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93
Strukturen auf Quotienten komplexer Riume

KLAUS-WERNER WIEGMANN (Miinchen)

In seiner Arbeit [6] hat CARTAN auf dem Quotienten X/R eines reduzierten kom-
plexen Raumes X nach einer eigentlichen Aquivalenzrelation R die Struktur 4O/R
betrachtet und bewiesen, daB (X/R, x0/R) genau dann ein komplexer Raum ist, wenn
X/R lokal-, @/ R-separabel ist (Main Theorem). Auch fiir komplexe Rdume im Sinne
von GRAUERT [9] 148t sich die Quotientenstruktur definieren (s. § 1) und ein verschérf-
tes Main Theorem beweisen (s. § 5). xO/R ist gewissermalBen eine maximale lokal-
geringte Struktur auf X/R.

In der vorliegenden Arbeit werden noch andere lokal-geringte Strukturen auf
Quotienten komplexer Rdume betrachtet, definiert z.B. durch holomorphe Funktionen
und Abbildungen, sogenannte Spektralstrukturen (s.§2) oder durch analytische
Aquivalenzrelationen im Sinne von HOLMANN [13] (s. § 6). Ergebnisse sind u.a.:

(a) Ein komplexer Raum ist genau dann lokal-holomorph-separabel, wenn eine
holomorph-regulire komplexe Unterstruktur mit gleicher globaler Funktionenalgebra
existiert (s. § 3 und § 4).

(b) Jeder schwach-holomorph-konvexe komplexe Raum ist holomorph-konvex
(s. § 4).

(c) Es sei (X, o) ein komplexer Raum und # eine Garbe lokaler Unteralgebren
von /. Dann ist (X, #) genau dann ein komplexer Raum, wenn % (U) abgeschlossen in
o (U) ist fiir offenes Uc X, und aufPerdem X lokal-F-separabel und lokal-B-regulir
ist. Die angegebenen Bedingungen sind unabhdngig (s. § 5).

(d) Nicht alle komplexen Unterstrukturen auf einem komplexen Quotienten (X/R,
| R) werden durch analytische Aquivalenzrelationen auf (X, &) induziert.

Die Begriffe werden in § 0 definiert.

§ 0. Vorbemerkungen

Ein geringter Raum (X, 2/) besteht aus einem topologischen Raum X und einer
Garbe o7 von Ringen (oder Algebren) auf X. Ist M eine beliebige Teilmenge von X, so
sei o7y, der induktive Limes der Schnitte o/ (U)=T (U, &) iiber alle offenen Um-
gebungen U von M in X. Ist M offen, so gilt &, = (M). ,: =, heiBt Halm.
von & im Punkte xe X. Die Elemente des Halmes werden Keime genannt.

Ein lokal-geringter Raum sei ein Paar (X, &/) bestehend aus einem topologischen
Raum X und einer Garbe & auf X von'lokalen C-Algebren &,, xe X, das sind kom-
mutative noethersche Algebren mit Eins iiber dem Kérper der komplexen Zahlen,
die genau ein maximales Ideal a, besitzen; die Verkettung C— o/, — 7 /a, soll
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auflerdem ein Isomorphismus sein. Jeder Halm &7, stimmt mit der direkten Summe
a,®C iiberein. Finem Keim aeo/, wird als Funktionswert, o(x), sein Bild bei der
Projektion ./, —C zugeordnet. Ein Schnitt feI' (U, &), U offene Teilmenge von X,
definiert eine komplexwertige Funktion U—C, die wieder mit f bezeichnet werden
soll: f(x)eC sei der Wert des Keimes f, e, xeU.

&y fiir Mc X ist zwar stets eine C-Algebra, aber i.a. nicht lokal, vgl. jedoch
Hilfssatz 1, § 1.

Die Quotientengarbe &7, .4:= /|4 einer lokal-geringten Struktur .7 modulo der
Idealgarbe A" der nilpotenten Elemente definiert wieder einen lokal-geringten Raum
(X, eq), die Reduktion von (X, ).

Morphismen (X, &/)—(Y,#) zwischen lokal-geringten Rdumen sind Paare
(¢, ¢*) stetiger Abbildungen

$:X-Y und ¢*:¢ (%) «;
dabei ist ¢* eine Familie lokaler Algebra-Homomorphismen
¢::g¢(x) - Mx(xEX),

d.h. ¢} bildet 1,, e %, auf 1, €., und deshalb auch das maximale Ideal b,
von 4, ,, in das maximale Ideal a, von 27, ab. Jedes ¢’ definiert somit einen Vektor-
raum-Homomorphismus

0 @by (xy/ b; x) = Ox/ a;

der (ersten) Cotangentialrdume T, (Y, #) und T, (X, /). Der Morphismus (¢, ¢*)
induziert auBerdem Algebra-Homomorphismen der Schnitte

'$y: I (U, B) T ($™ (V). )
fiir offenes Uc Y, definiert durch Festlegen der Keime
[td’u(f)]x = ¢: (fd)(x))a
falls feI' (U, #) und xe¢ ' (U). Der zum kanonischen Morphismus
(ian I'Cd): (X’ t’dred) - (X9 M)
gehorende Reduktions-Homomorphismus sei
tQU:F(U, &{)—')F(U, Mred)' .

fer (U, &) und *gy(f)el (U, #,.q) haben gleiche Funktionswerte.
Wir koénnen fiir lokal-geringte Rdume Eigenschaften wie in [27] definieren: Es
sei F eine Menge globaler Schnitte auf (X, &), Fc A:=I'(X, &). (X, &) heiBt dann
a) F-ausbreitbar, bzw.
b) (schwach-)F-konvex, bzw.
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c) F-separabel oder

d) F-volistindig,
wenn die Abbildung ¢:X—C*, x> (f (x))scr» @) diskret, bzw. b) (fast-)eigentlich,
bzw. ¢) injektiv oder d) injektiv und eigentlich ist. Wir sagen: X ist lokal-F-..., wenn
jeder Punkt xe X eine Umgebung U besitzt, so daB ¢ | U die entsprechende Eigen-
schaft a)-d) hat.

Fiir Teilmengen K von X sei

Kp:= fﬂF{xeX:If(x)l <sup|f(K)]} und K:=K,.
(X, &) ist genau dann (schwach-)F-konvex, wenn fiir jede kompakte Menge K< X
auch K kompakt ist (bzw. kompakte Zusammenhangskomponenten besitzt). Denn
es gilt:
Kp=0¢"! (pr {zeC:|z| < sup|f(K)I}).

Wir sagen: (X, &) ist F-reguldr, wenn das Bild von F bei der Abbildung y,:4—
-a,/aZ, fio (f—f(x)), modaZ, den ganzen Tangentialraum aufspannt, fiir alle xe X,
d.h. es gilt: T, (X, o):=a,/a2=y,(C[F]).

(X, &) heiBe lokal-</-ausbreitbar (bzw....), wenn zu jedem Punkt xeX eine
Umgebung U existiert, so daB (U, & | U) ein I' (U, «/)-ausbreitbarer (bzw....) lokal-
geringter Raum ist.

Komplexe Rdume im Sinne von GRAUERT [9] und GROTHENDIECK [12] sind nach
Definition lokal-geringte Rdume. IThre Reduktionen sind sogar komplexe Rdume im
Serreschen Sinn [23]. Wir setzen fiir komplexe Rdume stets abzédhlbare Topologie
voraus. Dann kann die Algebra I' (X, /) aller globalen Schnitte (=holomorphe
Funktionen) auf einem komplexen Raum (X, &) in kanonischer Weise zu einer
vollstindigen topologischen Algebra gemacht werden, so daB im reduzierten Fall,
I' (X, . 4)=I' (X, x%), da o,y x€, genau die Topologie der kompakten Konver-
genz vorliegt, vgl. [7] und [9]. Morphismen zwischen komplexen Rdumen werden
holomorphe Abbildungen genannt. Jede holomorphe Abbildung (¢, ¢*): (X, &) (Y, #)
induziert einen stetigen Algebra-Homomorphismus

t¢:F(Y, B)->T (X, A).

Jeder komplexe Raum (X, &) ist lokal-.«/-separabel, -reguldr, -konvex, -voll-
standig. Doch sind die globalen Eigenschaften i.a. nicht erfiillt. Statt ,,4-ausbreitbar**
... wird meist ,,holomorph-ausbreitbar... gesagt. Fiir ,,holomorph-vollstindig* ist
die Bezeichnung Steinsch iiblich. Nach Theorem A ([5] und [9]) ist jeder Steinsche
Raum holomorph-regulir. Ein F-regulirer komplexer Raum (X, &) besitzt lokale
Koordinaten durch globale Funktionen aus F<I (X, /), d.h. zu jedem Punkt xeX
existieren eine Umgebung U und endlich viele Schnitte f3,..., fy€F, die eine Ein-
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bettung (=injektive, eigentliche und regulire Abbildung, vgl. [26]) (U, &/ | U)—
(C*, ,0) definieren. (Dabei sei ;@ die gewdhnliche Garbe der holomorphen Funk-
tionskeime des C*).

Jeder F-reguldre komplexe Raum ist deshalb F-ausbreitbar, sogar lokal-F-separa-
bel. Fiir lokal-geringte Rdume ist diese Aussage i.a. falsch:

BeiSPIEL 1. Es sei 0:=,0 die gewdhnliche Garbe der Holomorphie auf X:=C?
und p: X—C die Projektion auf die erste Koordinate (x, x,)>x;. Fiir offenes Uc X
sei #(U) die Algebra aller holomorphen Funktionen fe@(U), die auf jeder Faser
p~ ' (p(x))n U, xeU, konstant sind. Der (nach Hilfssatz 1, § 1) lokal-geringte Raum
(X, #) ist I' (X, B)-reguldr, aber nicht (lokal-) I (X, #)-ausbreitbar, nicht einmal
lokal-#-ausbreitbar.

Nach GRAUERT [9] ist ein komplexer Raum (X, /) genau dann Steinsch, wenn
(X, o,.q) diese Eigenschaft hat. Diese Aquivalenz ist fiir die allgemeineren Begriffe
a), b) und c) nicht richtig, vgl. SCHUSTER [21]. GRAUERT [8] bewies auch, da} jeder
holomorph-ausbreitbare und holomorph-konvexe Raum Steinsch ist, vgl. dazu § 4,
insbesondere Lemma 1.

Ist (X, &) ein komplexer Raum und F=C[F]cA4:=I (X, &), so gilt fiir
¢:X->CF, x—(f(x))s 5> und alle Mengen K< X:

Rr=¢~ 1(fHF f(K)"),
wobei f(K)" =C bzgl. I'(C, ,0) zu bilden ist.

§ 1. Definition der Quotientenabbildung

Es seien X und Y topologische Rdume. Eine surjektive und stetige Abbildung
p:X—-Y heiBt (topologische) Quotientenabbildung, wenn eine Teilmenge U von Y ge-
nau dann offen ist, wenn sie ein offenes Urbild p~!(U)< X besitzt. Ist R die zu p
gehorende Aquivalenzrelation auf X, so schreiben wir auch X/R statt Y. p: X—X/R
heiBt auch Projektion.

Ist &7 eine Garbe auf X, so definieren wir die Bildgarbe p,«/ auf X/R durch
(po) (U):= (p~ ' (U)) fiir offenes Uc X/R. (X/R, po ) ist ein geringter Raum,
aber i.a. nicht lokal-geringt, auch wenn (X, /) ein lokal-geringter Raum ist. Jeder
Halm (p,#),, y€Y,ist in -1, enthalten. (pys/), und -, ,, stimmen iiberein,
falls die Faser p~'(») ein p-saturiertes Fundamentalsystem'von Umgebungen besitzt.
Das ist z.B. erfiillt, wenn p eigentlich ist. In jedem Fall induzieren die Homomor-

hismen
p P: . (pO M)p(x) =¥ ‘dx (X € X)
einen Morphismus geringter Rdume

(p p*): (X, )= (X/R, po ).
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Ist (X, «¢) lokal-geringt, so definieren wir auf X/R die sogenannte Quotienten-
struktur &Z|R als Untergarbe von p,./, bestehend aus denjenigen Elementen, die auf
den Fasern von R konstante Funktionswerte haben:

ZIR(U):={fe(p~ ' (U))| f:p~'(y) - Cist konstant, yeU}.

Selbstverstindlich kénnen wir p auf (//R),,, beschrinken, und (p, p*): (X, &)
—(X/R, [R) ist ein Morphismus lokal-geringter Rdume, denn es gilt:

HiLFSSATZ 1. Es sei (X, &) ein lokal-geringter Raum, M c X beliebig. Dann ist
B:={fedly| f: M - C, x> f (x) ist konstant}
eine lokale Algebra mit dem maximalen Ideal
b:={feB|f.(x)=0 firalle xeM}.

B ist die grofite lokale Unteralgebra von sZ,,. —

Beweis. B ist eine Algebra liber C, und b ist ein Ideal in B. Fiir jedes xe M ist
1.:B—> o, fief,, ein Algebra-Homomorphismus. Ist a, das maximale Ideal in &7,
so gilt:

T (@) = (feBifea = {feB: fueKem(of, » of,fa, = O)

= {feB: f.(x) = f(x) =0}
= {feB:f(x')=0 firalle x'eM}=D0.

Da CcB und Cc &, sowie 1,(A)=A fiir alle AeC gilt, ist B—C, fi»f, moda,,
ein surjektiver Homomorphismus mit Kern =b, d.h. B/b=C, b ist maximales Ideal
in B. Ist B, eine beliebige lokale Unteralgebra von 7, dann bildet B,— &, fi—~f,
fiir jedes xe M das maximale Ideal b, von B, in a, ab, d.h. by=b und B,=b,®Ccb
®C=B; q.ed. —

Die Situation (p, p*):(X, «)—(X/R, po%/) wollen wir verallgemeinern und defi-
nieren: Ein Morphismus

(p: P*):(X, &)~ (Y, B)

(lokal-)geringter (bzw. komplexer) Riume (X, /) und (Y, #) heiBt (lokal-)geringte
(bzw. holomorphe) Quotientenabbildung, wenn p: X— Y eine topologische Quotienten-
abbildung ist mit # < p, /. Im lokal-geringten und deshalb auch im komplexen Fall
gilt wegen Hilfssatz 1 fiir die von p definierte Aquivalenzrelation R auf X: % < <Z/R.
|[R ist eine maximale lokal-geringte Struktur auf X/R. Setzt man wie LieB [16]
voraus, daBl die Strukturgarbe eines lokal-geringten Raumes eine Garbe stetiger
Funktionskeime ist, das ist z.B. fiir reduzierte komplexe Riume richtig, so ist die
Quotientengarbe die groBte geringte Struktur auf dem topologischen Quotienten,
fiir die die Projektion ein Morphismus lokal-geringter Riume ist.

Auf Quotienten X/R wollen wir also nicht nur die Garbe 7/ R betrachten, sondern
beliehige Garben von lokalen Unteralgebren #c.//R zulassen. Ist (X/R, &) ein
komplexer Raum, so ist X/R lokal-#-vollstindig, insbesondere lokal-#-separabel
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und lokal-#-reguldr; fiir offene Mengen Uc X/R ist #(U) abgeschlossen in &/
(™" (V)= (o) (V).

DerINITION. Ist (X, #7) ein geringter Raum, so heiBt eine Untergarbe # von &/
abgeschlossen, wenn alle Schnittmengen Z(U) fiir offenes Uc X abgeschlossen in
& (U) sind. —

&Z[R ist eine abgeschlossene Untergarbe von p,2/. Abgeschlossene Garben von
lokalen Unteralgebren # <p,.«, fiir die X/R lokal-#-separabel und lokal-#-regulir
ist, wollen wir R-Garben nennen. Aus Hilfssatz 1 folgt, daB jede in der Bildgarbe
po¥ enthaltene komplexe Struktur auf X/R eine R-Garbe ist. Es soll untersucht
werden, inwiefern diese Aussage iliber komplexe Unterstrukturen umkehrbar ist,
vgl. § 5.

DerINITION. Ist (X, /) ein komplexer Raum, so heiBit eine Garbe Z<./ von
Unteralgebren eine komplexe Unterstruktur auf X, wenn auch (X, %) ein komplexer
Raum ist. &7 ist eine Verfeinerung von # in der Terminologie von GRAUERT-REMMERT.

Ist (p,p*):(X, &)->(X/R, #[R) eine eigentliche holomorphe Abbildung, so
stimmt 7/R mit der Bildgarbe p,-%/ genau dann iiberein, wenn R einfach ist. Denn
ist &//R=py, so folgt nach einem Lemma von CARTAN-STEIN, vgl. etwa [27], daB
fiir jeden Steinschen Teil U< X/R die Funktionen aus I' (p~* (U), &/) die Zusammen-
hangskomponenten der Fasern von p trennen. Wegen I'(p~ ' (U), #)=I' (U, «/|R)
sind aber die Funktionswerte der Schnitte auf p™! (y), ye U, konstant. Ist andererseits
p eine einfache Abbildung, so ist jede Faser p~'(y), ye X/R, eine kompakte und zu-
sammenhédngende analytische Menge; deshalb hat jeder Schnitt einer Umgebung
p~ 1 (U)von p~ ! (y) mit Werten in & konstante Funktionswerte auf den Fasern von p,
d.h. poZ < H|R.

Fiir &/ |R=p, ist der von (p, p*) induzierte Algebra-Monomorphismus
‘p:I'(X/R, Z|R)—TI (X, o) sogar surjektiv. Die Umkehrung ist falsch, wie einfache
Gegenbeispiele zeigen.

CARTAN beweist mit dem Main Theorem [6], daB eine eigentliche Aquivalenz-
relation R auf einem reduzierten komplexen Raum (X, 0) genau dann einen kom-
plexen Quotienten (X/R, O/R) definiert, wenn X/R lokal-0/R-separabel ist. Wir wer-
den diese Aussage fiir nicht notwendig reduzierte Rdume beweisen und zeigen, daB
es geniigt, lokal-@/ R-ausbreitbar vorauszusetzen, vgl. § 5. Doch zunichst folgen weite-
re Vorbereitungen.

§ 2. Durch holomorphe Funktionen und Abbildungen
definierte Aquivalenzrelationen

Ist (X, &) ein komplexer Raum, so definiert jede Teilmenge F von 4: =TI (X, &)
eine Aquivalenzrelation, die mit F bezeichnet werden soll: F identifiziert Punkte aus
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X, wenn sie durch keine Funktion aus F getrennt werden. Die Menge F definiert
dieselbe Aquivalenzrelation auf X wie die von ihr erzeugte Unteralgebra C[F] in 4,
aber auch wie ihre abgeschlossene Hiille F'in A bzgl. der durch den komplexen Raum
(X, ) induzierten Topologie. (Zum Beweis geniigt es, die Reduktion (X, .«7,.4) und
die Topologie der kompakten Konvergenz auf I' (X, &7 ,.q) = I (X, x%) zu betrachten).

Nach § 1 definiert jede Aquivalenzrelation R auf X eine Unteralgebra B=TI"'(X/R,
&Z|R) von A. Die von B induzierte Aquivalenzrelation auf X isti.a. von R verschieden,
wie an einfachen Beispielen zu sehen ist.

Wie in [11], [16] und [27] geben wir fiir beliebiges F=I' (X, /) eine geringte
Struktur <5 auf Y:=X/F an. p: X— Y bezeichne die Projektion, der zugehorige Al-
gebra-Isomorphismus sei ‘p: I' (Y, po#)—-T (X, ).

Fiir offenes U in Y sei & (U) die Algebra aller Schnitte aus o7 (p~*(U)), die in
einer Umgebung jeder Faser p~' (), ye U, in eine konvergente Potenzreihe

z ai, i (f1 = f1 (J’))i1 (fk - fk()’))ik
mit fy,..., fy€ F entwickelt werden konnen. & heiBt Spektralstruktur bzgl. (X, &)
und F. Es gilt S pcd[FopyZ. (Y, L) ist ein 'p~ ! (F)-separabler und p~* (F)-
reguldrer lokal-geringter Raum, insbesondere ist Y lokal-& g-separabel und lokal-& -
reguldr (deshalb lokal-<7/F-separabel): S ist eine F-Garbe auf Y=X|F. Ist (Y, &)

ein komplexer Raum, so enthélt I' (Y, &) das ‘p-Urbild ‘p~ ! (C[F]) der abgeschlos-
senen Hiille der von F in A erzeugten Unteralgebra. In [27, Quotientensatz] wurde
bereits gezeigt:

Besitzt eine Faser p~' (), ye Y, eine saturierte F-konvexe Umgebung, so ist (Y, &)
in einer Umgebung von y ein komplexer Raum.

Man sieht, daBB diese Voraussetzung fiir alle Punkte aus Y erfiillt ist, wenn F eine
eigentliche Aquivalenzrelation auf X definiert (z.B. wenn X ein F-konvexer oder
F-separabler Raum ist, vgl. § 4). Wir formulieren das Ergebnis als

SATZ 1. Es sei Sy die Spektralstruktur bzgl. eines komplexen Raumes (X, <) und
einer Teilmenge F von I' (X, ), p: X— Y:=X|F die Projektion auf den Quotienten und
'L (Y, pot)->T' (X, o) der zugehirige Algebra-Isomorphismus. Definiert F eine
eigentliche Aquivalenzrelation, so ist (Y, &) ein 'p~*(F)-separabler und 'p~* (F)-
reguldrer komplexer Raum mit I' (Y, &) >'p~ ' (C[F]). Die Abbildung (p, p*): (X, &)
(Y, &) ist eine eigentliche holomorphe Quotientenabbildung. Jede Funktion feF
kann iiber (Y, & §) faktorisiert werden:

X—C
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Als Verallgemeinerung wollen wir Zerlegungen von Aquivalenzrelationen auf
komplexen Rdumen betrachten, die durch globale Funktionen definiert werden. Sind
R und S Aquivalenzrelationen auf einem topologischen Raum X, so heiBt S eine
Zerlegung von R, wenn jede Faser von S die Vereinigung von Zusammenhangskom-
ponenten einer Faser von R ist. Eine spezielle Zerlegung ist die zu R gehorende ein-
fache Aquivalenzrelation.

Ist F=I' (X, &) auf einem komplexen Raum (X, &) vorgegeben und F eine Zer-
legung der Aquivalenzrelation F, so kann auch auf dem Quotienten X/F eine Spek-
tralstruktur & definiert wetden. Aber (X/F, ¥5) wird i.a. kein komplexer Raum,
selbst wenn F eine eigentliche Aquivalenzrelation auf X ist.

BEISPIEL 2. Es sei (C, 0) die GauBsche Ebene mit der gewohnlichen komplexen
Struktur, z die Koordinatenfunktion und F:=C[z?]<=TI'(C, 0). Die zu F gehorende
einfache Relation F’ ist trivial also eigentlich. Trotzdem ist . keine komplexe
Struktur auf C, denn nach Definition gilt:

P 0, fiir alle x # 0
Fox 71 C[(z%] firx=0 ’

d.h. keine Umgebung U von 0 ist I' (U, & 5.)-separabel. — Wir beweisen allerdings in
§ 4 und § 6, daB (X/F, #/F) ein komplexer Raum ist fiir eigentliches F.

Eine endliche Menge F={f,..., f,} =I' (X, &) definiert eine holomorphe Abbil-
dung ¢: (X, &)—(C" ,0). Die Spektralgarbe ¥ auf X/F besteht dann aus zuriick-
genommenen Taylorreihen. Wird X/F mit ¢ (X) identifiziert (das ist méglich, wenn ¢
semi-eigentlich ist, vgl. Hilfssatz 2*.), so gilt:

(+) &Lr = (,0/Ann odo )| ¢(X).

Eine stetige Abbildung ¢: X— Y topologischer Rdume hei3t nach KUHLMANN [15]
semi-eigentlich, wenn zu jedem Punkt ye Y eine Umgebung U, < Y und eine kompakte
Menge K, < X existieren, so daB fiir alle y'e¢ (X)n U, gilt: ¢~ (y')nK,#9. Sind
X und Y lokal-kompakte Rdume, so ist ¢: X— Y genau dann semi-eigentlich, wenn
zu jeder kompakten Menge Lc Y eine kompakte Menge K< X existiert mit L N ¢ (X)
= ¢ (K). Eine Aquivalenzrelation R auf X heiBt semi-eigentlich, wenn die Projektion
p:X— X/R eine semi-eigentliche Abbildung ist.

Nicht alle holomorphen Abbildungen sind semi-eigentlich, z.B. C*—C?, (x, y)—
(xy, »). Jede eigentliche Abbildung ist semi-eigentlich.

Die Situation (+) wollen wir nun verallgemeinern:

Es sei (h, h*):(X, &)—(Y, %) eine holomorphe Abbildung, R die auf X durch £
definierte Aquivalenzrelation. Der Quotient X/R und das Bild #(X) stimmen i.a. nur
mengentheoretisch iiberein. Fiihren wir auf X/R die feinste Topologie T” ein, so dal
p:X— X/R stetig wird, so ist T'< B (X/R)= P (h(X)) eine Obermenge der von Y auf
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h(X) induzierten Topologie T: Die Quotiententopologie 7" ist feiner als die Relativ-
topologie T. Es gilt T=T" genau dann, wenn jede abgeschlossene und bzgl. p satu-
rierte Menge in X ein abgeschlossenes A-Bild in Y besitzt. Diese Bedingung ist z.B.
erfiillt, wenn 4 eine semi-eigentliche Abbildung ist.

Wir wihlen nun eine offene Steinsche Uberdeckung U:= (U;);.; von Y, so daB
jedes (U;, #Z | U,) in einen C™ eingebettet werden kann. Diese Realisierung wird durch
Funktionen f;, ..., fi,,€Z (V;), Vi:=h~"'(U,), beschrieben:

(fil:"-s fim) =:fi:(Vi’ Ml Vi)—')(cni9 ni@):

#|U;=,,0/.7 | U, sodaB J<Kernf* und f;(V;)=h(X)n U,.
Mittels der F;:={f;,...,fin < (V;, o) definieren wir auf X/R die geringte
Spektralstruktur &, :
Lhal Unh(X):=Sp,.

SLr, ist definiert auf V;/F;, das mengentheoretisch mit U; N4 (X) iibereinstimmt. Es
gilt: L, ,=Fr,,, falls yeU;nU;nh(X). Denn aus der Konstruktion folgt:

Fj’y

Das gilt fiir alle xeh™! (y).

Nach dem Homomorphiesatz ist Bild 4} =% ,/Kernh ; andererseits ist Kernh} =
(Annghy.Z),. Ist also h eigentlich und somit Annghy.o/ =: 4" eine kohdrente Ideal-
garbe in & ([9], [22]) mit Nullstellenmenge A (X), so ist (h(X), /A" | h(X))=(X/R,
& ,) ein komplexer Raum, vgl. CARTAN [6, Theorem 2]).

Auf gleiche Weise folgt, dall &), o unabhiingig von der Wahl der Uberdeckung U
ist. Wir diirfen also &, fiir die Spektralgarbe schreiben. Ist A= (hy,..., h,): X—C",
so stimmt diese Definition mit der friiheren iiberein: &)=, . 4.

Nun betrachten wir eine Familie A= (/,); .x holomorpher Abbildungen 4,: (X, &)
- (Y, Z,). R sei die von h auf X definierte Aquivalenzrelation, p: X—Y:=X/R die
Projektion. Mengentheoretisch gilt wieder:

h(X)=X/Rc [] Y.
kekK

Wi =(Uy,)icy sei eine offene Steinsche Uberdeckung von Y,, keK. V,;:=h "
(Ux)eX mit (J V=X und fi ;155 fiim € (Vi) seien wie vorher gewihlt. U: =

iel
(Uy)y. k. Fiir offenes U< Y sei &, o(U) die Algebra aller aes/ (p~ ' (V)), so daB fiir
alle ye U der Keim ®,-1(y) in einer Umgebung der Faser p~' (y) in eine konvergente
Potenzreihe Y a,, , fi'..f" entwickelt werden kann, wobei f3, ..., f,eU{fi i1 v€ Vi,
und I=1,..., n,;}. kek
Dann gilt wieder &, o=, o fiir beliebige Uberdeckungsfamilien 2 und ', so

daB wir wieder nur &, fiir die von h erzeugte Spektralstruktur auf X/R schreiben



102 KLAUS-WERNER WIEGMANN

diirfen. Ist 4 eine Abbildungsfamilie mit den Bildrdumen Y,=C, keK, so stimmt &,
mit der frither definierten Garbe & iiberein, falls F die & entsprechende Teilmenge
von I' (X, &) ist.

HiLssATz 2. Sind fast alle Y, holomorph-vollstindig, so ist Y lokal-& ,-separabel
und lokal-& -reguldr. —

Beweis. Zu jedem Punkt y,eY=X/RcIl Y, existiert nach Voraussetzung eine
Umgebung mit pr, (U) <= Uy, fiir ein U ; € A,. Die Menge der zugehdrigen Schnitte
sei

Fi=U {fisalVil=1,..,m.,},

kekK

fiir V:=p~'(U). Dann gilt &, | U=%}, q.ed. -

HILFSSATZ 2*. Ist die von h auf X erzeugte Relation R semi-eigentlich, so ist
Y=X/R lokal-¥ ,-separabel. -

Beweis. h: X—1I1Y, ist nach Voraussetzung semi-eigentlich. Also gibt es zu jedem
Punkt yeh(X)=Y eine offene Umgebung U, Y und eine kompakte Menge K,c
<X mit A~ (y") " K, #0 fiir alle y'e U,. Die Quotiententopologie auf ¥ stimmt hier
mit der Relativtopologie iiberein.

Nach CARTAN [6, Lemma] kann die Relation R auf K, schon durch endlich
viele Abbildungen aus 4 beschrieben werden, d.h. es existiert eine holomorphe Ab-
bildung

f=y, ) X>Z:=Y,, x-xY,

so daBf ! (f(x))=h""(h(x))fiir alle xeh™! (U,) gilt. Die Elemente von ¥ (h~* (U,))
trennen die Fasern A~ ' ()’), »’ €U,. Andererseits ist & ,. in &, ,, enthalten fiir alle
y'eU,, d.h. Y ist lokal-&,-separabel, q.e.d. —

Die Spektralgarben &; von Zerlegungen der Relation einer Familie 2 werden
analog definiert. Es gelten auch mit Satz 1 verwandte Aussagen, die wir nach einigen
Vorbereitungen zeigen werden, vgl. § 5.

§ 3. Holomorph-separable und holomorph-konvexe Riume

Es sei (X, &) ein F-separabler komplexer Raum mit FcI'(X, &). Dann ist
X/F=X, und F ist eine eigentliche Aquivalenzrelation auf X, d.h. (X, &F) ist nach
Satz 1 ein F-reguldrer und F-separabler komplexer Raum mit I'(X, & F)=E—|—:E7—]C
cI' (X, &). Fir F=T (X, &) erhalten wir eine Aussage, die LieB [16, Satz 3] fiir
reduziertes X bewies:

SATZ 2. Auf jedem holomorph-separablen komplexen Raum existiert eine holomorph-
reguldre komplexe Unterstruktur mit gleicher globaler Funktionenalgebra. —
Fiir A=T (X, &/)ist ¥:=& 4 echtin « enthalten, wenn (X, 2/) nicht holomorph-
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reguldr ist, d.h. es existiert ein Punkt xe X mit #n: =emdim, (X, &) <emdim, (X, «/)=
=:m. Wir realisieren eine Umgebung U von x jeweils minimal:

U, #)cZcC (U, A)cWceC"
Ux{zeZ:F,+# ,0,} = {weW:9, # 40,}.

Aus der I' (X, &)-Regularitit folgt gerade, daB Schnitte f3, ..., f,eA=T (X, &)=
=I'(X, &) existieren mit

F = Annz@(fla seey fn)O(y I U) . Z@'

Fiir 4 kann man allerdings solche Schnitte nicht finden. LieB [16] hat fiir den
reduzierten Fall eine Folgerung zu Satz 2 angegeben:

COROLLAR 1. Ist F<I (X, &) fiir einen konplexem Raum (X, &) gegeben, so dafp
o/ [F eine komplexe Struktur auf X|F ist, so ist auch (X|F, & i) ein komplexer Raum. -

Beweis. Es sei p: X— X/F die Projektion und ‘p:I" (X/F, poZ)—TI (X, &) der zu-
gehorige Algebra-Isomorphismus. Dann ist F*:='p~'(F) in I' (X/F, /F) enthalten
und trennt die Punkte von X/F. Wegen Satz 2 ist nun (X/F, %) ein komplexer
Raum, & und & stimmen aber nach Definition iiberein, q.e.d. -

BEISPIEL 3. Wir betrachten (C, 0), 0:=,0, z sei die Koordinatenfunktion. Die
aus den Polynomen z2, z* aus I' (C, 0) bestehende Menge F trennt die Punkte von C,
und (C, &) ist deshalb ein komplexer Raum. Es gilt:

— {Z a,T'e0, mit a, =0} fallsx=0
v=0

F,x —

S

b

0 falls x # 0

X

d.h. (C, &) ist die Neilsche Parabel. -

Ist (X, &) ein F-konvexer komplexer Raum, so ist (X/F, &) ein ‘p~ ! (F)-kon-
vexer und ‘p~! (F)-separabler komplexer Raum, insbesondere Steinsch. Der Spezial-
fall F= A liefert die Existenz des Remmertschen Quotienten [20] auch im nichtredu-
zierten Fall: Aus A="pI' (Y, &¥,)="pI (Y, po) folgt I'(Y, & ,)=T (Y, po¥). Die
holomorphe Abbildung

(2, P*): (X, ) (Y, %),

Y:=X]/A, ist eigentlich, also ist p,o/ nach GRAUERT [9] eine kohirente & ,~-Modul-
Garbe auf Y. Weil (Y, &,) Steinsch ist, gibt es nach Theorem A ([5], [9]) endlich
viele Schnitte Ay, ..., h,,eI' (Y, po ), die jeden Halm (p, =), iiber &, , erzeugen, ye Y:

(poeﬂ)y': .Z:l yA’yhi,yCyA,y.

Da andererseits &, //Acp,/ gilt, stimmen alle drei Garben iiberein: p hat
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zusammenhdngende Fasern. Dazu vgl. man auch [27, Lemma von CARTAN-STEIN].
Es gilt also:

SATZ 3. Zu jedem holomorph-konvexen komplexen Raum (X, /) existiert ein
Steinscher Raum (Y, #) und eine surjektive, einfache und eigentliche holomorphe Ab-
bildung (p, p*): (X, &)~ (Y, &), die einen Isomorphismus "p:I' (Y, B)-I (X, ) der
holomorphen Funktionenalgebren induziert. (p, p*) ist eine Quotientenabbildung: Y ist
der Quotient von X nach der durch T (X, /) definierten Aquivalenzrelation, und %
stimmt mit der Bildgarbe p,.</ iiberein. Jede holomorphe Funktion auf X kann iiber Y
faktorisiert werden. —

Ist (X, &) ein F-konvexer Raum, Fc A =TI (X, &), so erhalten wir folgendes kom-
mutative Diagramm:

(X, #)

(X/A, ¥ )——— (X|F, &%),

wobei ¢ eine diskrete holomorphe Abbildung ist, weil die Fasern von p, mit den
Zusammenhangskomponenten der Fasern von pj iibereinstimmen.

BEIsPIEL 4. Es sei (X, &) holomorph-konvex und endlich-dimensional; dann gibt
es etwa nach [2], [18], [26, Trennungssatz] und [27, Satz von BisHoP] endlichviele
Schnitte £, ..., f,eI' (X, &)= A, die eine eigentliche und maximal-(punkte-)trennende
holomorphe Abbildung (X, &/)—(C", ,0) definieren. X ist F-konvex (F:={f1,..., fu}
cA), und es gilt:X/F=X/A, ¥ ,=H|A=s/[F. Allerdings sind & und &, i.a.
verschieden. —

Nun beweisen wir:

SATZ 1*. Es sei (X, &) ein komplexer Raum, F<I' (X, &) und F’' die einfache
Zerlegung der Aquivalenzrelation F auf X; ist dann F' eigentlich, so ist (X/F’, o/ |F")
ein komplexer Raum. —

Bemerkung. Nach CARTAN [6, Beweis zu Theorem 3] ist jede einfache Aquivalenz-
relation auf einem lokal-kompakten Raum schon eigentlich, wenn sie kompakte
Fasern hat. Fiir nichteinfache Relationen ist diese Aussage falsch. Gegenbeispiel:
Die Projektion von

X ={(x,y)eR*:xy =1} u{(x, y)eR?*:y = 0}

auf die erste Koordinate induziert eine solche Relation auf X.
Beweis von Satz 1*. Es geniigt zu zeigen, daB jede Faser p~'(p(x)), x€X, der
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Projektion p:X— X/F' eine Umgebung U besitzt, so daB (U, &/ | U) holomorph-
konvex ist, vgl. Satz 3. Wir beweisen sogar mehr:

HiLessATZ 3. Ist F eine beliebige eigentliche Zerlegung von F und q:X— X/F die
Projektion, so besitzt jede Faser p~' (p(x)) eine holomorph-konvexe Umgebung U mit
Ung ' (g(x)=p " (p(x)). -

Beweis. F' ist eigentlich. Wir wihlen eine relativ-kompakte Umgebung ¥ von
p(x), so daB p~ 1 (p(x))=p~ ' (¥)n g~ " (q(x)) ist — das ist mdglich, weil p(g~" (g(x))
in X/F’ diskret ist —, auBerdem endlich viele Funktionen f;, ..., f,€F, die die Aquiva-
lenzrelation F’ auf p~' (V) beschreiben. Nach einem topologischen Satz, vgl. STEIN
[24, Hilfssatz 3] definieren deshalb die f; eine eigentliche (holomorphe) Abbildung
einer Umgebung Ucp~! (V) von p~!(x) in einen Polyzylinder des C". U kann p-satu-
riert gewdhlt werden, weil p eigentlich ist, und ist holomorph-konvex, wie verlangt
wurde. Hilfssatz 3 ist bewiesen.

Beispiele zu Satz 1* liefern lokal-holomorph-separable oder auch schwach-holo-
morph-konvexe komplexe Rdume, die wir im folgenden Abschnitt betrachten wollen.

§ 4. Lokal-holomorph-separable und schwach-holomorph-konvexe Riume

Ist (X, «7) ein komplexer Raum, Fc A=I"(X, &) und X etwa a) F-ausbreitbar,
b) F-regulér, c) lokal-F-separabel oder d) schwach-F-konvex, so hat die zu F gehérende
cinfache Aquivalenzrelation F’ auf X kompakte Fasern und ist deshalb eigentlich,
(X/F', oZ|F") ist ein komplexer Raum. In den Fillen a), b) und c) gilt sogar X/F'=X
und o/ =.//F’. Fir b) und c) ist . eine komplexe Unterstruktur auf (X, «Z). Es
gilt FeT' (X, ¥ ), und (X, &) ist F-regulir. Wir erhalten die folgende Verschirfung
von Satz 2:

SATZ 2*. Ein komplexer Raum ist genau dann lokal-holomorph-separabel, wenn
eine holomorph-regulire komplexe Unterstruktur mit gleicher globaler Funktionen-
algebra existiert. —

Beweis. Ist (X, &) lokal-A-separabel fiir 4:=TI'(X, A), so definiert die einfache
Relation A’ gerade die Identitiit auf X. &, ist eine holomorph-regulire Unterstruk-
tur. Die andere Beweisrichtung ist klar.

Der Begriff schwach-holomorph-konvex wurde von BisHOP [2] fiir partially analytic
spaces eingefiihrt. In einer Besprechung dieser Arbeit in den Mathematical Reviews
23A, p. 184 (1962) bemerkt GRAUERT, daB die Eigenschaften holomorph-konvex und
schwach-holomorph-konvex fiir (reduzierte) komplexe Ridume nicht-trivial iiberein-
stimmen. Wir wollen hier die Aquivalenz fiir beliebige komplexe Riume beweisen :

SA1Z 4. Jeder schwach-holomorph-konvexe Raum ist holomorph-konvex. —
Zunichts zeigen wir die folgende Verallgemeinerung eines Satzes von GRAUERT [8]:
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LemMA 1. Ein schwach-holomorph-konvexer und holomorph-ausbreitbarer kom-
plexer Raum ist holomorph-volistindig. —

Es geniigt, diese Aussage fiir den reduzierten Fall zu beweisen, weil ein Raum
genau dann Steinsch ist, wenn seine Reduktion Steinsch ist, vgl. [9].

X sei also ein schwach-holomorph-konvexer und holomorph-ausbreitbarer (redu-
zierter) komplexer Raum, 4:=I'(X, x0). Etwa nach [25, Satz 1.2] brauchen wir nur
zu beweisen, daBB zu jeder kompakten Menge K< X eine A-konvexe Umgebung U
existiert. Denn dann kann X durch holomorph-konvexe und holomorph-ausbreitbare
(also nach [8] holomorph-vollstindige) offene Teilmengen X, ausgeschopft werden,
so daBl X, jeweils holomorph-konvex bzgl. X, ., ist, v=1, 2,....

Die Vereinigung L aller Zusammenhangskomponenten von K, die K treffen, ist
kompakt. Das folgt aus

HiLrssATZ 4. Es sei R ein lokal-kompakter Raum, M c R eine abgeschlossene
Menge mit kompakten Komponenten M, (i€l). Dann ist die Vereinigung L derjenigen
M,, die eine vorgegebene kompakte Menge K< R treffen, ebenfalls kompakt. —

Beweis. R=Ru {0} sei die Kompaktifizierung von R. Mit M wire auch L
kompakt. Es sei also M nicht kompakt. Dann stimmt die abgeschlossene Hiille A1
von M bzgl. R mit M L {0} iiberein. Sei M,, die co enthaltene Komponenten von M.
Da die M; kompakt sind, ist M,=M;cR und M\M, sowohl offen als auch abge-
schlossen in M, d.h. nach [4, Chap. I, § 11, n° 5]:

{0} = M, = N (M\M) = M\ M, = I\M = {0}
iel iel

Somit ist {0} gleich dem Durchschnitt aller offenen und abgeschlossenen Mengen
NcM mit coeN, wobei 0.B.d.A. NcR\K vorausgesetzt werden darf. Also besitzt
o in R eine offene Umgebung U mit 0UNM=0 und UnK=0, etwa U:=NuU
U[R\(MUK)]. RU=R\U ist kompakt in R und enthilt L, nach Konstruktion.
Hilfssatz 4 ist bewiesen. —

Wir wihlen eine Umgebung ¥ von L, deren Rand 0V kompakt ist und K nicht
trifft. Zu jedem Punkt xedV existiert dann ein fe A mit |f(x)|>sup|f(K)|. Diese Be-
dingung ist sogar fiir eine Umgebung von x erfiillt. Deshalb gibt es endlich viele
Funktionen f, ..., f,e 4 und eine reelle Zahl £¢>0 mit

max |f;(x)| > &> max sup|f;(K)|

1<is<i 1<is!
fiir alle xedV. Wir setzen
U:={xeV:|fi(x)I<e firalle i=1,...,1}

und
W:={zeC'|z| <e firalle i=1,..,1}.
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Dann ist die holomorphe Abbildung (f,...,f;): U- W eigentlich. U ist die ge-
suchte Umgebung von K, q.e.d.

Beweis von Satz 4. Es sei (X, &) ein schwach-holomorph-konvexer (nicht not-
wendig reduzierter) komplexer Raum und 4’ die von A =TI (X, «7) definierte einfache
Aquivalenzrelation auf X. Nach Satz 1* ist #:=47/A’ eine komplexe Struktur auf
Y:=X/A'. (Y, &) ist sogar schwach-holomorph-konvex und holomorph-ausbreitbar,
weil die holomorphe Abbildung (g, ¢*): (X, «)—(Y, #) eigentlich sowie surjektiv
und der zugehorige Homomorphismus ‘q:I' (Y, #)—-TI (X, &) bijektiv ist. Nach
Lemma 1 ist (Y, %) Steinsch, insbesondere holomorph-konvex, q.e.d.

Ubrigens stimmt # wieder mit der Bildgarbe g,. iiberein, vgl. Satz 3.

§ 5. Topologische Aquivalenzrelationen

Wir beweisen nun die folgende Verallgemeinerung des Main Theorem von
CARTAN [6] fiir komplexe Rdume im Sinne von GRAUERT:

THEOREM. Es sei R eine eigentliche Aquivalenzrelation auf dem komplexen Raum
(X, ). Dann ist (X/R, Z|R) genau dann ein komplexer Raum, wenn X|R lokal-</|R-
ausbreitbar ist. —

Beweis. Die angegebene Bedingung ist gewil notwendig. Es geniigt also zu zeigen,
daB (X/R, &Z/R) ein komplexer Raum ist, wenn jeder Punkt ye X/R eine Umgebung
U besitzt, so daB (U, &/R | U) ein I' (U, &//R)-ausbreitbarer (lokal-geringter) Raum
ist.

Zunéchts zeigen wir mit einem bei CARTAN [6] beschriebenen Trick von GROTHEN-
DIECK, vgl. auch [12]:

SATZ 5. Ist R eine eigentliche Aquivalenzrelation auf dem komplexen Raum (X, <),
so ist /R fiir jede komplexe Struktur #c|R auf X/R eine kohdrente #-Garbe. —

Beweis von Satz 5. Es sei p: X— Y:=X/R die Projektion und p%:%,,,~>,(x€X)
die Beschrinkung des natiirlichen Homomorphismus &7,- 1) —%/,. Dann ist
(P, p*): (X, &)~ (Y, &) eine eigentliche holomorphe Abbildung. Wir betrachten das
folgende Diagramm :

(X, L) —— (R, B) = (X x X, & ® )

14 /8 pxp pPXp
/
/

oo l
(Y, B) (D, 2) = (Y x Y, B RF)




108 KLAUS-WERNER WIEGMANN

Dabei bezeichnet /&7 die kanonische Struktur auf Xx X. ,,®“ bezieht sich
auf das analytische Tensorprodukt, vgl. NAGATA [17, § 47]: (& é\g.@)(x,x,): =Mx®$xl.
D sei die Diagonale von Yx Y, 9:= (Qé%’/% ) | D diejenige Struktur auf D, fir die
(Y, #) und (D, 2) mittels der Diagonalabbildung d: Y— Y x Y biholomorph aqui-
valent sind, " :=Kernd*. Das Urbild (p x p)~!(D) stimmt mit dem Graphen der
Aquivalenzrelation Rc X x X iiberein. Es sei #:=(s/®/#)| R fiir die vom Bild
(p xp)* A erzeugte Idealgarbe .f =/ @.«/. Bei GROTHENDIECK [12] wird (R, %) das
Faserprodukt von X iiber Y genannt und mit X X yX bezeichnet, genauer (X, %) x
@ (X, &). pr; sei die Beschrinkung (auf R) der holomorphen Projektion von
X x X auf die i-te Koordinate (i=1, 2). g:=d~!+(px p)=p-pr; und p sind eigentliche
holomorphe Abbildungen. Deshalb erhalten wir mit den Bildgarbe p,.%/ und g, #
nach GRAUERT [9] kohdrente #-Modul-Garben (von Algebren) auf Y. Jedes pr;
definiert einen #-Modul-Garben-Homomorphismus u;:py & —go%. Fir u:=u; —u,
gilt:

% < Kernu « Z|R < py, & .

&R stimmt sogar mit dem »-Urbild der nilpotenten Elemente A4~ von g, Z iiber-
ein. A" ist aber die O-te Bildgarbe der nilpotenten Elemente aus #. Deshalb sind A4~
und &//R=u"1(A") kohédrente #-Garben auf Y, vgl. [9] und [22]. Damit ist Satz 5
bewiesen. Betrachten wir hier die identische Aquivalenzrelation, so erhalten wir den
folgenden Spezialfall (und eine Umkehrung):

Sei (X, #) ein komplexer Raum und sf eine Garbe von lokalen Oberalgebren,
o > AB. Dann ist (X, /) genau dann ein komplexer Raum, wenn s eine kohdrente
#-Garbe ist. -

Die Notwendigkeit der Kohdrenz kdnnen wir direkt zeigen, weil die induzierte
holomorphe Abbildung (X, &7)— (X, #) eigentlich und &/ als Bildgarbe id,%/ nach
GRAUERT [9] kohérent ist. Die Umkehrung folgt nach HouzeL (vgl. Séminaire Henri
Cartan 1960/61): (X, &)=Specan(%/). Unter den Voraussetzungen des Theorems
gilt:

COROLLAR 2. (X/R, /[R) ist genau dann ein komplexer Raum, wenn auf X/R
irgendeine komplexe Struktur # existiert, so daf die Projektion p: X—X/R zu einer
holomorphen Abbildung (p, p): (X, «/)—(X/R, &) ergdnzt werden kann. —

Beweis. Es sei wieder Y:=X/R. Wir konnen 0.E.d.A. & als Untergarbe von &//R
und p=p* | # annechmen, denn J : = Anng p, & ist nach [9] und [22] eine kohérente
Idealgarbe in # mit Nullstellenmenge p(X)=Y, und es gilt fiir alle ye Y

5
S, =Kern(#,> o,-1,)-

Also ist #':=2%/# eine komplexe Struktur auf Y mit #' <p,.«7 und (wegen Hilfs-
satz 1) #'cZ/R. Y ist lokal-#-separabel, also auch lokal-2//R-separabel, d.h. zu
jedem Punkt ye Y existiert eine Umgebung U, so daB8 F:=I"(U, «//R) die Punkte von
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U trennt. Als Teilmenge von I'(V, o) definiert F auf V:=p~'(U) die Aquivalenz-
relation R. Deshalb ist F eine eigentliche Relation auf ¥ und (U, &) ist nach Satz 1
ein komplexer Raum mit ¥ rc//R| U. Nach Satz 5 ist &Z/R | U eine kohirente
& -Garbe. :

Fiir offene U;cU,cY gilt I'(U,, #/R)| Uy cI'(Uy, Z/R) und &1, 47y | Uy
<& rw,, 41 Deshalb kann U so klein gewdhlt werden, daB (U, ) Steinsch ist.
Wegen F=I'(U, «Z|R)=TI (U, &) folgt aus Theorem A, daBl & und &//R | U iiber-
einstimmen. Damit ist Corollar 2 bewiesen.

Zum Beweis des Theorems setzen wir zundchst mehr voraus, nimlich daBl Y= X/R
lokal-27/ R-separabel ist. Zu jedem Punkt ye Y wihlen wir eine geignete Umgebung U,
so daB F:=TI(U, #//R) die Punkte trennt. Die Relation F auf p~'(U), F als Teil-
menge von I' (p~ ! (U), «7) betrachtet, ist eigentlich, weil sie dort mit R iibereinstimmt.
Deshalb ist (U, &§) nach Satz 1 ein komplexer Raum mit & <&//R | U. Hieraus
folgt wegen Corollar 2, daB3 =7/R eine komplexe Struktur auf X/R ist.

SATZ 1**, Es sei (X, s/) ein komplexer Raum und F eine Zerlegung der von einer
Funktionenmenge F<T (X, &) definierten Aquivalenzrelation. Ist dann F eigentlich, so
ist (X|F, sZ|F) ein komplexer Raum. —

Der Beweis dieses Satzes folgt aus dem bereits bewiesenen abgeschwéchten Theo-
rem, wenn wir zeigen, daB X/F lokal-«7/F-separabel ist. Nach Hilfssatz 3 wird eine
Faser ¢~ !(y), ye X/F, der Projektion q:X->X/F durch eine endliche disjunkte Ver-
einigung U= U; holomorph-konvexer Umgebungen U; der Zusammenhangskom-
ponenten von ¢~ ! () iiberdeckt. Diese Vereinigung ist endlich, weil F eine eigentliche
Aquivalenzrelation ist. U kann auBerdem g-saturiert gewihlt werden, durch eventuelle
Verkleinerung: U=¢q~! (V) fiir offenes V'in X/Fmit ye V. I (V, o//F)trennt die Punkte
von V nach Konstruktion: Satz 1** ist bewiesen.

Nun ist der Beweis des Theorems einfach: Y=X/R ist lokal-%//R-ausbreitbar.
Deshalb kénnen wir zu jedem Punkt ye Y eine Umgebung U wihlen, so daB die von
F:=T (U, sZ/R) definierte einfache Aquivalenzrelation F auf U trivial ist. F definiert
auf p~1(U) eine Zerlegung der Aquivalenzrelation F<=T (p~!(U), &) und ist wegen
F=R|p~! (U) eigentlich. Deshalb ist o//R | U=s//F eine komplexe Struktur auf U,
nach Satz 1**, g.e.d. -

Wir wollen an einem Beispiel zeigen, daBB das Theorem nicht ohne zuséitzliche
Voraussetzungen (vgl. etwa LieB [16, Satz 7] auf semi-eigentliche Aquivalenzrela-
tionen ausgedehnt werden kann:

BEISPIEL 5. Die Projektion p:C?—C auf die erste Koordinate ist eine semi-
eigentliche holomorphe Abbildung. Auf C? wihlen wir die komplexe Struktur
4:=,0@,0 im Sinne von FORSTER [7], s. auch Bemerkung (3) im AnschluB an
Satz 6. Ist R die von p auf dem C? definierte Aquivalenzrelation, so ist C*/R=C
zwar lokal-2// R-separabel. <Z/R ist jedoch keine komplexe Struktur auf C. —
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Wie bereits erwiahnt wurde, wollen wir auf Quotienten X/R auch Untergarben
von £//R mit speziellen Eigenschaften untersuchen. Der allgemeine Fall kann sofort
auf die triviale Aquivalenzrelation auf X zuriickgefiihrt werden, weil gilt:

SATZ 6. Es sei (X, o) ein komplexer Raum und % eine Garbe lokaler Unteralgebren
von . Dann ist (X, #) genau dann ein komplexer Raum, wenn gilt: & ist abgeschlossen,
X ist lokal-Z-separabel und lokal- #-reguldr. —

DaB} die Eigenschaft lokal-Z-ausbreitbar statt lokal-#-separabel nicht ausreicht,
wurde bereits in § 2, Beispiel 2, gezeigt.

Bemerkung. Die drei in Satz 6 angegebenen Voraussetzungen sind unabhéngig:

(1) Es sei (C, 0) die komplexe Ebene mit der gewdhnlichen Struktur, ., :=
={peC[z—x]:p(x)=0} ist ein Primideal im Polynomring C[z]=C[z—x]. Des-
halb ist die Lokalisierung

Clz]s, := {‘B € Quotientenring von C[z]:q ¢S x}
q

eine lokale Unteralgebra von 0,=C[{z—x)]. Fiir offenes UcC sei #(U):=
={fe0(U):f,eC[z],, fir alle xeU}.

#< O ist eine nicht abgeschlossene Garbe von lokalen Unteralgebren. Wegen
C[z]=TI' (C, #)=":B ist X sowohl B-separabel als auch B-regulir, also insbesondere
lokal-%-separabel und -reguldr. (Es geniigt natiirlich, die Garbe @ nur in einem Punkt
aus X abzuindern).

(2) In § 0 (Beispiel 1) wurde auf dem C? eine abgeschlossene Garbe Z<,0 von
lokalen Unteralgebren angegeben, so daB der Raum (C?, &) zwar lokal-%B-regulir,
aber nicht lokal-%-separabel ist (nicht einmal lokal-#-ausbreitbar).

(3) Ist R eine Algebra und a = R ein Ideal, so wird R,: =R x a mit komponenten-
weiser Skalarmultiplikation und Addition sowie der Multiplikation

(r,a)(ry, ay):=(rry,ra, + rya)

ebenfalls eine Algebra, die mit R @ a bezeichnet wird, vgl. etwa [7] und [17]. Ist R
eine lokale Algebra mit dem maximalen Ideal 1, so ist auch R @t eine lokale Algebra
mit dem maximalen Ideal r,=1 @a. Es gilt:

tt=v’@ra und 1o/t =/’ Da/ra.

Nun sei (C, 0) die komplexe Ebene mit der iiblichen Struktur, m, das maximale
Ideal von 0,, xeC. Fiir offenes Uc=C sei J(U) das Ideal aller Schnitte fe@(U),
deren Keime f;, in (m,,,)" liegen, falls 1/ne U, neN.

J (U) ist abgeschlossen in @(U). Aus dem Identitétssatz fiir holomorphe Funk-
tionen folgt, daB # (U)=0 fiir alle offenen Umgebungen U von 0eC. Nach FORSTER
[7, Satz 2.3] ist &7 :=0 @ O eine komplexe Struktur auf C. #Z:= 0@.f ist eine abge-
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schlossene Garbe von lokalen Unteralgebren von . C ist lokal-#-separabel (sogar
I' (C, #)-separabel wegen 0= 0 @ 0< #). Allerdings ist C (im Nullpunkt) nicht lokal-
B-reguldr: Fiir jede Umgebung U von 0eC ist Z(U)=0(U) g 0. Deshalb erzeugen
die Schnitte aus Z(U) nur den Unterraum m,/m2 @ 0 des Tangentialraums T, (C, %)
=m,/m2 @S /m, F,, xeU. Aber es gilt:

jl/n/ml/n'jlln = (Tn1/:1)'1/(“11/n)n-'-1 # 05
und 1/neU fiirfastalle neN.

Beweis von Satz 6. Die drei Bedingungen sind gewiBl notwendig. Ist X lokal-%-
separabel, so gibt es zu jedem Punkt xe X eine Umgebung U, so daB die zu F:=
=I' (U, #)<TI' (U, &) gehérende Aquivalenzrelation F die Punkte von U trennt.
Also ist (U, ) nach Satz 1 ein komplexer Raum, und da # </ abgeschlossen ist,
gilt: r=# | Uc/ | U. Nach Satz 5 ist &7 | U eine kohidrente & -Garbe auf U,
und deshalb ist #, ein endlicher & ,-Modul fiir alle xe U. Hieraus folgt, dal Z,
ein analytischer Ring iiber C ist, vgl. NAGATA [17, § 47]; denn es gilt:

Ein lokaler Ring (R, m) ist genau dann ein analytischer Ring iiber K:=R/m, wenn
R ein endlicher Modul iiber einem Unterring ist, der ein konvergenter Potenzreihenring
in endlich vielen analyrisch unabhdngigen Elementen iiber K ist.

Der Beweis folgt aus dem Normalisierungssatz [17, Theorem (45.5)].

Hieraus erhalten wir noch nicht, daB % eine komplexe Struktur auf X ist. Die
Eigenschaft lokal-#-regular wurde noch nicht verwendet: U wird so klein gewihlt,
daB (U, # | U) ein F-regulirer lokal-geringter Raum ist, d.h. die kanonische Abbil-
dung F- T, (U, %) ist surjektiv fiir alle xe U. Deshalb induziert die Injektion & =%,
einen surjektiven Vektorraum-Homomorphismus

T.(U, 75) - To(U, B).
Hieraus folgt # | U= &, weil nach ANDREOTTI gilt:

LEMMA 2. Es seien (R, my) und (R, m) analytische Ringe, ¢: R,— R ein (lokaler)
Homomorphismus, ¢:my—m und §¢:my/mi—-m/m? die von ¢ induzierten Abbil-
dungen. Dann sind ¢, ¢ und 8 ¢ surjektiv, wenn einer dieser Homomorphismen surjektiv
Ist, —

Zum Beweis vgl. [1], [10] und [19].

Bemerkung. Es sei # eine komplexe Unterstruktur auf (X, 2/). Dann gilt:

(@) Tr(A/B)={xeX: B,+,} ist eine analytische Menge.

(b) Ist (X, ) reduziert, so ist Tr(<//%#) niederdimensional.

(c) Ist auBerdem (X, #) normal, so ist Tr(=//%) leer, d.h. &/ =4A. -

Beweis. (a) o/, # und deshalb &//# sind kohidrente #-Modul-Garben auf X.
Darym ist Tr (=//%) analytisch, etwa nach GRAUERT [9].

Nun sei (X, #7) reduziert. Ist dann #, normal, so stimmen %, und &/, iiberein.
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Wir erhalten:
{xeX:%, singulir} > {xe X: &, nicht normal} > Tr(//%).

Hieraus folgt (b) und (c).

Die beiden letzten Aussagen werden falsch, wenn nur vorausgesetzt wird, daB
(X, #) reduziert ist; denn es gibt nichtreduzierte komplexe Oberstrukturen, etwa
# @ A fiir jede kohdrente #-Modul-Garbe .# auf X, vgl. FORSTER [7]. Wir wihlen
als o : =% @ #. Dann ist Tr(/#)=X.

COROLLAR 3. Es sei R eine beliebige Aquivalenzrelation auf dem komplexen Raum
(X, &), p: X—X/R die Projektion und (X/R, &) ein komplexer Raum fiir eine Garbe
B < py L von Unteralgebren. Dann sind alle in # enthaltenen R-Garben komplexe Struk-
turen auf X/R. Ist R auflerdem eigentlich, so ist (X/R, | R) ein komplexer Raum, und
genau die R-Garben liefern komplexe Unterstrukturen auf (X/R, sZ|R). —

Der Beweis folgt aus dem Theorem und Satz 6.

SATZ 1%, Es sei h eine Familie holomorpher Abbildungen auf einem komplexen
Raum (X, o). R sei die zugehorige Aquivalenzrelation auf X, R eine Zerlegung von R
und &, bzw. &5 die Spektralstruktur auf den Quotienten X/R bzw. X/R. Ist R bzw. R
eigentlich, so ist (X/R, &) bzw. (X/R, oZ|R) ein komplexer Raum. Jede Abbildung
aus h kann iiber die induzierte holomorphe Abbildung p:(X, &/)—~(X/R, &,) faktori-
siert werden. ~

Der Beweis folgt fiir (X/R, &,) bzw. (X/R, «//R) aus dem Theorem und Satz 6
mittels:

HiLrssATz 2. X/R ist lokal-& -separabel und -regulir, bzw. X/R ist lokal-& j-aus-
breitbar, also lokal-<Z|R-ausbreitbar. -

Beweis. Zu jedem Punkt y,e X/R wiéhlen wir eine relativ-kompakte Umgebung
V< X/R. Da auch U:=p~!(V) relativ-kompakt ist, gibt es eine endliche Familie
f<h mit der Eigenschaft

Bild 6f, = Bild 6k, firalle xeU.

Dabei ist Bild 6k, der von der Vereinigung aller Bild 64; , (h;€h) aufgespannte Unter-
vektorraum von T, (X, 7). Die holomorphe Abbildung f kann nach Hilfssatz 2* o.E.
so gewihlt werden, daB sie auf U die Aquivalenzrelation R definiert. Dann ist

yfl V=yr(v,y,)cyhivc(&{/R)l v,

d.h. (V, &, | V)- wegen Satz 1 - und (¥, &//R| V) - wegen Corollar 2 - sind kom-
plexe Rdume. AuBerdem gilt fiir die Tangentialriume T, (V, &,)=T,(V, <) fir alle
y aus V. Deshalb folgt — wie im Beweis von Satz 6 — &, | V=, V.

Den zweiten Teil von Hilfssatz 2* beweist man genauso.
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§ 6. Analytische Aquivalenzrelationen

In [13, § 4] hat HOLMANN den Begriff der analytischen Aquivalenzrelation auf
reduzierten komplexen Radumen eingefiihrt. Fiir den allgemeinen Fall gab B. Kaup
[14] die Definition folgendermaBen an: Eine analytische Aquivalenzrelation auf
(X, o) ist cin komplexer Unterraum (R, Z)< (X x X, &/ ®<Z), der unter dem Sym-
metrie-Automorphismus (x;, x,) (x,, x;) invariant ist, und dessen Triger R der
Graph einer mengentheoretischen Aquivalenzrelation auf X ist.

Der lokal-geringte Quotient von (X, /) nach der analytischen Relation (R, %)
wird so definiert: R induziert den topologischen Quotienten Y:= X/R. Das Diagramm
(*)in § 5 kann also ohne komplexe Strukturen auf ¥, D und Y x Y betrachtet werden.
Auch der Homomorphismus

u(e%)=u1 —uZ:png—)goe@

ist definiert. Dann ist Kern u(£) die von HOLMANN und B. KAUP betrachtete lokal-
geringte Struktur auf Y, und es folgt; vgl. [14]:

COROLLAR 4. Ist (R, %) eine eigentliche analytische Aquivalenzrelation auf dem
komplexen Raum (X, &), so ist der Quotient (X/R, Kernu (%)) genau dann ein kom-
plexer Raum, wenn X/ R lokal-Kern u(%)-separabel ist. -

Beweis. Wegen #:=Kernu (%)< /R, vgl. Hilfssatz 1, ist X/R lokal-2//R-separa-
bel. Also ist 27/R nach dem Theorem eine komplexe Struktur auf X/R. Da u stetig
ist, ist # eine abgeschlossene Untergarbe von o//%, d.h. &Ly g<Z# | U fir alle
offenen U< X/R. Fiir kleines U ist (U, <1 v, #)) ein komplexer Raum und Steinsch,
% | U ist eine kohdrente & y. 4-Garbe mit I'(U, B)=TI (U, rw,a), d.-h. wegen
Theorem A gilt # | U= %1 v, 4; q.€.d.

Bei fester Relation R sei &£ (#) die von einer (symmetrischen) analytischen Struk-
tur Z auf R induzierten Quotientengarbe auf Y:=X/R:# (#)=Kernu(Z).

Ist andererseits (Y, %) ein komplexer Raum mit & =.%7/R, so sei % (%) die mittels
des Diagramms (*) auf R definierte komplexe Struktur (,,Faserprodukt‘).

Dann gilt wegen & # (% (%)) = [R:

(@) (Y, o (#(£))) ist ein komplexer Raum.

(b) # (%(H|R))=4|R= %(.%’,ed).

Verschiedene analytische Aquivalenzrelationen mit gleichem Trdger kdnnen
durchaus denselben Quotienten induzieren:

BEiSPIEL 6. Es sei (X, ) ein Doppelpunkt, etwa X={0}=C und &:=0/m?*=
=C @ C. Dabei sei m: =1, das maximale Ideal in ¢:=,0,. m stimmt mit dem von
T erzeugten Ideal in C[{T)] iiberein. Ist R die triviale Relation auf X (X'=X/R und
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p=idy), so gilt &//R=p, o/ =o/. AuBerdem erhalten wir:
o & o = C[(Ty, T)f, = (T2, T]) < ;m?,
= (T, T,) c C[KTy, To)] = ,0,.
Auf dem Graphen R=Xx X={(0,0)} = C? definieren wir folgende Strukturen:

Ry:=A QA=A QA ,
Ry = o @ A|(;mP) # Ry, da T #,m>.

Trotzdem gilt: Kernu(%,)=Kernu(%,). Der angegebene Raum liefert aber auch
ein Beispiel dafiir, daB verschiede Quotientenstrukturen (%) auf X/R auftreten
konnen: Fir #,,q= @/(;m/fit)=C gilt Kernu (2, ;)= #C.

Ubrigens ist fiir alle eigentlichen analytischen Aquivalenzrelationen (R, %) die
Beziehung Kernu (%,.q) =//R richtig, auch wenn .%//R keine komplexe Struktur auf
X/R ist.

Um zu beweisen, daB3 nicht alle komplexen Unterstrukturen auf dem Quotienten
(X/R, #|R) als Kernu(#) im Sinne von Corollar 4 dargestellt werden konnen,
zeigen wir:

HILFSSATZ 5. Es sei R eine eigentliche Relation auf dem komplexen Raum (X, /)
und & eine komplexe Unterstruktur auf (X/R, &|R), so daf} #=XKernu(%) gilt fiir
eine (symmetrische) komplexe Struktur Z auf R (R, Z)c(Xx X, o/ @M‘) Dann gilt
auch #=XKernu(%(%)). -

Der Beweis folgt aus der universellen Eigenschaft des Faserprodukts (X, /) x
X x/r, @) (X; #)=(R, #(#)), vgl. GROTHENDIECK [12]; denn die Behauptung ist
dquivalent mit 3 (2 (o (#)))= (%) fiir alle symmetrischen Unterrdume (R, #)c
c(XxX, o @.ﬂ), die den Graphen von R als Tréger besitzen.

Nun kommen wir zum angekiindigten

BEISPIEL 7. Es sei (C, 0) die gewShnliche komplexe Ebene mit der Koordinate z.
Dann ist die Spektralstruktur & :=%,s ,4; eine komplexe Unterstruktur:

Fo=1{) a,2’€0y:a, =a, =a5=0} < 0.
v=0

(C?, ,0)=(Cx C, 0®0) habe die Koordinaten x, y. Dann ist QL =L x5 x4y,
»41< 20 wieder eine Unterstruktur:

(.Sféy)(o,o)={ Y a,,x"y"€,040,0:0a,,=0 firalle v,u=1,2,5}.

v, u=0

Die Diagonalabbildung (d, d*): (C, &)—(C?, ¥ & &) induziert folgenden Homo-
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mbrphismus
do: (% ® 0,00~ Lo

Z a\’ﬂxvyul_)z ( Z avu)zl,
v,u¥1,2,5 A=0 v+pu=2
d.h. Kernd* = (x3 _y3’ x4—y4)C (y(;\:() y)(O,O)C 20(0’ 0)*
Nun betrachten wir den Homomorphismus

o0 o]
UI 00_')20(0’0), Z avsz Z av(xv - yv).
v=0 v=0

# sei das von Kernd* in ,0, o, erzeugte Ideal. Dann ist Z(%):=,0/# die zur
Quotientenabbildung
(C,0)~(C, %)

gehdrende (symmetrische) komplexe Struktur auf Cx C=R, und es gilt: v™! (#)=
=Kernu (2 (&))=:#(Z(<)). Andererseits gehdrt das Element z°€ 0, zu v™!(#),
denn

v(Z)=x" -y =(x+ ) * =) —xy(x* - yes,

Aber z°¢ S = F .3 4. Wir erhalten:
yC[z3,z4] S yc[zg,’ 24,251 = %(e@ (yc [23,24])) E 0.

Nach Hilfssatz 5 ist damit die Behauptung bewiesen.
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