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On the Finsler and Doner-Tarski Arithmetical Hiérarchies1)

by Hilbert Levitz (New York University)

In [5], [1 ; pg. 64] Finsler set up a transfinite séquence of binary opérations {hc}2)
on the ordinals. The first four opérations are ho(a,b) a+l, h1(a,b) a-\-b, h2(a, b)

a-b, and h3(a, b) ab. The hierarchy satisfies the recursion formula hc+1(a,b+ 1)

=hc(hc+1(a,b),a); this generalizes the formulae a + (b+ l) (a + è)+l, a-(b+l)
a'b + a,ab+1=ah-a. Doner and Tarski [3] hâve also set up a hierarchy {gc}3) of
binary opérations where each opération is related to the succeeding opération by
this same recursion formula, and which, moreover, has a rather simple définition:
go(a, b) a+b,gc(a, b)= \J [_ge(gc(a, d), a)] for c>0. For every c and every

d<b,e<c
v^O, gc(a> x) is a continuous strictly increasing function of x. On the other hand,
this can fail to be the case for hc(a, x) if c is a limit ordinal. Our basic resuit is that
the Doner-Tarski hierarchy is essentially what one would get if one deleted from
Finsler's hierarchy those opérations whose subscript is a limit ordinal. We show also

that this deletion does not diminish the représentation power of the hierarchy in the
sensé that if d—hc(a, 6)for some #, b, c, < d, then d=gc>(a'9 br) for somea', b\ c\ <d.

Let {/c} be the hierarchy of continuous increasing functions defined inductively
by:/0(X) a>*, if c^0fc enumerates in order those ordinals which are fixed points
of/s for ail s<c (existence proof given in [1]). The fixed points of the function/^(O)
are called the strongly critical epsilon numbers. In [6] we showed that the least strongly
critical epsilon number k0 is the least number greater then co which is inaccessible
by means of Finsler's hierarchy; by that we mean the least number d>œ such that
a, b,c,<d implies hc(a9 b)<d. Using the results announced in the above paragraph
we will show that k0 plays the same rôle with respect to the Doner-Tarski hierarchy.
Feferman [4], Schûtte [9], [10], and Tait [11] hâve obtained results which show
that k0 plays a significant rôle in ramified type theory.

Définition. To each ordinal c we associate an ordinal c* as follows: c* cH-l
if c d+n where d is a limit ordinal and 0^n<œ, c* c otherwise. It is easy to see

c* + l (c + l)* (1)

Theorem 1. If c^4 and a>œ theng_1 + c(a, l+b)=hc*(a, b).

x) This work was supported by a grant from the Office of Scientific Research of the United
States Air Force.

2) We write hc(a9 b) for Finsler's <j>c{b, a) (Note the interchange of the variables). Finsler's
restriction that a, b, c< Q\ can be lifted [1 ; pg. 64].

3) We write gc(a9 b) for Doner-Tarski's a0cb.
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Proof: By transfinite induction on Ofc4-£. Our induction hypothesis isthat
and Qtcf+ b'KQ^ + b implies that g_l + c,{a, l+b') hic,)*(a, b') for ail

We must show under this assumption that g-l + c(a, l-\-b) hc*(a,b) for ail
Let a^co be given:

Case 1. c=4; using [3; 3(iii)] and [5; pg. 80] we get:

g-1+c(a, 1 + 6) g3(a9 1 + b) a^ h*(a9 b) hc(a, b) M*, &)•

Case 2. c>4;

Case 2.1 6 0; using [3; 17(iii)] and [5; th. 9] we get:

g-1+e(a9 1 + 6) g-1+c(a, 1) a /ic,(a, 0) M*» fe)-

Case 2.2

Case 2.2.1 6 is a limit ordinal; using [3; 17(vi)], our induction hyp. and the fact
that hc*(a, x) is a continuous increasing function of x [1 ; pg. 65] we get:

g_1+c(a, 1 + fe) supg_1+c(a, 1 +d)= sup/ic*(a, d) hc*(a, b).
d<b d<b

Case 2.2.2 b is a successor ordinal v+1 ;

Case 2.2.2.1 c is a successor ordinal rf+1; then using [3; 17(iv)] and the fact
that a^œ we get:

g_1+c(a, 1 + 6) g_1 + (d+1)(a, 1 + (o + 1)) g(_ 1+d)+1 (a9 (1 4-1;) + 1)

Now by [3; corr. 5(i)] we note that g_l + d(a, l + v^a^œ, so using successive

applications of our induction hypothesis followed by (1), [5; pg. 6] and (1) again,
we get:

(a, 1 + v), a)
a> v)> a) hd*(hd*+i(a> v)> à)

hd*+i(a, v + 1) h(d+1y(a9 b) h<*(a9 b).

Case 2.2.2.2. c is a limit ordinal; using [3; 17(v)] we get:

g.1+c(a, 1 + b) gc(a, 1 + (v + 1)) gc(a, (1 + i>) + 1)

supgd(gc(a, 1 + v)9 a) supg_1+d(gc(a, 1 + t?), a)
d<c d<c
supg_1+d(g_1+c(a, 1 + v), a),
d<c

4) Our induction is up to Qt2, where Qi is an initial ordinal and a,b,c<Qu
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Now by [3; corr. 5(i)] and induction hyp. co^g_1 + c(a, 1 + v) hc*(a, v) so

supg_1+d(g_1 + c(>, 1 + v), a) supg_1 + <f(/ic*(a, i;), a)
d<c supg_1+d(hc*(a9v)9l + a).

d<c

Now by a further application of the induction hypothesis, Finsler's définition, and

[5, pg. 6] weget:

supg_1 + d(/ic,(a, v), 1 + a) sup/*d*(/ic*(a, v)9 a)
d<c d<c

suphd(hc*(a, v), a) hc(hc*(a, v), a) hc(hc+1(a9 v\ a)

Corollary 1. Ifa,b9c9<KQ then gc(a9 b)<K0.
Proof: Follows from the main theorem together with the fact that Finsler's

hierarchy has the same property [6, th. 3].

Corollary 2. Ifx^l, then

r -i \ Se (œ> 1 + x) ifc îs a limit ordinal
ga+2n(coi(ox) if c a + n where a is a limit

ordinal and 1 ^ n < œ

Proof: Follows from the main theorem together with [6, th. 1].

Theorem 2. If d>œ and d=hc(a, b) where a, b9 c9 <d, then d=gu(v9 w) where

w, v9w< d.

Proof: By [6, th. 3] rf#/d(0); but then by [8; (5.1)] d=a + b where a9b<d or
d—fc{a) where c9a<d:

Casf 1. d=a + b where a9b<d; then d=go(a9 b).

Case 2. d=fc (a) where c9a<d; write a= — 1 +b where b^l:
Case 2.1 c^O; then d is an epsilon number, so a<d implies b<d9 l+b<d9 and

cob<d.

Case 2.1.1 c is a limit ordinal ; then by corollary 2:

c91 + b9 œ< d fc( - 1 + b) gc(œ91 + b).

Case 2.1.2 c e+« where e is a limit ordinal and 1 <«<û>; then by corollary 2:

e + 2n, œ9 œb < d /c(- 1 + fc) ge+2«(^> <»&)•

Case 2.1.3 c is finite; then by corollary 2:

2c + 2, ca, cofe < d /c(- 1 + b) g2c+2(o>, ©fc).
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Case 2.2 c=0; now a^2 because œ<d=fo(a) a)a, thus by [3, 3(ii)] d=f2(co, a)

>2,a9œ. (Q.E.D.)

Corollary 3. k0 (the least strongly critical epsilon number) is the least ordinal
inaccessible by means ofthe Doner-Tarski hierarchy.

Proof: k0 is inaccessible by corollary 1. That it is the least such number follows
from the main theorem together with the resuit of [6] that kq is the least ordinal
greater than œ which is inaccessible by means of Finsler's hierarchy.
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