raum (PTV-Raum) ist.

Fiir einen Marinescu-Raum (E, A)=ind(E,, kx,) konnen wir den lokalkonvexen
ac A

induktiven Limes von (x,),. 4 auf E bilden, vgl. etwa [3] und [10]. Wir wollen ihn in

dieser Arbeit mit
K =cind k,
acA

bezeichnen und fiir den ganzen Raum entsprechend
(E, k) = cind(E,, ,)

aeAd
schreiben. Mit Hilfe des Begriffes der assoziierten lokalkonvexen Topologie findet
man leicht folgenden Satz (vgl. auch [5], [12]):
2.2.18At1z: Ist (E, })=ind(E,, 4,), so gilt:
ac4d
cind k (4,) = k (ind k (4,)) = x(ind 4,) < ind x (4,) < ind 4,.
ac A ac A aeA acAd

ae A

Daraus ergibt sich mit (1.2.5) und (2.1.3):
2.2.2 KOROLLAR: Fiir (E, A)=ind(E,, 4,) und (F, u)=ind(F,, w,) gilt:
ac A beB

(cindx(4,)) x (cindk (1)) = cind  (x(4,) x x(up))-
acA beB (a,b)e AXB

2.2.3 SATZ: Gegeben seien (E, A)=ind(E,, A,) und ein linearer Teilraum F von E.

ac A
Es seien y die von A auf F induzierte Limitierung, p, die von A, auf F,:=F N E, indu-

zierte Limitierung, ac A. Dann gilt:
(F, p) = indA(Fa’ Ha) -

Beweis: Die Existenz von ind u, und u<indy, sind leicht zu zeigen. Jeder Filter
ac A acA

Dep(0) ist Basis eines Filters yeA(0). Zu ¥ gibt es ein ac 4 und ein y,, Filter auf E,,
welcher Basis von  in E ist und y,€,(0) erfiillt. y besitzt also eine Basis @, in F,,
und es gilt @,ep,(0). Es ist ¢, Basis von & in F.
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Dieser Satz gilt offenbar auch, wenn (E, A) ein induktiver Limes von Limes-
rdumen (E,, A,) ist und man fiir F eine nichtleere Teilmenge von E nimmt. Dann ist
u=ind p,, wobei A’ die Menge aller ae 4 mit F,=F n E,#0 ist.

ac A’

Fiir den Ic. induktiven Limes ist (2.2.3) nicht mehr richtig. Es gibt Beispiele, bei
denen die von k(4) auf Finduzierte Topologie echt grober ist als x(u); vgl. G. KOETHE
[10], Gegenbeispiel No. 5.

2.2.4 KOROLLAR: Jeder lineare Limesunterraum eines Marinescu-Raumes (PTV-
Raumes) ist ein Marinescu-Raum (PTV-Raum).
Ist jetzt ((E,, A.)).c4 €ine nichtleere Familie von Marinescu-Raumen (E,, 4,)=

= ind(E,,, k;,) (analog fiir PTV-Ré4ume), so existiert auf E:=]]E, neben der Pro-
ba€e By aed

duktlimitierung A.:= [] 4, noch die Marinescu-Limitierung A,:=ind (J] ;) mit
acA baeB acA
B:=[] B,. Trivialerweise gilt 1, <1, Wir beweisen mit (1.2.4):
acA

2.2.5 SATZ: E, Ay und Ay seien wie oben definiert. Ist (G, Ag) ein Marinescu-
Raum, so ist eine lineare Abbildung u:G—E genau dann (ig, Ap)-stetig, wenn sie
(Ags Anm)-Stetig ist.

Beweis: Es geniigt, 1=k lokalkonvex vorauszusetzen. Fiir ac A4 sei pr,: E-E,
die kanonische Projektion. Ist # dann (xg, 4. )-stetig, so gibt es nach (1.2.4) zu jedem
ac A ein b,e B,, so dass pr,ou als eine (g, K, )-stetige Abbildung G— E,_ aufgefasst
werden kann: Nullumgebungen in topologischen VR sind ja absorbierend. Fiir ein
(b,)e B kann also u mit einer (kg, [ | x,,)-stetigen Abbildung G — [ [ E,, identifiziert

aeA

ac A
werden, womit bereits alles gezeigt ist.
Sei jetzt noch 4 durch eine Ordnungsrelation ,, < gerichtet. Zu jedem (a, b)e 4 x 4
mit a<b sei eine (4,, 4,)-stetige Abbildung 4,, von E, in E, definiert, so dass (£, 1)=

= proj (E,, A,) beziiglich der k,, existiert. (E, A) ist ein LVR, wenn alle A,,, linear sind,
aecA
und das wollen wir immer stillschweigend voraussetzen, wenn wir projektive Limites

von LVR bilden. Nach (1.2.7) ist (£, 1) linearer Limesunterraum von (E, A,). Sei p
die von A, auf E induzierte Limitierung. Nach (2.2.4) ist u eine Marinescu-Limitie-
rung. Sie ist offensichtlich die grobste unter allen Marinescu-Limitierungen von E,
welche feiner sind als A. Aus den allgemeinen Eigenschaften induzierter Limitierungen
und (2.2.5) folgt:

2.2.6 KOROLLAR: Die Kategorie der Marinescu-Rdume besitzt projektive Limites.

Weil wir fiir Marinescu-Ridume stets nur den projektiven Limes in der Kategorie
der Marinescu-Rédume bilden werden, benutzen wir auch hier die Schreibweise

p =proj 4, und (E, p)=proj (E, 1,).
acA acA
Mit Hilfe von (1.2.4) verallgemeinern wir einige Aussagen aus [8]:
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2.2.7 LemMA: Sind (Ey, t,) und (E,, t,) topologische VR und (F, Ag)=ind(F,, 4;)
beB

ein induktiver Limes, so ist eine bilineare Abbildung u:E, x E, — F genau dann
(71 X T4, Ap)-stetig im Nullpunkt, wenn es ein be B gibt, so dass u(E; x E,)c F, und die
von u bestimmte Abbildung E, x E, - F, (1, X t,, 4,)-stetig ist im Nullpunkt.

Beweis: Man verwendet (1.2.4) und die Tatsache, dass Nullumgebungen in topo-
logischen VR absorbierend sind.

(2.2.7) gilt natiirlich analog auch fiir lineare Abbildungen. Diese sind aber bereits
stetig, wenn sie stetig sind im Nullpunkt. Man erhilt folgende Verallgemeinerung
des entsprechenden Resultates aus [8]:

2.2.8 KOROLLAR: Gibt es auf (E, A)=ind(E,, 4,) eine VR-Topologie, welche feiner

ac A
ist als A, so ist E,=E fiir mindestens ein ac A.

Mit (2.2.7) k6nnen wir ausserdem beweisen:

2.2.9 SATZ: Eine bilineare Abbildung zwischen Marinescu-Rdumen (PTV-Rdumen)
ist genau dann stetig, wenn sie stetig ist im Nullpunkt.

Beweis: (E, Ag)=ind(E,, t,), (F, Ap)=ind(F,, ;) und (G, A5)=ind(G., 1) seien

aec A beB ceC
PTV-Réume. Die bilineare Abbildung u:E x F— G sei (Ag X Ap, Ag)-stetig in (0, 0).
Dann ist nach (1.2.3) fiir jedes (@, b)e A x B die Restriktion u,, von u auf E, x F, im
Nullpunkt (7, % t;, Ag)-stetig. Fiir ein gewisses ce C kann u,, nach (2.2.7) identifiziert
werden mit einer im Nullpunkt und damit global (z, x 1, 7. )-stetigen bilinearen Ab-
bildung E, x F,— G,. Daraus aber folgt die (1g x Az, 4)-Stetigkeit von u.

Man kann sogar beweisen, dass bilineare Abbildungen von PTV-Rédumen in
beliebige LVR genau dann stetig sind, wenn sie im Nullpunkt stetig sind. Ein der-
artiger Satz wird hier jedoch nich benétigt, weshalb wir auf den Beweis verzichten.

Jeder induktive Limes von Marinescu-Réumen (PTV-Riumen) ist ein Marinescu-
Raum (PTV-Raum). Das ist der Inhalt des folgenden Satzes von J. WLOKA [12]:

2.2.10 Satz: (E, A)=ind(E,, A,) sei ein induktiver Limes von PTV-Rdumen
acA
(Ess A)= ind (E,,, Ty, ). Fiir jedes ac A sei A N\ B,=0,und fiir a#a’ sei B, " B,,= 0. Dann
bae B,

ist auch (E, 1) ein PTV-Raum:
(E, A.) - ind (Eb’ Tb) .

beB

Dabei ist B:= | ) B, durch b<b':<>(Ey, 1,)<(Ey, 1y) gerichtet.
ac A

Fiir eine nichtleere LVR-Familie ((E,, 4,)), 4 bildet man nach H. R. FISCHER [5]

folgendermassen eine VR-Limitierung auf der direkten Summe E:= @ E,: A* sei die
ac A

Menge der endlichen Teilmengen von A. Fiir A,e A* bilden wir den LVR (E 4, 44,):=
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(I E. Il %) Dannist A4, die feinste VR-Limitierung auf E,, so dass fiir jedes

ae Ao ac Ao
a € A, die Inklusion E,— E, stetig ist. Fassen wir die E, auf als lineare Teilrdume

von E, so ist E= |J E,, und fir A4, A;eA* folgt (E,,, A4,)<(E,,, A4,) aus
Ao e A*
Ay A4,. Die VR-Limitierung A= ind A,, auf E heisst die direkte Summe der VR-

Ao A*

Limitierungen 4, und wird mit @ 4, bezeichnet.
ae A

2.2.11 SATZ: Eine lineare Abbildung von ( @ E,, ® A,) in einen LVR (G, A;) ist

ac A ace A
genau dann (@4, Ag)-stetig, wenn fiir jedes acA ihre Restriktion auf E, (4, Ag)-
stetig ist.
Damit ist A, die feinste VR-Limitierung auf @ E,, so dass alle Inklusionsabbildun-
gen E,— @E, stetig sind. Fiir jede LVR-Familie ((E,, 4,)),4 ist also insbesondere
die Einbettung @ E,— [] E, eine (®4,, [ ] A,)-stetige Abbildung.

Aus der Konstruktion von @ 4, als induktiver Limes ergibt sich eine Reihe
ae A

von Folgerungen. Zunichst erhilt man aus (1.2.2):

2.2.12 KOROLLAR: @ A, ist genau dann separiert, wenn jede der V R-Limitierungen

A, Separiert ist. aed
(2.1.3) und (2.2.1) liefern:

2.2.13 KOROLLAR: Die lc. Topologie k(@ A,) auf @ E, ist die lc. direkte Summe
der Ic. Topologien k(2,). acd acd
Aus (2.2.3) folgt:

2.2.14 KOROLLAR: In der (nichtleeren) LVR-Familie ((E,, A,))aca Sei zu jedem
ac A ein linearer Limesunterraum (F,, u,) von (E,, 1,) gegeben. (®F,, @®u,) ist linearer
Limesunterraum von (D E,, ®4,).

Weiter erhalten wir aus (2.2.10):

2.2.15 KOROLLAR: Fiir jede (nichtleere) Familie ((E,, A,))aca von Marinescu-
Rdumen (PTV-Rdumen) ist (® E,, ® A,) ein Marinescu-Raum (PTV-Raum).

ae A ac A

Schliesslich ergibt sich aus (2.2.8):

2.2.16 KOROLLAR: Gibt es auf ® E, eine VR-Topologie feiner als die Limitierung
ae A

der direkten Summe @ A, so ist E,# {0} nur fiir hichstens endlich viele ac A erfiillt.
aecA

Fiir eine (nichtleere) Familie ((E,, ,)),c4 fopologischer VR ist also @ 1, genau
ac A

dann eine Topologie, wenn E,# {0} nur fiir hdchstens endlich viele ae 4 erfiillt ist.
Abschliessend beweisen wir:
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2.2.17 SAtz: (E, Ag)=ind(E,, A,) ist linear homdomorph zu einem limitierten
aec A

Quotienten der direkten Summe (® E,, ® A,) nach einem linearen Teilraum von @ E,.
acAd acAd acAd

Beweis: i,: E,— FE und j,:E,— @E, seien die Inklusionsabbildungen, ae 4. Wir
definieren ¢:@® E,— E durch q( ), j.(x,)):= ) i,(x,); dabei sind nur jeweils endlich
ac i

acd

viele x, von Null verschieden. g ist linear und surjektiv wegen E= | i,(E,). Fir
ac A

jedes aeA ist qoj, (A, Ag)-stetig, also ist g (DA,, Ap)-stetig. A, sei die Quotienten-
limitierung auf Q:=@®E,/qg~"(0). Zu g gibt es eine wohlbestimmte lineare (1y, Ar)-
stetige Bijektion r: Q — E mit g=rop, wobei p:® E,— Q die natiirliche Projektion ist.
r~1ist (Ag, Ag)-stetig, weil r = oi,=poj, fiir jedes ac 4 eine (4,, Ap)-stetige Abbildung
ist.

Nach der Bemerkung am Anfang dieses Abschnittes gilt aber auch die Umkeh-
rung: Jeder Quotient einer direkten Summe von LVR nach einem linearen Teilraum
ist unter der Quotientenlimitierung ein induktiver Limes von LVR.

2.3 Tensorprodukte von Limesvektorrdumen und Marinescu-Rdumen

Fiir Limesvektorrdume (E, Ag) und (F, Az) bilden wir auf dem Tensorprodukt
E® F die finale Limitierung A* der kanonischen bilinearen Abbildung ¢: Ex F— EQF.
Fiir ze@(E x F) wird A*(z) erzeugt von allen Filtern der Form ® ® y:= ¢ (P x ¢) mit
®elp(x), yerp(y) und x®y=2z. Gehort aber ze EQF nicht zu ¢(E x F), so ist

M*(2)={z}.
2.3.1 LeMMA: Das Filterideal A*(0) hat folgende Eigenschaften:

(1) r-A*(0) < A*(0)VreR.
(2) V-2*(0) = 1*(0).
(3) V-zei*(0)Vzeo(E x F).

Beweis: Es sei ®*= (") (x,+P,)®(y;+¥;) mit ®;€45(0), ¥;€1£(0) und x;®y,;=0,
i=1

I<i<n. Fiir festes i ist dann sicher einer der Vektoren x;, y; der Nullvektor. Ist z.B.
X;=0,s0ist r ($,Q(y; +¥,))=(r @)®(y;+¥;)€A*(0), weil - &, € 15 (0), reR. Analog
ist V-(2,)®(y;+y;)e 4*(0), weil V- ®,e15(0). Daraus folgt r- d*e1*(0) fiir jedes reR
und V-@*e*(0). Fir z=x®ye@(E x F) ist schliesslich V-z=(V-x)®ye1*(0), weil
V-xelg(0).

Wir bilden das System I' der endlichen Summen von Filtern aus A*(0) und dann
das von I' erzeugte Filterideal (A;®4z) (0) in E®F. Dieses enthilt den trivialen
Ultrafilter 0 und erfiillt wieder die Bedingungen (1)—(3) aus (2.3.1). Man kann aber
noch (3) ersetzen durch

(3) V-ze(A;® Ar) (0)VzeEQ®F.
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n

Es lasst sich ja ein ze EQ F stets schreiben als z= Y x;®y; mit x;e E, y;eF, und es gilt

YV (x®y)=V-Ex®y)=V-z.

Seien ®= () ®;und Y= (") ¥; aus (Az®4) (0) mit &;, Y ;el'. Dann ist &, +y el
i=1 j=1

fiir jedes Paar (i, j), also
P+ Y= (P +¥;)e(A ® 4r) (0).
i, J

Definieren wir (A;®A4f) (2):=2z+(A®4r) (0) fiir jedes ze EQF, so erhalten wir
nach (2.1.1) eine VR-Limitierung A;®A; auf E®F. Nach Konstruktion ist
2*(0)=(Ae®4f) (0); fiir ze EQ Fund z¢ ¢ (E x F) ist trivialerweise 1*(z) (A ® ) (2).

Sei ze@(E x F) und #eA*(z) von der Form &= ") (x;+ @) ®(y;+ ;) mit &, A(0),
i=1
Y,€Ap(0) und x;®y;=z. Wir schreiben ®=z+ (") ©; und haben Pe(1z®41;) (z), weil

Q:=x,QY;+P,Qy;+ D,QY;€(A:®Af) (0). Daher ist A*(z)c=(Az®4f) (z) fiir jedes
ze EQF, und wir haben die (Ag X A5, ;®Af)-Stetigkeit der Abbildung ¢.

Es seien (G, Ag) ein weiterer LVR, u:E x F— G eine bilineare Abbildung und
#: EQ F— G ihre assoziierte lineare Abbildung (. =u). Ist # (1;®Af, A¢)-stetig, so
ist natiirlich u (Ag x Ay, Ag)-stetig. Ist umgekehrt u (A x A, 1) und Pe(A®4r) (0)

vyon del‘ Form ¢= m Z (¢l1®|/,lj) mit (D,-jeiE(x,-j), l//,jEAF(le) und x;’j®yij=0,

i=1 j=1

so ist #(®)= (N X u(P;; x ¥; ;)€As(0), also ist @ (Az@Ar, Ag)-stetig.
i J
Wir fassen unsere Resultate zusammen:

2.3.2 SATZ: Sind (E, Ag) und (F, Ap) LVR, so gibt es unter allen VR-Limitierungen
auf dem Tensorprodukt EQF, fiir welche die kanonische bilineare Abbildung ¢:E x F —
EQ®F stetig ist, eine feinste. Wir bezeichnen sie mit Ag® Ap.

Das Filterideal (Ag®Ag) (0) wird erzeugt von allen endlichen Summen von Filtern
aus A*(0), wo A* die finale Limitierung von ¢ auf EQF ist.

Ist (G, Ag) ein beliebiger LVR, so ist eine bilineare Abbildung u:E x F— G genau
dann (Ag x A, Ag)-stetig, wenn ihre assoziierte lineare Abbildung i: EQ F — G (Az®Ar,
Ag)-stetig ist.

Die Zuordnung u+ # vermittelt also einen linearen Isomorphismus des Raumes
Z(E, F; G) aller bilinearen (Agx Ap, Ag)-stetigen Abbildungen E x F— G auf den
Raum Z(EQ®F, G) aller linearen (Az®Af, Ag)-stetigen Abbildungen EQF — G.

Es folgt ferner, dass u genau dann (A % Ay, A¢)-stetig ist, wenn u diese Eigenschaft
in jedem Punkt von ¢ ~*(0) besitzt. Ob die globale Stetigkeit von u aber bereits aus
der Stetigkeit im Nullpunkt folgt, ist nicht bekannt. Man vergleiche hierzu jedoch
(2.2.9) und die daran anschliessende Bemerkung.
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In Anlehnung an A. GROTHENDIECK [7] nennen wir A;® A das projektive Tensor-
produkt der VR-Limitierungen Az und ;. Folgende Eigenschaften projektiver Tensor-
produkte von VR-Limitierungen erhdlt man unmittelbar aus (2.3.2):

2.3.3 SATZ: Fiir LVR (E, Ag),(F, A) und (G, 1) sind (EQF, A;®Ap) und
(FRE, Ap®15) sowie (EQ(FRG), Ag®(Ar®A¢)) und (EQF)®G, (A®Ap)®1g) in

kanonischer Weise linear homéomorph.

2.3.4 SATZ: u;:E;— F, seien lineare (A;, u;)-stetige Abbildungen zwischen LVR
(Ei, A,) und (F,, u;), i=1, 2. Dann ist ihr Kronecker-Produkt u; @u,:E,QE, - F,®F,
stetig fiir die projektiven Tensorproduktlimitierungen. u, @u, ist ein linearer Homéo-
morphismus, wenn dies fiir u; und u, gilt.

2.3.5 SaTz: Jeder LVR (E, Ag) ist in kanonischer Weise linear homéomorph zu
(ROE, 1@ 4g).

Beweis: Zu zeigen ist die HomOomorphie des kanonischen Isomorphismus
r@x—r-x von RQFE auf E. Die Stetigkeit ist klar, weil in jedem LVR die Skalar-
multiplikation stetig ist. Fir ®€;(0) ist i ® Pe(1x®Ag) (0), also ist auch die durch
x> 1®x bestimmte inverse Abbildung von E auf RQ E stetig.

Fiir LVR (E, Ag) und (F, Af) ist also Z(E, R)®Z(F, R) auffassbar als linearer
Teilraum von Z(E, F; R).

Die Bildung von A®AF ist vertraglich mit der Bildung induktiver Limites von
Limesvektorrdumen:

2.3.6 Satz: Fiir (E, Ag)=ind(E,, A,) und (F, Ag)=ind(F,, 1;) existiert A®=

ae A beB

ind (4,®4;) auf EQF, und es gilt
(a,b)e AxB
A® = AE ® A’F .
Beweis: Die Existenz von 1% folgt aus EQ F= | (E,®F,) und (E,®F,, 1,®4;)
AXB

<(E,®Fy, 1,®2) fiir (a, b)<(a’, b'). Die Gleichheit 1% =1;® A folgt aus der uni-
versellen Eigenschaft des induktiven Limes A® einerseits und der universellen Eigen-
schaft von A;® A andererseits.

Wir zeigen damit, dass die Bildung von A;®Ar mit der Bildung der direkten
Summe bei LVR vertriglich ist:

2.3.7 Satz: Fiir beliebige (nichtleere) LVR-Familien ((E,, A))ac und (Fyy 1)) es
ist die kanonische Abbildung

1:(OE)®(®F)~> & (E.®F)

AXB

ein linearer ((D4,)(®uy), ®(A,® Ws))-Homdomorphismus.
Beweis: Wegen (2.3.6) geniigt es, die Behauptung fiir endliche direkte Summen
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(endliche kartesische Produkte) zu beweisen. Sei also 4={1,...,n} und o0.B.d.A.
B={1}. Setze F:=F, und betrachte die kanonischen Abbildungen #: [[ E;®@ F—
[T(E:®F)und g:[] E;x F—>[] (E;x F). Aus der Stetigkeit von g folgt die Stetigkeit
von 7. Bezeichnen wir mit #;: E; - [ | E; die natiirlichen Einbettungen, so definiert das
System (2,®idy), <;<, stetiger linearer Abbildungen E;® F — || E;®F eindeutig eine
stetige lineare Abbildung 9: [] (E;QF) - [| E;®F. Esist 3=n""1.

Fiir lokalkonvexe VR (E, kg) und (F, k) hat man auf EQ F neben der projektiven
Tensorproduktlimitierung k;®xky noch die von A. GROTHENDIECK in [7] eingefiihrte
projektive Tensorprodukttopologie, die wir mit k@« bezeichnen wollen. Sie ist die

feinste Ic. Topologie auf EQF, so dass ¢:E x F— EQF stetig ist. Fiir Einzelheiten
siehe [7].
Wir wissen nicht, ob k;®«r und x;®«ky identisch sind, vermuten jedoch, dass

c

Kg®ky i.a. nicht einmal eine Topologie ist. Wir konnen nur den folgenden Satz be-
weisen:

2.3.8 SATz: Fiir lokalkonvexe VR (E, xg) und (F, k) ist
K (kg @ Kp) = KE? KF-
Beweis: Aus k®kp<kp®ky folgt k@« <k (KpRKp). Aus der (kg X Kp, Kg®Kp)-
Stetigkeit von ¢ folg; die (kg X K, K (;cE®1c:))-Stetigkeit und damit k (k;® k) S K@ K.
2.3.9 Sarz: Sind (E, lE)=ini(Ea, K,) und (F, AF)=ibn(}3 (Fy, ) Marinescu—Rc'i:tme,

so gibt es unter allen Marinescu-Limitierungen auf EQF, fiir welche ¢ : E - EQF stetig
ist, eine feinste AM.

Fiir jeden Marinescu-Raum (G, Ag) gilt: Eine bilineare Abbildung u: Ex F— G ist
genau dann (Agx Ap, Ag)-stetig, wenn ihre assoziierte lineare Abbildung 1i:EQF — G
(AM, Ag)-stetig ist.

Beweis: Man zeigt genau wie in (2.3.6), dass ind(x,®x;) auf EQF existiert.
AXB c

Dieser induktive Limes ist gerade unser gesuchtes ¥, wie aus den universellen Eigen-
schaften induktiver Limites und projektiver Tensorprodukttopologien sofort folgt.

Fiir lokalkonvexe VR (G, k) und (H, kg) ist die.projektive Tensorprodukt-
topologie k;®xy nach (2.2.7) sogar die feinste Marinescu-Limitierung auf G® H,

fiir welche G x H - G® H stetig ist. Wir schreiben aus diesem Grunde fiir Marinescu-
Réiume (E, Az) und (F, Ag) fiir die Limitierung AM aus (2.3.9) 1;® A

Aus der Konstruktion von A;® 4y folgt mit (2.2.1) und (2.3.8):

2.3.10 KOROLLAR: Fiir Marinescu-Rdume (E, Ag) und (F, Ag) besitzen die beiden
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Tensorproduktlimitierungen Ag®2Ap und Ag®Ap dieselbe assoziierte lokalkonvexe
Topologie. g
Diese ist aber nicht notwendig mit x(Az)®x(Ar) identisch, siehe unten!

Wenn (E, Ag) und (F, Ar) Limesvektorrdume mit E {0} und F # {0} sind, so
folgt aus der Separiertheit von A;®@Ar immer die Separiertheit von Az und Ag.
Denn ist z.B. Ay nicht separiert, ®elz(x) N1z(0) mit x#0 also mdglich, so ist
dRYe(A:®AF) (0) N (A®4r) (x®y) fiir jedes yeF und jeden Filter Yelp(y). Also
ist auch A;®Ar nicht separiert. Es ist jedoch eine offene Frage, ob aus der Sepa-
riertheit von Az und A, auch die Separiertheit von A;® Af folgt. Allerdings gilt:

2.3.11 SATz: Fiir Marinescu-Rdume (E, Ag) und (F, Ag) mit E# {0} und F+ {0}
sind folgende Aussagen dquivalent:

(1) Ag und Ay sind separiert.

(2) Ag®Af ist separiert.

(3) Ax®Ap ist separiert.

Beweis: (1)<>(2), weil diese Aussagen nach [7] fiir Ic. VR gleichwertig sind und
(1.2.2) gilt. (2) = (3) folgt wegen A®Ar <Az ®Ar. Aus der oben gemachten Bemerkung
folgt schliesslich: (3)=(1). €

2.3.12 Satz: Es seien (E;, A;)= ind (E,,k,), i=1,2, Marinescu-Rdume. Auf

aje A;

E,QF, gibt es genau dann eine VR-Topologie feiner als 1, ®12, wenn es auf jedem E;
eine VR-Topologie feiner als 1, gibt.
Beweis: Auf E;®E, gibt es genau dann eine VR-Topologie feiner als 1, ®A4,,
[+

wenn E, QE, =E, ®E, fiir ein (a,, a,)e 4; x 4, erfiillt ist. Das ist jedoch genau dann
wahr, wenn E, =E, und E, =E, gilt, wenn es also auf E; und E, VR-Topologien
feiner als A, bzw. A, gibt.

Lésst eine der Marinescu-Limitierungen A,, A, also keine feinere VR-Topologie
zu, so sind 4, ®1, und 4, ®4, keine Topologien.

(Ey, A1) und (E,, 1,) seien beliebige LVR. Es liegt die Vermutung nahe, dass die
zu 4, ®4, assoziierte Ic. Topologie auf E, ® E, gerade x(4,)®x(4,) ist. Trivialerweise

gilt K(4,)®x(4,) <k (4, ®41,), das Gleichheitszeichen ist jedoch schon fiir Marinescu-

Réume falsch. Wiirde es nimlich gelten, so konnte man folgern, dass fiir einen lc.
VR (F, k) eine bilineare Abbildung E, x E, - F genau dann (A, x 4,, kp)-stetig ist,
wenn sie (k(4,) x x(4,), kp)-stetig ist. In (3.2.4) werden wir zeigen, dass diese Aussage
fiir Marinescu-Raume nicht richtig sein muss. In dem dort angegebenen Gegenbei-
spiel ist iibrigens auch x(1; ®4,) £ x(4)®x(4,).

Unter gewissen einschrinkenden Voraussetzungen kann man jedoch die Stetigkeit
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linearer und bilinearer Abbildungen zwischen Marinescu-Rdumen vollstindig mit
Hilfe der assoziierten lc. Topologien zu den vorliegenden Limitierungen ausdriicken.
In Anlehnung an die bekannte Terminologie bei Ic. Rdumen fithren wir dazu die
folgenden Bezeichnungen ein: '

(E, Ag) sei ein Marinescu-Raum, wobei Az=indx, ein strikter induktiver Limes
neN

einer Folge (k,),en von lc. Topologien ist. Sind alle x, Fréchet-Topologien oder
Normtopologien oder Banach-Topologien, so nennen wir (E, 1z) einen LF-Raum,
einen LN-Raum oder einen LB-Raum. Man beachte aber, dass es sich um Limes-
vektorrdume handelt.

A. GROTHENDIECK beweist in [7], Intr. IV, dass eine lineare Abbildung von einem
Fréchet-Raum (E, kg) in einen LF-Raum (F, Az)=ind(F,, k,) genau dann (kg, x(45))-

neN
stetig ist, wenn es ein neN gibt, so dass u(E) < F, gilt und die durch u bestimmte Ab-

bildung E - F, (kg, k,)-stetig ist. Offenbar geniigt es, nur die Metrisierbarkeit der lc.
Topologie k zu verlangen. Mit dieser Aussage beweisen wir:
2.3.13 Satz: In den Marinescu-Riumen (E, Ag)=ind(E, ;) und (F, Ap)=

aec A
ind (Fy, k) seien die Ic. Topologien i, und x; metrisierbar. Fiir jeden LF-Raum (G, Ag)=
beB
ind(G,, },) gilt:
neN
Eine bilineare Abbildung u:E x F— G ist genau dann (Ag X Ag, Ag)-stetig, wenn sie

(Ag X A, k(Ag))-stetig ist.
Beweis: Aus der (4g X Af, Ag)-Stetigkeit von u folgt natiirlich die (Ag X Ap, x(4¢))-
Stetigkeit. Fiir die Umkehrung beachten wir, dass mit k, und «; auch x,®x, metri-

sierbar ist. Sei also u (Ag X Ay, k(4d¢g))-stetig. Dann ist fiir jedes (@, b)ed x B die
Restriktion u,, von u auf E, x F, eine (k, X k;, k(Ag))-stetige bilineare Abbildung. Es
gibt dann ein neN, so dass die zu u,, assoziierte lineare Abbildung i,, mit einer
(x,®xy, Ky)-stetigen linearen Abbildung E,® F,— G, identifiziert werden kann. Dar-

aus folgt die (x, x x;, Ag)-Stetigkeit von u,, fir jedes (a, b)e4x B und damit die
(Ag % A, Ag)-Stetigkeit von wu.

Speziell gilt (2.3.13) fiir bilineare Abbildungen zwischen LF-Rdumen. Ausserdem
gilt sie natiirlich analog fiir lineare Abbildungen. Fiir solche hat man zusammen
mit (2.1.2): '

2.3.14 SATz: Eine lineare Abbildung von einem Marinescu-Raum (E, Ag)=ind(E,, k,)
ac A

mit metrisierbaren Topologien x, in einen LF-Raum (F, Ag) ist genau dann (Ag, Ag)-
stetig, wenn sie (k(Ag), k(Ag))-stetig ist.

(2.3.14) gilt insbesondere fiir lineare Abbildungen zwischen LF-Ridumen.
Aus [7] iibernehmen wir einen weiteren Satz (§ 1, n° 3, Korollar der Proposition 6):
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2.3.15 Satz: (E, Ag)=ind(E,, ,) sei ein Marinescu-Raum, so dass x(Ag) separiert
ae A

ist. (F, k) sei ein lc. VR. Ist (F, kz) normierbar oder A abzihlbar und (F, rcF) ein (DF)-
Raum, so gilt:
Kk (Ag) ® kp = cind (k, ® k).
acAd c
Die Definition von (DF)-Rdumen findet man z.B. in [10]. Wir ben6tigen hier aber
nur, dass fiir einen LN-Raum (G, ;) die assoziierte lokalkonvexe Topologie k(4g)
vom Typ (DF) ist.

2.3.16 SATZ: Fiir LN-Rdume (E, Ag)=ind(E,, x;) und (F, Ag)=ind(F;, k) gilt:
jeN

ieN

k(dg) ® k(Ap) = kK (Ar ® Af).

Beweis: Verwendet werden (2.3.15), (2.2.1) und (2.3.10):
k(dg) ® K (4r) = cind (k; ® k (45)) = k (ind (cind (k; ® 7)) = k (A ® Ar)

ieN c ieN jeN c

=k(Az ® Ap).

2.3.17 KoRrOLLAR: Sind (E, Ag) und (F, Ay) LN-Rdume und (G, k) ein lc. VR, so
ist eine bilineare Abbildung E x F— G genau dann (Ag X A, Kg)-Stetig, wenn sie
(r(Ag) x K (Ap), Kg)-stetig ist.

Und zusammen mit (2.3.13) erhalten wir daraus:

2.3.18 KOROLLAR: Sind (E, Ag) und (F, Ag) LN-Rdume und (G, Ag) ein LF-Raum,
so ist eine bilineare Abbildung E x F— G genau dann (Ag X Ap, Ag)-stetig, wenn sie
(e (4g) x K (Ap), k(Ag))-stetig ist.

(2.3.18) gilt insbesondere fiir bilineare Abbildungen zwischen LB-Riumen.

Die hier fiir den Fall von zwei Limesvektorrdumen (Marinescu-Riumen) durch-
gefiihrte Konstruktion von VR-Limitierungen auf dem Tensorprodukt der vorgelegten
Réume kann ohne weiteres auf eine beliebige endliche Familie von Limesvektorriu-
men (Marinescu-R4dumen) iibertragen werden. Es gelten dann weiterhin alle Aussagen
dieses Abschnittes.

3. Marinescu-Limitierungen auf Riumen stetiger multilinearer Abbildungen

Fiir separierte Ic. VR (E, kg) und (F, x5) hat H. H. KELLER (vgl. [8] und [9]) den
Raum #"(E, F) aller stetigen n-fach linearen Abbildungen E" — F mit einer Marines-
cu-Limitierung versehen, die gewisse, fiir die Begriindung einer Differentialrechnung
wiinschenswerte Eigenschaften besitzt. Ohne Schwierigkeiten kann man bei dieser

n
Konstruktion E” durch ein kartesisches Produkt ] E; beliebiger separierter Ic.
i=1
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VR (E,, k;) ersetzen. Auf dem Raum #(E,,..., E,; F) der stetigen n-fach linearen
Abbildungen [ E;— F gibt es stets eine Marinescu-Limitierung mit den gewiinschten
Eigenschaften.

Sind die E; nicht normierbar, so ist diese Limitierung keine Topologie, und es gibt
auf Z(E,, ..., E,; F) auch keine VR-Topologie, welche alle geforderten Eigenschaften
hat. Die Begriindung einer Differentialrechnung fiir Ic. VR scheint also im Rahmen
der lc. VR nicht ohne weiteres moglich zu sein. Die Tatsache, dass man durch ein
Ausweichen auf Marinescu-Rédume jedoch weiterkommen kann, lisst die Vermutung
zu, dass man allgemeiner in der Kategorie der Marinescu-Riume eine Differential-
rechnung begriinden konnte, wenn es geldnge, fiir Marinescu-Raume (F, Az), (E;, 4,),
1<i<n, den Raum Z(E,,..., E,; F) der stetigen n-fach linearen Abbildungen
[ E.—F mit einer Marinescu-Limitierung zu versehen, welche allen Forderungen
aus [9] geniigt.

Wir konstruieren diese Limitierung zunédchst im Falle n=1 und iibertragen sie
dann mit Hilfe des Tensorproduktes auf Rdume stetiger multilinearer Abbildungen.

3.1 Die Limitierung A%

Fiir beliebige LVR (E, Ag) und (F, Ag) seien Z(E, F) der Raum aller (Ag, Af)-
stetigen linearen Abbildungen E— F und Q(E, F) der Raum aller (x(4g), k(45))-
stetigen linearen Abbildungen E— F. Wegen (2.1.2) ist Z(E, F) immer linearer Teil-

raum von ..é\”(E, F). Gleichheit hat man z.B. im Falle E=R, weil dann #(R, F) aus
allen linearen Abbildungen R — F besteht. Gilt Az =« (Ag) oder sind (E, Ag) und (F, i)

LF-Réume, so hat man ebenfalls Z(E, F)=§ (E, F), vgl. (2.3.14).

Auf & (E, F) konstruiert man nach [8] wie folgt eine Marinescu-Limitierung,
vgl. auch [11]:

Es seien Sg bzw. Sy definierende Seminormenfamilien in (E, x(Ag)) bzw. (F, x(4g)),
davon S, gerichtet. Eine lineare Abbildung u:E— F ist genau dann (x(4g), k(4F))-
stetig, wenn es eine Abbildung ¢: Sy — Sg gibt, so dass

|tlg, eiqy: = sup {[u(x)], l x€E, |X|yq < 1} <00 VqeSk.

(Ix]eq: =12(q) (x), usw.). Mit S, ist die Menge T aller Abbildungen Sp— Sy, in natiir-
licher Weise gerichtet. Fiir jedes teT ist

Z.(E, F): = {ue Z(E, F)| luly, <V q€Sg}

ein linearer Teilraum von Z(E, F); die .?,(E, F) iiberdecken @ (E, F). Fiir (¢, )€

T x Sy definiert die Zuordnung u |u|, ., eine Seminorm s, in 2 (E, F); die Familie
{sqlquF} ist dann definierende Seminormenfamilie fiir eine Ic. Topologie K, von

.‘?,(E, F). Fiir t<t' ist noch (:?,(E, F), ;e,)<(.€?,,(E, F), R,), so dass der induktive
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Limes
AEF: = ind &,
teT
auf Z(E, F) existiert. Die Marinescu-Limitierung AEF st separiert, wenn x(Jp)
separiert ist. Sie wird durch x(4g) und x(45) eindeutig bestimmt und ist nicht etwa
abhiingig von der speziellen Wahl der definierenden Seminormenfamilien Sg und Sg.

Die von AEF auf Z(E, F) induzierte Limitierung bezeichnen wir mit A®F. Sie ist
nach (2.2.4) ebenfalls eine Marinescu-Limitierung. Aus [8], Satz 9, folgt:

3.1.1 SATz: Fiir LVR (E, Ag), (F, Az) und (G, Ag) ist die kanonische Abbildung
. L (E, F)x Z(F, G)» Z(E, G) (AEF x ATC, AEC)-stetig.

3.1.2 KoROLLAR: Es seien (E, 1), (Ey, A,) und (E,, A,) LVR, so dass (Ey, 1)<
(E,, A;). Dann sind die kanonischen Abbildungen ¥ (E, E,)— £ (E, E,)und £ (E,,E)—>
ZL(E,, E) (AFE, AEE2)-stetig bzw. (AF2E, AF1E)-stetig.

Unter einer Limesalgebra verstehen wir einen Limesraum (A4, 1) bestehend aus
einer R-Algebra 4 und einer Limitierung A auf A4, so dass die algebraischen Opera-
tionen von A stetig sind.

3.1.3 KOROLLAR: Fiir jeden LVR (E, 1) ist (£ (E, E), A¥F) eine Limesalgebra.

3.2 Die Limitierung A®F
In diesem Abschnitt seien (E, Ag)=ind(E,, ,) und (F, A¢)=ind(F,, ;) Marinescu-

ac A beB

Riume. Die Marinescu-Limitierungen AZF*(=AE<F+) auf £ (E,, F,) (=,? (E, Fp))
bezeichnen wir mit 4. Wir wollen aus den A in natiirlicher Weise eine Marinescu-
Limitierung 4®F auf £ (E, F) konstruieren und zeigen, dass diese nicht mit der
Marinescu-Limitierung AEF iibereinstimmen muss.

Bei festem aed ist £ (E,, F,) fiir jedes be B identifizierbar mit einem linearen
Teilraum von &£ (E,, F). Aus der Bemerkung im Anschluss an (2.2.7) folgt Z(E,, F)=
bLEJBz(E,,, F,). Fir b<b’ hat man nach (3.1.2) (Z(E,, F,), 4°?)<(Z (E,, Fy), A°").

Auf Z(E,, F) gibt es also eine VR-Limitierung 4% so dass
(Z(E,, F), 4°) = ind (£ (E,, F,), 4*°).
beB

Nach (2.2.10) ist 4° eine Marinescu-Limitierung.
Jetzt betrachten wir die Familie ((Z(E,, F), 4%),.4. Fiir a<a’ und jedes be B hat
man das folgende kommutative Diagramm:

2 (E,, F) 2% % (E,, F)
ibT ij
°?(Ea” Fb) -;E_,’ g(Eaa Fb)
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Darin sind iy, ji, 0,4, 8%, die kanonischen Abbildungen. Jedes 6%, ist (A4%’®, A°?)-stetig
nach (3.1.2). Aus der universellen Eigenschaft von 4% folgt daher die (4%, 4°)-Stetig-
keit von 0,,. Eine lineare Abbildung E— F gehort genau dann zu £ (E, F), wenn fiir
jedes ae A ihre Restriktion auf E, zu % (E,, F) gehort. Fir jedes ac4 ist 0,, die
Identitédt von £ (E,, F), und firr a<a’<a” gilt stets 0,,.=0,, 00, .. Ausserdem sind
alle Abbildungen linear. Auf Z(E, F) existiert also eine VR-Limitierung 4%F, so dass

(Z(E, F), 4%F) = proj (£ (E,, F), 4%

beziiglich der 6, . in der Kategorie der Marinescu-Raume gilt, siehe (2.2.6). Sie stimmt
mit A®F iiberein, wenn Ay =x(1g) und Ar=x(4;) gilt.

3.2.1 Satz: Seien (E, ki) ein lc. VR und (F, Ag) ein Marinescu-Raum. Dann gilt
fiir die beiden Marinescu-Limitierungen AEF und A®F von & (E, F):

AEF <AEF

Der Beweis ergibt sich aus (3.1.2) und der universellen Eigenschaft induktiver
Limites. Das Gleichheitszeichen muss in (3.2.1) jedoch nicht immer richtig sein:

3.2.2 GEGENBEISPIEL 1: X sei ein lokalkompakter topologischer Raum, nicht
kompakt, jedoch abzihlbar im Unendlichen. (Q,),.n sei eine offene Uberdeckung
von X, so dass K,:=0, kompakt und echt in @, enthalten ist fiir jedes neN. Der
VR aller reellwertigen stetigen Funktionen auf X mit kompaktem Tréger sei E, der
lineare Unterraum aller Funktionen aus E mit Tréger in K, sei E,. Fiir jedes neN ist

E, linearer Teilraum von E, . ,, ferner ist E= | E,.
neN

Es ist jedoch E,# E fiir jedes neN. In der Alexandroff’schen Kompaktifizierung
X* von X sind nidmlich alle K, und ‘Q, (Komplement von Q, in X*) abgeschlossen.
Fiir festes neN sind also insbesondere die disjunkten Mengen S:=K,,, N °Q,,, und
R:=K,uU°Q,,; abgeschlossen in X*. Es gibt daher eine stetige Funktion f*:X* —
[0, 1], die S und R trennt. Der Triager T* von f* liegt in K, 5, ist kompakt und zu-
gleich Trager der Restriktion f von f* auf X. Es ist also feE, aber f¢E,,.

x, sei die Topologie der uniformen Konvergenz auf E, wir schreiben E, fiir (E, k,).
Die von k, auf E, induzierte Topologie heisse k,, neN. Den Raum der (k,, K,)-
stetigen linearen Abbildungen E— E, nennen wir #Z(E,, E,), den Raum der (x,, 4)-

stetigen Endomorphismen von E nennen wir Z(E,, E). Dabei ist A:=indx, keine
neN

Topologie auf E. Die Marinescu-Limitierungen A%+% bzw. A%E» auf Z(E,, E) bzw.
Z(E,, E,) sind wegen der Normierbarkeit von E, nach [8] Topologien. Der induktive
Limes A%+E der AE«E~ ist aber keine Topologie, denn fiir jedes neN zeigt man sehr
leicht #(E,, E,)# ¥ (E,, E).

Ein weiteres einfacheres Gegenbeispiel hierzu geben wir im Anschluss an (3.3.8).
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3.2.3 SAtz: Sind (E, Ag) ein Marinescu-Raum und (F, k) ein Ic. VR, so gilt fiir

die beiden Marinescu-Limitierungen A®F und A*F auf ¥ (E, F):
AEF < AEF.

Der Beweis ergibt sich diesmal aus der universellen Eigenschaft projektiver Limites
und (3.1.2). Aber auch hier ist das Gleichheitszeichen nicht immer richtig. Das
folgende Gegenbeispiel zeigt ausserdem, dass man fiir LVR (E, 4g), (F, 45), (G, 4¢)
aus der (4gx Ap, k(4g))-Stetigkeit einer bilinearen Abbildung E x F— G nicht not-
wendig auf deren (k(4g)xx(4g), x(Ag))-Stetigkeit schliessen kann; vergleiche die
Bemerkung im Anschluss an (2.3.12).

3.2.4 GEGENBEISPIEL 2: (E, k) sei ein separierter 1c. VR mit gerichteter definieren-
der Seminormenfamilie S und nicht normierbar. Wir versehen den Raum E : = % (E, R)
mit der Marinescu-Limitierung A’:=AE® und konnen schreiben

(E', A") = ind (E}, k),
seS
sieche (3.1). Nach [8] ist A" keine Topologie, und es gibt auf E’ auch keine feinere
VR-Topologie. Das Skalarprodukt w: E x E’— R ist eine (x x A’, 1g)-stetige Bilinear-
form, und A’ ist die grébste unter allen Marinescu-Limitierungen auf E’, fiir welche
w stetig ist. Insbesondere ist also w nicht (x x x(A’), tg)-stetig.

Den Raum E”":=%(E’, R) (E’ trigt die Limitierung A’) versehen wir mit den
Marinescu-Limitierungen 4:=A%® und A”:=AF® Um 4# A" zu zeigen, konstruie-
ren wir eine lineare Abbildung E— E”, die (k, 4)-stetig aber nicht (k, A”)-stetig ist.
Wir machen dabei Gebrauch von den Resultaten und der Schreibweise von (3.3).
Nach (3.3.9) definiert die Zuordnung fi—>f einen linearen Isomorphismus
Z(E,E")> Z(E, E'; R), dabei tragt E” die Limitierung 4, und f ist die aus f
entwickelte bilineare Abbildung. Insbesondere gibt es zum (x x A’, g)-stetigen
Skalarprodukt w eine (x, 4)-stetige lineare Abbildung v:E— E”, so dass w=>.
Wire nun 4=A", so wire v auch (x, A")-stetig, woraus die (x x x(A’), Tg)-Stetigkeit
von w nach [8] folgte: Widerspruch! ‘

Ein einfacheres Gegenbeispiel erhilt man mit Hilfe der bornologischen Rdume,
vgl. [10]. Es sei (E, k(4g)) ein nicht normierbarer bornologischer Raum, d.h. (E, iz)
ist darstellbar als induktiver Limes normierbarer Riume: (E, Ag)=ind(E,, k,). Auf

ac A

Z(E, R) ist die Limitierung A®® keine Topologie und lisst auch keine feinere VR-
Topologie zu. Fiir jedes ac A ist jedoch A%<® auf #(E,, R) gerade die starke Topologie,
wegen (1.2.7) ist also A%® =projAE® eine Topologie auf Z(E, R).

acAd

3.2.5 SA1z: Fiir Marinescu-Riume (E, Ag), (F, Ar) und (G, Ag) ist die kanonische

Abbildung
n:¥(E,F)x Z(F,G)- ¥ (E,G)
(4%F x A¥ O, AEG) sterig.
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Beweis: Mit (E, Ag)=ind(E,, k,), (F, Ar)=ind(F,, x;) und (G, Ag)=ind(G,, «})
ac A beB ceC
ergibt sich der Beweis aus (3.1.1) und dem folgenden Diagramm natiirlicher Ab-

bildungen, welches fiir jedes Tripel (a, b, c)€ A x B x C kommutativ ist:

£ (E, F) x £(F, G.) > Z(E,, G.)
#(E,, Fy) >l< & (Fyy G) —
£ (E, F,) . £(F,G) — ;?(Eaj:G)
#(E,, F) . 2(F,G) —

T
Z(E,F) x £(F,G) — Z(E, G)

3.2.6 KOROLLAR: Fiir jeden Marinescu-Raum (E, Ag) ist (Z(E, E), A®E) eine
Limesalgebra.

3.3 Evaluation und Limitierung der stetigen Konvergenz

(E;, &)= ind (E,, k,,), 1<i<n, und (F, }.F)=in(i(Fb, Kp) seien Marinescu-Raume.
be

a;e A;
Die Rdume #(E,, ..., E,; F) und £( ® E, F) sind kanonisch isomorph, wenn man
i=1
®E; mit einer der in (2.3) konstruierten VR-Limitierungen ®4; bzw. ®4; versieht.

Wir wollen in diesem Abschnitt immer die Marinescu-Limitierung ®A; auf QE; ver-
wenden. €

Fiir jedes (ai)eH A; und jedes be B hat man analog die kanonischen Isomorphien
Z(E,,... E,; )2 %(®FE,,F,) und 4(E,,....,E,; F)x¥4(®E,, F), wobei wir
®E,, mit der lc. Topologie ®x, versehen. Die Marinescu-Limitierungen A%5"®,

A®EaF A®EF guf P(®E,, F,), £(QE,, F), £(®E, F)bezeichnen wir mit A°°, 4°
und 4. Mit Hilfe der Isomorphismen konnen wir sie auf Z(E,,..., E,; F),
Z(E,;..., E,; F) und Z(E,,..., E,;F) iibertragen; wir bezeichnen sie dort der
Reihe nach wieder mit 4%, 4%, A.

Es wire selbstverstindlich méglich, 4°%, 4° und 4 auf den Riumen & (Eaps--es Eaps
F,), #(E,;.... E, ; F), Z(E,,..., E,; F) nach dem Verfahren von (3.2) direkt zu
konstruieren. Man kann dann aber zeigen, dass die oben angegebenen Isomorphismen
sogar Hom6omorphismen sind. Man vergleiche dazu [8], Satz 8.

Die Evaluation von Z(E,,..., E,; F) ist die kanonische Abbildung

Cl):eg(El,..., En; F) X HEi_)F’

w(u, x):=u(x). Wir zeigen:
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3.3.1 SATZ: Die Evaluation von & (E,, ..., E,; F) ist (4 x [ ] A;, Ag)-stetig.

Beweis: w, bzw. w,, seien die Evaluationen von #(E,,..., E,;F) bzw.
Y(E,,,...E, ; F,), be B, a=(a;) €] | 4;- Mit den kanonischen Abbildungeni,: [ E,—
T1E»is:Fo— Fr jo: L (Eaps oos Eg; Fy) = L(Eaps s Eyy F) und 0,: Z(Ey, ..., E,; F)—
Z(E,,;..., E, ; F) haben wir das folgende kommutative Diagramm:

id_? X ia

ZL(E,,..., E; F) x HE,,;———» FL(Ey,..., Ej3 F) % ]—[E,-
} Gaxidp lo
Z(E,,.... E, ; F) x [] E,, = > F
Tisxidp iv]
e'?(Em""’Ean;Fl:') X I—IEai - ’Fb

Nach [8] sind die w,, (4°° x ] x,,, x;)-stetig. Daraus folgt iiber die universelle
Eigenschaft induktiver Limites und die Stetigkeitseigenschaften projektiver Limites
die (4 x [ ] A;, Ap)-Stetigkeit von w.

Mit Hilfe der Evaluation w von £ (Ey, ..., E,; F) definiert man fiir eine Menge M
und eine Abbildung f: M — L (E,, ..., E,; F) die aus f entwickelte Abbildung

f:Mx[]E,~F
i

durch f:=wo(f xidg); dabei ist idy die Identitdt von [] E;. Ferner gestattet w die
Einfithrung der Limitierung A€ der stetigen Konvergenz auf #(E,,..., E,; F) durch
folgende Definition (vgl. [4] und [1]):

Fiir ein ue £ (E,, ..., E,; F) und einen Filter ® auf diesem Raum gilt $ € A°(u) genau
dann, wenn o (P x y)e Ap(u(x)) fiir jedes xe| | E; und jeden Filter ye([] ;) (x).

A€ ist die grobste unter allen Limitierungen y auf & (E,, ..., E,; F), fiir welche die
Evaluation w (x x [] A;, Ap)-stetig ist. Sie ist eine VR-Limitierung und separiert, wenn
Ap separiert ist. Ist (S, Ag) ein Limesraum, so ist eine Abbildung f:S— % (E,,..., E,; F)
genau dann (As, A°)-stetig in pe S, wenn fiir jedes xe[| E; gilt: [ ist (Asx[] A» Ap)-
stetig in (p, x).

Damit lédsst sich (3.3.1) jetzt auch so aussprechen:

3.3.2 KOROLLAR: Auf Z(E,,..., E,; F) ist A feiner als A°.

3.3.3 KOROLLAR: Mit A ist auch A separiert.

A€ und 4 sind jedoch nicht notwendig identisch, wie in [8] fiir lc. VR gezeigt
wurde.

3.3.4 LeMMA: Es sei (Z,1) ein topologischer VR. Eine lineare Abbildung u:Z —
Z(E,,..., E,; F) ist genau dann (t, A)-stetig, wenn sie (t, A°)-stetig ist.

Beweis: Wir setzen E:=[]| E;, E,:=[] E,, Ag:=]] A xa:=]] k4. Wegen A°<4
folgt aus der (, 4)-Stetigkeit von u die (z, A°)-Stetigkeit. Ist umgekehrt u (7, A°)-
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stetig, so ist # (1 X A, Ap)-stetig. Zu jedem a:=(a;)€Ad:=]] 4; gibt es daher ein
beB, so dass die Restriktion (i), von # auf Z x E, identifiziert werden kann mit
einer (n+ 1)-linearen (7 X k,, k;)-stetigen Abbildung Z x E,— F,. Fiir (z, x)aus Z x E,
zeigt man (i), (z, x)=w,0(0,0u xidg,) (z, x), dabeiist 0,: £ (E,, ..., E,; F)» Z(E,,, ...,
E, ; F) die kanonische Abbildung. Als Abbildung mit Werten in F, identifizieren wir
(0,0u) mit der (t X k,, k3)-stetigen Abbildung w,,0(0,0uxidg,). Nach [8], Satz 6
folgt daraus die (t, 4%)-Stetigkeit der 6,.u und damit die (z, 4)-Stetigkeit von u.

Indem wir nun die universelle Eigenschaft induktiver Limites anwenden, erhalten
wir aus (3.3.4):

3.3.5 SATZ: Es sei (Z, ;) ein Marinescu-Raum (PTV-Raum). Fiir eine lineare
Abbildung u:Z - £ (E,, ..., E,; F) sind folgende Aussagen dquivalent:

(1) u ist (A5, A)-stetig.

(2) u ist (Az, A°)-stetig.

(3) #:Z x[] E;— F ist (A7 x [[Ai» Ap)-stetig, d(z, x)=u(z) (x).

3.3.6 KOROLLAR: Ist eine Marinescu-Limitierung auf ¥ (E,,..., E,; F) feiner als
A®, so ist sie auch feiner als A. Unter allen Marinescu-Limitierungen y auf £ (Ei,...,
E,; F), fiir welche die Evaluation  (x X [| A;, Ap)-stetig ist, ist A die gribste.

Mit (3.3.5) konnen wir ausserdem beweisen:

3.3.7 SATZ: Fiir jeden Marinescu-Raum (E, Ag) ist die Abbildung
v 2R, E)>E,

definiert durch y(u):=u(1), ein linearer (4", Ag)-Homdéomorphismus.

Beweis: y ist ein Isomorphismus der linearen Strukturen mity~'(x) (£)=t.x
fiir jedes teR und jedes xe E. Wir identifizieren y mit der Restriktion der Evaluation
von Z (R, E) auf Z(R, E)x {1} und haben die (4™F, A;)-Stetigkeit von y. Die aus

N—

7~ ! entwickelte Abbildung y~':E xR — E liefert gerade die Skalarmultiplikation in
E, ist also (A x Tg, Ag)-stetig. Aus (3.3.5) folgt daher die (4, 4®£)-Stetigkeitvon y~ 1.

3.3.8 KOROLLAR: Fiir einen Marinescu-Raum (E, 1) sind die Limitierungen A®*
und A*E auf £ (R, E) dann und nur dann gleich, wenn Ag=x(Ag) gilt.

(3.3.8) enthdlt das im Anschluss an (3.2.2) angekiindigte Gegenbeispiel: Ist der
Marinescu-Raum (E, A) nicht lokalkonvex, so gilt auf £ (R, E) stets ARE <A®E.

Es seien jetzt (E, Ag), (F, A¢) und (E;, 4;), 1 <i<n, Marinescu-Rédume. Wir schrei-
ben anstelle von (&L (E,,..., E,; F), 4) karz & ,(E,,..., E,; F) usw.. Fiir (i 4)-
stetige lineare Abbildungen u:E— Z(E,,..., E,; F) vermittelt dann die Zuordnung
u+ i den linearen Isomorphismus

a!-?’(E, gA(El’ ceay E”; F))""g(E, El’ vesy E"; F).
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Nach (3.3.5) ist noch L(E, Z,(E,,..., E,; F))=%(E, £ ,.(E;, ..., E,; F)). Damit
konnen wir beweisen:

3.3.9 SATZ: Der kanonische Isomorphismus a ist ein (4, A)-Homdéomorphismus von
L(E, £ 4(Ey» ..., Ey; F)) auf Z(E, E, ..., E,; F).

Beweis: Nach [1] ist « ein linearer (A°, A°)-Homdomorphismus. Wegen 4°< 4 ist
dann « auch (4, A°)-stetig, also (4, A)-stetig nach (3.3.5). Analog beweist man die
(4, 4)-Stetigkeit von a ™.
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