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Ein Satz iiber orthogonal abgeschlossene Unterriume

von E. OGG

Einleitung

Seien k ein kommutativer Korper, E ein k-Vektorraum und @:E x E—k eine
nicht ausgeartete, symmetrische Bilinearform. Viele unter den allereinfachsten Fragen
zur ,linearen Algebra‘ eines Paares (E, @) sind noch unbeantwortet im Falle un-
endlicher (algebraischer) Dimension von E. Wir beweisen in diesem Beitrag den
folgenden

SATZ: E sei eingebettet in einen Vektorraum E mit orthogonaler Basis beziiglich
&:Ex E-k. @ sowie @\, z=D seien nicht ausgeartet. Ist F ein festes lineares Kom-
plement von G beziiglich E(F®G=E), dann existiert ein Komplement F, von G in E
derart, dass Fyc F** (der Biorthogonalraum von F in E) und FyE*ENE=F,.

Als Anwendung zu totalisotropen Unterriumen F(Fc F') eines Raumes E mit
orthogonaler Basis erhalten wir das

KOROLLAR 1: Sei E ein Raum mit orthogonaler Basis beziiglich der nicht ausgearteten
Bilinearform ®. Besitzt der Unterraum G von E ein totalisotropes Komplement F in E,
dann besitzt G auch ein orthogonal abgeschlossenes, totalisotropes Komplement in E.

Schliesslich ergibt sich aus dem Beweis auch noch das KOROLLAR 2: (E, P) sei
wie im Korollar 1. Fiir jeden Unterraum F von E gilt: dim F** =dim F.

Die letzte Behauptung ist falsch, wenn man die Voraussetzung iiber die Existenz
einer fiir @ orthogonalen Basis von E fallen lasst. Wir verweisen noch auf die Arbeiten
[2] und speziell fiir die Anwendungen zum Korollar 1 auf [1]. Dem Beweise des
Satzes schicken wir folgenden Hilfssatz voraus:

Gegeben sei ein Vektorraum E mit (e,),.; als Basis. Zu jedem x—-Z ¢.e €E be-
trachten wir die endliche Indexmenge M, = {1eJ|£ #0}.

LEMMA: Ist H ein linearer Unterraum von E, dann existiert eine Basis-(h, ). ; von H
mit My, & (JM,, fiir alle kel.

vel
vVEK

Beweis: Der Indexmenge J fiigen wir einen neuen Index 0 hinzu. Jo=Ju{0} sei
wohlgeordnet, und 0 sei das kleinste Element. Wir definieren eine Abbildung u: E— J,
wie folgt: Jedem xe H und x#0 ordnen wir den grossten Index in M, zu. u(0)=0
Ist x¢ H und M,np(H)#9, dann sei u(x) der grosste Index in M, nu(H). Im Falle
M, N u(H)=0 setzen wir u(x)=0.

Wir beweisen zunichst: Zu jedem festen xeE gibt es ein x’ mit x'=x(H) und
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p(x)=0. Ist u(x)=0, dann kann x'=x gesetzt werden. Sei also pu(x)# @. Dann
existiert ein y, € H mit u(x)=pu(y,). Wir bilden x, =x— 41, y,, wobei wir 4, so wihlen
konnen, dass p(x)¢M,,, d.h. u(x,)<p(x). Ist u(x,)=0, dann setzen wir x’=x,. Im
Falle p(x,)# 0 kann das Verfahren fortgesetzt werden. Das Verfahren muss nach
endlich vielen Schritten abbrechen, denn sonst gdbe es in J, eine nicht abbrechende,
absteigende Folge p(x)>pu(x;)>u(x,)> -, die kein kleinstes Element besitzt. Dies
widerspricht aber der Wohlordnung von J,. Fiir ein gewisses #n muss also pu(x,)=0C

sein, wobei x,=x— ) A;y; und y;€e H. Somit ist x,=x(H), und wir kénnen x'=x,
setzen. =1

Wir zeigen nun: Zu jedem xeu(H) und x# 0 existiert ein ze H mit p(z)=x und
M,n{1eu(H)| 1<k}=0. H.={yeH | u(y)<x} ist ein linearer Unterraum von H.
Sei z’e H mit u(z')=x«. Indem wir die obige Uberlegung auf H, und z’ anwenden,
erhalten wir ein z mit z=z'(H,) und M,nu(H,)=90, und es ist u(z)=p(z')=x.
Zu jedem xel=pu(H)\{0} bilden wir 4, ={yeH | u(y)=x«, 1¢M, fiir alle 1eu(H)
und 1<k}. 4,#0. Nach dem Auswahl-axiom kann in jedem A, ein A, gewdhit
werden. Diese h, haben die Eigenschaft, dass 1¢M, fiir alle 1eu(H), 1#k und
u (hx) =K.

Es bleibt noch zu zeigen, dass (h,),.; eine Basis von H ist. (h,)..; ist jedenfalls
linear unabhingig. Sei xe H beliebig und Hy=k (h,)..;. Ho< H. Nach obiger Uber-
legung existiert ein x* mit x'=x (H,) und M,. n u(H,)=0. Wire x’ #0, dann hitte man
p(x’)eM,. und somit M, nu(Hy)=M, nu(H)#0. Dies ergibt einen Widerspruch.
Also ist x'=0, d.h. xeH,. Q.E.D.

Beweis des Satzes: Sei (e,),., eine Basis von E, (f,)..x €ine Basis von F und H=
F** A G. Wir wihlen in H eine Basis (k,),.; wie im Hilfssatz. Esist dann also u(h,)=1,
p(H\{0})=I<J, v¢M, fiir alle vel und v#1. Wir setzen nun f; =f,— > Ah,. Da

3
& (e,, h,)#0, konnen die A,, so gewihlt werden, dass & (e,, f,)=® (e,, f) — Ay P (€),
h,)=0 fiir alle vel. Dabei ist A,,#0 nur fiir endlich viele vel. Sei Fo=k(f)ccx-
Wegen der linearen Unabhéngigkeit der f, von den 4, ist (f}),.x eine Basis von F,
und F,n G=(0). Ferner ist F,@®G=E und Fyc F'+.

Wir behaupten jetzt: FyE*En E=F,. Man hat Fyc F*E'EN E, Fy c F$E und daher
F{E'EcFy'E FoE'En Ec Fy'EN E=F3t c F**, Sei xe FgE*En E. Wire x¢ F,, dann
gibe es eine Zerlegung x=x,+x, mit x,€F,, x,€G, x,#0. Da x,e H\{0}, wire
p(xz)=10€l, also ®(e,,, x,)#0. Andererseits ist D (e, , f)=0 fiir alle xe K. Es ist
e,,€F,E, somit x,¢ FyE'E, x¢ FyE'En E. Dies ist ein Widerspruch. Q.E.D.

Das Korollar 2 folgt aus dem Beweise des Satzes, wobei E und E, und damit
@ und & zusammenfallen. Fiir jedes vel ist & (e,, h,)#0. Da h,eF*!, existiert ein
keK mit &(e,,f,)#0, d.h. zu jedem vel gibt es ein ke K mit 4, ,#0. Andererseits
gibt es zu jedem ke K hochstens endlich viele v mit A, ,#0. Ist dim F=card K> N,
dann gilt also: card /< card K- N, =card K. Wegen F**=F'* N (F®G)=F@(F'* nG)
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=F@®H ist dim F**=card K+card/=card K und daher dim F** =dimF. Fiir end-
lichdimensionale Unterrdume ist diese Beziechung wohlbekannt.

Das Korollar 1 ergibt sich aus der Bemerkung, dass fiir ein totalisotropes F der
Unterraum F** ebenfalls totalisotrop ist. Dennaus F<= F* folgt F*+ < (F4)H = (F*4)*.
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Eingegangen den 19. Mérz 1968
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