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Marinescu-Râume

von Hans Jarchow (Zurich)

0. Einleitung

Im Mittelpunkt dieser Arbeit steht eine Klasse von Limesvektorrâumen, die bei

der Begrûndung einer Differentialrechnung fiir lokalkonvexe Râume eine wichtige
Rolle spielt, siehe H. H. Keller [8], [9]. Dièse Râume wurden unter dem Namen
,,pseudotopologische Vereinigungen lokalkonvexer Râume" bereits von G. Mari-
nescu [11] eingefûhrt, wir wollen sie Marinescu-Râume nennen.

Im ersten Kapitel skizzieren wir die Théorie der Limesrâume nach H. R. Fischer
[5]. Wichtig ist vor allem der Begriff des induktiven Limes von Limesrâumen. Das
zweite Kapitel behandelt Limesvektorrâume. Der Begriff des Marinescu-Raumes
wird eingefûhrt, und das Tensorprodukt von Limesvektorrâumen (Marinescu-
Râumen) wird projektiv zu einem Limesvektorraum (Marinescu-Raum) gemacht. Im
letzten Kapitel werden Râume stetiger linearer und multilinearer Abbildungen
zwischen Marinescu-Râumen nach einem aus [8] abgeleiteten Verfahren mit Mari-
nescu-Limitierungen versehen. Wir zeigen, dass aile von H. H. Keller in [9] gestellten

Forderungen erfullt sind, so dass eine gewisse berechtigte Hoffnung besteht, sogar
eine Differentialrechnung fur Marinescu-Râume begrûnden zu kônnen.

1. Limesrâume

1.1 Allgemeine Begriffe

Dieser Abschnitt enthâlt Begriffe und Aussagen aus der Théorie der Limesrâume,
die spâter benôtigt werden. Eine ausfiihrlichere Darstellung findet man bei H. R.

Fischer [5] oder J. Wloka [12].
Fur eine nichtleere Menge M sei ^(^(Af)) die Potenzmenge der Menge

aller Filter auf M. Eine Limitierung k auf M ist eine Abbildung
die fur jedes xeM folgende Eigenschaften besitzt:

(Ll)
(L2)
(L3) xgX(x).

x ist der von xeM erzeugte triviale Ultrafilter in M. Das Paar (M, X) heisst ein

Limesraum, die Filter aus X{x) heissen konvergent gegen xeM. Genùgt eine Menge
von Filtern in M den Axiomen (L 1) und (L 2), so heisst sie ein FilterideaL

Der Limesraum (M, X) (die Limitierung A) heisst separiert, wenn in M jeder Filter
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gegen hôchstens einen Punkt konvergiert. Das ist genau dann der Fall, wenn fur
(x9y)eM xM aus x^y stets folgt: X{x)r\X{y) ty.

Jeder topologische Raum (X, 5") ist in natûrlicher Weise ein Limesraum (X, X) :

Fur jedes xeX besteht das Filterideal X(x) gerade aus allen Oberfiltern des ,f-Um-
gebungsfilters von x in X. Wir werden Topologien immer mit den zugehôrigen
Limitierungen identifizieren.

(M, X) und (N, fi) seien Limesràume. Eine Abbildung/: Af-»iV heisst (X, fi)-stetig
im Punkte xeM, wenn aus <PeX(x) immer f(<P)efi(f(x)) folgt. Damit definiert man
wie ûblich Begriffe wie (A, ju)-Stetigkeit (global) und (A, ^)-Homôomorphie. Wir
sagen auch, / sei stetig bzw. ein Homôomorphismus, wenn klar ist, um welche

Limitierungen es sich handelt. Gilt M=N, so schreiben wir fi^X oder X^ ft(fi grôber
als A oder X feiner als fi), wenn die Identitât von M eine (X, ^)-stetige Abbildung ist.

H^X gilt genau dann, wenn X(x)cfi(x) fur jedes xeM.
Gegeben seien nun eine nichtleere Menge M, eine Familie ((Ma, Xa))aeA von

Limesrâumen (A ^0) und zu jedem aeA zwei Abbildungen ga: Ma-*M und fa: M^Ma.
Unter allen Limitierungen auf M, fur die jedes ga stetig ist, gibt es eine feinste A0, und
unter allen Limitierungen auf M, fur die jedes fa stetig ist, gibt es eine grôbste Ao.

Wir nennen X° ait finale Limitierung von (ga)a6A und Xo die initiale Limitierung von
(fa)aeA. Fur ein xeM wird das Filterideal A°(jc)erzeugt von x und allen Filtern der
Form ga(il/a) mit il/aeXa(ya) und >>a eg~ * (*), ae^. Dagegen konvergiert ein Filter 0
auf M genau dann bezûglich Ao gegen ein xeM, wsrmfa(<P)eXa(fa(x)) fur jedes ae A
gilt. Ist (X, q) ein weiterer Limesraum, so ist eine Abbildung/:M-*X genau dann
(A0, £)-stetig, wenn fur jedes aeA die Komposition/oga eine (Aa, g)-stetige Abbildung
ist. Eine Abbildung g:X-*M ist hingegen genau dann (q, A0)-stetig, wenn fur jedes
aeA die Komposition/ao£ eine (q, Aa)-stetige Abbildung ist. Sind aile Xa Topologien,
so ist Xo stets eine Topologie. Dies muss fur X° nicht wahr sein.

Man erhâlt hieraus durch Spezialisierung den Begriff der Quotientenlimitierung
auf dem Quotienten M/R fur einen Limesraum (M, X) und eine Âquivalenzrelation
R auf M, ferner den Begriff des Limesunterraumes eines gegebenen Limesraumes und
schliesslich den Begriff der Produktlimitierung \\ Xa auf dem kartesischen Produkt

aeA

fi Ma einer nichtleeren Familie ((Ma, Xa))aeA von Limesrâumen. Fur x (xa)aeAe
aeA

17 M« wird dabei (Y\Xa) (x) erzeugt von allen Produktfiltern ["] $a mit <PaeXa(xa). Es ist
aeA

Y[ K genau dann separiert, wenn jede der Limitierungen Xa separiert ist. Ist (N, fi) Limes-
unterraum des Limesraumes (M, X), so nennen wir fi oft auch die von X auf N indu-
zierte Limitierung. Fur Einzelheiten und Beweise sei auf H. R.Fischer [5] verwiesen.

1.2 Induktiver und projektiver Limes

(M, X) und (N, fi) seien Limesràume, M sei Teilmenge von N. Ist die Inklusion
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M-*N eine (A, ju)-stetige Abbildung, so schreiben wir

Wir betrachten eine nichtleere Familie ((Ma,Xa))aeA von Limesrâumen, deren

Indexmenge A durch eine Ordnungsrelation „<" gerichtet ist und verlangen:

(IND) ((a, a')eAxA9 a^a')=>(Ma, Xa)< (M,, Xa).

Die finale Limitierung A auf M: (jMflder Familie der EinbettungenMfl-+M, aeA,
aeA

heisst der induktive Limes von (Xa)aeA und wird bezeichnet mit

A ind ka.
aeA

Wenn wir in Zukunft den soeben geschilderten Sachverhalt meinen, werden wir dies

immer durch die Schreibweise

(M, A) ind (Ma,Ao)
aeA

ausdrucken.

Ist speziell A N die Menge der natûrlichen Zahlen und ist (Mn9 Xn) Limesunter-

raum von (Mn+1, An+1) fur jedes «eN, so heisst À=indAn der strikte induktive Limes
der Folge (An)neN.

Sind in (M, A) ind(Ma, Xa) aile Àa Topologien, so muss deswegen X noch keine
aeA

Topologie sein; siehe etwa [8] oder (2.2) dieser Arbeit. Man beachte, dass wir in der

Kategorie der Limesrâume arbeiten
In (M, A) ind(Ma, Xa) bezeichnen wir die Inklusionsabbildungen Ma-+M mit

aeA
ia9 aeA. Die konvergenten Filter von (M, X) sind wie folgt charakterisiert (siehe [5]):

1.2.1 Satz : Ein Filter $ aufM konvergiert genou dann beziiglich ind Xa gegen xeM,
wenn es ein aeA und einen Filter <Pa aufMa gibt, so dass gilt: aeA

(I) x e Ma, (II) *, e Xa (x), (III) ia (*.) 4>.

Wegen (III) ist 4>fl Basis von 0 in M, mindestens ein Elément aus # b'egt also inMa
Mit Hilfe dièses Satzes zeigt man (siehe [5]):

1.2.2 Satz: Der induktive Limes indAfl ist genou dann separiert, wenn jede der

Limitierungen Xa separiert ist. a€A

Wir zeigen weiter, dass die universelle Eigenschaft von indAa sogar punktweise

gilt: aeA

1.2.3 Lemma: Ist (N, 11) ein Limesraum, so ist eine Abbildung f:M -+ N genou dann

(A, \jL)-stetig in xeM, wenn die Restriktion fa von faufMa(Xa, n)-stetig ist in x fur jedes

aeA, fiir welches xeMagilt.
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Beweis: Es sei A' die Menge aller ae A, fur welche xeMa gilt./a sei (/lfl, /*)-stetig in
xfiir jedes aeA'. Zu ^eA(x)gibtesnach(1.2.1)einaey4/undeinenFilter^flaufMamit
<PaeÀa(x), so dass <Pa Basisvon 4> in Mist. Wegen/(4>)=/fl(#fl)e/*(/(#)) ist/stetig in x.

Ûber die Stetigkeit von Abbildungen mit Werten in induktiven Limites von
Limesràumen lâsst sich in Verallgemeinerung des entsprechenden Résultats aus

[8] folgendes aussagen:

1.2.4 Lemma: Gegeben seien (M, A) ind(Mfl, Xa) und ein topologischer Raum
aeA

(N, t). Eine Abbildung g:N-+ M ist genau dann (t, X)-stetig in xeN, wenn es ein aeA
sowie eine Umgebung U von x in (N9 t) gibt, so dass gilt:

(1) g(U)czMa.
(2) Die durch g bestimmte Abbildung gv: U-*Ma ist (t^, ka)-stetig in xeU; dabei

ist xv die von x auf U induzierte Topologie.
Beweis: Wenn (1) und (2) erfûllt sind, so ist g (t, A)-stetig in x, weil U Umgebung

ist von x in (TV, t). Ist umgekehrt g (t, A)-stetig in x und °lix der Umgebungsfilter von
x in (N, t), so gibt es wegen g(^x)eÀ(g(x)) ein aeA und einen Filter <Pfl auf Ma9 so
dass g(x)e Ma, <PaeÀa(g(x)) und <Pa Basis von g(Wx) in M ist. Fur mindestens ein

Ue°Ux ist also g(U)czMa9 und der von Wx auf U induzierte Filter liefert unter gv
eine Basis von g(Wx) in M, q.e.d.

In der Kategorie der Limesrâume ist die Bildung des induktiven Limes nur ver-
tauschbar mit der Bildung endlicher kartesischer Produkte :

1.2.5 Satz: ((Ma, Àa))aeA sei eine endliche Familie von Limesrâumen, undfurjedes
aeA sei (Ma, Àa)= ind (Mba, Àba) ein induktiver Limes. Dann gilt:

baeBa

aeA aeA beB aeA aeA

Darin ist B:= f\ Ba undb: (ba)aeA-
aeA

Beweis: Wir setzenM: fi Ma9Mb: f] Mha,k: f]Xaund Xb:=\[ Xba. AufBdéfi-
aeA aeA aeA aeA

nieren wir durch {ba)<,(b'a):o{ba^b'a VaeA) eine Ordnungsrelation „<". Dann ist
C#> <) gerichtet, und man iiberlegt sich leicht, dass 27:=ind>lbauf M existiert. Uber

beB
die universelle Eigenschaft von Produktlimitierungen folgt À^Â1. Man erhâlt À^À,
wenn man fur beliebiges x (xa)eM einen Produktfilter <P Yl<PaeÀ(x) betrachtet,

aeA
^a^Ki^a) VaeA. Zu jedem aeA gibt es ein baeBa und einen Filter <Pba auf Mba, so
dass xaeMba, <PbaeÀba(xa) und #fl von &ba erzeugt wird. Es ist f\ &bae^b(x) Basis von
# in M, also ^eAJ(x), weil A endlich vorausgesetzt wurde! aeA

Die Bildung des induktiven Limes ist bei Limesràumen vertauschbar mit der
Quotientenbildung :
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1.2.6 Satz: Gegeben seien (M, A)=ind(Mfl, ka) und eine Àquivalenzrelation R in
aeA

M. Fur jedes aeA sei Ra die von R aufMa induzierte Àquivalenzrelation. Sind pi bzw.

fia die Quotientenlimitierungen aufM/R bzw. MJRa, so gilt:

aeA

Beweis: Die Existenz einer Limitierung juJ indjUa auf M/R ist trivial. //^ju folgt
aeA

aus der universellen Eigenschaft von À9 und ju^ju1 folgt aus der universellen Eigen-
schaft von \xa fur jedes aeA.

Die hier angegebene Définition des induktiven Limes ist nicht die allgemeinste,
die môglich ist. Sie reicht fur unsere Zwecke jedoch aus. Eine allgemeinere Définition
findet man z.B. bei H. R. Fischer [5].

Wir benôtigen noch den Begriff des projektiven Limes von Limesrâumen. Zu seiner

Définition gehen wir wieder aus von einer Familie ((Ma9 Àa))aeA von Limesrâumen,
deren Indexmenge ^4(^0) durch eine Ordnungsrelation „<" gerichtet ist. Wir ver-
langen :

(PROJ) Fur jedes (a, a')eAxA mit a^a' existiert eine {ka>, X^-stetige Abbildung
haa, : Ma> -> Maf so dass gilt:
Fur a^a'^a" ist haa.> haa.oha>a.., a, a', a"eA. Fur jedes aeA ist haa die

Identitât von Ma.

Die Restriktion der natûrlichen Projektion f\ Ma-+Ma auf
aeA

M : {(xa)fl e A | xa e Ma ; xa haa, (xa>) fur a ^ a}
soll ha heissen. Fur a^a' ist dann ha haa>oha,. Die initiale Limitierung X von (ha)aeA

auf M heisst der projektive Limes von (Xa)aeA, wir wollen ihn mit

aeA

bezeichnen. In Zukunft soll die Schreibweise

(M, >l) proj(Ma,Afl)
aeA

immer als Abkurzung fur den soeben geschilderten Sachverhalt dienen. Wir kônnen
zumeist auf eine ausdrûckliche Angabe des definierenden Abbildungssystems ver-
zichten. Unmittelbar aus der universellen Eigenschaft des projektiven Limes ergibt
sich:

1.2.7 Satz: In (M, A)=proj(Mfl, Xa) ist k identisch mit der von (f] Ma9 f] Àa) auf
M induzierten Limitierung. aeA aeA aeA
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Ist also Xa separiert fur jedes aeA, so ist projAa separiert. Sind aile Xa Topologien,
aeA

so ist auch projAa eine Topologie. projAa ist eine metrisierbare Topologie, wenn A
aeA aeA

abzàhlbar ist und aile Xa metrisierbare Topologien sind.

2. Marinescu-Râume

Wir beginnen mit einer Zusammenstellung von Begriffen und Aussagen aus der
Théorie der Limesvektorrâume, die wir spâter benôtigen. Anschliessend betrachten
wir induktive und projektive Limites von Limesvektorrâumen und fuhren den Begriff
des Marinescu-Raumes ein. Auf dem Tensorprodukt von Limesvektorrâumen und
speziell von Marinescu-Râumen definieren wir schliesslich projektiv vertrâgliche
Limitierungen und beweisen einige ihrer Eigenschaften.

2.1 Limesvektorrâume

Unter einem Vektorraum (abgekûrzt VR) soll hier stets ein solcher ùber dem

Kôrper R der reellen Zahlen verstanden werden. Ein Limesvektorraum oder limitierter
Vektorraum (abgekûrzt LVR) ist ein Limesraum (E, X) bestehend aus einem VR E
und einer Limitierung X auf E, so dass die algebraischen Operationen in E stetig sind.
Dabei trâgt R seine natiirliche Topologie tr. Den Nullumgebungsfilter in (R, tr) be-

zeichnen wir mit V. Die Limitierung X des LVR (E, X) nennen wir vertrâglich oder
eine VR-Limitierung. X ist translationsinvariant, durch das Idéal A(0) also bereits
bestimmt. Eine lineare Abbildung von einem LVR in einen anderen ist also genau dann

stetig, wenn sie stetig ist im Nullpunkt.
Die Frage nach der Vertrâglichkeit von Limitierungen auf Vektorrâumen wird

durch folgenden Satz beantwortet (s. [5]):

2.1.1 Satz : Eine Limitierung X aufeinem VR E ist genau dann eine VR-Limitierung t

wenn sie translationsinvariant ist und den folgenden Bedingungen genugt:

(1) X(0) + X(0)œX(0). (2) r-X(0)czX(0)VreR.
(3) V-A(0)c=A(0). (4) Y'xeX(O)VxeE.

Insbesondere ist jeder topologische Raum in natûrlicher Weise ein LVR. Sind
weiter E ein VR, ((Ea, Xa))aeA eine LVR-Familie und (ua)aeA eine Familie linearer
Abbildungen ua:E-+Ea, so ist die initiale Limitierung von (ua)aeA auf £eine VR-
Limitierung. Das kartesische Produkt einer LVR-Familie ist also ein LVR, jeder
lineare Limesunterraum eines LVR ist ein LVR. Ist noch (E, X) ein LVR und H ein
linearer Teilraum von E, so ist auch die Quotientenlimitierung von E/H eine VR-
Limitierung. Sie ist sogar eine Topologie, wenn X eine Topologie ist.

In dieser Arbeit soll fur ,,lokalkonvex" immer die Abkûrzung le. verwendet
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werden. Ist (E, X) ein LVR, so gibt es unter allen le. Topologien auf E, welche grôber
sind als X, eine feinste k(X). Sie heisst die zu X assoziierte lokalkonvexe Topologie,
Eine definierende Seminormenfamilie fur k(X) bilden z.B. aile fur X stetigen Semi-

normen von E. Die konvexen Mengen des Filters f){<l>eX(O)} bilden eine Null-
umgebungsbasis in (E, k(X)). Es ist k(X) genau dann separiert, wenn es zu jedem
xeE mit x^O eine konvexe Menge Vx in f] {<PeX(0)} gibt, so dass x $ Vx, vgl. auch [6].
Der folgende Satz findet sich in [5] :

2.1.2 Satz: Eine lineare Abbildung von einem LVR (E9 X) in einen le. VR (F, kf)
ist genau dann (X, KF)-stetig, wenn sie (k(X), KF)-stetig ist.

Der Operator k ist vertauschbar mit der Bildung kartesischer Produkte von
endlich vielen LVR:

2.1.3 Satz: Fur LVR (El9 Xt) und (E2, X2) gilt stets

k{X^ x X2) k(X1) x k(à2).

Beweis: k{Xx) x ?c(/l2)<K:(yl1 x k2) folgt aus der (Àx x /L2, /Q-Stetigkeit der Projek-
tionen E1xE2-+ Ei9 i= 1, 2. Umgekehrt sind die Inklusionsabbildungen Ei^E1x E2

linear und (Xh Xt x A2)-stetig, also auch (K(At)9 k{Xx x A2))-stetig. k(Xx x A2)<k(>11) x
k(X2) ergibt sich, wenn man (Ex xE2, k^^xk^)) identifiziert mit der le. direkten
Summe der (Eh k^)).

Ist {E, XE) ein LVR und F ein linearer Teilraum von E9 so ist die assoziierte
lokalkonvexe Topologie der von kE auf F induzierten Limitierung jedenfalls feiner als die

von k{Xe) auf F induzierte Topologie. Gleichheit kann aber nicht behauptet werden,

vgl. die Bemerkung im Anschluss an (2.2.3). Aus der Separiertheit von k(Xe) folgt
aber wenigstens immer die Separiertheit von k(Xf), wobei XF die von XE induzierte

Limitierung ist.

2.2 Induktiver und projektiver Limes

Es seien {A, <) eine gerichtete Halbordnung und ((Eai Xa))aeA eine mit A indi-
zierte LVR-Familie. Fur (a, a')eAxA und a^a' sei (Ea, Xa)<(Ea,, Xa). Wir wollen

stillschweigend voraussetzen, dass Inklusionen bei Vektorrâumen immer linear sein

sollen. Dann ist E:— [JEa in natûrlicher Weise ein VR, und A:=indAfl ist eine VR-
ae A ae A

Limitierung von E. Diesen Sachverhalt denken wir uns von nun an immer als ge-

geben, wenn wir die Schreibweise

aeA

fur LVR benutzen. - Sind aile Xa VR-Topologien, so heisst (E, X) in Anlehnung an

G. Marinescu [11] eine pseudotopologische Vereinigung oder kurz ein PTV-Raum.
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Sind aile Afl lokalkonvexe Topologien, so nennen wir (E, À) einen Marinescu-Raum
und A eine Marinescu-Limitierung.

Nach (1.2.5) ist nur die Bildung des endlichen kartesischen Produktes von LVR
vertauschbar mit der Bildung induktiver Limites von LVR. Wir werden aus diesem

Grande in der Kategorie der Marinescu-Râume eine weitere Produktlimitierung ein-

fiihren. - Nach (1.2.6) ist die Bildung des induktiven Limes von Limesvektorrâumen
vertauschbar mit der Quotientenbildung nach linearen Unterràumen. Es folgt (ver-
gleiche die Anmerkung im Anschluss an (2.1.1)), dass jeder Quotient eines Marinescu-
Raumes (PTV-Raumes) nach einem linearen Teilraum in natiirlicher Weise wieder
ein Marinescu-Raum (PTV-Raum) ist.

Fur einen Marineseu-Raum (E, A) ind(2sfl, Ka) kônnen wir den lokalkonvexen
aeA

induktiven Limes von (Ka)aeA auf E bilden, vgl. etwa [3] und [10]. Wir wollen ihn in
dieser Arbeit mit

k — cind Ka
aeA

bezeichnen und fur den ganzen Raum entsprechend

(JE, K) cind(£a, Ka)
aeA

schreiben. Mit Hilfe des Begriffes der assoziierten lokalkonvexen Topologie findet
man leicht folgenden Satz (vgl. auch [5], [12]) :

2.2.1 Satz: Ist (E, X)=ind(Ea, Aa), so gilt:
aeA

cind k (Àa) k (ind k (Afl)) k (ind la) < ind k (Xa) ^ ind Xa.
aeA aeA aeA aeA aeA

Daraus ergibt sich mit (1.2.5) und (2.1.3):

2.2.2 Korollar: Fur {E, X) ind(Ea9 Àa) und (F, /i) ind(F6, fib) gilt:
aeA be B

(cind k (Àa)) x (cind k (fib)) cind (k (Àa) x k
aeA beB (a,b)eAxB

2.2.3 Satz: Gegeben seien (E, X) ind(Ea, ka) und ein linearer Teilraum F von E.
aeA

Es seien \i die von X auf F induzierte Limitierung, \ia die von ka auf Fa: F nEa indu-
zierte Limitierung, aeA. Dann gilt:

aeA

Beweis: Die Existenz von ind fia und /^ind\ia sind leicht zu zeigen. Jeder Filter
aeA aeA

ist Basis eines Filters ^eA(O). Zu \jj gibt es ein aeA und ein ij/a, Filter auf Ea,
welcher Basis von \j/ in E ist und *ÀaeAa(O) erfûllt. \// besitzt also eine Basis &a in Fa,
und es gilt &aena(0). Es ist &a Basis von # in F.
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Dieser Satz gilt offenbar auch, wenn (E, X) ein induktiver Limes von Limes-
râumen (Ea, Xa) ist und man fur F eine nichtleere Teilmenge von E nimmt. Dann ist

/* ind fia, wobei A' die Menge aller sleA mit Fa F nEa^0 ist.
aeA'
Fur den le. induktiven Limes ist (2.2.3) nicht mehr richtig. Es gibt Beispiele, bei

denen die von k(X) auf Finduzierte Topologie echt grôber ist als k(ju); vgl. G. Koethe
[10], Gegenbeispiel No. 5.

2.2.4 Korollar: Jeder lineare Limesunterraum eines Marinescu-Raumes (PTV-
Raumes) ist ein Marinescu-Raum (PTV-Raum).

Ist jetzt ((£fl, Xa))aeA eme nichtleere Familie von Marinescu-Râumen {Ea9 Xa)

ind(isba, KbJ (analog fur PTV-Râume), so existiert auf E: Y\Ea neben der Pro-
fea 6 Ba aeA

duktlimitierung XL: Y[ K noch die Marinescu-Limitierung XM: i n d (JJ Kba) mit
aeA bae B aeA

B: Yl^a- Trivialerweise gilt XL^XM. Wir beweisen mit (1.2.4):
aeA

2.2.5 Satz: E, Xl und kM seien wie oben definiert. Ist (G, AG) ein Marinescu-

Raum, so ist eine lineare Abbildung u:G-*E genau dann (ÂG, ÀL)-stetig, wenn sie

Ug> ùM)-stetig ist.

Beweis: Es genûgt, Ag kg lokalkonvex vorauszusetzen. Fur aeA sei pra:E-+Ea
die kanonische Projektion. Ist u dann (kG9 AL)-stetig, so gibt es nach (1.2.4) zu jedem
aeA ein baeBa9 so dass prflOw als eine (kg, /cba)-stetige Abbildung G->Eba aufgefasst
werden kann : Nullumgebungen in topologischen VR sind ja absorbierend. Fur ein

(ba)eB kann also u mit einer (kg, f] *cba)-stetigen Abbildung G-* J| Eba identifiziert
aeA aeA

werden, womit bereits ailes gezeigt ist.
Sei jetzt noch A durch eine Ordnungsrelation „ ^ " gerichtet. Zu jedem (a, b)eA x A

mit a^b sei eine (A6, Afl)-stetige Abbildung hab von Eb in Ea definiert, so dass (Ë, X)

proj (Ea, Àa) bezûglich der hab existiert. {E, X) ist ein LVR, wenn aile hab linear sind,
aeA

und das wollen wir immer stillschweigend voraussetzen, wenn wir projektive Limites

von LVR bilden. Nach (1.2.7) ist (Ë, X) linearer Limesunterraum von (£, AL). Sei //
die von XM auf Ë induzierte Limitierung. Nach (2.2.4) ist /x eine Marinescu-Limitierung.

Sie ist offensichtlich die grôbste unter allen Marinescu-Limitierungen von Ë,

welche feiner sind als L Aus den allgemeinen Eigenschaften induzierter Limitierungen
und (2.2.5) folgt:

2.2.6 Korollar: Die Kategorie der Marinescu-Râume besitzt projektive Limites.
Weil wir fur Marinescu-Râume stets nur den projektiven Limes in der Kategorie

der Marinescu-Râume bilden werden, benutzen wir auch hier die Schreibweise

ix proj Xa und (£, /*) proj (Ea, Xa).
aeA aeA

Mit Hilfe von (1.2.4) verallgemeinern wir einige Aussagen aus [8]:
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2.2.7 Lemma: Sind (El9 x^ und (E2, t2) topologische VR und (F, ÀF) ind(Fb, Àb)
beB

ein induktiver Limes, so ist eine bilineare Abbildung u:Eï x E2-^F genou dann

(xt x t2, kF)-stetig im Nullpunkt, wenn es ein beB gibt, so dass u(Ex x E2)aFb und die

von u bestimmte Abbildung Ex xE2-+Fb {xx x t2, Àb)-stetig ist im Nullpunkt.
Beweis: Man verwendet (1.2.4) und die Tatsache, dass Nullumgebungen in topo-

logischen VR absorbierend sind.

(2.2.7) gilt natûrlich analog auch fur lineare Abbildungen. Dièse sind aber bereits

stetig, wenn sie stetig sind im Nullpunkt. Man erhâlt folgende Verallgemeinerung
des entsprechenden Résultâtes aus [8]:

2.2.8 Korollar: Gibt es auf(E, X) 'md(Ea9 Xa) eine VR-Topologie, welche feiner
aeA

ist als À, so ist Ea Efur mindestens ein aeA.
Mit (2.2.7) kônnen wir ausserdem beweisen:

2.2.9 Satz: Eine bilineare Abbildung zwischen Marinescu-Râumen (PTV-Râumen)
ist genau dann stetig, wenn sie stetig ist im Nullpunkt.

Beweis: (E, ÀE) ind(Ea9 ra), (F, ÀF) ind(Fb9 xb) und (G, AG) ind(Gc, z"c) seien
aeA beB ceC

PTV-Râume. Die bilineare Abbildung u:ExF-*G sei (XExkF9 AG)-stetig in (0, 0).
Dann ist nach (1.2.3) fur jedes (a, b)eA x B die Restriktion uab von u auf Ea x Fb im
Nullpunkt (ifl x rb9 AG)-stetig. Fur ein gewisses ceC kann uab nach (2.2.7) identifiziert
werden mit einer im Nullpunkt und damit global (tfl x %'b, T^')-stetigen bilinearen
Abbildung EaxFb-+ Gc. Daraus aber folgt die (ÀE x AF, AG)-Stetigkeit von w.

Man kann sogar beweisen, dass bilineare Abbildungen von PTV-Râumen in
beliebige LVR genau dann stetig sind, wenn sie im Nullpunkt stetig sind. Ein der-
artiger Satz wird hier jedoch nich benôtigt, weshalb wir auf den Beweis verzichten.

Jeder induktive Limes von Marinescu-Râumen (PTV-Râumen) ist ein Marinescu-
Raum (PTV-Raum). Das ist der Inhalt des folgenden Satzes von J. Wloka [12]:

2.2.10 Satz: (E, X)=ind(Ea9 Xa) sei ein induktiver Limes von PTV-Râumen
aeA

(£<i> K) ind (Eba, tba). Furjedes aeAseiAnBa 0, undfur a^a' sei Ba n Ba, 0. Dann
baeBa

ist auch (E, X) ein PTV-Raum:

beB

Dabei ist B:= (J Ba durch b^b':o(Eb> *b)<(Eb,, v) gerichtet.
aeA

Fur eine nichtleere LVR-Familie ((Ea9 ka))aeA bildet man nach H. R. Fischer [5]
folgendermassen eineVR-Limitierung auf der direkten Summe E:= ® Ea:A* sei die

aeA
Menge der endlichen Teilmengen von A. Fur AoeA* bilden wir den LVR (EAo, ÂAo):
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FI Ea> II h)' E)ann ist ÀAo die feinste VR-Limitierung auf EAo, so dass fur jedes
ae Aq ae Ao

aeA0 die Inklusion Ea-*EAo stetig ist. Fassen wir die EAo auf als lineare Teilrâume

von E, so ist E= \J EAo, und fur A0,AxeA* folgt (EAo, kAo)<(EAl, XAl) aus
AoeA*

^ Die VR-Limitierung X= ind Ai4o auf E heisst die direkte Summe der VR-
o

Limitierungen Afl und wird mit ® ka bezeichnet.
aeA

2.2.11 Satz: Eine lineare Abbildung von © Ea9 ffi Afl) m emew LVR (G, XG) ist
aeA aeA

genou dann (©Aa, ÀG)~stetig, wenn fur jedes aeA ihre Restriktion auf Ea (Àa, AG)-

stetig ist.

Damit ist ka die feinste VR-Limitierung auf ®Ea9 so dass aile Inklusionsabbildun-

gen Ea-+ ®Ea stetig sind. Fur jede LVR-Familie ((Ea, Aa))aeA ist also insbesondere

die Einbettung ffi Ea-+ fj Ea eine (©Afl, f] ^«)-stetige Abbildung.
Aus der Konstruktion von ® Xa als induktiver Limes ergibt sich eine Reihe

aeA
von Folgerungen. Zunâchst erhâlt man aus (1.2.2):

2.2.12 Korollar: © ka ist genau dann separiert, wenn jede der VR-Limitierungen
Xa separiert ist. aeA

(2.1.3) und (2.2.1) liefern:

2.2.13 Korollar: Die le. Topologie k( © Xa) auf ffi Ea ist die le. direkte Summe

der le. Topologien k(Àa). aeA açA

Aus (2.2.3) folgt:

2.2.14 Korollar: In der (nichtleeren) LVR-Familie ((Ea,Àa))aeA sei zu jedem
aeA ein linearer Limesunterraum (Fa, iia) von (Ea, ka) gegeben. (®Ffl, ®fia) ist linearer
Limesunterraum von (®Ea, ©Aa).

Weiter erhalten wir aus (2.2.10):

2.2.15 Korollar: Fur jede (nichtleere) Familie ((Ea,Àa))aeA von Marinescu-
Râumen (PTV-Râumen) ist (ffi Ea> © Àa) ein Marinescu-Raum (PTV-Raum).

aeA aeA
Schliesslich ergibt sich aus (2.2.8):

2.2.16 Korollar: Gibt es auf © Ea eine VR-Topologie feiner als die Limitierung
aeA

der direkten Summe ffi Afl, so ist Ea^ {0} nur fur hôchstens endlich viele aeA erfiillt.
aeA

Fur eine (nichtleere) Familie ((Ea, ra))aeA topologischer VR ist also © xa genau
aeA

dann eine Topologie, wenn Ea^{0} nur fur hôchstens endlich viele aeA erfiillt ist.

Abschliessend beweisen wir:
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2.2.17 Satz: (E, ÀE) ind(Ea, Àa) ist linear homôomorph zu einem limitierten
aeA

Quotienten der direkten Summe © Ea, © Àa) nach einem linearen Teilraum von © Ea.
ae A ae A aeA

Beweis: ia:Ea-*E und ja:Ea-*@Ea seien die Inklusionsabbildungen, aeA. Wir
definieren q:@Ea-*E durch q{ £ ja(xa)):= £ ia(xa)l dabei sind nur jeweils endlich

aeA aeA
viele xa von Null verschieden. q ist linear und surjektiv wegen E= \J ia(Ea). Fur

aeA
jedes aeA ist qoja (Afl, AE)-stetig, also ist q (®Afl, A£)-stetig. AQ sei die Quotienten-
limitierung auf Q: ®EJq~î(0). Zu q gibt es eine wohlbestimmte lineare (AQ, /l£)-

stetigeBijektionr:ô->.Emit^ ro^, wobeip:@Ea-+Q die natùrliche Projektion ist.
r"1 ist (/l£, >lQ)-stetig, weil r~1oia=poja fur jedes aeA eine (Aa, AQ)-stetige Abbildung
ist.

Nach der Bemerkung am Anfang dièses Abschnittes gilt aber auch die Umkeh-

rung: Jeder Quotient einer direkten Summe von LVR nach einem linearen Teilraum
ist unter der Quotientenlimitierung ein induktiver Limes von LVR.

2.3 Tensorprodukte von Limesvektorrâumen und Marinescu-Râumen

Fiïr Limesvektorrâume (E, XE) und (F, kF) bilden wir auf dem Tensorprodukt
E®Fdie finale Limitierung A* der kanonischen bilinearen Abbildung ç:Ex F-> E®F.
Fur zeq>(ExF) wird A*(z) erzeugt von allen Filtern der Form <P®il/: (p(<Px\l/) mit
$eAE(x), \l/eÀF(y) und x®y=z. Gehôrt aber zeE®F nicht zu cp(ExF)9 so ist

2.3.1 Lemma: Dos Filterideal Â*(0) hatfolgende Eigenschaften:

(1) r-A*(0)cA*(0)VreR.
(2) V-A*(0)c:A*(0).
(3) V-zeA*(O)Vze<p(E xF).

n

Beweis: Es sei #*= H (*i + ^i)®(>;i + lAi) mit ^i^A£(0), ^feAF(0) und

«. Fur festes / ist dann sicher einer der Vektoren xi9 yt der Nullvektor. Ist z.B.

^=0, so ist r- (^,®(^ + ^)) (r- #i)®(^ + ^«)eA*(0), weil r- ^f eA£(0), reR. Analog
ist V-(^)®(^ + ^)€A*(0), weil V-^eA£(0). Daraus folgt r-^*eA*(0) fur jedes reR
und V-$*eA*(0). Fur z=x®yeq>{ExF) ist schliesslichV-z (V-Jc)®^eA*(0), weil
V

Wir bilden das System F der endlichen Summen von Filtern aus A*(0) und dann
das von F erzeugte Filterideal (XE®XF) (0) in E®F. Dièses enthâlt den trivialen
Ultranlter Ô und erfûllt wieder die Bedingungen (l)-(3) aus (2.3.1). Man kann aber
noch (3) ersetzen durch

(30 V-2e(
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n

Es lâsst sich ja ein zeE®F stets schreiben als z £ ^,0^, mit j^els, yteF, und es gilt
1=1

1=1
aus (AE®AF)(O) mit *„ ^er. Dann ist

fur jedes Paar (/,/), also

Definieren wir (A£(g)ÂF)(z): z-h(A£®/lF)(O) fur jedes zeE®F, so erhalten wir
nach (2.1.1) eine VR-Limitierung A£®AF auf is®F. Nach Konstruktion ist
A*(0)c:(A£®XF) (0); fur zeE®F\xnd z$cp(E x F) ist trivialerweise X*(z)c(ÀE®ÀF) (z).

Sei zeç(ExF) und #eA*(z) von der Form #= H (^1 + ^1)®!^ + ^)mit ^6>l£(0),
j i

^teAF(0) und x^^^z. Wir schreiben <P=z+ f] Qt und haben <Pe(ÀE®ÀF) (z), weil

(Ajs(8>AF) (0). Daher ist X*(z)c:(XE®kF)(z) fur jedes

zeE®F9 und wir haben die (XExXF, A£®AF)-Stetigkeit der Abbildung q>.

Es seien (G, XG) ein weiterer LVR, u\ExF-*G eine bilineare Abbildung und

û:E®F~* G ihre assoziierte lineare Abbildung (ûo(p=u). Ist û (A£®AF, AG)-stetig, so

ist natûrlich u (XE x AF, AG)-stetig. Ist umgekehrt w (A£xAF> AG) und <Pe(AE®XF)(0)

von der Form <f>= f| E (^
t=iy=i

so ist w(<f>)= p| E w(#ux ^u)eAG(0), also ist w (A£®AF, AG)-stetig.
» j

Wir fassen unsere Resultate zusammen:

2.3.2 Satz: Sind (E, ÀE) und (F, AF) LVR, so gibt es unter allen VR-Limitierungen
auf dem Tensorprodukt E®F,fiïr welche die kanonische bilineare Abbildung cp:ExF-+
E®F stetig ist, einefeinste. Wir bezeichnen sie mit XE®ÀF.

Das Filterideal (A£®kF) (0) wird erzeugt von allen endlichen Summen von Filtern
aus A*(0), wo X* die finale Limitierung von (p auf E®F ist.

Ist (G, XG) ein beliebiger LVR, so ist eine bilineare Abbildung u:E xF-+G genau
dann (XExXF, XG)~stetig, wenn ihre assoziierte lineare Abbildung û:E®F-+ G(XE®XF9

AG)-stetig ist.
Die Zuordnung mhk vermittelt also einen linearen Isomorphismus des Raumes

&(E,F;G) aller bilinearen (XE x XF9 AG)-stetigen Abbildungen ExF->G auf den

Raum &(E®F, G) aller linearen (XE®XF, AG)-stetigen Abbildungen E®F-* G.

Es folgt ferner, dass u genau dann (XE x XF, AG)-stetig ist, wenn u dièse Eigenschaft
in jedem Punkt von <p~1(0) besitzt. Ob die globale Stetigkeit von u aber bereits aus

der Stetigkeit im Nullpunkt folgt, ist nicht bekannt. Man vergleiche hierzu jedoch
(2.2.9) und die daran anschliessende Bemerkung.
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In Anlehnung an A. Grothendieck [7] nennen wir XE®XF das projektive Tensor-

produkt der VR-Limitierungen XE und XF. Folgende Eigenschaften projektiver Tensor-

produkte von VR-Limitierungen erhâlt man unmittelbar aus (2.3.2):

2.3.3 Satz: Fur LVR (E, XE\ (F, XF) und (G, XG) sind (E®F9 XE®XF) und

(F®E,XF®XE) sowie {E®(F®G), XE®(XF®XG)) und {(E®F)®G,{XE®XF)®XG) in

kanonischer Weise linear homôomorph.

2.3.4 Satz: ui\Ei-^Fî seien lineare (Xi9 n^-stetige Abbildungen zwischen LVR
(Eh Xt) und(Fi9 ji,), i 1, 2. Dann ist ihr Kronecker-Produkt ui®u2:E1®E2-* Ft®F2
stetig fur die projektiven Tensorproduktlïmitierungen. ux®u2 ist ein linearer Homôo-

morphismus, wenn diesfur ux und u2 gilt.

2.3.5 Satz: Jeder LVR (E, XE) ist in kanonischer Weise linear homôomorph zu

(R®E, tr®A£).

Beweis: Zu zeigen ist die Homôomorphie des kanonischen Isomorphismus
r®x\-±r-x von R®isauf E. Die Stetigkeit ist klar, weil in jedem LVR die Skalar-

multiplikation stetig ist. Fur <PeXE(0) ist i®^e(rR®A£)(0), also ist auch die durch
x\-> l®x bestimmte inverse Abbildung von E auf R®£ stetig.

Fur LVR (E, XE) und (F, XF) ist also &(E, R)®^(F, R) auffassbar als linearer
Teilraum von <&(E, F; R).

Die Bildung von XE®XF ist vertrâglich mit der Bildung induktiver Limites von
Limesvektorrâumen :

2.3.6 Satz: Fur (E, XE) md(Ea, Xa) und (F, XF) ind(Fb9 X'b) existiert X®

aeA beB
ind (Xa®X'b) auf E®F, und es gilt

(a,b)eAxB
X® =XE®XF.

Beweis: Die Existenz von A® folgt aus E®F= U {Ea®Fh) und (Ea®Fb, Xa®Xb)
A*B

<(Ea,®Fb,, Xa,®Xb) fiir (a, b)^(a\ b'). Die Gleichheit X® XE®XF folgt aus der uni-
versellen Eigenschaft des induktiven Limes A® einerseits und der universellen Eigen-
schaft von XE®XF andererseits.

Wir zeigen damit, dass die Bildung von XE®XF mit der Bildung der direkten
Summe bei LVR vertrâglich ist:

2.3.7 Satz: Fur beliebige (nichtleere) LVR-Familien ((Ea9 Xa))aeA und ((Fb9 nb))beB
ist die kanonische Abbildung

0 (Ea®Fb)
A*B

ein linearer ((©Afl)®(©/*5), Ç&(Xa®fib))'Homôomorphismus.
Beweis: Wegen (2.3.6) genûgt es, die Behauptung fiir endliche direkte Summen
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(endliche kartesische Produkte) zu beweisen. Sei also A {l,...,n} und o.B.d.A.
B={1}. Setze F:=F1 und betrachte die kanonischen Abbildungen rj: Jj Et®F-*
Y\(Et®F)und g:Y\EixF-+Yl(EixF)- Aus der Stetigkeit von g folgt die Stetigkeit
von rj. Bezeichnen wir mit tt:Et -> fj Et die natûrlichen Einbettungen, so definiert das

System (ti®idF)l^i^n stetigerlinearer AbbildungenEt®F-^\\ Et®Feindeutig eine

stetige lineare Abbildung S: f] {Et®F) ->\[ Et®F. Es ist S=rj~K
Fur lokalkonvexe VR (E, ke) und (F, kf) hat man auf E®F neben der projektiven

Tensorproduktlimitierung ke®kf noch die von A. Grothendieck in [7] eingefûhrte
projektive Tensorprodukttopologie, die wir mit ke®kf bezeichnen wollen. Sie ist die

c

feinste le. Topologie auf E®F, so dass q>:ExF-> E®F stetig ist. Fur Einzelheiten
siehe [7].

Wir wissen nicht, ob ke®kf und ke®kf identisch sind, vermuten jedoch, dass
c

ke®kf i.a. nicht einmal eine Topologie ist. Wir kônnen nur den folgenden Satz
beweisen :

2.3.8 Satz: Fur lokalkonvexe VR (E, ke) und (F, kf) ist

K (ke ® KF) KE®KF.
c

Beweis: Aus ke®kf<,ke®kf folgt ke®kf<*k{ke®kf). Aus der (ke x kf, ke®kf)-
c c

Stetigkeit von q> folgt die (ke x kf, K:(K£®K;F))-Stetigkeit und damit k(ke®kf) < ke®kf.

2.3.9 Satz: Sind {E, A£) ind(£'a, Ka) und (F, ÀF)=ind(Fb, Kb) Marinescu-Râume,
aeA beB

so gibt es unter allen Marinescu-Limitierungen aufE®F, fur welche q>: E-+ E®F stetig
istt eine feinste XM.

Fur jeden Marinescu-Raum (G, XG) gilt: Eine bilineare Abbildung u:ExF-*G ist

genau dann (ÀExAF9 ÀG)-stetig, wenn ihre assoziierte lineare Abbildung û:E®F-^ G

(AM, kG)-stetig ist.
Beweis: Man zeigt genau wie in (2.3.6), dass ind{Ka®K'b) auf E®F existiert.

AxB
ÀMDieser induktive Limes ist gerade unser gesuchtes ÀM9 wie aus den universellen Eigen-

schaften induktiver Limites und projektiver Tensorprodukttopologien sofort folgt.

Fur lokalkonvexe VR (G, kg) und (H9 kh) ist die projektive Tensorprodukt-
topologie kg®ku nach (2.2.7) sogar die feinste Marinescu-Limitierung auf G®H,

c

fur welche GxH-+ G®H stetig ist. Wir schreiben aus diesem Grunde fur Marinescu-
Râume (E, XE) und (F, AF) fur die Limitierung XM aus (2.3.9) XE®XF.

c

Aus der Konstruktion von XE®XF folgt mit (2.2.1) und (2.3.8):
c

2.3.10 Korollar: Fur Marinescu-Râume (E, XE) und (F, XF) besitzen die beiden
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Tensorproduktlimitierungen XE®XF und XE®XF dieselbe assoziierte lokalkonvexe

Topologie. c

Dièse ist aber nicht notwendig mit k(Xe)®k(Xf) identisch, siehe unten!
c

Wenn (E, XE) und (F, XF) Limesvektorrâume mit E^ {0} und F ^ {0} sind, so

folgt aus der Separiertheit von XE®XF immer die Separiertheit von XE und XF.

Denn îst z.B. XE nicht separiert, <PeXE(x) nXE(0) mit x^O also môglich, so ist
0®\j/e(XE®XF) (0) n (XE®XF) (x®y) fur jedes yeF und jeden Filter ij/eXF(y). Also
ist auch XE®XF nicht separiert. Es ist jedoch eine offene Frage, ob aus der
Separiertheit von XE und XF auch die Separiertheit von XE®XF folgt. Allerdings gilt:

2.3.11 Satz: Fur Marinescu-Ràume (E, XE) und (F, XF) mit E^{0} und F#{0}
sindfolgende Aussagen âquivalent:

(1) XE und ÀF sind separiert.
(2) XE®XF ist separiert.

c

(3) kE®XF ist separiert.
Beweis: (l)o(2), weil dièse Aussagen nach [7] fur le. VR gleichwertig sind und

(1.2.2)gilt. (2)=>(3) folgt wegen ÀE®XF4:kE®ÀF. Aus der oben gemachten Bemerkung
folgt schliesslich : (3) => (1).

2.3.12 Satz: Es seien (EhXt)= ind (Eai,Kai), /=1, 2, Marinescu-Ràume. Auf
aie Ai

Ei®E2 gibt es genau dann eine VR-Topologie feiner aïs Al®À2, wenn es auf jedem E{
eine VR-Topologie feiner als ^ gibt. c

Beweis: Auf E^Ej gibt es genau dann eine VR-Topologie feiner als At®^,
wenn Eai®Ea2 E1®E2 fur ein (ai9 a2)eAl x A2 erfullt ist. Das ist jedoch genau dann
wahr, wenn Eai E1 und Ea2 E2 gilt, wenn es also auf E± und E2 VR-Topologien
feiner als Ât bzw. Â2 gibt.

Lâsst eine der Marinescu-Limitierungen Xu X2 also keine feinere VR-Topologie
zu, so sind X±®X2 und Xl®X2 keine Topologien.

c

(Eu Xj) und (E2, X2) seien beliebige LVR. Es liegt die Vermutung nahe, dass die
zu X1®X2 assoziierte le. Topologie auf EX®E2 gerade k(A1)®k:(A2) ist. Trivialerweise

c
gilt k(X1)®k(X2)^k(X1®X2), das Gleichheitszeichen ist jedoch schon fur Marinescu-

c

Râume falsch. Wiirde es nâmlich gelten, so kônnte man folgern, dass fur einen le.
VR (F, kf) eine bilineare Abbildung ExxE2-*F genau dann (Xt x X2i ?cF)-stetig ist,
wenn sie (k{Xx) x k(X2), *cF)-stetig ist. In (3.2.4) werden wir zeigen, dass dièse Aussage
fur Marinescu-Râume nicht richtig sein muss. In dem dort angegebenen Gegenbei-
spiel ist ûbrigens auch k:(21®A2)^k;(A1)®k:(>12).

Unter gewissen einschrânkenden Voraussetzungen kann man jedoch die Stetigkeit
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linearer und bilinearer Abbildungen zwischen Marinescu-Râumen vollstândig mit
Hilfe der assoziierten le. Topologien zu den vorliegenden Limitierungen ausdrûcken.
In Anlehnung an die bekannte Terminologie bei le. Râumen fiihren wir dazu die

folgenden Bezeichnungen ein:
(2s, kE) sei ein Marinescu-Raum, wobei kE=indKn ein strikter induktiver Limes

neN
einer Folge (Kn)neN von le. Topologien ist. Sind aile Kn Fréchet-Topologien oder

Normtopologien oder Banach-Topologien, so nennen wir (E, kE) einen LF-Raum,
einen LN-Raum oder einen LB-Raum. Man beachte aber, dass es sich um Limes-
vektorrâume handelt.

A. Grothendieck beweist in [7], Intr. IV, dass eine lineare Abbildung von einem
Fréchet-Raum (E, ke) in einen LF-Raum (F, kF)=ind(Fn, Kn) genau dann (ke, K(kF))-

neN
stetig ist, wenn es ein neN gibt, so dass u{E)aFn gilt und die durch u bestimmte
Abbildung E-+Fn (ke, Kw)-stetig ist. Offenbar genûgt es, nur die Metrisierbarkeit der le.

Topologie ke zu verlangen. Mit dieser Aussage beweisen wir:

2.3.13 Satz: In den Marinescu-Râumen (E9 kE)=ind(E9Ka) und (F9kF)
aeA

ind(Fb9 Kfb) seien die le. Topologien Ka und Kb metrisierbar. Furjeden LF-Raum (G, kG)

ind(Gn,K:)gilt:
neN

Eine bilineare Abbildung u:E x F-* G ist genau dann (ÀE x ÀF, ÀG)-stetig, wenn sie

{kE x AF, K(XG))-stetig ist.
Beweis: Aus der (ÀE x kF, AG)-Stetigkeit von u folgt natûrlich die (ÀE x kF9 k{Xg))-

Stetigkeit. Fur die Umkehrung beachten wir, dass mit Ka und k[ auch Ka®Krh metri-
c

sierbar ist. Sei also u (kExkF9 ?c(AG))-stetig. Dann ist fur jedes (a, b)eAxB die

Restriktion uab von u auf Ea x Fb eine (k0 x Kb9 K(AG))-stetige bilineare Abbildung. Es

gibt dann ein neN, so dass die zu uab assoziierte lineare Abbildung ûab mit einer

(Ka®Kb9 ^)-stetigen linearen Abbildung Ea®Fb-+Gn identifiziert werden kann. Dar-
c

aus folgt die (k0xKb9 ÂG)-Stetigkeit von uab flir jedes (a, b)eAxB und damit die

(kE x kF9 AG)-Stetigkeit von u.

Speziell gilt (2.3.13) fur bilineare Abbildungen zwischen LF-Râumen. Ausserdem

gilt sie natûrlich analog fur lineare Abbildungen. Fur solche hat man zusammen
mit (2.1.2):

2.3.14 Satz: Einelineare Abbildungvon einem Marinescu-Raum(E9 kE)=ind(Ea9 Ka)
aeA

mit metrisierbaren Topologien Ka in einen LF-Raum (F9 kF) ist genau dann (kE9 kF)-

stetig, wenn sie (K(kE)9 K(kF))-stetig ist.

(2.3.14) gilt insbesondere fur lineare Abbildungen zwischen LF-Râumen.
Aus [7] iibérnehmen wir einen weiteren Satz (§ 1, n° 3, Korollar der Proposition 6):
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2.3.15 Satz: (F, XE) ind(Ea, Ka) sei ein Marinescu-Raum, so dass k(Xe) separiert
aeA

ist. (F, kf) sei ein le. VR. Ist (F, kf) normierbar oder A abzâhlbar und {F, kf) ein (DF)-
Raum, so gilt:

K (XE) ®kf cind (ko ® kf)
aeA

Die Définition von (DF)-Râumen findet man z.B. in [10]. Wir benôtigen hier aber

nur, dass fur einen LN-Raum (G, XG) die assoziierte lokalkonvexe Topologie k(àg)
vom Typ (DF) ist.

2.3.16 Satz: Fur LN-Ràume (E, A£) ind(£'i, k:,) und(F, ÀF) md(Fp k'3) gilt:
i e N j e N

K (ÀE) ® K (XF) K (XE ® XF)
c

Beweis: Verwendet werden (2.3.15), (2.2.1) und (2.3.10):

k (ÀE) ® k (À.F) cind (Ki ® k (ÀF)) k (ind (cind (fcf ® k)))) k (àe ® ÀF)
c /e N c ieN/eNc c

2.3.17 Korollar: Sind (F, XE) und (F, XF) LN-Râume und (G, kg) ein le. VR, so
ist eine bilineare Abbildung E x F-+G genou dann (XE x XFi KG)-stetig, wenn sie

(k(Xe) x k(Xf), KG)-stetig ist.
Und zusammen mit (2.3.13) erhalten wir daraus:

2.3.18 Korollar: Sind (F, XE) und (F, XF) LN-Râume und (G, XG) ein LF-Raum,
so ist eine bilineare Abbildung E x F-* G genou dann (XE x XF, XG)stetig, wenn sie

{k(Xe) x k(Xf), K(XG))-stetig ist.

(2.3.18) gilt insbesondere fur bilineare Abbildungen zwischen LB-Râumen.
Dïq hier fur den Fall von zwei Limesvektorrâumen (Marinescu-Râumen) durch-

gefuhrte Konstruktion von VR-Limitierungen auf dem Tensorprodukt der vorgelegten
Râume kann ohne weiteres auf eine beliebige endliche Familie von Limesvektorrâumen

(Marinescu-Râumen) iibertragen werden. Es gelten dann weiterhin aile Aussagen
dièses Abschnittes.

3. Marinescu-Limitierungen auf Râumen stetiger multilinearer Abbildungen

Fur separierte le. VR (E9 ke) und (F, kf) hat H. H. Keller (vgl. [8] und [9]) den
Raum j£?n(F, F) aller stetigen «-fach linearen Abbildungen F*-?Fmit einer Marines-
cu-Limitierung versehen, die gewisse, fur die Begrûndung einer Differentialrechnung
wiinschenswerte Eigenschaften besitzt. Ohne Schwierigkeiten kann man bei dieser

n

Konstruktion En durch ein kartesisches Produkt f] Ei beliebiger separierter le.
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VR (Eh Ki) ersetzen. Auf dem Raum &(El9..., En; F) der stetigen «-fach linearen
Abbildungen f] Et-* F gibt es stets eine Marinescu-Limitierung mit den gewùnschten
Eigenschaften.

Sind die E% nicht normierbar, so ist dièse Limitierung keine Topologie, und es gibt
auf ££{EX,..., En; F) auch keine VR-Topologie, welche aile geforderten Eigenschaften
hat. Die Begriindung einer Differentialrechnung fur le. VR scheint also im Rahmen
der le. VR nicht ohne weiteres môglich zu sein. Die Tatsache, dass man durch ein
Ausweichen auf Marinescu-Râume jedoch weiterkommen kann, lâsst die Vermutung
zu, dass man allgemeiner in der Kategorie der Marinescu-Râume eine Differentialrechnung

begrûnden kônnte, wenn es gelânge, fiir Marinescu-Râume (F, kF\ (Eu Àt),

l^/<n, den Raum <^(El9..., En; F) der stetigen w-fach linearen Abbildungen
Yl E^F mit einer Marinescu-Limitierung zu versehen, welche allen Forderungen
aus [9] geniigt.

Wir konstruieren dièse Limitierung zunâchst im Falle n=l und ubertragen sie

dann mit Hilfe des Tensorproduktes auf Râume stetiger multilinearer Abbildungen.

3.1 Die Limitierung AEF

Fur beliebige LVR (E, XE) und (F, kF) seien &(E, F) der Raum aller (AE, ÀF)-

stetigen linearen Abbildungen E-+F und J?(E9F) der Raum aller (k(àe), k(àf))-
stetigen linearen Abbildungen F-» F. Wegen (2.1.2) ist J?(E, F) immer linearer Teil-

raum von <£{E, F). Gleichheit hat man z.B. im Falle £=R, weil dann J£?(R, F) aus

allen linearen Abbildungen R-» Fbesteht. Gilt àf k(àf) oder sind (E, AE) und (F, ÀF)

LF-Râume, so hat man ebenfalls J^(£, F)=â(E, F), vgl. (2.3.14).

Auf JS?(E, F) konstruiert man nach [8] wie folgt eine Marinescu-Limitierung,
vgl. auch [11]:

Es seien SE bzw. SF definierende Seminormenfamilien in (E, k(àe)) bzw. (F, k(àf)),
davon SE gerichtet. Eine lineare Abbildung u:E-+F ist genau dann (k(Xe)9 k(àf))-
stetig, wenn es eine Abbildung t:SF-+SE gibt, so dass

\ukt(qy sup{|w(x)|€ | xeJB, \x\tiq) < 1} <œVqeSF.

(\x\t(q): Kv) (x)> usw.). Mit SE ist die Menge T aller Abbildungen SF -+ SE in natur-
licher Weise gerichtet. Fiir jedes teTist

£t(E, F): {ueJ#(£, F) | \u\qttiq)<coVqeSP}

ein linearer Teilraum von &(E, F); die àt{E, F) ûberdecken &(E, F). Fur (t, q)e

TxSF definiert die Zuordnung u\^\u\q>t^<ù eine Seminorm sq in JâP(F, F); die Familie
{5€|^e5fJ?} ist dann definierende Seminormenfamilie fiir eine le. Topologie itt von

F). Fur t^tf ist noch (&t(E9 F), ût)<{Èt,(E9 F), Kt,), so dass der induktive
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Limes

teT
EFauf ££{E, F) existiert. Die Marinescu-Limitierung AEF ist separiert, wenn k(Xf)

separiert ist. Sie wird durch k(Xe) und k(Xf) eindeutig bestimmt und ist nicht etwa

abhângig von der speziellen Wahl der definierenden Seminormenfamilien SE und SF.

Die von AEF auf <&(E, F) induzierte Limitierung bezeichnen wir mit AEF. Sie ist
nach (2.2.4) ebenfalls eine Marinescu-Limitierung. Aus [8], Satz 9, folgt:

3.1.1 Satz: Fur LVR (E, XE), (F, XF) und (G, XG) ist die kanonische Abbildung

9 F) x X(F, Gf)^&(E, G) (AEF x AFG, AEG)-stetig.

3.1.2 Korollar: Es seien (E, X)9(El9 XJ und (E2, A2) LVR, so dass (El9 X±)<
(E2, À2). Dann sinddie kanonischen Abbildungen J?(E, Et) -* Z£(E9 E2) undJ?(E2, E) ->

&(EU E) (AEE\ AEEl)-stetig bzw. (AE2E, AElE)-stetig.
Unter einer Limesalgebra verstehen wir einen Limesraum {A, X) bestehend aus

einer R-Algebra A und einer Limitierung X auf A, so dass die algebraischen Opera-
tionen von A stetig sind.

3.1.3 Korollar: Fur jeden LVR (E, XE) ist (&(E, E)9 AEE) eine Limesalgebra.

3.2 Die Limitierung AE F

In diesem Abschnitt seien (E, XE)=ind(Ea, Ka) und (F, ^F) ind(Ffc, ic'b) Marinescu-
aeA beB

Râume. Die Marinescu-Limitierungen AEaFb( ÂEaFb) auf &(Ea9 F*) <#(£,, Fb))
bezeichnen wir mit Aab. Wir wollen aus den Aab in natiirlicher Weise eine Marinescu-
Limitierung AEF auf &(E9 F) konstruieren und zeigen, dass dièse nicht mit der

Marinescu-Limitierung AEF ubereinstimmen muss.
Bei festem asA ist -^(Ea, Fb) fur jedes beB identifizierbar mit einem linearen

Teilraum von &{Ea9 F). Aus der Bemerkung im Anschluss an (2.2.7) folgt &{Ea9 F)
U &(Ea9 Fb). Fur b^b' hat man nach (3.1.2) (J?(Ea, Fb), Aab)<(J?(Ea, Fb), Aab').
beB
Auf &{Ea9 F) gibt es also eine VR-Limitierung Aa, so dass

a, F), Aa) ind {X(Em, Fb\ Aab).
beB

Nach (2.2.10) ist Aa eine Marinescu-Limitierung.
Jetzt betrachten wir die Familie ((&(Ea9 F), Aa))aeA. Fur a^a1 undjedesèe^hat

man das folgende kommutative Diagramm:
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Darin sind ib,jb9 0aa,, 9baa, die kanonischen Abbildungen. Jedes Qbaa, ist (Aa'b,ylflb)-stetig
nach (3.1.2). Aus der universellen Eigenschaft von Aa' folgt daher die (Aa\ Jfl)-Stetig-
keit von Qaa,. Eine lineare Abbildung 2s-*Fgehôrt genau dann zu S£(E, F), wenn fur
jedes aeA ihre Restriktion auf Ea zu & (Ea, F) gehôrt. Fiir jedes aeA ist 0aa die

Identitât von &{Ea9 F), und fur a^a'^a" gilt stets Oaa,, 9aa,o0a,a». Ausserdem sind
aile Abbildungen linear. Auf J?(E, F) existïert also eine VR-Limitierung AEF, so dass

{X{E9 F), AEF) proj (J?(Ea9 F), Aa)
aeA

bezûglich der 9aa, in der Kategorie der Marinescu-Râume gilt, siehe (2.2.6). Sie stimmt
mit AEF ûberein, wenn àe k(àe) und Xf k{Xf) gilt.

3.2.1 Satz: Seien (E, ke) ein le. VR und (F, kF) ein Marinescu-Raum. Dann gilt
fur die beiden Marinescu-Limitierungen AEF und AEF yon J?(E, F):

Der Beweis ergibt sich aus (3.1.2) und der universellen Eigenschaft induktiver
Limites. Das Gleichheitszeichen muss in (3.2.1) jedoch nicht immer richtig sein:

3.2.2 Gegenbeispiel 1: X sei ein lokalkompakter topologischer Raum, nicht

kompakt, jedoch abzâhlbar im Unendlichen. (£?n)neN sei eine offene Oberdeckung

von X, so dass Kn\ Qn kompakt und echt in Qn+1 enthalten ist fiir jedes neN. Der
VR aller reellwertigen stetigen Funktionen auf X mit kompaktem Trâger sei E, der

lineare Unterraum aller Funktionen aus E mit Trâger in Kn sei En. Fur jedes «eN ist

En Unearer Teilraum von En+l9 ferner ist E= [J En.
neN

Es ist jedoch En^E fiir jedes neN. In der Alexandroff'schen Kompaktifizierung
X* von X sind nâmlich aile Kn und cQn (Komplement von Qn in X*) abgeschlossen.

Fur festesweN sind also insbesondere die disjunkten Mengen S: Kn+2 <^cQn+i un(^

R:=KnUcQn+3 abgeschlossen in Z*. Es gibt daher eine stetige Funktion/? :X*->
[0, 1], die S und R trennt. Der Trâger T* von/* liegt in Kn+3, ist kompakt und zu-

gleich Trâger der Restriktion/von/* auf X. Es ist also/eF, aber/£Frt.
ku sei die Topologie der uniformen Konvergenz auf E, wir schreiben Eu fur (E, ku).

Die von ku auf En induzierte Topologie heisse Kn9 neN. Den Raum der (ku, Kn)-

stetigen linearen Abbildungen E-*En nennen wir <&(EU9 En), den Raum der (ku, X)~

stetigen Endomorphismen von E nennen wir ^(Eu, E). Dabei ist A:=indfcn keine
neN

Topologie auf E. Die Marinescu-Limitierungen AEuE bzw. AEuEn auf &(EU, E) bzw.

<&(EU9 En) sind wegen der Normierbarkeit von Eu nach [8] Topologien. Der induktive
Limes AEuE der AEuEn ist aber keine Topologie, denn fur jedes neN zeigt man sehr

Ein weiteres einfacheres Gegenbeispiel hierzu geben wir im Anschluss an (3.3.8).
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3.2.3 Satz: Sind (E, kE) ein Marinescu-Raum und (F, kf) ein le. VR, so gilt fur
die beiden Marinescu-Limitierungen AEF und AEF auf ££{E, F):

Der Beweis ergibt sich diesmal aus der universellen Eigenschaft prqjektiver Limites
und (3.1.2). Aber auch hier ist das Gleichheitszeichen nicht immer richtig. Das

folgende Gegenbeispiel zeigt ausserdem, dass man fur LVR (E, ÀE), (F, 1F), (G, kG)

aus der (ÀE x AF, k (AG))-Stetigkeit einer bilinearen Abbildung E xF-> G nicht not-
wendig auf deren (k(àe)xk(àf), 7c(/lG))-Stetigkeit schliessen kann; vergleiche die

Bemerkung im Anschluss an (2.3.12).

3.2.4 Gegenbeispiel 2: (E, k) sei ein separierter le. VR mit gerichteter definieren-
der Seminormenfamilie S und nicht normierbar. Wir versehen den Raum E : J?(E, R)
mit der Marinescu-Limitierung A': AER und kônnen schreiben

siehe (3.1). Nach [8] ist A! keine Topologie, und es gibt auf E' auch keine feinere

VR-Topologie. Das Skalarprodukt w:E x E' -» R ist eine (k x A\ tR)-stetige Bilinear-
form, und A! ist die grôbste unter allen Marinescu-Limitierungen auf E\ fur welche

w stetig ist. Insbesondere ist also w nicht (k x k(A'), TH)-stetig.
Den Raum E" \ &(E\ R) {E' trâgt die Limitierung A') versehen wir mit den

Marinescu-Limitierungen A: AE'R und A": AE'R. Um A^A" zu zeigen, konstruie-
ren wir eine lineare Abbildung E-> E\ die (k, J)-stetig aber nicht {k, yT)-stetig ist.
Wir machen dabei Gebrauch von den Resultaten und der Schreibweise von (3.3).
Nach (3.3.9) definiert die Zuordnung f\-+J einen linearen Isomorphismus
&(E, E")-*&(E, E';R), dabei trâgt E" die Limitierung A, und / ist die aus/
entwickelte bilineare Abbildung. Insbesondere gibt es zum (k x A', rR)-stetigen
Skalarprodukt w eine (k, zd)-stetige lineare Abbildung v\E-+E\ so dass w v.

Wâre nun A =A", so wâre v auch (k, yT)-stetig, woraus die (k x k(A'), TR)-Stetigkeit
von w nach [8] folgte: Widerspruch!

Ein einfacheres Gegenbeispiel erhâlt man mit Hilfe der bornologischen Ràume,
vgl. [10]. Es sei (E, k(Xe)) ein nicht normierbarer bornologischer Raum, d.h. {E, XE)

ist darstellbar als induktiver Limes normierbarer Râume: {E, A£) ind(£fl, Ka). Auf
aeA

<&(E9 R) ist die Limitierung AER keine Topologie und lâsst auch keine feinere VR-
Topologie zu. Fûrjedesûe^istjedoch AEa*auf &(Ea,R)gerade die starke Topologie,
wegen (1.2.7) ist also AE*=pro)AEaR eine Topologie auf &{E9 R).

aeA

3.2.5 Satz: Fur Marinescu-Râume (2s, XE\ (F, XF) und (G, XG) ist die kanonische
Abbildung

n\&(E9 F) x &(F, G) -> J2f (JE, G)
(àEFxAFG9AEG)-stetig.
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Beweis: Mit (E9 XE)=ind(Ea9 Ka)9 (F, XF)=ind(Fb9 K'b) und (G, AG)=ind((jc, k"c)
aeA beB ceC

ergibt sich der Beweis aus (3.1.1) und dem folgenden Diagramm natûrlicher Ab-
bildungen, welches furjedes Tripel (a9b9 c)eAxBxCkommutativ ist:

J?(Ea9 Fb) x X{F» Gc) -> J?(Ea, Gc)

ï
<?(Ea9Fb)x<?(Fb9G) «

ï
J?(Ea9F)xJ?(F9G)

î
&{E9 F) x <e{F9 G) —> Se{E9 G)

3.2.6 Korollar: Fur jeden Marinescu-Raum (E9 ÀE) ist (<&(E9 E)9 AEE) eine

Limesalgebra.

3.3 Evaluation und Limitierung der stetigen Konvergenz

(Ei9 Xt)= ind (Eat9 Kat)9 l</<«, und (F, XF)=ind(Fb9 Kb) seien Marinescu-Râume.
aie Ai beB

n

Die Râume &(El9..., En; F) und Jâf (g) Ei9 F) sind kanonisch isomorph, wenn man

®Et mit einer der in (2.3) konstruierten VR-Limitierungen ®Xt bzw. ®Ât versieht.
c

Wir wollen in diesem Abschnitt immer die Marinescu-Limitierung ®Xt auf ®Et ver-
wenden. c

Fur jedes (ûf,)e]^[ At und jedes beB hat man analog die kanonischen Isomorphien
<?(Eai,...9Ean;Fb)*J?(®Eai,Fb) und Se(E.l9...f Ean; F)^^{®Eai9F)9 wobei wir
®Eat mit der le. Topologie ®Kat versehen. Die Marinescu-Limitierungen A®EatFb9

A®Ea*F9 â®Ei F &VLÎ&(®Eai, Fb)9 &(®Eat9 F)9 &{®Ei9 F) bezeichnen wir mit Aa\ Aa

und A. Mit Hilfe der Isomorphismen kônnen wir sie auf S?(Eai,...9 Ean; Fb)9

<&(Eai9...9Ean;F) und JâP(£l5..., En;F) iibertragen; wir bezeichnen sie dort der

Reihe nach wieder mit Aab9 Aa9 A.

Es wâre selbstverstândlich môglich, Aab9 A* und A auf den Râumen &(Eai9...9 Ean;

Fb)9 &(Eai9...9Ean;F)9 &(El9...9En;F) nach dem Verfahren von (3.2) direkt zu
konstruieren. Man kann dann aber zeigen, dass die oben angegebenen Isomorphismen

sogar Homôomorphismen sind. Man vergleiche dazu [8], Satz 8.

Die Evaluation von &{El9..., En; F) ist die kanonische Abbildung

co(u9 x):=u(x). Wir zeigen:
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3.3.1 Satz: Die Evaluation von <&(EU..., En; F) ist (AxJJ ku XF)'Stetig.
i

Beweis: coa bzw. coab seien die Evaluationen von J?(Eai9..., Ean; F) bzw.

...,Ean; Fb), beB, 0 (a;)en^MitdenkanonischenAbbildungen/fl: f[ Eai-+
:Fb^nF9jb:<?(Eai,...,Ean;Fb)^<?(Eai,..^

J?(Eai,...9 Ean; F) haben wir das folgende kommutative Diagramm:

X(E.it..., Ean; F) x fiEai > F

t,..., Ean; Fb) x

Nach [8] sind die coab (AabxY\ Kai, ^)-stetig. Daraus folgt iiber die universelle

Eigenschaft induktiver Limites und die Stetigkeitseigenschaften projektiver Limites
die (A x fi Ai9 AF)-Stetigkeit von co.

Mit Hilfe der Evaluation co von J£?(El9..., En; F) definiert man fur eine Menge M
und eine Abbildung/:M-» J?(Ei9...9 En; F) die ausf entwickelte Abbildung

f:M x[]£^F
i

durch /: coo(/xid£); dabei ist id£ die Identitât von Y[ Ef Ferner gestattet co die

Einfûhrung der Limitierung Ac der stetigen Konvergenz auf &{El9...9 En; F) durch
folgende Définition (vgl. [4] und [1]):

Fur ein ue&(El9...9 En; F) undeinen Filter $ aufdiesemRaumgilt&EÂc(u)genau
dann, wenn œ(<P x \l/)eÀF(u(x))fiir jedes xe\\ Et undjeden Filter \l/e(Y[ h) (x).

Ac ist die grôbste unter allen Limitierungen x aufSf(Ei9...9 En; F), fur welche die

Evaluation œ (x x II h> AF)-stetig ist. Sie ist eine VR-Limitierung und separiert, wenn
kF separiert ist.Ist (S, Xs)einLimesraumfso ist eine Abbildung f:S-*S£9(EU...9EH; F)
genau dann (As, Ac)~stetig in peS, wenn fur jedes xe]J Et gilt: / ist (Às x [~J kl9 ÀF)-

stetig in (p, x).
Damit lâsst sich (3.3.1) jetzt auch so aussprechen:

3.3.2 Korollar: Auf&(El9...9 En; F) ist A feiner als Ac.

3.3.3 Korollar: Mit XF ist auch A separiert.
Ac und A sind jedoch nicht notweridig identisch, wie in [8] fur le. VR gezeigt

wurde.

3.3.4 Lemma: Es sei (Z, t) ein topologischer VR. Eine lineare Abbildung u:Z-+
{U..., En; F) ist genau dann (t, A)-stetig, wenn sie (t, Ac)-stetig ist.

Beweis: Wir setzen E: J\ Ei9 Ea: H Eai, ÀE: f[ K ^«- 11 *V Weêen A°^A
folgt aus der (t, J)-Stetigkeit von u die (t, 4C)-Stetigkeit. Ist umgekehrt u (t, Ac)-
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stetig, so ist û (t x kE9 AF)-stetig. Zu jedem a: (ai)eA: Y[^i gibt es daher ein

èei?, so dass die Restriktion (û)a von û auf ZxEa identifiziert werden kann mit
einer (n + l)-linearen (t x k0, fc£)-stetigen Abbildung Z xEa^>Fb. Fur (z, x) aus Z xEa
zeigtman(«)«(z, x) coao(0aouxid£a)(z,x),dabeiistBa\&{Eu...,En;F)^&(Eai,...,
Ean; F) die kanonische Abbildung. Als Abbildung mit Werten in Fb identifizieren wir

(9aou) mit der (txKa, ïc£)-stetigen Abbildung coabo(6aoUxidEa). Nach [8], Satz 6

folgt daraus die (t, Ja)-Stetigkeit der 0aou und damit die (t, J)-Stetigkeit von u.

Indem wir nun die universelle Eigenschaft induktiver Limites anwenden, erhalten

wir aus (3.3.4):

3.3.5 Satz: Es sei (Z, Az) ein Marinescu-Raum (PTV-Rawn). Fur eine lineare

Abbildung u\Z-* &(El9..., En; F) sindfolgende Aussagen âquivalent:
(1) u ist (Az, A)-stetig.
(2) u ist (Az, Ac)-stetig.
(3) û:Z x Yl E( -> F ist (Xz x [p,,, XF)-stetig, w(z, x) w(z) (x).

3.3.6 Korollar: Ist eine Marinescu-Limitierung auf J?(El9..., En; F) feiner als

Ac, so ist sie auchfeiner als A. Unter allen Marinescu-Limitierungen x auf ^(El9...f
En; F), fiir welche die Evaluation co (x x f\ ki9 kF)-stetig ist, ist A die grôbste.

Mit (3.3.5) kônnen wir ausserdem beweisen:

3.3.7 Satz: Fur jeden Marinescu-Raum (E, kE) ist die Abbildung

y: J§P(R, £)-+£,

definiert durch y(«): w(l), ein linearer (^dR£, kE)-Homôomorphismus.
Beweis: y ist ein Isomorphismus der linearen Strukturen mit y~i(x) (t) t.x

fiir jedes teR und jedes xeE. Wir identifizieren y mit der Restriktion der Evaluation

von J^(R,£) auf «^(R, E)x {1} und haben die (A*E, A£)-Stetigkeit von y. Die aus

y"1 entwickelte Abbildung y"1 :E x R-» E liefert gerade die Skalarmultiplikation in
E9 ist also (kExxw, A£)-stetig. Aus (3.3.5) folgt daher die(A£, ^"^-Stetigkeitvon y"1.

3.3.8 Korollar: Fur einen Marinescu-Raum (E9 kE) sind die Limitierungen ARE

und ARE aufJ?(R9 E) dann undnur dann gleich, wenn kE K(kE) gilt.
(3.3.8) enthâlt das im Anschluss an (3.2.2) angekiindigte Gegenbeispiel: Ist der

Marinescu-Raum (E9 kE) nicht lokalkonvex, so gilt auf Jâf(R, E) stets ARE< ARE.

Es seien jetzt (E9 kE)9 (F, kF) und (Ei9 kt)9 l^i^n, Marinescu-Râume. Wir schrei-

ben anstelle von (&(El9...9EH;F),A) kurz &A(El9..., En; F) usw.. Fur (kE,A)-
stetige lineare Abbildungen u:E-+J?(El9...9 En; F) vermittelt dann die Zuordnung
u\-+û den linearen Isomorphismus
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Nach (3.3.5) ist noch J£?(£, ^(£l5..., En; F)) &(E, J?AC(El9...,£„; F)). Damit
kônnen wir beweisen:

3.3.9 Satz: Der kanonische Isomorphismus a ist ein {A, A)-Homôomorphismus von

<?(E,J?A(Eu...,En;F))aufJ?(E,Eu...,En;F).
Beweis: Nach [1] ist a ein linearer (Ac, ylc)-Homôomorphismus. Wegenylc< A ist

dann a auch (A, ytc)-stetig, also (A, J)-stetig nach (3.3.5). Analog beweist man die

(A, J)-Stetigkeit von a"1.
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