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Welding Riemann Surfaces and Transmission Problems
with Shifts

by DONALD ORTH!:2)

I. A real, 2-dimensional C* manifold X is called an H-manifold whenever there
is a coordinate system on X for which ¢,.¢, ' is either biholomorphic or bianti-
holomorphic on ¢, (U; n U,) for every pair ¢, ¢,. A closed subset S of X is called a
C!*® 1-complex on X if S is locally a star of C*** curves and is equipped with its
minimal simplicial structure ([6], [7]); S is not necessarily oriented. From the bordered
H-manifold X relative to X and S ([6], [7]). Intuitively this is done by cutting X
along § and attaching to each resulting piece those 1-simplices of .S which lie along it.
Let pr be the projection of X onto X, X,=pr~!(S), and {o}:1eA} the 1-simplices
of a simplicial structure on X, for which pr(s;) is a C**“ curve on X for every
AeA (or equivalently, the projection of this simplicial structure onto § refines the
minimal structure on S). Let ¢:4— A be a bijective map such that

(i) @ (4) # 4;
(ii) Pop(A) =2

for every AeA. Let a,:0,—a,; be a C'** homeomorphism such that
Oy (a0 &y = identity,

again for every AeA. Form the quotient space X* from X by identifying two points
X, y€X ; whenever there are finitely many maps a; , ..., oz, for which o; o+ 0t;, (X)=7.
Let x: X — X* be the quotient map. It will be assumed throughout that ™! (x) is a finite
set for every xe X*. X*is then a smooth manifold. A condition on the maps {o,: e A4}
will be given and shown to be both necessary and sufficient in order that

(a) X* can be given a unique H-structure for which

Zopr~ 1 X\S - X*\y (X))
is an H-homeomorphism (X*is then said to be obtained uniquely from X by welding);

(b) S*=x(X;)isa C'** 1-complex on X* for some a’<a.

This condition is described as follows. For simplicity, suppose that every point
on S and S* has order >1 ([6]); the case when S or S* has points of order =1 will
be discussed later. Let X ;, jeJ denote the connected components of X and pr; the
map pr | X;. The H-coordinate system on X can always be chosen so that for any

1) The results in this paper are contained in the author’s doctoral dissertation written under the
direction of H. ROHRL at the University of California, San Diego.

2) This research was partially sponsored by the Air Force Office of Scientific Research, Office
of Aerospace Research, USAF, under AFOSR Grant No. AF-AFOSR-920-65.
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coordinate neighborhood U of a point in X ;n X, and its corresponding coordinate
?, »(U) is a wedge in C with tip at the origin and Y =¢.pr;op ' is angle preserving
on §(U), where ¢ is a coordinate in an open set on X containing pr;(U). For any
vertex x of X, and ¢} containing x=0,0 a;0,00; ' (p, and , are coordinates at
x and a, (x) respectively) is a map from the ray {¢e'*:0<¢< M} onto the ray{te'":0<
<t<N}. Define «; () by the rule o; (z€**) =0} (¢) €'"; (do;/dt) (0) exists and is nonzero.
Denote (du;/dt) (0) by a,(x); &,(x) depends on the choice of coordinates. Choose
an oriented coordinate neighborhood of every point in $* which is the image under
x of a vertex of X g5 this orientation induces one on a coordinate neighborhood of
every vertex x of X s and thereby an orientation on a piece of each of the two 1-sim-
plices containing x. x is the initial point of one piece and the terminal point of the
other. Denote the 1-simplex whose piece has x as initial point by o> and by a, the
map o, whose domain is ¢} For each vertex x of X the product [ ] {a, (»): x(»)=x (x)}
is independent of the choice of coordinates. The condition referred to above is that

for every vertex xe X, [1(6,():20) = x ()} = 1. (1)

The condition is the same as (1) at a vertex x if we choose o to be the simplex whose
piece has y as its terminal point for every y for which x(y)= x(»), and so is also
independent of the above choice of oriented coordinate neighborhoods.

Using the welding procedure and the results of [6], it can be shown that there
is a large class of transmission problems with shifts generalizing those in the sense of
HAseMAN and CARLEMAN such that for each member of this class there is an as-
sociated holomorphic fibre bundle over a corresponding welded Riemann surface for
which the solution space of the problem is functorally isomor phic to the space of
global holomorphic sections in the associated bundle. Known results about holo-
morphic fibre bundles on Riemann surfaces can then be used to describe the solution
spaces.

Finally, the welding and transmission problems on holomorphic families of
Riemann surfaces are discussed.

Notation. A C°® map is one which is Holder continuous with index a. It is C*** if
it is continuously differentiable with C° first partials. It is C3*® if it is C*** with
nowhere zero first partials. All curves are smooth, so a C**“ curve is one described bya
C3* map. G(K) denotes the disc in C with center the origin and radius K, while
¢(L, K) is the ray {texp(i{):0<t<K}. D(K) and D(K) denote wedges of the form
{wilw|<K, {<argw<n} and {w:|w| <K, {<argw<n} respectively. C* ={w:Imw>
=0}, C~=C\IntC".

§ 1. The Local Problem

_ Let X be the disjoint union U {D,(K,):u=1,..., n}; clearly
Xp=V {bdyg, D, (K,):n=1,..., n}. Let a, be a C;"* homeomorphism of # (1,, K,)
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onto £ ({,+1, K,+1)- Form X*relative to X, and {,, o, ':u=1,..., n}. X* and S* have
properties (a) and (b) of the introduction if and only if

1°) there is a region G in C and a star of simple, C'** curves ([6]) {%,:n=1,..., n}
at some point woeG which divides G into n simply-connected domains G,, where
bdycG,=€,-1VE,;

2°) there exist C'** homeomorphisms A4,:D,(K,)-Cl;G, which are biholo-
morphic on D,(K,) and satisfy

() 4,(0)=w,

(i) A, .} 04,=a, on ¢(n, K,); 3)

3°) (uniqueness) if G%, €*, A’,", also satisfy 1° and 2°, then there is a homeomor-
phism #:G—G* for which both % and #~! are H-maps and A,=%.A4} for
every u.

X*and S* are said to have properties (a) and (b) locally if there is an open neigh-
borhood ¥ of x(0) in X* for which X*n ¥ and $*n V have properties (a) and (b).

In order to prove the necessity of condition (1) for the local problem, let «, be
the real-valued function defined by

o, (¢ exp(in,)) = e, (1) exp (i s 1) -
Define {™'= Y (1,—{,); a single-valued branch g, of w”™* can be defined on each
u=1
wedge D, (K,). Now
' A: =Au°gu—1:gu(ﬁu(Ku))—’Gu

is biholomorphic on g, (D, (K,)) and therefore C*** on g, (D, (K,)); A} is also angle
preserving at the origin and so (d/dw) A’ exists on g,(D,(K,)) and is nowhere zero.
These facts are Kellogg’s theorem ([3], [9]). It follows that (d/dw) (A})~' exists and
is nonzero on Cl;G,. Now

(A:+1)—1°A: =8u+1°A,:+11°A,¢°8;1 = 8,.+1°%°8,:1 3)

and so
nld, | ld e
uI;Il Md-; u(o)’=nlagp+l°au°gn 1'
d k-1 & 2nt d %*—1 2t d * 2nt .
=H a‘tA,H.l oAu(O) =H E@A"“(O) ‘“i—‘—vA“(O) =1,

(d/dt) means the following. The above maps, e.g. (4),,) 'A%, are maps from one
ray through the origin to another and so define real-valued functions of the real
variable ¢ just as o, defines a,. It is these functions which are differentiated with
respect to £. This proves the necessity of the condition.

3) Indices are taken modulo n.
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Now assume that

id ’ !
I_I ‘E“"(O) =1; 1)
since for o} =g, 00,08, ' we have
n . 2w n Id n d N
S0 =TT - al0)=1= ‘
115 ( )‘ 1115 % © IR

there is no loss in generality in assuming that {~'=2n. Of course the wedges
may be rotated so that n,={, ;.

n
(1.1) LemMA. If a, are positive numbers for which [ a.=1 (n>1), then there are
n=1
positive numbers c,, ..., ¢, satisfying c,}ya, c,=1 for all p.

Proof. Obvious.

Let ¢, be the constants determined in the lemma for a, =|(d/df) «, (0)|, and denote
also by c, the constant map on C with value c,. The maps a}=c,} oa,0c, satisfy
|(d/dt) o’ (0)] =1, and so there is no loss in generality in assuming that [(d/dt) «,, (0)| =1.
In fact, since the functions a, are increasing, we may assume that

d 4 -—
3; o:,,(()) =], (2)

Finally, it may be assumed that there is p and v with u#v and {,=({*+=n. For
if not, choose a {, and let {,={,+7; £({o, K,) is contained in some D ,(K,). Form

D,(K,) relative to £({o, K,) and let D, (K, )uﬁ (K,)=D (K) while « is the unique
welding correspondence between D, (K,) and D,(K,) which induces in the obvious
way the identity map on £ ({,, K,). Take all other welding correspondences as before.
Condition (2) is then satisfied by the new system of welding correspondences {a,: =
=1,...,n} U {a}, so if (2) is sufficient for the existence of a local weld then X* formed
relative to {o,:p=1,...,n} and X* formed relative to {a,:u=1,...,n}u {a} are
H-isomorphic in an open neighborhood of x (0). This is a direct result of the choice of a.

Consequently, the sufficiency of (1) for the existence of a local weld is proved
once we have proved the following proposition.

Let the wedges D,(K,), p=1,..., n be such that n,={,,, and denote #({,, K,)
by ¢,(K,). Let a,:¢,(K,)~7,(K,+) be a homeomorphism such that o, (0)=0.

(1.2) ProposiTION. Let X=wD,(K,) with welding correspondences a, as above
thch are Cy*“ on ¢,(K,). Then X can be welded locally if
° there exists p and g, 1 <p<q<n such that {,={,+n;
2° (d/dt) a, (0)=1 for every p=1,...,n
Note that assumption 1° requires that n>2.
The procedure for proving this proposition will be to weld each of the chains



124 DONALD ORTH

{D,(K,),..., D1 (K,-1)} and {D,(K,),..., D,(K,), ..., D,—1(K,-1)} so that the
results are half discs, and then to weld these two half discs. The chains are welded
by welding two wedges at a time, which in turn can be reduced to welding two half
discs. Thus the proof of proposition (1.2) for n>2 reduces essentially to the proof
for n=2. This special case will follow from known results about quasiconformal
mapping.

For n=2 we may take D, (K,) (resp. D,(K,)) to be the upper (resp. lower) half
disc of G(K;) (resp. G(K,)). The maps o, and a; ' together define a C3** map a
from bdyc+ D, (K,) onto bdyc- D, (K,) for which (d/dt) o’ (0)= 1. For ease of notation
we will suppress the constants K, in the notation D, (K,).

The procedure for finding 4, and A, satisfying 2° above is due to C. BLaNC (]2];
also see [4]). The map

Px,y)=a(x)+i(a(x+y)—a(x)), w=x+iy

is defined and is a C3** homeomorphism on ¥~ D, for some open neighborhood
V of the origin. Since « is a Cy** map, P(x, y) is a quasiconformal map ([8]). P (x, y)
satisfies P(x, 0)=a(x) and P~ ! (x,y)=a" ' (x)+i(a" (x+y)—a~ 1 (x)). P 1(x,p) is

also quasiconformal and satisfies the usual Beltrami equation for

T e = C)

dt dt
do 1 do 1 (da™t da~ 1 -1
[ g (x+y)+ = (x)+l{ = (x+y)—*—5(x)}] X
Define
* - fu(x»), Jev*nD,
u (x,y)'_{ 0 , {¢V*nD1; (3)

clearly u*(x,y) is well-defined for some open neighborhood V* of 0, and is a C*
function on V*, It is known ([1]) that there is then a C'** homeomorphism A4 on
an open neighborhood V' of 0 satisfying the Beltrami equation

AW = #* Aw;

now A.P and A are l-quasiconformal homeomorphisms on UnD; and UnD,
respectively and therefore biholomorphic maps, where U=V V' V*, Moreover,
€=A|bdyc-D, is a C'**simple curve and 4~ 'c(4cP) | bdyc+ D, =a. The unique-
ness of the weld follows from [4], theorem 1 and so proposition (1.2) is proved for
n=2,

It should be noted that (d/df) «(0)=1 has not been used, but rather only the fact
that (d/dr) a; (0)=(d/dt) a; ' (0)#0 so that «; and a; * together define a C}** map .
Therefore proposition (1.2) for =2 will provide for a general H-manifold X the
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local weld at points on X s Which are not vertices of the given simplicial structure on
X,. What (d/dt) «(0)=1 does mean is that for any two biholomorphic 4, and 4,
defining the local weld in (1.2) for n=2,

£ 4,0)= 1 4,(0).
dw
This is the basic fact which allows us to weld piece by piece when n > 2.

In order to prove (1.2) for n>2, we first weld the wedges D, (K,) and D, (K,+,)
and then prepare the result for welding to D,,,(K,,). Extend D,(K,) and D,
(Kp+1) to half discs with bounding line segments £, (K,) (={t-exp(i{,):— K, <
<t<,K}) and ¢, (K, ,) respectively, and extend «, to a C4™* homeomorphism «,
of £,(K,) onto ¢,(K,1). There is an open neighborhood U, of x(0) in X* for which
the two half discs have properties (a) and (b) on y~'(U,) for the welding correspon-
dence «,. Let 4, and A, denote the biholomorphic welding maps, the domains of
A, and A4,, being subsets of the half discs containing D,(K,)and D, (K,+)
respectively. The curve A, |41 (K,+1)x ' (U,) is C'*2; this follows from
Kellogg’s theorem. Extend this curve from 4, (0) through the image set
A,(x" (U ))uApH( ~1(U,)) to its boundary in a simple, C'** way so that it does
notintersect 4, (D, (K,)nx " (U))v 4,1 (D11 (Kp+1) 0 x~ (U,)) except at A, . ; (0)
=A4,(0). Let R, be the region in C bounded by this extended curve and the boundary
of the image set and containing A, (™" (U,))u 4, (x " (U,)). Map this region by
biholomorphic f, onto a bounded half disc whose bounding line segment is a finite
segment of /},, ; (00), which does not intersect D, , (K, ), and such that f,.4,(0)=
=fp0A,,,(0)=0 while the image of the above extended curve is on ¢,., () (a
slightly smaller U, may have to be chosen for this last part). Let B,=f,.4,, B, =
=fpod,, ; since (d/dw) A,(0)=(d/dw) 4,,,,(0), f, may also be normalized by the
condition

B@ prQ—l

Now weld B,(D,(K,)nx *(U,))UB,s1(Dpr 1 (Kpe1) g1 (U,)) to D,i2(K,p+2)
in exactly the same way for the welding correspondence aI,HOB +1. Denote the

resulting welding maps by B, , and B, ,, the domains of B;,,, and B, , containing
B,y (5p+ 1(Kp+1) 0 x ™ (U,44)) and D,y 3 (Kypi2)nx ' (Uysy) respectively, where
Upr U, is also an open neighborhood of x(0) in X*. Contmue this process until in
an open nexghborhood .2 of x(0) in X* the wedges D,(K,)nx~*(U,-,) through
D, ,(K a-2) X ( Uq_z) have been welded together, and then determine the neigh-
borhood U,_; = U,_, and the welding maps A;_, and 4;_, of the next weld. Because
of condition 1° of the proposition and the fact that all maps so far determined are
angle-preserving at the origin, the C'*“ extension of the curve A4,_, | £,_((K,-1)N
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Ny~ ' (U,-,) will be takentobe A, _,0B; _3o+0By,10B, | £p—1(K,~1) Ny 1 (U, -y).
Determine the map f,_, as before with its proper normalization. The final result of

welding the chain {D,(K,),..., D,—;(K,_,)} is then a half-disc Z,(K_,) with
bounding line segment /;_, (K, _)=¢,_(K,-) for some positive number K _,.
Now weld the chain {D (K,),..., D,(K,),..., D,—;(K,-1)} in exactly the same
way, starting with D, (K,) and D, (K,4,). Use analogous notation throughout, i.e.
the notation for the mappings, constants, etc. is determined by substituting ¢ for p

in the previous ones. Again, the result is a half disc 2, (K,-1) with bounding line
segment £,_, (K,_,)=¢,_,(K,-,) for some positive number Kj_,.

The final step is to weld these two half discs with the welding correspondence
1 (Kg-1)—¢p-1 (K, ) given by

’ =1 -1 =1 =1
ﬁ=a|[p_l(Kq_1)=Bp_1oap-1on on+1o"'qu._2,
while
' ’ ’ -1
y =0 I I _I(Kq__l)=Bp_20“'quoth_.1 qu_l.

Clearly both B and y are C;*“ maps on their respective domains. Moreover, by
condition 2° of the proposition and the chosen normalization of the maps f, one has
(d/dt) B’ (0)=(d/dt) y' (0)=1. Therefore a is a Cy** map. Weld the half discs, ¥ being
the open neighborhood of y(0) in X* for this local weld and I';, I', being the welding

maps, where the domains of I', and I', are 2, (Ky-1)nx '(V)and 2, (K,-1)n
A~ Y (V) respectively.
The welding maps 4, u=1,..., n of 2°) are then given by

A,=T 0B, ;0oBy, 0B, | D,(K,)ny ' (V)
Ap+1 =TI, °B;—-2°"‘°B;+1°Bp+1 ’ Ep+1(Kp+l)mx_1(V)
Aj—, =T, °B;~z°1§g—2 | 54—2(Kq—2)ﬁX_I(V)
Aq-—l = rl °Bq—1 | Dq~1(Kq—l)nX_l(V);

The A, through 4,_, are given by replacing I'; with I', and interchanging p and ¢
in the above formulas. Each 4, is biholomorphic on the interior of its domain; a
straightforward computation shows that the equations 2°) (ii) are satisfied. That each
curve €,=A,|¢,(K,)ny~ ' (V)is C'** follows from the constructions in the proof
and repeated applications of Kellogg’s theorem. The uniqueness of the weld follows
in a straightforward way from the uniqueness in the case n=2, and so the proof of
proposition (1.2) is complete.

Remark. 1t has been shown that the general local welding problem is solved by
reducing it to the situation of proposition (1.2). If the original welding correspondences
are C3** maps, the reduced ones are Ci** for some a'<a, and as seen from the

proof of (1.2), S* will be a star of C'* curves in a neighborhood of x(0). It is easy
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to show that a’ may be given by
a'=a-min(1,27¢)7").

In fact, in terms of a given q, this is the maximum value of @’ which will work.

§ 2. The General Case

The global welding problem is essentially done, since the problems of existence
and uniqueness of the weld and whether or not $*is a C'*% 1-complex on X* are
local ones.4) The only question remaining is the form of the condition (1) on the
welding correspondences at vertices x of the simplicial structure on X g for which
either prx is of order 1 in S or y(x) has order 1 in S The easiest way to give the
condition in these cases is to allow ‘““generalized” wedges as coordinate neighborhoods
at vertices of X s and in the local welding problem of § 1. A generalized wedge is a
space G formed from a disc G in C with center 0 and a ray T originating at 0 and
passing through 0G; IntG is holomorphically isomorphic to G\T. Everything can be
done as before as long as one is careful on the boundary of the generalized discs.
The welding condition is essentially the same as (1) whenever x is such that prx
has order 1 and y(x) has order > 1. If x(x) has order 1, or equivalently if a,(x)=x,
let o =@oa 00 ',  a coordinate at x in X. Then (d/dt) o (x) is independent of the
choice of @, and in this case the welding condition is

d ,
d—t' ax(X) = 1. (1)

Summing up, we have

(2.1) THEOREM. Let X be an H-manifold and S X a C'*° 1-complex on X. Let
{0', 0;: A€ A} be defined as above and form X*. Then X* can be given a unique H-struc-
ture so that

(1) xopr—':X\S—X*\S* is an H-isomorphism;
(i) S*isa C'* 1-complex on X* for some a’ <a,
if and only if for every vertex x of the simplicial structure on X 8

[T{():x(»)=x(x)} =1.

Remark. If in the welding problem S is a C*** 1-complex (n>1), one may ask
for conditions under which $* would be a C"*% 1-complex for some a’'<a. The
technique used here does not provide such conditions because the function u*(x, y)

4) The Holder index a’ is locally determined. It can happen tgat no global Holder constant on
% exists.
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defined in formula (3) is only of class C* no matter how smooth the welding corre-
spondence « is.

The application of theorem (2.1) to transmission problems with shifts requires
that both X and X* be Riemann surfaces, i.e. orientable H-manifolds. If X is a Rie-
mann surface and X* an H-manifold, it is useful to describe the orientability of
X“in terms of so-called welding signatures on X,.

Let xe X, prj:=pr| X, and ¢ a coordinate at pr¥; @opr; is then a coordinate
at x. If xeX,, let f be a biholomorphic map of @opr;(U) onto a wedge with tip at
the origin, f being angle-preserving on X n U und U a sufficiently small coordinate
neighborhood of x. This describes the H-structure on X as in the introduction, and
in fact gives X the structure of a bordered Riemann surface. Denote the wedge at
xeX s by D,, and suppose that x is a vertex of the simplicial structure on X s- Consider
the set {D,:x(y)=yx(x)}. In order to put this set of wedges in the correct position
for the local weld in § 1, some of them must be “turned over”, i.e. mapped onto
themselves by what is essentially the complex conjugation map y:C—C, y(w)=w.
There is of course no unique way of determining which wedges will or will not be
mapped by y, but for each such choice one has welding signatures G (x), where &(x)=1
if D, is mapped by y and 6(x)=0 otherwise. If xe X, is not a vertex, say xeInto},
an orientation on X induces by way of pr orientations on ¢} and a(},( - If o; reverses
these orientations, define & (x) and &(«; (x)) to both have value 0 or both have value 1,
while if o; preserves orientation, define one to have value 0 and the other 1.

(2.2) THEOREM. If X is a Riemann surface and X* an H-manifold, obtained from X
by welding, then X* can be given the structure of a Riemann surface if and only if welding
signatures on X may be chosen so as to have constant value G(j) on each X0 X,
in which case the complex structure on X* can be chosen so that y;:=y | IntX jis
biholomorphic if &(j)=0 and biantiholomorphic if 6 (j)=1. ~

Proof. Obvious.

Another topological property of the welded H-manifold X“* is the following

(2.3) THEOREM. X* is compact if and only if X is compact.

§ 3. Welding Holomorphic Families of Riemann Surfaces

Let w:B—-M be a holomorphic mapping of the complex manifold B onto the
complex manifold M. w is called a holomorphic family of Riemann surfaces if for
every ve there is an open neighborhood U of v in B and a biholomorphic map
Yy of U onto Gxw(U) such that if pr, denotes the projection (w, x)—x, then
w=pr,oYy; G is the unit disc [w|<1 in C. Let S be a closed subset of B which is
locally a star of C**°™ curves depending holomorphically on xeM ([6]). Define a
simplicial structure on S so that
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(i) the restriction to each surface in the family is a simplicial structure as before;
(i1) the set of simplices of codimension 2 is a complex submanifold of B.
S together with such a structure is called a C'**™) complex on B of codimension 1
depending holomorphically on xe M. Let {c}:A€ A} be the simplices of codimension 1
and @:A—A as before. The welding correspondences a,:6;—0,,;, are C***™ maps
depending holomorphically on xe M ([6]) satisfying

woproa,(v) =wopr(v)

for all vea!, where pr is the projection map B—-B.

The local welding situation for holomorphic families of Riemann surfaces is
essentially as follows. Let P be a polycylinder in C*, I={1:0<t<1}, and I'=
{tt—1<t<1}. In DxP we are given the family of curves S(%,(t, 2))=(a(z)+
+b,(2) t, z), where (t, z)eIx P, a, b,: P—C are holomorphic and the b, are nowhere
zero, and for every pair 1< v, u<n with u#v, b,(z)#b,(2) for all zeP. The welding
correspondences «, are homeomorphisms of S(%,) onto itself such that

1° a,| €,(Ix {z})x {z} is a Cy*** map of €, (I x {z}) x {z} onto itself for every
zeP;

2° a, | S(%,({t} xP)) is holomorphic for every tel.

The results of § 1 carry over to this situation with only minor adjustments in the
proofs. For example, consider the case n=2 and argh,(z)=argb,(z)+= for all
zeP. For each zeP define the affine transformation £, (w)=a(z)+b,(z) w, and let
Z:Cx P-C be the holomorphic map Z(w, z)=.2,(w). Define the map f of I' x P
onto itself by

B(t z)={($z_1Pf1°“1($(taz)’z)’z)= t=0
’ (L7 prioa; (£ (L 2), 2),z), t<0O.

Clearly there is B’ such that
| B(t,z) = (B (8, 2), 2);
1+a

since 8’ is real-valued and holomorphic in z it is constant in z, i.e. there is a C,
map y:I'-1" so that y(t)=p'(¢, z). Then if 4| and A4 are the local welding maps
for y determined in § 1, clearly 4, (w, z)= (% (4, (w), z), z) (v=1, 2) are local welding
maps for this special parameterized case.

The global welding problem for a holomorphic family of Riemann surfaces
:B-M and a C***@ complex S of codimension 1 depending holomorphically on
x€M requires more than simple adjustments in the proofs, however. In order to use
the results of the local welding problem as it is presented above, one must as in § 2

be able to map coordinate neighborhoods of points vef},, biholomorphically onto
“holomorphic families of wedges”. If dim M =0, which is the situation of § 2, this
can always be done. But when dim M >0 there are restrictions.
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Let €:0G x P—»C be a family of simple closed C'**® curves depending holo-
morphically on zeP and denote by 2, the bounded region in C for which dQ,=
=% (0G x {z}). There is no loss in generality in assuming that for some z°eP,
% | 0G x {z°} is the boundary value of a biholomorphic map of G onto Q,o.

(3.1) PROPOSITION. Let €:0G x P—C be as above. In order that there exist a map
f:G x P-C satisfying

(i) f is holomorphic;

(ii) f| G x {z} is a biholomorphic map of G onto Q, for every zeP,
it is both necessary and sufficient that € be the boundary value of a map €:G x P-»C
satisfying (i) and (ii).

Proof. ([5)).

By an analytic complex on B of codimension 1 depending holomorphically on xe M
we mean a C'**™ complex S as above for which every ve 535 has a coordinate

neighborhood in B biholomorphically equivalent to a holomorphic family of wedges.
In view of proposition (3.1) this means that S must be locally a star of analytic curves
depending holomorphically on xe M and satisfy further conditions at the simplices
of codimension 2 in the minimal simplicial structure on S.

If B*is a complex manifold obtained by welding and $* is a C! **® complex of
codimension 1 depending holomorphically on xe M, then w*: B*\S*—>M is a holo-
morphic family of Riemann surfaces, where

0 (v") = o(prox ™' (v%),
and since woproa, (v)=wopr(v)forallves; and all Ae A, »* has a unique holomorphic

extension to w*: B*— M which is also a holomorphic family of Riemann surfaces.
One remark about notation. Let «” (1, z) be defined analogously to «”(¢) in the

introduction for a point vei}ﬁ. Then &, (v) will now denote (9/0¢) a” (0, z) where (0, z)
is the coordinate of v.

(3.2) THEOREM. Let w:B—M be a holomorphic family of Riemann surfaces, S an
analytic complex on B— M of codimension 1 depending holomorphically on xe M, and
{a;:AeA} a set of Co**™ welding correspondences depending holomorphically on xe M.

Suppose that there are welding signatures {6 (9):be B s} satisfying 6 (8)=0 for all ve 51=3,;.
Then
1° w*:B*— M is a holomorphic family of Riemann surfaces obtained uniquely from

w:B—-M, hence fopr 1 B\S — BA\S*
is biholomorphic, and

2° $%isa C'*™ complex of codimension 1 depending holomorphically on xe M
for some a' (x)<a(x)
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if and only if at every point v in some simplex of codimension 2 of the given simplicial

structure on B B>

[T{e,():x(»)=x@®)}=1.

Remark. Suppose that S is a family of simple, closed C'**™ curves depending
holomorphically on xe M and denote the welding correspondences by a;, and a,.
«,=proa,o(pr|al)” ! is a map of S onto itself (v=1, 2) such that o) =a,™"; if ] is
the boundary value of a biholomorphic map «} : U—- 3B for some open neighborhood

U of o} in 53, then the conclusions of theorem (3.2) hold. In general, the analyticity
condition on the complex S in theorem (3.2) can be replaced by analyticity conditions
on the welding correspondences. Moreover, the analyticity condition on S implies
that each pro; is a pseudoconvex hypersurface in 8, but nowhere strongly pseudo-
convex. On the other hand, one has

(3.3) THEOREM. If pro} is a strongly pseudoconvex hypersurface on B and the
conclusions of theorem (3.2) are true, then proa,.(pr | 6})”" is the boundary value of a
biholomorphic map pr U,— B for some open neighborhood U, of either Inta? or Into;}.

on B, where )" is that unique index satisfying ' # A and pro =pra..

II. Let X be a Riemann surface, S a C'** 1-complex on X and {¢}, a;:deA4}
welding data as in chapter I. satisfying the condition (1). Suppose that there are
welding signatures {6(X):XeX,} which have constant value 6(j) on each connected

component X ; of X. X*is then a Riemann surface. Form (X®) relative to X* and S°

with the projection pr*: (X%)— X*and denote it by X*. Both X and X* are bordered Rie-
mannsurfaces for which pr: Int X - Xand pr®: Int X*— X*are holomorphic maps. Clearly
there is a homeomorphism A:X — X* such that pr®*s4=y; both 4 and A~ ! are C'**
maps. Accordingto (2.2), the complex structure on X?, and thereby on X* can be chose
so that 4 | IntX j is either biholomorphic or biantiholomorphic according to whether
6(j)=0 or 1.

Let B: X,— X, and p*: X;— X be the successor maps defined in [6] and define ;=
=A"p* A4, B;: X~ X,. For every XX ;n X, define j'= B, (j, X) to be that index
for which B,(X¥)eX ;. A coherent set of signatures Y ,= {6,.:x*€S%} on the C**¢
1-complex $® ([6]) induces in the obvious way a set of signatures {o(X*):%*€X;} on
X;. Define the signatures {a,(%):XeX,} on X, by the rule o,(X)=0(4(%)).

Let L be a complex Lie group and f: X s—L a Holder continuous map. f is said
to be compatible with the welding data if for every Ae A and every Xea} f(X)=1(x,(X));
if so, £ induces the Holder continuous map f*: S*— L by the rule f(X)=/*(x(X)). f'is
said to be compatible with Y, if f*(x*)\"**|=e on S° e being the unit of L.
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§ 4. The Haseman Problem

Given

1) a Riemann surface X, a C'** 1-complex S on X, welding data {¢}, «,:1eA}
as in chapter I satisfying condition (1) and corresponding welding signatures
{o0(X):X€X}, and a coherent set of signatures  , on S%;

2) a complex Lie group L which acts as a complex automorphism group on the
complex space F, where F has an antiholomorphic involution 1;

3) a Holder continuous map f: X s— L which is compatible with both ), and the
welding data,
the Haseman problem is to find holomorphic maps s;:Int X j—F for each j such that

a) s; has a continuous extension to X ;;

b) for every AeA and every xea],

1° (@a(x)) o Sp)'(j’ x) (06,1 (x)) = f(X)aa(x) 1° ) o Sj (X) . (4)
(4.1) THEOREM. If the welding signatures have constant value G(j) on each X ; there

is then a holomorphic fibre bundle ‘Z‘g-—»X * over the welded Riemann surface X* with
structure group L and fibre F and an isomorphism from the space of global holomorphic

sections in @ onto the space of solutions of the above Haseman problem. This iso-
morphism is functorial in the obvious sense.

Proof. Let 5= 1°D 5,047 for every j. s%:X2—F is continuous, s%| IntX% is

holomorphic, and for every x*e X}
Spe (s, 2 (B X7) = £ (pr )77 55(x%). )

Clearly there is an isomorphism from the space of solutions of the Haseman problem
(4) onto the space of solutions of the Riemann-Privalov problem (5). The theorem
now follows from the results in [6].

When L is the general linear group GL(g, C) and F=C? another form of the
Haseman problem can be solved. Given

1) a Riemann surface X, a simple closed C!*“ curve S on X together with a Cy™°
homeomorphism ' of S onto itself. &’ induces the C3** homeomorphism o:X, N
nX;—X,nX, in the obvious way (X, and X, are the two connected components
of X) for which there are welding signatures (1) and 6(2);

2) the involution 1:C?—C? is the map y which sends each entry of ze C? into its
complex conjugate;

3) a continuous map f,:S—GL (g, C), Hélder continuous g,:S—GL (g, C) and

g % g matrices of functions f3, f3, g1, &5 for which y°of,, M of, 1° P g, 7P g5
are meromorphic matrices in an open neighborhood U of § whose determinants are
not identically zero,
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the problem is to find holomorphic maps s j:IntX- ;—C? which have angular
boundary values almost everywhere on X jn}? s (i.e., boundary values taken along
nontangential paths to X ;n X, and satisfy for almost all XeX, N X, the eq tion

(f1 £213) (pr“(’?)) 76(1) 08 (“(52)) =(g212283) (Pr 3:5) V;(Z) 05, (X). (6)

As before, we will associate with (6) a holomorphic cocycle with values in GL (g, C)
on the welded Riemann surface X* by considering an associated problem on X* of
the Riemann-Privalov type. In order to avoid inconvenient notation this associated
problem will also be given on X. Given

1) X, S, a,6(1),6(2) as above;

2) 1=y as above;

3) f,, g, as above and f,, g, (v=1, 3) are ¢ x g matrices of functions satisfying

i) there is an open neighborhood U of S such that f, (resp. g,) is a meromorphic
matrix on prX, n U\S (resp. pr X, n U\S) whose determinant is not identically zero;

i) p° o foproy; ! and y°Pog,oproy; ! extend to meromorphic matrices in an
open neighborhood of S%,
the problem is to find sy, 5, as above so that for almost all XeX, N X,

(f1f213) (prX)-s;(BX) = (g1 8283) (PrX) s, (%). @)

Since S is a simple closed C' " curve there is an open neighborhood V¥ of S which
is schlichtartig, and so by the Koebe mapping theorem there is a biholomorphic map
v of ¥ into a domain in the 1 dimensional projective space P. Clearly this can be
done so that v(.S) does not contain the point at infinity. Moreover, v(S) is a simple
closed C'** curve in P'. Let G} be a continuous map of v(¥nprX,) into GL(g, C)
(j=1, 2) whose restriction to Intv(V nprX ;) is holomorphic and such that for all
tev(S), G; (1)=g,(v™'(¢))- G5 (¢). The existence of such maps is known ([6] or [11],
§ 127). Since G (1) £, (v~ (¢)) G (¢) is continuous, it is known ([10], [12]) that there
are holomorphic maps X ;:Intv(V nprX ;)->GL (g, C) with angular boundary values
almost everywhere on v(S) which are in L,(S) for every p>1 and satisfy almost
everywhere on v(S) the equation X5 (1)=G(t)™'-f, (v ™1 (¢)): G (1) X} (¢). Let G;=
=Gjov, X=X jov.

Two cases must be considered. Either (1) « is the boundary value of a biholo-
morphic map a: Intpr X, n Vor (2)itis not. In the first case f; extends to a meromorphic
matrix in an open neighborhood of S. Let V'< V be an open neighborhood of S so
that on V'\Sf},fs, &1, and g, are holomorphic matrices with values in GL(g, C).
Define Y,=f, X} if a is as in (1) and Y,=X}, otherwise. Let Y, =f, '-X], F,=G,
and F,=g;'*G,, and let Intpr X ;=U,, V'=U,. Then g,3=F,'Y;, g,3=F, Y, is a
holomorphic U= {U,:v=1, 2, 3}-cocycle with values in GL(g, C) and defines the
holomorphic vectorbundle W— X.
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(4.2) THEOREM. Suppose that g,=1 and

(1) if « is the boundary value of a biholomorphic map «:Intpr X, N V- X for some
open neighborhood V of S, then f,G,=G.f, (v=1, 3);

(2) ifaisnot as in (1), then f,=1 and f,G, =G, f;.

Then there is an injection from the space of global holomorphic (resp. meromor-
phic) sections in W to the space of holomorphic (resp. meromorphic) solutions of
problem (7). If f1, f and g5 have values in GL(q, C) and it is required that the boundary
values of a solution {s, s,} of (7) satisfy

siox; ov” ' v(S)eL,(v(S))

Jor all p>1 and j=1, 2, this map is bijective.

Proof. The proof is the same as that of theorem (4.1) in [6], using known prop-
erties of X7 and X7.

Suppose now that f, is Holder continuous. It may then be required that the
solutions s,, 5, satisfy

(A)) s, and s, have continuous extensions to X,; and X, respectively.

We will also require the following property.

(A,) Let {xi,..., x;} be the smallest set of points on S (in the sense of inclusion)
such that f}, f; and g5 have values in GL(g, C) on S\{x, ..., x;}. Then f; (prX) 13 (x,)
f3(prx) s, (X) and g, (prX) g,(x,) g5 (prX) s, (X) should have continuous extensions to
X,npr~*(U,) and X, npr~* (U,) respectively for an open neighborhood U, of x,,
u=1,.., k.

Just as in theorem (4.2), the correspondence between the space of global holo-
morphic sections in W and the space of holomorphic solutions of problem (7) is not
in general surjective. For example, let X =P, §= {w:|w| =1}, a=identity, g=1, f; =g,
=f,=g,=1and f;=g;=(w—1)""'. Then s,=s,=1 is a solution of (7), but s;, 5,,
s3=(w—1)""! is a meromorphic, not a holomorphic, section in W. However, unlike
theorem (4.2) the correspondence is also not in general injective. To see this, take
all data as in the above example except for f; and g; and set f;=w—1, g;=1. Then
{s;y=(w—1)"1, s,=s3=1} is a holomorphic section in W, but {s;, s,} is not a solu-
tion of (7) in the above sense because it does not satisfy (A,). This situation is rectified
by adjusting the cocycle which defines W.

Let n, , be the integers such that for any meromorphic section {s;, s,, 55} in W,
the oth component of s; has a singularity of order >n, , at x, for every ¢=1,..., 9
if and only if s, and s, have continuous extensions to X, npr~} U, and X,npr 'y,
respectively for some open neighborhood U, of x,. The n, , are easily computed in

terms of the orders of the singularities of the components of y°Vof,oproy; ! and

7" ®ogsoproys ', v=1,3. Let h, be a meromorphic function on U, with divisor
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k

Y n, X, h=h® --®h, and g,3=g,3h, §,3=g,3h. The cocycle g;; defines the holo-
n=1 -
morphic vectorbundle W— X.

(4.3) COROLLARY. Suppose that in problem (7) f, and g, (v=1,3) satisfy the
hypothesis of (4.2) and furtheremore that f, is Holder continuous. Then there is an
isomorphism from the space of global holomorphic (resp. meromorphic) sections in
the vectorbundle W— X onto the space of holomorphic (resp. meromorphic) solutions
of problem (7) which satisfy the conditions (A,) and (A;) above.

§ 5. The Carleman Problem

Given

1) a bordered Riemann surface X whose boundary is a C'** l-complex with
simplicial structure {c,:1€A};

2) a homeomorphism a:bdy X—bdy X which preserves this simplicial structure
and for which a;=a | Intg} is a Cy™* map for every AeA and satisfies the Carleman
condition a.a=identity. If o, is orientation preserving (resp. reversing) we write
oy =0y (resp. o;=03);

3) a complex Lie group L with antiholomorphic involution i1: L—L which acts
as a complex automorphism group on the abelian complex Lie group L,, which also
has an antiholomorphic involution 1,: L, — L, such that 1 and 1, are automorphisms
satisfying

1, (£¢)=1(£)1,(¢,) forall feL,f/,eLy;

4) a Holder continuous map f:bdy X— L satisfying the Carleman condition

(+) f(x)=1,0f(a(x))”" forall xeo; iIf o;=0a]
(=) f(x)=fla(x))"" forall xeg; if o, =05,

the Carleman problem is to find a holomorphic map s:Int X— L; which has a con-
tinuous extension to X and satisfies

s(@(x)) = f(x)110s(x) forall xeo; if ay=o0f ®
s(a(x)) = f(x) s(x) forall xeos} if a;=aj,
LeA.

Let X,=X,X,=X as sets but with opposite structures and X equal the
disjoint union X,WX,. The simplicial structure {c;:A€A} on bdyX, defines a
similar structure on bdy X, in the obvious way and thereby one on X p=bdy X,V
wbdyX, which will be denoted by {O‘tIQEP}. There is a natural involution y of X
onto itself which maps X, onto X, and X, onto X,, is antiholomorphic on X\X,,
and continuous on X. Define the bijections ¢:4—A by a(c})=0,;, and Y :P—P by

1. if there exists Ae A for which o} =0, then yoa(a5)=06y,;
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2. if there exists Ae A for which ¢} =7(0}), then a™ oy (a,) =0} (-

Correspondingly, for each geP define the C3** homeomorphism ,:0,-0, .,
by the rules

1'. if there exists AeA for which ¢} =07, then a,=yo0;;

2. if there exists AeA for which ¢} =y(o}), then o,=a; ' o7.

Define the H6lder continuous map f: X;— L as follows:

1°. if for o), there is ¢} =0, then

if OCA=CZI
if o, =o0;;

o _ Jiof(%) forall Xeo
f(x)"{ f(%) forall %eo

1
Q
1
e

2°. if for o there is 63 =1(0}), then

f(:?):{lof(%()—c)) forall Xeo, if o;=a;

f(e,(X)) forall Xea, if a;=aj.

Define the signatures {o(¥):XeX,} by the rule

o\ 1, XebdyX,
“(")"{-—1, zebdyX,

and the welding signatures {G(%):XeX,} by

&()_C.)___{O, XebdyX, or XebdyX,nog, and o,=a

1, XebdyX,no, and o,=ua,;

&(x) is well-defined since it is constant on each connected component of X .

Finally, let f(1)=2 and B(2)=1 and consider the Haseman problem to find
holomorphic maps s,:IntX,—L; with continuous extensions to X, (v=1, 2) such
that for every xe X,

5 550y (% (1)) = F(x) 1] P05,(x), where xeo,. ©)

(5.1) THEOREM. Suppose that o is such that either o,=a; for all AeA or a;=0;
for all Ae A. Then every solution s of the Carleman problem (8) defines a solution of the
Haseman problem (9), namely {s,=s, s;=1,0507}. On the other hand, if {s,, s,} is a
solution of (9), then s=s,+1,05,07 is a solution of (8).

Proof. Verification.

Let 2Z, (resp. #,) be the space of solutions of problem (8) (resp. (9)) and x;:Z;
=2, x2: L2~ % the maps described in (5.1). x; is an injection. x, is not bijective,
and so there is in general nothing equivalent to (4.1) for the Carleman problem.

However, the existence of global holomorphic sections in the fibre bundle @—-»X *
described by problem (9) implies the existence of solutions of the Carleman problem

8).
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If L;=C%and L is a complex Lie subgroup of the complex affine group GA4 (g, C),
it makes sense to define y, by the rule {s,,s,}—>4(s;+1;05,0y). Theorem (5.1)
remains valid and moreover, ¥, oy, =identity. If W— X? is the holomorphic vector-

bundle associated with the holomorphic affine bundle ‘f‘;—»X * which corresponds to
the homogeneous Carleman problem (see [6]) and @ (W) is the sheaf of germs of
holomorphic sections in W, then from (5.1) and [6], theorem (5.1) one has

(5.2) THEOREM. &, is either empty or dimg £, =dim¢ H° (X%, O(W)).

Remarks. 1. 1t is clear that one can study Carleman problems corresponding to
the various forms of problem (6) discussed in § 4. Moreover, because of the results
in § 3 and [6], the Haseman and Carleman problems can also be analysed when given
on a holomorphic family of Riemann surfaces with appropriate S, welding data (i.e.,
shifts) and transmission map f.

2. As in [6], known properties of the space of global holomorphic sections in a
global holomorphic fibre bundle can be used to describe the solution spaces of the
various problems discussed here. The results in [6] carry over to the Haseman and
Carleman problems when modified in the obvious ways to take into account the
fact that the correspondences in the various theorems of § 4 and § 5 are not necessarily
bijective.
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