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Ein Satz ûber orthogonal abgeschlossene Unterrâume

von E. Ogg

Einleitung

Seien k ein kommutativer Kôrper, E ein A>Vektorraum und <P:ExE-+k eine

nicht ausgeartete, symmetrische Bilinearform. Viele unter den allereinfachsten Fragen
zur ,,linearen Algebra" eines Paares (E, <P) sind noch unbeantwortet im Falle un-
endlicher (algebraischer) Dimension von E. Wir beweisen in diesem Beitrag den

folgenden

Satz: E sei eingebettet in einen Vektorraum Ë mit orthogonaler Basis beziiglich
$:ExË-+k. $ sowie $\ExE <p seien nicht ausgeartet. ht F ein festes lineares Kom-
plement von G beziiglich E(F®G — E), dann existiert ein Komplement Fo von G in E
derart, dass FoaFL1 (der Biorthogonalraum von F in E) und Fqe±enE=F0.

Als Anwendung zu totalisotropen Unterrâumen F(Fa F1) eines Raumes E mit
orthogonaler Basis erhalten wir das

Korollar 1 : Sei E ein Raum mit orthogonaler Basis beziiglich der nicht ausgearteten
Bilinearform $. Besitzt der Unterraum G von E ein totalisotropes Komplement F in E,
dann besitzt G auch ein orthogonal abgeschlossenes, totalisotropes Komplement in E.

Schliesslich ergibt sich aus dem Beweis auch noch das Korollar 2: (E9 <P) sei
wie im Korollar 1. Fur jeden Unterraum F von E gilt: dimF-L1 dimF.

Die letzte Behauptung ist falsch, wenn man die Voraussetzung ûber die Existenz
einer fur # orthogonalen Basis von isfallen lâsst, Wir verweisen noch auf die Arbeiten
[2] und speziell fur die Anwendungen zum Korollar 1 auf [1]. Dem Beweise des

Satzes schicken wir folgenden Hilfssatz voraus:
Gegeben sei ein Vektorraum E mit (et)leJ als Basis. Zu jedem x ^ £iei6^ be"

trachten wir die endliche Indexmenge Mx

Lemma: Ist H ein linearer Unterraum von E, dann existiert eine Basis*(hK)Ke f von H
mit Mhicc|: (J Mhvfiir aile keL

vel
x

Beweis: Der Indexmenge / fûgen wir einen neuen Index G hinzu. J0 Jkj{&} sei

wohlgeordnet, und 0 sei das kleinste Elément. Wir definieren eine Abbildung \i\E~+ Jo
wie folgt: Jedem xeH und x#0 ordnen wir den grôssten Index in Mx zu. ju(O)= 0.
ist x$H und Mxnii{H)^$, dann sei fi(x) der grôsste Index in Mxnfi(H). Im Falle
Mx n fi (H)=0 setzen wir \i (x) 0.

Wir beweisen zunâchst: Zu jedem festen xeE gibt es ein x' mit x'=x(H) und



118 E.OGG

fi(x')=(9. Ist n(x)~@9 dann kann x'=x gesetzt werden. Sei also jh(x)^@. Dann

existierteinyleHmit ju(jc)=ju(j1). Wir bildenx1 x—Xtyl9 wobei wir y^ so wâhlen

kônnen, dass n(x)$MXi, d.h. /^(x1)</x(x). Ist ^{x^^O, dann setzen wir x^Xj. Im
Falle ii{xt)^(9 kann das Verfahren fortgesetzt werden. Das Verfahren muss nach

endlich vielen Schritten abbrechen, denn sonst gàbe es in Jo eine nicht abbrechende,

absteigende Folge fi(x)> fi(xt)> ii(x2)> ••-> die kein kleinstes Elément besitzt. Dies

widerspricht aber der Wohlordnung von Jo. Fur ein gewisses n muss also fi(xn) (9

sein, wobei xn~x— ]T X^i und j^ei/. Somit ist xn=x{H\ und wir kônnen x' — xn

setzen. i=1

Wir zeigen nun: Zu jedem K€fi(H) und k^0 existiert ein zei/ mit h(z)~k und

Mzn{ie/i(/f) | i<fc} 0. HK= {yeH \ fi(y)<K} ist ein linearer Unterraum von H.
Sei z'e/f mit /x(z')=k:. Indem wir die obige (Jberlegung auf HK und z' anwenden,
erhalten wir ein z mit z=z'(HK) und Mzn/j(HK)=0, und es ist /j(z)=ju(z')=k;.
Zu jedem Ke/=M(#)\M bilden wir ^K {yeH\ fi(y)=K, i$My fur aile ie/i(H)
und kk}. AK^0. Nach dem Auswahl-axiom kann in jedem AK ein AK gewâhlt
werden. Dièse hK haben die Eigenschaft, dass i$Mhic fur aile ien(H), i^k und

Es bleibt noch zu zeigen, dass (hK)KeI eine Basis von H ist. (hK)KeI ist jedenfalls
linear unabhângig. Sei xeH beliebig und H0 k(hK)KeI. HoczH. Nach obiger Ûber-

legung existiert ein xl mit x'^x (Ho) und Mx» n jj, (Ho)=0. Wâre x' + 0, dann hâtte man

li{x')eMx, und somit Mx*nfi(Ho)^Mx^r\fi(H)^0. Dies ergibteinen Widerspruch.
Also ist x' 0, d.h. xgH0. Q.E.D.

Beweis des Satzes: Sei (e,),^ eine Basis von E, (fK)KeK eine Basis von F und H=
F11 n G. Wir wâhlen in /f eine Basis (A,)l€j wie im Hilfssatz. Es ist dann also jll (ht) i,
^(Jflr\{0})=/c:/, v^Mhi fur aile vel und v#*. Wir setzen nun/; =/K- £ KiK ^a

$(ev, Av)#0, kônnen die AKl so gewâhlt werden, dass 4>(ev,fx):=:<P(ev,fK)"-ÀKV<P(ev,

Av)=0 fur aile vel. Dabei ist AKV^0 nur fur endlich viele ve/. Sei F0=k(f^)KeK.
Wegen der linearen Unabhângigkeit der/K von den hx ist (f^eK eine Basis von Fo

und Fon(?=(0). Ferner ist FO®G=E und FocF11.
Wir behaupten jetzt: F^^nE^F0. Manhat FocFLzL*nE, F£czF£* und daher

F^cF^F^nEczF^nE^F^czF11. Sei jceF^^n£. Wâre x$F09 dann

gâbe es eine Zerlegung x^xt+x2 mit x^Fq, x2eG, jc2#O. Da x2eF\{0}, wâre

/i(x2)=ïoe/, also $(etQ9 x2)#0. Andererseits ist #(^IO,/IC')=0 fur aile kg£ Es ist

elQeF^, somit x2#FoJ?x^ x^Fq^^oF. Dies ist ein Widerspruch. Q.E.D.
Das Korollar 2 folgt aus dem Beweise des Satzes, wobei E und £, und damit

# und $ zusammenfallen. Fiir jedes vel ist #(ev, Av)^0. Da AveFx±, existiert ein

FCG^T mit #(ev,/K)#Q, d.h. zu jedem ve/ gibt es ein *ceJT mit AKV^0. Andererseits

gibt es zu jedem jceJThôehstens endlich viele v mit AKV#0. Ist dimF=cardAr^K05
dann gilt also ; card /^ card K- Ko=cardK. Wegen F11=Fxx n (F©G)=F© (F11 n G)
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ist dimF1J- card#+card/=cardi: und daher dimF1J- dimF. Fiir end-

lichdimensionale Unterrâume ist dièse Beziehung wohlbekannt.
Das Korollar 1 ergibt sich aus der Bemerkung, dass fur ein totalisotropes F der

Unterraum F11 ebenfalls totalisotrop ist. Denn aus Fc F1 folgt F11 cz (F1)11 (F11)1.
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