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Strukturen auf Quotienten komplexer Râume

Klaus-Werner Wiegmann (Munchen)

In seiner Arbeit [6] hat Cartan auf dem Quotienten X/R eines reduzierten kom-
plexen Raumes X nach einer eigentlichen Âquivalenzrelation R die Struktur X@IR

betrachtet und bewiesen, daB (X/R9 X@IR) genau dann ein komplexer Raum ist, wenn
XIR lokal-x0/i£-separabel ist (Main Theorem). Auch fiir komplexe Râume im Sinne

von Grauert [9] lâBt sich die Quotientenstruktur definieren (s. § 1) und ein verschârf-
tes Main Theorem beweisen (s. § 5). x0/jR ist gewissermafien eine maximale lokal-
geringte Struktur auf XjR.

In der vorhegenden Arbeit werden noch andere lokal-geringte Strukturen auf
Quotienten komplexer Râume betrachtet, definiert z.B. durch holomorphe Funktionen
und Abbildungen, sogenannte Spektralstrukturen (s. § 2) oder durch analytische
Âquivalenzrelationen im Sinne von Holmann [13] (s. § 6). Ergebnisse sind u.a.:

(a) Ein komplexer Raum ist genau dann lokal-holomorph-separabel, wenn eine

holomorph-regulàre komplexe IJnierstruktur mit gleicher globaler Funktionenalgebra
existiert (s. § 3 und § 4).

(b) Jeder schwach-holomorph-konvexe komplexe Raum ist holomorph-konvex
(s. § 4).

(c) Es sei (X, &/) ein komplexer Raum und 38 eine Garbe lokaler Unteralgebren
von se'. Dann ist (X, 88) genau dann ein komplexer Raum, wenn &(U) abgeschlossen in

s#{U) ist fur offenes UœX, und aufierdem X lokal-^-separabel und lokal-&-regulâr
ist. Die angegebenen Bedingungen sind unabhângig (s. § 5).

(d) Nicht aile komplexen Unterstrukturen auf einem komplexen Quotienten (X/R,
sf/R) werden durch analytische Âquivalenzrelationen auf (X, se) induziert.

Die Begriffe werden in § 0 definiert.

§ 0. Vorbemerkungen

Ein geringter Raum (X, s/) besteht aus einem topologischen Raum X und einer
Garbe se von Ringen (oder Algebren) auf X. Ist M eine beliebige Teilmenge von X, so
sei stfM der induktive Limes der Schnitte s/(U) r(U,^/) ûber aile offenen Um-
gebungen U von M in X. Ist M offen, so gilt stfM=s/(M). stfx\ j/{x} heiBt Halm.
von se im Punkte xeX. Die Elemente des Haïmes werden Keime genannt.

Ein lokal-geringter Raum sei ein Paar (X, stf) bestehend aus einem topologischen
X und einer Garbe s/ auf X von lokalen C-Algebren st/x9 xeX, das sind kom-

niutative noethersche Algebren mit Eins iiber dem Kôrper der komplexen Zahlen,
die genau ein maximales Idéal ax besitzen; die Verkettung C-+srfx-*stfxlax soll
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auBerdem ein Isomorphismus sein. Jeder Halm stfx stimmt mit der direkten Summe

ûjçSC ûberein. Einem Keim aej/x wird als Funktionswert, cc(x)9 sein Bild bei der

Projektion stfx-*C zugeordnet. Ein Schnitt/er(£/, se), C/offene Teilmenge von X,
deflniert eine komplexwertige Funktion £/->C, die wieder mit / bezeichnet werden

soll:/(x)eC sei der Wert des Keimes/^e^, xeU.
séu fur McX ist zwar stets eine C-Algebra, aber i.a. nicht lokal, vgl. jedoch

Hilfssatzl,§l.
Die Quotientengarbe stfrcd : sfjjf einer lokal-geringten Struktur se modulo der

Idealgarbe Jf der nilpotenten Elemente definiert wieder einen lokal-geringten Raum
(X, s?/rcd), die Reduktion von (X, se).

Morphismen (X, <*/)-? (F, 8$) zwischen lokal-geringten Râumen sind Paare

(<£, (/>*) stetiger Abbildungen

<j>:X->Y und ^i^
dabei ist (f>* eine Familie lokaler Algebra-Homomorphismen

d.h. <j)x bildet l^(x)6^(^(JC) auf lxe<s/x und deshalb auch das maximale Idéal b^(jc)

von ^(JC) in das maximale Idéal a* von stfx ab. Jedes $* definiert somit einen Vektor-
raum-Homomorphismus

à<l>x-1>+ix)fblix)-+*xl(£

der (ersten) Cotangentialrâume T^X)(Y9 38) und TX(X, se). Der Morphismus (<£, §*)
induziert auBerdem Algebra-Homomorphismen der Schnitte

fur offenes Uc Y, definiert durch Festlegen der Keime

r^C/)]»:=*ï(/*w).
falls/er((7, $) und xe(j)~l (U). Der zum kanonischen Morphismus

(idx,red):(Z,<ed)^(X,^)
gehôrende Reduktions-Homomorphismus sei

fer{U, se) und tQu(f)er(U, stfted) haben gleiche Funktionswerte.
Wir kônnen fur lokal-geringte Râume Eigenschaften wie in [27] definieren: Es

sei F eine Menge globaler Schnitte auf (X, sé\ FcA:=r(X, stf). (X, se) heiBt dann

a) F-ausbreitbar, bzw.

b) (schwach-)F-konvex> bzw.
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c) F-separabel oder

d) F-vollstàndig,
wenn die Abbildung (j>:X-*CF9 x\-+(f(x))feF, a) diskret, bzw. b) (fast-)eigentlich,
bzw. c) injektiv oder d) injektiv und eigentlich ist. Wir sagen: X ist lokal-F-..., wenn
jeder Punkt xeX eine Umgebung U besitzt, so daB <f> \ U die entsprechende Eigen-
schaft a)-d) hat.

Fur Teilmengen K von X sei

und £:=KA.

(X, stf) ist genau dann (schwach-^-konvex, wenn fur jede kompakte Menge Ka X
auch ÊF kompakt ist (bzw. kompakte Zusammenhangskomponenten besitzt). Denn
es gilt:

Wir sagen: (X, s/) ist F-regulàr, wenn das Bild von Fbei der Abbildung yx:A-*
-^ajal, f\->(/—f(x))x moda2x, den ganzen Tangentialraum aufspannt, fur aile xeX,
d.h. es gilt: TX(X, ^):=ûJa* ^(C[F]).

(X, s/) heiBe lokal-sé-ausbreitbar (bzw wenn zu jedem Punkt xeX eine

Umgebung C/existiert, so daB (U, se \ U) ein F(U, j/)-ausbreitbarer (bzw....) lokal-
geringter Raum ist.

Komplexe Râume im Sinne von Grauert [9] und Grothendieck [12] sind nach
Définition lokal-geringte Râume. Ihre Reduktionen sind sogar komplexe Râume im
Serreschen Sinn [23]. Wir setzen fur komplexe Ràume stets abzâhlbare Topologie
voraus. Dann kann die Algebra F(X, se) aller globalen Schnitte holomorphe
Funktionen) auf einem komplexen Raum (X, s/) in kanonischer Weise zu einer
vollstândigen topologischen Algebra gemacht werden, so daB im reduzierten Fall,
T(Z, stfTed)czr(X, xtë), da stf^dx^, genau die Topologie der kompakten Konver-
genz vorliegt, vgl. [7] und [9]. Morphismen zwischen komplexen Râumen werden
holomorpheAbbildungengenannt. JedeholomorpheAbbildung(0, 0*): (X, stf)
induziert einen stetigen Algebra-Homomorphismus

Jeder komplexe Raum (X, stf) ist lokal-j/-separabel, -regulâr, -konvex, -voll-
stândig. Doch sind die globalen Eigenschaften i.a. nicht erfullt. Statt ,,^4-ausbreitbar"
••• wird meist ,,holomorph-ausbreitbar"... gesagt. Fiir ,,holomorph-vollstândig" ist
die Bezeichnung Steinsch ublich. Nach Theorem A ([5] und [9]) ist jeder Steinsche
Raum holomorph-regulâr. Ein F-regulârer komplexer Raum (X, s/) besitzt lokale
Koordinaten durch globale Funktionen aus FczF(X, s/), d.h. zu jedem Punkt xeX
existieren eine Umgebung U und endlich viele Schnitte/i,..., fkeF, die eine Ein-
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bettung injektive, eigentliche und regulâre Abbildung, vgl. [26]) (£/, sf \ £/)-?
(Ck, k(P) definieren. (Dabei sei k@ die gewôhnliche Garbe der holomorphen Funk-
tionskeime des C*).

Jeder F-regulâre komplexe Raum ist deshalb F-ausbreitbar, sogar lokal-F-separa-
bel. Fur lokal-geringte Râume ist dièse Aussage i.a. falsch:

Beispiel 1. Es sei (9: — 2Q die gewôhnliche Garbe der Holomorphie auf X: C2

undp:X-+C die Projektion auf die erste Koordinate (jc1? x2)t->x1. Fur offenes UaX
sei &(U) die Algebra aller holomorphen Funktionen/e $(£/), die auf jeder Faser

p~î(p(x))nU, xeU, konstant sind. Der (nach Hilfssatz 1, § 1) lokal-geringte Raum

(X,&) ist r(X, ^)-regulâr, aber nicht (lokal-) F (X, ^)-ausbreitbar, nicht einmal
lokal-J'-ausbreitbar.

Nach Grauert [9] ist ein komplexer Raum (X, stf) genau dann Steinsch, wenn
(X, stfrcd) dièse Eigenschaft hat. Dièse Àquivalenz ist fur die allgemeineren Begriffe
a), b) und c) nicht richtig, vgl. Schuster [21]. Grauert [8] bewies auch, daB jeder
holomorph-ausbreitbare und holomorph-konvexe Raum Steinsch ist, vgl. dazu § 4,

insbesondere Lemma 1.

Ist (X, se) ein komplexer Raum und F=C[F]c:,4:=F(X, sé\ so gilt fur
(f);X-+CF, xh+(f(x))feF, und aile Mengen KczX:

n
/6F

wobei/(£)A cC bzgl. F(C, t(D) zu bilden ist.

§ 1. Définition der Quotientenabbildung

Es seien X und Y topologische Râume. Eine surjektive und stetige Abbildung
p:X-+Y hciUt (topologische) Quotientenabbildung, wenn eine Teilmenge U von F
genau dann offen ist, wenn sie ein offenes Urbild p~i(U)czX besitzt. Ist R die zu p
gehôrende Âquivalenzrelation auf X, so schreiben wir auch XjR statt Y. p:X-+X/R
heiBt auch Projektion.

Ist se eine Garbe auf X, so definieren wir die Bildgarbe pos</ auf XIR durch

(pos/) (U):-s/{p'x(U)) fur offenes UczX/R. (XjR,postf) ist ein geringter Raum,
aber i.a. nicht lokal-geringt, auch wenn (X, stf) ein lokal-geringter Raum ist. Jeder

Halm (pos/)y, ye Y, ist in ^p-i(y) enthalten. (postf)y und s^p-iiy) stimmen ûberein,
fallsdie Faser p^1{y) ein/?-saturiertes Fundamentalsystem von Umgebungen besitzt.
Das ist z.B. erfûllt, wenn p eigentlich ist. In jedem Fall induzieren die Homomor-
phismen * v t

einen Morphismus geringter Râume
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Ist (X9 stf) lokal-geringt, so definieren wir auf XjR die sogenannte Quotienten-
struktur s//R als Untergarbe vonp0s?/, bestehend aus denjenigen Elementen, die auf
den Fasern von R konstante Funktionswerte haben:

\ f\p"1{y)-> C ist konstant, yeU}.
Selbstverstândlich kônnen wir/?* auf (s//R)p{x) beschrânken, und (p,p*):(X, s/)

-+(X/R, s/jR) ist ein Morphismus lokal-geringter Râume, denn es gilt:

Hilfssatz 1. Es sei (X, stf) ein lokal-geringter Raum, MaX beliebig. Dann ist

B : {festfM | /: M -> C, xv-*fx(x) ist konstant}

eine lokale Algebra mit dem maximalen Idéal

b:={feB\fx(x) 0 fur aile xeM}.
B ist die grofite lokale Unteralgebra von seM. —

Beweis. B ist eine Algebra ûber C, und b ist ein Idéal in B. Fur jedes xeM ist
Tx:B-+&/x,fh-+fx, ein Algebra-Homomorphismus. Ist ax das maximale Idéal in s/x,
so gilt :

^(û*) {feB:fxeax} {feB:fxeKeTn(s/x-+s/Jax C)}

{feB:f(x') 0 fur aile xreM} b.

Da CczB und Ccj*/x sowie tx(X) X fur aile ÀeC gilt, ist B-*C,ft-+fx
ein surjektiver Homomorphismus mit Kern =b, d.h. Bjb C, b ist maximales Idéal
in B. Ist Bo eine beliebige lokale Unteralgebra von j/m, dann bildet B0-*jtfx,f\->fxi
fur jedes xeM das maximale Idéal b0 von Bo in ax ab, d.h. b0 cb und B0=b0®Cczb

Die Situation (p,p*):(X, <stf)-*{XjR,pos#) wollen wir verallgemeinern und
definieren: Ein Morphismus

(p9p*):(X9J*)->(Y9O)

(lokai-)geringter (bzw. komplexer) Râume (X9 se) und (7, @) heifît (lokal-)geringte
(bzw. holomorphe) Quotientenabbildung, wsnnp:X-+ F eine topologische Quotienten-
abbildung ist mit ^cz/?0 stf. Im lokal-geringten und deshalb auch im komplexen Fall
gilt wegen Hilfssatz 1 fur die von p definierte Âquivalenzrelation R auf X:&c srfjR.
$4\R ist eine maximale lokal-geringte Struktur auf X\R. Setzt man wie Lieb [16]
voraus, da8 die Strukturgarbe eines lokal-geringten Raumes eine Garbe stetiger
Funktionskeime ist, das ist z.B. fur reduzierte komplexe Râume richtig, so ist die

Quotientengarbe die grôfite geringte Struktur auf dem topologischen Quotienten,
fur die die Projektion ein Morphismus lokal-geringter Râume ist.

Auf Quotienten XjR wollen wir also nicht nur die Garbe sé\R betrachten, sondern
beliebige Garben von lokalen Unteralgebren ^cstf/R zulassen. Ist (X/R,&) ein
komplexer Raum, so ist X/R lokal-J'-vollstândig, insbesondere lokal-J*-separabel
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und lokal-^-regulâr; fur offene Mengen U^zX/R ist &(U) abgeschlossen in

Définition. Ist (X, stf) ein geringter Raum, so heiBt eine Untergarbe g% von s/
abgeschlossen, wenn aile Schnittmengen &(U) fur offenes UczX abgeschlossen in

j/(£/)sind. -
stf\R ist eine abgeschlossene Untergarbe von/?0j/. Abgeschlossene Garben von

lokalen Unteralgebren é$czpo£/9 fur die XjR lokal-^-separabel und lokal-^-regulâr
ist, wollen wir R-Garben nennen. Aus Hilfssatz 1 folgt, daB jede in der Bildgarbe
pos/ enthaltene komplexe Struktur auf X/R eine iÊ-Garbe ist. Es soll untersucht
werden, inwiefern dièse Aussage iiber komplexe Unterstrukturen umkehrbar ist,
vgl. § 5.

Définition. Ist (X, <*/) ein komplexer Raum, so heiBt eine Garbe fc^ von
Unteralgebren eine komplexe Unterstruktur auf X9 wenn auch (X, &) ein komplexer
Raum ist. stf ist eine Verfeinerung von & in der Terminologie von Grauert-Remmert.

Ist (p,p*):(X9<s/)-*(X/R,S!//R) eine eigentliche holomorphe Abbildung, so

stimmt jtfjR mit der Bildgarbe p0^/ genau dann uberein, wenn R einfach ist. Denn
ist <z/IR=pos/9 so folgt nach einem Lemma von Cartan-Stein, vgl. etwa [27], daB

fur jeden Steinschen Teil UczXjR die Funktionen aus r(p~x (£/), j/) die Zusammen-

hangskomponenten der Fasern von/? trennen. Wegen r{p~1{U)^) r(U,s/IR)
sind aber die Funktionswerte der Schnitte aufp~1 (y), yeU, konstant. Ist andererseits

p eine einfache Abbildung, so ist jede F&ser p~1(y),yeX/R, eine kompakte und zu-
sammenhângende analytische Menge; deshalb hat jeder Schnitt einer Umgebung
p"x (U) von p"i{y) mit Werten in st konstante Funktionswerte auf den Fasern von p,

po£/ ist der von (p,p*) induzierte Algebra-Monomorphismus
tp\r{XjR9 jtf/R)-*r(X9<s&) sogar surjektiv. Die Umkehrung ist falsch, wie einfache

Gegenbeispiele zeigen.

Cartan beweist mit dem Main Theorem [6], daB eine eigentliche Âquivalenz-
relation jR auf einem reduzierten komplexen Raum (X, (9) genau dann einen kom-
plexen Quotienten (X/R, OjR) definiert, wenn X/R lokal-0/i£-separabel ist. Wir werden

dièse Aussage fur nicht notwendig reduzierte Râume beweisen und zeigen, daB

es genugt, lokal-0/iï-ausbreitbar vorauszusetzen, vgl. § 5. Doch zunàchst folgen weite-

re Vorbereitungen.

§ 2. Durch holomorphe Funktionen und Abbildungen
definierte Àquivalenzrelationen

Ist (X, j/) ein komplexer Raum, so definiert jede Teilmenge F von A : =F (X, stf)
eine Âquivalenzrelation, die mit F bezeichnet werden soll : F identifiziert Punkte aus
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X, wenn sie durch keine Funktion aus F getrennt werden. Die Menge F definiert
dieselbe Àquivalenzrelation auf X wie die von ihr erzeugte Unteralgebra C [F] in A,
aber auch wie ihre abgeschlossene Huile Fin A bzgl. der durch den komplexen Raum

(X, <s&) induzierten Topologie. (Zum Beweis genûgt es, die Reduktion (X, <s/red) und
die Topologie der kompakten Konvergenz auf F(X, s/red)czF(X, x^) zu betrachten).

Nach § 1 definiert jede Àquivalenzrelation R auf X eine Unteralgebra B=F(X/R,
sé\K) von A. Die von B induzierte Àquivalenzrelation auf Xist i.a. von R verschieden,
wie an einfachen Beispielen zu sehen ist.

Wie in [11], [16] und [27] geben wir fur beliebiges FaF(X, s/) eine geringte
Struktur Sf'F auf Y: X/F an. /? : X-* F bezeichne die Projektion, der zugehôrige Al-
gebra-Isomorphismus sei tp\ F (7, postf)-*F (X, s/).

Fur offenes U in Y sei <^F(U) die Algebra aller Schnitte aus ^O?"1 (*/)), die in
einer Umgebung jeder Fslsqtp~ï(y),yel/9 in eine konvergente Potenzreihe

mit/1,...,/fceF entwickelt werden kônnen. S?F heiBt Spektralstruktur bzgl. (X, ^)
und F. Es gilt ^fc^/Fc/?oj/. (7, S?F) ist ein ^(i^-separabler und '/^(F)-
regulârer lokal-geringter Raum, insbesondere ist 71okal-^F-separabel und lokal-^F-
regulâr (deshalb lokal^F-separabel): SfF ist eine F-Garbe auf Y=X/F. Ist (F, £%)
ein komplexer Raum, so enthâlt F (Y, <9*F) das ^-Urbild tp~1 (C[F]) der abgeschlos-
senen Huile der von F in A erzeugten Unteralgebra. In [27, Quotientensatz] wurde
bereits gezeigt:

Besitzt eine Faserp~y (y), ye Y, eine saturierte F-konvexe Umgebung, so ist (Y, 6^F)
in einer Umgebung von y ein komplexer Raum.

Man sieht, daB dièse Voraussetzung fur aile Punkte aus Y erfullt ist, wenn F eine

eigentliche Àquivalenzrelation auf X definiert (z.B. wenn X ein F-konvexer oder
F-separabler Raum ist, vgl. § 4). Wir formulieren das Ergebnis als

Satz 1. Es sei SfF die Spektralstruktur bzgl. eines komplexen Raumes (X, s/) und
einer Teilmenge F von F (X, s#), p : X-+ Y: — X\F die Projektion auf den Quotienten und

tP''r(Y,p0^/)^F(X,J^) der zugehôrige Algebra-Isomorphismus. Definiert F eine

eigentliche Àquivalenzrelation, so ist (Y,£fF) ein tp~1(F)-separabler und tp~1(F)-
regulârer komplexer Raum mit F (Y, SfF) z> *p~i (C [F]). Die Abbildung (p, p*) : (X, sf)
-+(y, £fF) ist eine eigentliche holomorphe Quotientenabbildung. Jede Funktion feF
kann uber (Y, &*F) faktorisiert werden:
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Als Verallgemeinerung wollen wir Zerlegungen von Âquivalenzrelationen auf
komplexen Râumen betrachten, die durch globale Funktionen definiert werden. Sind

R und S Âquivalenzrelationen auf einem topologischen Raum X9 so heiBt S eine

Zerlegung von R9 wenn jede Faser von S die Vereinigung von Zusammenhangskom-

ponenten einer Faser von R ist. Eine spezielle Zerlegung ist die zu R gehôrende ein-

fache Àquivalenzrelation.
Ist Fcr(X9 s/) auf einem komplexen Raum (X9 stf) vorgegeben und F eine

Zerlegung der Àquivalenzrelation F9 so kann auch auf dem Quotienten X/F eine Spek-

tralstruktur Sff definiert wefden. Aber (XjF9 &*$) wird i.a. kein komplexer Raum,
selbst wenn F eine eigentliche Àquivalenzrelation auf X ist.

Beispiel 2. Es sei (C, 0) die GauBsche Ebene mit der gewôhnlichen kompiexen
Struktur, z die Koordinatenfunktion und F: C[z2]cr(C, 0). Die zu F gehôrende
einfache Relation F' ist trivial also eigentlich. Trotzdem ist SfF, keine komplexe
Struktur auf C, denn nach Définition gilt:

_
{<DX fur aile x # 0)

¦^•*~tc[<za>] fùrx 0 J'
d.h. keine Umgebung U von 0 ist r(U, <S^F,)-separabel. - Wir beweisen allerdings in
§ 4 und § 6, daB (X/F9 s//F) ein komplexer Raum ist fur eigentliches F.

Eine endliche Menge F= {fi9...9/B}cf(I,^) definiert eine holomorphe Abbildung

(j>:(X9 s/)->(Cn9 n(9). Die Spektralgarbe Sf¥ auf X/F besteht dann aus zuriick-

genommenen Taylorreihen. Wird X\F mit </> (X) identifiziert (das ist môglich, wenn $
semi-eigentlich ist, vgl. Hilfssatz 2*.), so gilt:

Eine stetige Abbildung 0:X-» 7topologischer Râume heiBt nach Kuhlmann [15]

semi-eigentlich, wenn zu jedem Punkt ye Y eine Umgebung Uy c Y und eine kompakte
Menge KycX existieren, so daB fur aile yfe4>{X)nUy gilt: <l>'1{yt)nKy^9. Sind

Zund Y lokal-kompakte Râume, so ist $:Z-*Fgenau dann semi-eigentlich, wenn

zu jeder kompakten Menge Le Y eine kompakte Menge Kcz X existiert mit Ln<j>{X)
cz <j) (K). Eine Àquivalenzrelation R auf X heiBt semi-eigentlich, wenn die Projektion
p:X-*XjR eine semi-eigentliche Abbildung ist.

Nicht aile holomorphen Abbildungen sind semi-eigentlich, z.B. C2->C2, (*, y)*-*
(xy9 y). Jede eigentliche Abbildung ist semi-eigentlich.

Die Situation (+) wollen wir nun verallgemeinern :

Es sei (A, h*):(X, s/)-+(Y9 &) eine holomorphe Abbildung, R die auf X durch h

definierte Àquivalenzrelation. Der Quotient XjR und das Bild h{X) stimmen i.a. nur
mengentheoretisch uberein. Fûhren wir auf XjR die feinste Topologie T" ein, so daB

p:X-+X/R stetig wird, so ist TczS^(XIR)=^(h(X)) eine Obermenge der von Y auf
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h{X) induzierten Topologie T: Die Quotiententopologie 7" ist feiner als die Relativ-
topologie T. Es gilt T=T' genau dann, wenn jede abgeschlossene und bzgl. p satu-
nerte Menge in X ein abgeschlossenes /z-Bild in Y besitzt. Dièse Bedingung ist z.B.

erfullt, wenn h eine semi-eigentliche Abbildung ist.
Wir wâhlen nun eine offene Steinsche Ûberdeckung 51: (U)leI von F, so daB

jedes (Ul9&\ Ut) in einen C"1 eingebettet werden kann. Dièse Realisierung wird durch
Funktionen/,l9...9fl1tiesé(V^)9 Vl:=h~~1(Vl)9 beschrieben:

£ | \jx nQ\xj | ut, so daB /cKern/; und
Mittels der Fl: {fll,...,flni}czr(Vl, stf) definieren wir auf XjR die geringte

Spektralstruktur ^h9 % :

&Fi ist definiert auf VJFl9 das mengentheoretisch mit Ulnh(X) ùbereinstimmt. Es

gilt: ^Fliy=z^fFJty9 ^â^s y^U^Ujnh(X). Denn aus der Konstruktion folgt:

SeFuy Bild/*/l(x) Bildfc,* Bild/;*/7(jc) <7Fj>y

Das gilt fiir aile xeh~1(y).
Nachdem Homomorphiesatz ist Bild /z*=^/Kern/z*; andererseits ist Kern/**

(Ann^/zoj/)r Ist also h eigentlich und somit Ann^/îoj/= : Jf eine kohârente Ideal-
garbe in a ([9], [22]) mit Nullstellenmenge h (X), so ist (h(X), a/JT \ h(X)) (X/R,
&h) ein komplexer Raum, vgl. Cartan [6, Theorem 2]).

Auf gleiche Weise folgt, daB £fK% unabhângig von der Wahl der Uberdeckung %

ist. Wir dùrfen also S?h fur die Spektralgarbe schreiben. Ist h (hu...,hn):X-^Cn,
so stimmt dièse Définition mit der frûheren ûberein: Sfh=Sf{hlt fhn}.

Nun betrachten wir eine Familie h — (hk)keK holomorpher Abbildungen hk:(X9 sf)
->(7fc, &k). R sei die von h auf X definierte Âquivalenzrelation, p:X-+Y: X/R die

Projektion. Mengentheoretisch gilt wieder:

fi
k eK

<^k: (Ukl)lei sei eme offene Steinsche Uberdeckung von Yk9 keK. Vkl: hk
x

(Ukl)dXmit y Vkl X\mdfkll9...9fkinkie<s/(Vkl) seien wie vorher gewâhlt. ÎI:
tel

(%)keK- Fur offenes Uc F sei Sfh%%{p) die Algebra aller <xe^(p~l(U)), so daB fiir
aile yeU der Keim ap-i(y) in einer Umgebung der Faserp~1 (y) in eine konvergente
Potenzreihe £ av t v fll.. .fjf entwickelt werden kann, wobei f1,...,/„e (J {fk tl : y e Vk,

Dann gilt wieder ^h,% ^h,w fur beliebige Ûberdeckungsfamilien 31 und 2T, so
daB wir wieder nur ^h fiir die von h erzeugte Spektralstruktur auf XjR schreiben
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dûrfen. Ist h eine Abbildungsfamilie mit den Bildrâumen Yk C, keK, so stimmt Sfh

mit der fruher definierten Garbe 5fF ûberein, falls F die h entsprechende Teilmenge
von F(X, j/) ist.

Hilssatz 2. Sind fast aile Yk holomorph-vollstândig, so ist Y lokal-&\separabel
undlokal-£fh-regulâr. -

Beweis. Zu jedem Punkt yoeY—XjRc:IIYk existiert nach Voraussetzung eine

Umgebung mit pvk(U)cz Ukik fur ein UkikeSHk. Die Menge der zugehôrigen Schnitte
sei

keK

fur F: =/T *(£/). Dann gilt S?h | U=6^F9 q.e.d. -
Hilfssatz 2*. Ist die von h auf X erzeugte Relation R semi-eigentlich, so ist

Y=X/R lokal-^h-separabel -
Beweis. h:X-*II Yk ist nach Voraussetzung semi-eigentlich. Also gibt es zu jedem

Punkt yeh(X)= Y eine offene Umgebung Uycz Y und eine kompakte Menge Kycz

cX mit h "x (y') nKy^0 fur aile y' e Ur Die Quotiententopologie auf Y stimmt hier
mit der Relativtopologie iiberein.

Nach Cartan [6, Lemma] kann die Relation R auf Ky schon durch endlich
viele Abbildungen aus h beschrieben werden, d.h. es existiert eine holomorphe Ab-
bildung

/=((itl,1,.)y:i->z:=yllx...xy,)
so daB/"1 (f{x))^h'x (h(xj) fur aile xeh'1 (Uy) gilt. Die Elemente von ^/(/T1 (Uy))
trennen die Fasern h"1 (/), y'eJJr Andererseits ist S^fty in ^h>y' enthalten fur aile

y'eUy, d.h. F ist lokal-^-separabel, q.e.d. -
Die Spektralgarben £f~h von Zerlegungen der Relation einer Familie h werden

analog definiert. Es gelten auch mit Satz 1 verwandte Aussagen, die wir nach einigen
Vorbereitungen zeigen werden, vgl. § 5.

§ 3. Holomorph-separable und holomorph-konvexe Râume

Es sei (X, s/) ein F-separabler komplexer Raum mit FczF(X, sf). Dann ist

X/F=X, und F ist eine eigentliche Âquivalenzrelation auf X, d.h. (X, S^F) ist nach

Satz 1 ein F-regulârer und F-separabler komplexer Raum mit F(X,
czF(X9 st). Fiir F=F(X, $0) erhalten wir eine Aussage, die Lieb [16, Satz 3] fur
reduziertes Zbewies:

Satz 2. Aufjedem holomorph-separablen komplexen Raum existiert eine holomorph-
regulâre komplexe Unterstruktur mit gleicher globaler Funktionenalgebra. -

Fiir A=F (X9 jtf) ist Sf : S?A echt in s& enthalten, wenn (X9 s/) nicht holomorph-
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regulâr ist, d.h. es existiert ein Punkt xeXmit n: emdim*(X, Se)<emdim^(X, &/)
: m. Wir realisieren eine Umgebung U von x jeweils minimal :

(U, se) c Z c Cn (17, j*) c Ifc Cm

se z$/jf 11; j*
&z ± z0z] s {w

Aus der F(X, ^)-Regularitât folgt gerade, dafî Schnitte/l9 ...,/„eA
T(X, Se) existieren mit

Fur <& kann man allerdings solche Schnitte nicht finden. Lieb [16] hat fur den

reduzierten Fall eine Folgerung zu Satz 2 angegeben:

Corollar 1. Ist FaF(X, stf)fur einen konplexem Raum (X, s/) gegeben, so dafi
stf/F eine komplexe Struktur aufX/F ist, so ist auch (X/F, SeF) ein komplexer Raum. -

Beweis. Es sei/?:X->17Fdie Projektion und tp:F(X/F,p0£f)-*r(X, se) der zu-
gehôrige Algebra-Isomorphismus. Dann ist F*:=tp~1(F) in F (X/F, stf/F) enthalten
und trennt die Punkte von X/F. Wegen Satz 2 ist nun (X/F, SeF*) ein komplexer
Raum, yF* und SeF stimmen aber nach Définition iiberein, q.e.d. -

Beispiel 3. Wir betrachten (C, 0), @: l(9,z sei die Koordinatenfunktion. Die
aus den Polynomen z2, z3 aus F(C, 0) bestehende Menge F trennt die Punkte von C,
und (C, SeF) ist deshalb ein komplexer Raum. Es gilt:

{ £ av Tve00 mit at 0} falls x 0
v 0

6X falls x/0
d.h. (C, 9>F) ist die Neilsche ParabeL -

Ist (X, stf) ein F-konvexer komplexer Raum, so ist (X/F, SeF) ein f/?"1(F)-kon-
vexer und f/?~1(F)-separabler komplexer Raum, insbesondere Steinsch. Der Spezial-
fall F=A liefert die Existenz des Remmertschen Quotienten [20] auch im nichtredu-
zierten Fall: Aus A=tpF(Y9 <¥A)=tpr(Y,p0^) folgt F(Y, SeA) r(Y,postf). Die
holomorphe Abbildung

Y: X/A, ist eigentlich, also istpos/ nach Grauert [9] eine kohârente
Garbe auf F. Weil (Y, SeA) Steinsch ist, gibt es nach Theorem A ([5], [9]) endlich
vieleSchnittehl9..., hmeF(Y,pos#\ diejedenHalm(p0j/)yùber SfA y erzeugen,.y6 Y:

Da andererseits SeA<z<$//Ac:p0£/ gilt, stimmen aile drei Garben iiberein: p hat
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zusammenhângende Fasern. Dazu vgl. man auch [27, Lemma von Cartan-Stein].
Es gilt also:

Satz 3. Zu jedem holomorph-konvexen komplexen Raum (X, <$/) existiert ein

Steinscher Raum (Y, $) und eine surjektive, einfache und eigentliche holomorphe Ab-

bildung (p9p*):(X,s/)-+(Y,&), die einen Isomorphismus tp:F(Y,@)->r(X,<tf) der

holomorphen Funktionenalgebren induziert. (p, p*) ist eine Quotientenabbildung: Y ist
der Quotient von X nach der durch F(X, s/) definierten Àquivalenzrelation, und £%

stimmt mit der Bildgarbep^sé iiberein. Jede holomorphe Funktion auf X kann uber Y

faktorisiert werden. -
Ist (X, se) ein F-konvexer Raum, Fez A F(X, j/), so erhalten wir folgendes kom-

mutative Diagramm:

(xia, srA) i (xif, <rP),

wobei <{> eine diskrete holomorphe Abbildung ist, weil die Fasern von pA mit den

Zusammenhangskomponenten der Fasern von pF ûbereinstimmen.

Beispiel 4. Es sei (X, <$>/) holomorph-konvex und endlich-dimensional; dann gibt
es etwa nach [2], [18], [26, Trennungssatz] und [27, Satz von Bishop] endlichviele

Schnitte/i, ...,fneF (X, s#) : A, die eine eigentliche und maximal-(punkte-)trennende
holomorphe Abbildung (X, j/)-»(C, n(P) definieren. Zist F-konvex (F: {fl9...9fn}
czA), und es gi\t:X/F=X/A, yA=j^/A=^/F. Allerdings sind ^F und S?A i.a.
verschieden. -

Nun beweisen wir:

Satz 1*. Es sei (X, s#) ein komplexer Raum, FczF(X, stf) und F' die einfache

Zerlegung der Àquivalenzrelation F auf X; ist dann F' eigentlich, so ist (X/Ff, stfjF')
ein komplexer Raum. -

Bemerkung. Nach Cartan [6, Beweis zu Theorem 3] ist jede einfache Àquivalenzrelation

auf einem lokal-kompakten Raum schon eigentlich, wenn sie kompakte
Fasern hat. Fur nichteinfache Relationen ist dièse Aussage falsch. Gegenbeispiel :

Die Projektion von

X {(x, y)eR2:xy 1} u {(x, y)eR2:y 0}

auf die erste Koordinate induziert eine solche Relation auf X.
Beweis von Satz 1*. Es genûgt zu zeigen, daB jede Faser p~1(j>(x))9xeX9 der
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Projektion piX-^X/F' eine Umgebung U besitzt, so daB (U, s& \ U) holomorph-
konvex ist, vgl. Satz 3. Wir beweisen sogar mehr:

Hilfssatz 3. Ist F eine beliebige eigentliche Zerlegung von F und q:X-^X/F die

Projektion, so besitzt jede Faser p~* (p(x)) eine holomorph-konvexe Umgebung U mit

Beweis. Fr ist eigentlich. Wir wâhlen eine relativ-kompakte Umgebung V von
p(x)9 so daB p~l(p(x)) =p~i(V)nq~1(q(x)) ist - das ist môglich, weilp(q~1(q(x))
in X/F' diskret ist-, auBerdem endlich viele Funktionen/i. ...,/rei% die die Âquiva-
lenzrelation F' auf/?-1(F) beschreiben. Nach einem topologischen Satz, vgl. Stein
[24, Hilfssatz 3] definieren deshalb die ft eine eigentliche (holomorphe) Abbildung
einer Umgebung Uczp'1 (V) vonp~1 (x) in einen Polyzylinder des C U kann/?-satu-
riert gewâhlt werden, weil p eigentlich ist, und ist holomorph-konvex, wie verlangt
wurde. Hilfssatz 3 ist bewiesen.

Beispiele zu Satz 1* liefern lokal-holomorph-separable oder auch schwach-holo-

morph-konvexe komplexe Râume, die wir im folgenden Abschnitt betrachten wollen.

§ 4. Lokal-holomorph-separable und schwach-holomorph-konvexe Râume

Ist (X, stf) ein komplexer Raum, FcA r(X, j/) und X etwa a) F-ausbreitbar,
b) F-regulâr, c) lokal-jp-separabel oder d) schwach-F-konvex, so hat die zu Fgehôrende
einfache Âquivalenzrelation F' auf X kompakte Fasern und ist deshalb eigentlich,
(X/F\ s$IFf) ist ein komplexer Raum. In den Fâllen a), b) und c) gilt sogar XjFr X
und <2/=<s//F'. Fur b) und c) ist ^r eine komplexe Unterstruktur auf (X, s/). Es

gilt Fcr(X, ^V), und (X, SfF) ist F-regulâr. Wir erhalten die folgende Verschârfung
von Satz 2:

Satz 2*. Ein komplexer Raum ist genou dann lokal-holomorph-separabel, wenn
eine holomorph-regulàre komplexe Unterstruktur mit gleicher globaler Funktionen-
algebra existiert, -

Beweis. Ist (X, s#) lokal-^4-separabel fur A: F(X, A), so definiert die einfache
Relation A' gerade die Identitât auf X. £fA, ist eine holomorph-regulàre Unterstruktur.

Die andere Beweisrichtung ist klar.
Der Begriff schwach-holomorph-konvex wurde von Bishop [2] fur partially analytic

spaces eingefiihrt. In einer Besprechung dieser Arbeit in den Mathematical Reviews
23A, p. 184 (1962) bemerkt Grauert, daB die Eigenschaften holomorph-konvex und
schwach-holomorph-konvex fur (reduzierte) komplexe Râume nicht-trivial uberein-
stimmen. Wir wollen hier die Âquivalenz fur beliebige komplexe Râume beweisen:

Satz 4. Jeder schwach-holomorph-konvexe Raum ist holomorph-konvex. -
Zunâchts zeigen wir die folgende Verallgemeinerung eines Satzes von Grauert [8] :
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Lemma 1. Ein schwach-holomorph-konvexer und holomorph-ausbreitbarer kom-

plexer Raum ist holomorph-vollstândig. -
Es genugt, dièse Aussage fur den reduzierten Fall zu beweisen, weil ein Raum

genau dann Steinsch ist, wenn seine Reduktion Steinsch ist, vgl. [9].

X sei also ein schwach-holomorph-konvexer und holomorph-ausbreitbarer (redu-
zierter) komplexer Raum, A: F(X9 X(P). Etwa nach [25, Satz 1.2] brauchen wir nur
zu beweisen, daB zu jeder kompakten Menge K<=lX eine ^4-konvexe Umgebung U

existiert. Denn dann kann X durch holomorph-konvexe und holomorph-ausbreitbare
(also nach [8] holomorph-vollstândige) offene Teilmengen Xv ausgeschôpft werden,
so daB Xv jeweils holomorph-konvex bzgl. Xv+1 ist, v=l, 2,....

Die Vereinigung L aller Zusammenhangskomponenten von jÊ, die K treffen, ist

kompakt. Das folgt aus

Hilfssatz 4. Es sei R ein lokal-kompakter Raum, McR eine abgeschlossene

Menge mit kompakten Komponenten Mt (iel). Dann ist die Vereinigung L derjenigen

Mit die eine vorgegebene kompakte Menge KczR treffen, ebenfalls kompakt. -
Beweis. R Rkj {oo} sei die Kompaktifizierung von R. Mit M wâre auch L

kompakt. Es sei also M nicht kompakt. Dann stimmt die abgeschlossene Huile M
von M bzgl. R mit M u {oo} ûberein. Sei Mw die oo enthaltene Komponenten von M.
Da die Mt kompakt sind, ist fif^MiCzR und M\Mt sowohl offen als auch abge-
schlossen in M, d.h. nach [4, Chap. I, § 11, n° 5]:

{oo} cMœcH (M\Mt) M\ IJ Mt M\M {oo}.
i € I iel

Somit ist {oo} gleich dem Durchschnitt aller offenen und abgeschlossenen Mengen
NeiCf mit coeN, wobei o.B.d.A. NezR\K vorausgesetzt werden darf. Also besitzt
oo in R eine offene Umgebung U mit ôUnM=0 und UnK=0, etwa U:=Nu
vlR\(]ÏÏvK)].R\U=R\U ist kompakt in R und enthâlt L, nach Konstruktion.
Hilfssatz 4 ist bewiesen. -

Wir wâhlen eine Umgebung V von L, deren Rand dV kompakt ist und Ê nicht
trifTt. Zu jedem Punkt xedVexistiert dann ein/e^4 mit |/(x)|>sup|/(^T)|. Dièse Be-

dingung ist sogar fur eine Umgebung von x erfûllt. Deshalb gibt es endlich viele

Funktionen/i,...,/jeA und eine réelle Zahl a>0 mit

max |/£(>c)| >e> max

fur aile xedV. Wir setzen

U: {x€V:\fi(x)\<s fur aile ï 1, ...,/}
und

W:={zeC?:\zA<e fur aile i l,...,/}.
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Dann ist die holomorphe Abbildung (/i,...,/î): U-*W eigentlich. U ist die ge-
suchte Umgebung von K, q.e.d.

Beweis von Satz 4. Es sei (X, stf) ein schwach-holomorph-konvexer (nicht not-
wendig reduzierter) komplexer Raum und A' die von A F(X9 stf) definierte einfache

Âquivalenzrelation auf X. Nach Satz 1* ist 88\=s#\A' eine komplexe Struktur auf
Y: X/A'. (Y, 3S) ist sogar schwach-holomorph-konvex und holomorph-ausbreitbar,
weil die holomorphe Abbildung (q, q*):(X, jtf)-+(Y9 3$) eigentlich sowie surjektiv
und der zugehôrige Homomorphismus *q:r(Y9&f)-*r(X,£/) bijektiv ist. Nach
Lemma 1 ist (Y, 8$) Steinsch, insbesondere holomorph-konvex, q.e.d.

Ûbrigens stimmt £8 wieder mit der Bildgarbe qostf ùberein, vgl. Satz 3.

§ 5. Topologische Âquivalenzrelationen

Wir beweisen nun die folgende Verallgemeinerung des Main Theorem von
Cartan [6] fur komplexe Râume im Sinne von Grauert:

Theorem. Es sei R eine eigentliche Âquivalenzrelation auf dem komplexen Raum

(X, stf). Dann ist (X/R, stf/R) genau dann ein komplexer Raum, wenn XIR lokal-stf/R-
ausbreitbar ist. -

Beweis. Die angegebene Bedingung ist gewiB notwendig. Es geniigt also zu zeigen,
daB (X/R, <s//R) ein komplexer Raum ist, wenn jeder Punkt yeX/R eine Umgebung
U besitzt, so daB (U, s//R \ U) ein r(U, j//i?)-ausbreitbarer (lokal-geringter) Raum
ist.

Zunâchts zeigen wir mit einem bei Cartan [6] beschriebenen Trick von Grothen-
dieck, vgl. auch [12]:

Satz 5. Ist R eine eigentliche Aquivalenzrelation auf dem komplexen Raum (X, s/),
so ist sJjRfur jede komplexe Struktur ^czs^jR auf X/R eine kohârente @-Garbe. -

Beweis von Satz 5. Es sei/?:X-» Y: X/R die Projektion und /?*:$p{x)^>stfx(xeX)
die Beschrânkung des natûrlichen Homomorphismus ^rp-i(p(JC))->^/x. Dann ist
(p,p*):(X, «*/)-? (F, £8) eine eigentliche holomorphe Abbildung. Wir betrachten das

folgende Diagramm :

(X x X, sf ® se)
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Dabei bezeichnet stf^stf die kanonische Struktur auf XxX. ,,(g)" bezieht sich
auf das analytische Tensorprodukt, vgl. Nagata [17, § 47]: (^®^\XiX'y =^x®^x"
D sei die Diagonale von 7x7, @: (é$<g)&/Jf) \ D diejenige Struktur auf Z>, fur die

(Y, @) und (D, &) mittels der Diagonalabbildung d: Y-*Yx Y biholomorph âqui-
valent sind, Jf: Kemd*. Das Urbild {p^xp)~1{D) stimmt mit dem Graphen der
Âquivalenzrelation RcXxX ùberein. Es sei 0t\ — {sé®stf\J) \ R fur die vom Bild
(pxp)* Ctif erzeugte Idealgarbc/cj/®^. Bei Grothendieck [12] wird (R, &) das

Faserprodukt von X uber Y genannt und mit Xx YX bezeichnet, genauer (X, <stf) x
{Y,®){Xr><^)> Vri sei die Beschrânkung (auf R) der holomorphen Projektion von
XxX auf die /-te Koordinate (/= 1, 2). g: d~x • (p xp)=p-prt und p sind eigentliche

holomorphe Abbildungen. Deshalb erhalten wir mit den Bildgarbe p0^/ und go@t

nach Grauert [9] kohârente «^-Modul-Garben (von Algebren) auf Y. Jedes prf
definiert einen ^-Modul-Garben-Homomorphismus Ui:pos/-*go&. Fur u: u1 — u2

gilt:
^ c Kern u c sé\R c p0 s/.

stfjR stimmt sogar mit dem m-Urbild der nilpotenten Elemente Jf von gQ0t ùberein.

«yT ist aber die O-te Bildgarbe der nilpotenten Elemente aus ^. Deshalb sind JV*

und s//R u~1(Jr) kohârente J'-Garben auf Y, vgl. [9] und [22]. Damit ist Satz 5

bewiesen. Betrachten wir hier die identische Âquivalenzrelation, so erhalten wir den

folgenden Spezialfall (und eine Umkehrung) :

Sei (X, £$) ein komplexer Raum und stf eine Garbe von lokalen Oberalgebren,
se id 0$. Dann ist (X, j</) genou dann ein komplexer Raum, wenn stf eine kohârente
^-Garbe ist. -

Die Notwendigkeit der Kohârenz kônnen wir direkt zeigen, weil die induzierte
holomorphe Abbildung (X9 <stf)-+(X, &) eigentlich und s/ als Bildgarbe idos/ nach

Grauert [9] kohârent ist. Die Umkehrung folgt nach Houzel (vgl. Séminaire Henri
Cartan 1960/61): (X, *s/) Specan(j/). Unter den Voraussetzungen des Theorems

gilt:

Corollar 2. (X/R, &//R) ist genau dann ein komplexer Raum, wenn auf X/R
irgendeine komplexe Struktur £8 existiert, so dafi die Projektion p:X-+X/R zu einer

holomorphen Abbildung (p, p):(X, ^)-^{XjR, &) ergânzt werden kann. -
Beweis. Es sei wieder Y: X/R. Wir kônnen o.E.d.A. & als Untergarbe von sé\R

und p=p* | 8$ annehmen, denn*/: Ann<a/?0 s/ ist nach [9] und [22] eine kohârente
Idealgarbe in & mit Nullstellenmenge p(X)= Y, und es gilt fur aile yeY:

Also ist J" :-=&jJ eine komplexe Struktur auf Y mit J" <=.pos# und (wegen Hilfs-
satz 1) &'cz<s//R. Y ist lokal-^-separabel, also auch lokal-j//iÊ-separabel, d.h. zu
jedem Punkt je 7existiert eine Umgebung U, so dalî F:=F(U, <sf/R) die Punkte von
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U trennt. Als Teilmenge von F (F, stf) definiert F auf V:=p~1 (U) die Âquivalenz-
relation R. Deshalb ist F eine eigentliche Relation auf F und (U9 ^F) ist nach Satz 1

ein komplexer Raum mit ^Fczs^lR \ U. Nach Satz 5 ist sé\R \ U eine kohârente

Fur offene U1czU2c:Y gilt F(U2, sfjR) \Utczr(Ul9 sé\R) und ^riU2tJg/R) \ Ut

Œ^r(uu^/Ry Deshalb kann U so klein gewâhlt werden, daB (U, ^F) Steinsch ist.

Wegen fW(£/, stf/R) F(U, 9>F) folgt aus Theorem A, daB 9>F und séjR | *7 ûber-
einstimmen. Damit ist Corollar 2 bewiesen.

Zum Beweis des Theorems setzen wir zunâchst mehr voraus, nâmlich daB Y= X/R
lokaks//i?-separabel ist. Zu jedem Punkt ye F wâhlen wir eine geignete Umgebung U,

so daB F: r(U, stf/R) die Punkte trennt. Die Relation F auf p~l{U), F als

Teilmenge von F(p~1(U), j/) betrachtet, ist eigentlich, weil sie dort mit R ubereinstimmt.
Deshalb ist (£/, ïfF) nach Satz J ein komplexer Raum mit 6^fœj^/R \ U. Hieraus

folgt wegen Corollar 2, daB sf/R eine komplexe Struktur auf X/R ist.

Satz 1**. Es sei (X, se} ein komplexer Raum und F eine Zerlegung der von einer

Funktionenmenge FczF(X, s/) definierten Àquivalenzrelation. Ist dann F eigentlich, so

ist {XIF, stfjF) ein komplexer Raum. -
Der Beweis dièses Satzes folgt aus dem bereits bewiesenen abgeschwâchten Theorem,

wenn wir zeigen, daB XjF lokaks//F-separabel ist. Nach Hilfssatz 3 wird eine

Faser q~x (y),yeX/F, der Projektion q:X-+X/F durch eine endliche disjunkte Ver-
einigung U= [J Ut holomorph-konvexer Umgebungen l/£ der Zusammenhangskom-
ponenten von q~l (y) uberdeckt. Dièse Vereinigung ist endlich, weil F eine eigentliche
Àquivalenzrelation ist. C/kann auBerdem #-saturiert gewâhlt werden, durch éventuelle

Verkleinerung: U=q~1 (F) fur offenes FinX/FmitjeF. F F, s/jF) trennt die Punkte
von F nach Konstruktion : Satz 1** ist bewiesen.

Nun ist der Beweis des Theorems einfach: Y=X/R ist lokal-j^/JR-ausbreitbar.
Deshalb kônnen wir zu jedem Punkt .ye F eine Umgebung U wâhlen, so daB die von
F:=F(U, <z//R) definierte einfache Àquivalenzrelation F auf U trivial ist. F definiert
aufp'1^) eine Zerlegung der Àquivalenzrelation FczF(p~1{U\ se) und ist wegen

F=R\p~1(U) eigentlich. Deshalb ist stf\R \ U=stf/Feim komplexe Struktur auf £/,

nach Satz 1**, q.e.d. -
Wir wollen an einem Beispiel zeigen, daB das Theorem nicht ohne zusâtzliche

Voraussetzungen (vgl. etwa Lieb [16, Satz 7] auf semi-eigentliche Âquivalenzrela-
tionen ausgedehnt werden kann:

Beispiel 5. Die Projektion /?:C2~>C auf die erste Koordinate ist eine semi-

eigentliche holomorphe Abbildung. Auf C2 wâhlen wir die komplexe Struktur
^: 20020 im Sinne von Forster [7], s. auch Bemerkung (3) im AnschluB an
Satz 6. Ist R die von p auf dem C2 definierte Àquivalenzrelation, so ist C2/R C

zwar lokal-J2//i?-separabel. sé\R ist jedoch keine komplexe Struktur auf C. -
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Wie bereits erwâhnt wurde, wollen wir auf Quotienten X/R auch Untergarben
von s//R mit speziellen Eigenschaften untersuchen. Der allgemeine Fall kann sofort
auf die triviale Âquivalenzrelation auf X zuriickgefûhrt werden, weil gilt:

Satz 6. Es sei (X, s/) ein komplexer Raum und & eine Garbe lokaler Unteralgebren
von se\ Dann ist (X9 0$) genou dann ein komplexer Raum, wenn gilt: £8 ist abgeschlossen,

X ist lokal-^'Separabel und lokal~&-regulâr. -
DaB die Eigenschaft lokal-^-ausbreitbar statt lokal-«^-separabel nicht ausreicht,

wurde bereits in § 2, Beispiel 2, gezeigt.

Bemerkung. Die drei in Satz 6 angegebenen Voraussetzungen sind unabhângig:
(1) Es sei (C, 0) die komplexe Ebene mit der gewôhnlichen Struktur, Jx:

{peC[z—x~]:p(x)=0} ist ein Primideal im Polynomring C[z] C[z—x]. Des-

halb ist die Lokalisierung

0C [z]jr : < - e Quotientenring von C [z] :

U

eine lokale Unteralgebra von ^x C[<z-x>]. Fur offenes C/cC sei

{fe(P(U):fxeC[z]/x fiir aile xeU}.
$c:(9 ist eine nicht abgeschlossene Garbe von lokalen Unteralgebren. Wegen

C [z]cr(C, $)= :Bist X sowohl 2?-separabel als auch i?-regulâr, also insbesondere

lokal-&-separabel und -regulâr. (Es genûgt natûrlich, die Garbe 0 nur in einem Punkt

aus X abzuândern).
(2) In § 0 (Beispiel 1) wurde auf dem C2 eine abgeschlossene Garbe ^c:20 von

lokalen Unteralgebren angegeben, so daB der Raum (C2,0) zwar lokal-^-regulâr,
aber nicht lokal-é%~separabel ist (nicht einmal lokal-J*-ausbreitbar).

(3) Ist R eine Algebra und acR ein Idéal, so wird Ro :=R x a mit komponenten-
weiser Skalarmultiplikation und Addition sowie der Multiplikation

(r, ay(ru ax) := (rru rat -h rx a)

ebenfalls eine Algebra, die mit R 0 a bezeichnet wird, vgl. etwa [7] und [17]. Ist R

eine lokale Algebra mit dem maximalen Idéal r, so ist auch R@x eine lokale Algebra
mit dem maximalen Idéal ro t © û. Es gilt:

r2 r2 © r a und ro/to r/r2 ® a/r a.

Nun sei (C, (9) die komplexe Ebene mit der iiblichen Struktur, mx das maximale
Idéal von (PX9xeC. Fur oflfenes UcC sei J{U) das Idéal aller Schnitte/e0(*7),
deren Keime/1/n in (nti/J11 liegen, falls 1/neU, weN.

c/((7) ist abgeschlossen in @(U). Aus dem Identitâtssatz fur holomorphe Funk-
tionen folgt, daB «/((7)=0 fiir aile offenen Umgebungen U von OeC. Nach Forster
[7, Satz 2.3] ist stf; &@(9 eine komplexe Struktur auf C. $:=zQ®J ist eine abge-
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schlossene Garbe von lokalen Unteralgebren von se. C ist lokal-&-separabel (sogar

f(C, J^-separabel wegen ^^^©OcJ), Allerdings ist C (im Nullpunkt) nicht lokal-
gfl-regulàr: Fur jede Umgebung U von OeC ist &(U) @(U)®0. Deshalb erzeugen
die Schnitte aus &(U) nur den Unterraum xnjml © 0 des Tangentialraums TX(C, J1)

^=mjml ©/,/îit//,, xe U. Aber es gilt:

SuMiin-Sim (m1/n)7(în1/n)n+1 * 0,
und 1/neU fur fast aile n e N.

Beweis von Satz 6. Die drei Bedingungen sind gewiB notwendig. Ist X lokal-^-
separabel, so gibt es zu jedem Punkt xeX eine Umgebung U, so daB die zu F:

F(U,&)c:r(U,£/) gehôrende Âquivalenzrelation F die Punkte von U trennt.
Also ist (U, £fF) nach Satz 1 ein komplexer Raum, und da fflcs/ abgeschlossen ist,
gilt: SfF<z&\Ucst\U. Nach Satz 5 ist se \ U eine kohârente ^F-Garbe auf U,
und deshalb ist 88x ein endlicher ^F ^-Modul fiir aile xeU. Hieraus folgt, da8 @tx

ein analytischer Ring ûber C ist, vgl. Nagata [17, § 47]; denn es gilt:
Ein lokaler Ring (R, m) ist genau dann ein analytischer Ring Uber K: jR/m, wenn

R ein endlicher Modul ûber einem Unterring ist, der ein konvergenter Potenzreihenring
in endlich vielen analyiisch unabhàngigen Elementen uber K ist.

Der Beweis folgt aus dem Normalisierungssatz [17, Theorem (45.5)].
Hieraus erhalten wir noch nicht, daB £8 eine komplexe Struktur auf X ist. Die

Eigenschaft lokal-^-regulâr wurde noch nicht verwendet: U wird so klein gewâhlt,
daB (U,&\ U) ein F-regulârer lokal-geringter Raum ist, d.h. die kanonische Abbil-
dung F-+ Tx 17, $#) ist surjektiv fur aile xe U. Deshalb induziert die Injektion ^F> xa$?x
einen surjektiven Vektorraum-Homomorphismus

Hieraus folgt & \ U= ^F, weil nach Andreotti gilt:

lemma 2. Es seien (Ro, m0) und (R, m) analytische Ringe, (f):R0^R ein (lokaler)
Homomorphismus, <^:mo-»m und ô(p:mo/ml-*m/m2 die von <j) induzierten Abbil-
dungen. Dann sind <l>, $ und ô (f) surjektiv, wenn einer dieser Homomorphismen surjektiv
ist. -

Zum Beweis vgl. [1], [10] und [19].

Bemerkung. Es sei & eine komplexe Unterstruktur auf (X, s&). Dann gilt:
(a) Tr(j//^)= {xeX: &x^<stfx] ist eine analytische Menge.
(b) Ist (X, <stf) reduziert, so ist Tr(j//^) niederdimensional.
(c) Ist auBerdem (X, 8$) normal, so ist Tt(j?//^) leer, d.h. j/=^. -
Beweis. (a) s#, 31 und deshalb st\& sind kohârente ^-Modul-Garben auf X.

Darum ist Tx(s/I^S) analytisch, etwa nach Grauert [9].
Nun sei (X, stf) reduziert. Ist dann âix normal, so stimmen t%x und s/x iiberein.
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Wir erhalten:

{xeX:&x singulâr} z> {xeX:&x nicht normal}

Hieraus folgt (b) und (c).
Die beiden letzten Aussagen werden falsch, wenn nur vorausgesetzt wird, daB

(X, $) reduziert ist; denn es gibt nichtreduzierte komplexe Oberstrukturen, etwa

^©^ fur jede kohârente ^-Modul-Garbe Jt auf X, vgl. Forster [7]. Wir wâhlen
als j/:=J*® J*. Dann ist

Corollar 3. Es sei R eine beliebige Àquivalenzrelation auf dem komplexen Raum

(X, sé\ p:X->X/R die Projektion und (X/R, $) ein komplexer Raum fur eine Garbe

&apos/ von Unteralgebren. Dann sindalle in0H enthaltenen R-Garben komplexe Struk-
turen auf XIR. Ist R aufierdem eigentlich, so ist (X/R, <$//R) ein komplexer Raum, und

genou die R-Garben liefern komplexe Unterstrukturen auf (X/R, stf/R). -
Der Beweis folgt aus dem Theorem und Satz 6.

Satz 1 + Es sei h eine Familie holomorpher Abbildungen auf einem komplexen
Raum (X, <$/). R sei die zugehôrige Àquivalenzrelation auf X, R eine Zerlegung von R
und £fh bzw. ^i die Spektralstruktur auf den Quotienten X/R bzw. X/R. Ist R bzw. R

eigentlich, so ist (X/R, 6^h) bzw. (X/R, <$//R) ein komplexer Raum. Jede Abbildung
aus h kann ù'ber die induzierte holomorphe Abbildung p:(X, <$/)-+(X/R, S^h)faktori-
siert werden. -

Der Beweis folgt fiir (X/R, ^h) bzw. (X/R, s//S) aus dem Theorem und Satz 6

mittels :

Hilfssatz 2+. X/Ristlokal-£fh-separabelund-regulâr, bzw. X/R ist lokal-£f~h-aus-
breitbar, also lokal-séf/R-ausbreitbar\ -

Beweis. Zu jedem Punkt yoeX/R wâhlen wir eine relativ-kompakte Umgebung
FcX/R. Da auch U:=p~1 (V) relativ-kompakt ist, gibt es eine endliche Familie

fez h mit der Eigenschaft

BM ôfx BM ôhx fur aile xeU.

Dabei ist Bild ôhx der von der Vereinigung aller Bild ôhix (h^h) aufgespannte Unter-
vektorraum von TX(X, stf). Die holomorphe Abbildung/kann nach Hilfssatz 2* o.E.

so gewâhlt werden, daB sie auf U die Àquivalenzrelation R definiert. Dann ist

^s I V= &riVfrf) cz^h\Vcz (s/IR) \ V,

d.h. (V9S?f\ V) - wegen Satz 1 - und (V, stf/R \ V) - wegen Corollar 2 - sind
komplexe Râume. AuBerdem gilt fur die Tangentialrâume Ty(V, &?h) Ty(V, S?f) fur aile

y aus V. Deshalb folgt - wie im Beweis von Satz 6 - S?h \ V=^f\ V.

Den zweiten Teil von Hilfssatz 2+ beweist man genauso.
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§ 6. Analytische Âquivalenzrelationen

In [13, § 4] hat Holmann den Begriff der analytischen Âquivalenzrelation auf
reduzierten komplexen Râumen eingefiihrt. Fur den allgemeinen Fall gab B. Kaup
[14] die Définition folgendermaBen an: Eine analytische Âquivalenzrelation auf
(X, <%?) ist ein komplexer Unterraum (R, &)a(XxX, s/®s/), der unter dem Sym-
metrie-Automorphismus (xi9 x2)t-+(x2, *i) invariant ist, und dessen Trâger R der

Graph einer mengentheoretischen Âquivalenzrelation auf X ist.

Der lokal-geringte Quotient von (X, stf) nach der analytischen Relation (R, 0£)

wird so definiert : R induziert den topologischen Quotienten Y: X/R. Das Diagramm
(*) in § 5 kann also ohne komplexe Strukturen auf F, D und YxY betrachtet werden.
Auch der Homomorphismus

ist definiert. Dann ist Kern u{&) die von Holmann und B. Kaup betrachtete lokal-
geringte Struktur auf 7, und es folgt; vgl. [14]:

Corollar 4. Ist (R, $) eine eigentliche analytische Âquivalenzrelation auf dem

komplexen Raum (X, <&), so ist der Quotient (X/R, Kernw(^)) genou dann ein
komplexer Raum, wenn X/R lokal-Kçmu(&)-separabel ist. -

Beweis. Wegen ^: Kernw(^)c: j//jR, vgl. Hilfssatz 1, ist X/R lokal-J3*7i?-separa-
bel. Also ist sé/R nach dem Theorem eine komplexe Struktur auf X/R. Da u stetig
ist, ist & eine abgeschlossene Untergarbe von &4/0t9 d.h. <?fr(u,â3)c:& \ U fur aile
offenen UcX/R. Fur kleines U ist (U, ^r(u,m)) enl komplexer Raum und Steinsch,

&\ U ist eine kohârente ^r (U ^-Garbe mit r(U, &) r(U, yr(u,®))> d.h. wegen
Theorem A gilt @ \ U=yr(u>m; q.e.d.

Bei fester Relation R sei £?($) die von einer (symmetrischen) analytischen Struktur

0t auf R induzierten Quotientengarbe auf Y: X/R:^(<^) Kernu(M).
Ist andererseits (Y, @) ein komplexer Raum mit 88<=.stf/R, so sei ${£$) die mittels

des Diagramms (*) auf R definierte komplexe Struktur (,,Faserprodukt").
Dann gilt wegen S cJf (@ {&)) c s//R :

(a) (Y, #?(&(&))) ist ein komplexer Raum.
(b) jr(œ(^/R))=^/R=œ(œTed).
Verschiedene analytische Âquivalenzrelationen mit gleichem Trâger kônnen

durchaus denselben Quotienten induzieren:

Beispiel 6. Es sei (X, œf) ein Doppelpunkt, etwa I={0}cC und J3f:

C ® C. Dabei sei m : iîrto das maximale Idéal in 0 : x (Po. m stimmt mit dem von
Ferzeugten Idéal in C [<r>] ûberein. Ist R die triviale Relation auf X (X=X/R und
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p=idx)9 so gilt <s//R=po<$/=£/. AuBerdem erhalten wir:

sf ® sf C [<7\, T2>]/m, m : (T2, T22) ç 2m2

Auf dem Graphen jR=Arxlr={(0, 0)}c:C2 definieren wir folgende Strukturen:

^o » da m ^ 2nt2.

Trotzdem gilt: Kernw(^0) Kernw(^x). Der angegebene Raum liefert aber auch
ein Beispiel dafûr, dafi verschiede Quotientenstrukturen 3? (01) auf X/R auftreten
kônnen: Fur #red=j/®j//(2m/fh)==C gilt Kernw(^red) j//C.

Ûbrigens ist fur aile eigentlichen analytischen Âquivalenzrelationen (R, £%) die

Beziehung Kemu(&Ted) s//R richtig, auch wenn s//R keine komplexe Struktur auf
XIR ist.

Um zu beweisen, daB nicht aile komplexen Unterstrukturen auf dem Quotienten
(X/R,s//R) als Kernw(^) im Sinne von Corollar 4 dargestellt werden kônnen,
zeigen wir:

Hilfssatz 5. Es sel R eine eigentliche Relation auf dem komplexen Raum (X, s/)
und & eine komplexe Unterstruktur auf (X/R, s//R), so dafi & Kemu(&) gilt fur
eine (symmetrische) komplexe Struktur 0t auf R (R, f)c(lxl, s/fosf). Dann gilt
auch J(=Kernw(^(J>)). -

Der Beweis folgt aus der universellen Eigenschaft des Faserprodukts (X, stf) x
xiX/Rf&)(X9 <stf) (R, 3t{$#)), vgl. Grothendieck [12]; denn die Behauptung ist

âquivalent mit ^(#(Jf (#)))=,#*(#) fur aile symmetrischen Unterrâume (R, ât)c
c(JxI, j^(g)j2/), die den Graphen von R als Trâger besitzen.

Nun kommen wir zum angekûndigten

Beispiel 7. Es sei (C, 0) die gewôhnliche komplexe Ebene mit der Koordinate z.

Dann ist die Spektralstruktur ^: ^Ci>3,z4] e*ne Complexe Unterstruktur:

(C2, 20)=(CxC9 G)®®) habe die Koordinaten x9y. Dann ist

y4]c:2^ wieder eine Unterstruktur:

o) {£ fl,,xYe2ff(Olo,:flM 0 fur aile v,ji 1,2,5}.
v, n 0

Die Diagonalabbildung (d, d*):(C9 &)-+(C2, Sf^Sf) induziert folgenden Homo-
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morphismus

0

l,2, 5 A 0 v + /t A

d.h.

Nun betrachten wir den Homomorphismus

v=0 v=0

J sei das von KernJ* in 2^(o,o> erzeugte Idéal. Dann ist ^(^): 20/*/ die zur
Quotientenabbildung

gehôrende (symmetrische) komplexe Struktur auf CxC i?, und es gilt: v~x{J)
Kernw(^(^))= : Jf (# (^)). Andererseits gehôrt das Elément z5e0Q zu ir1^/),

denn

v(z5) x5- y5 (x + y) (x4 - /) - xy(x3 -
Aber z5 £y ^c[23j z4]. Wir erhalten :

Nach Hilfssatz 5 ist damit die Behauptung bewiesen.
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