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On the Finsler and Doner-Tarski Arithmetical Hierarchies!)

by HILBERT LEviTZ (New York University)

In [5], [1; pg. 64] FINSLER set up a transfinite sequence of binary operations {4} 2)
on the ordinals. The first four operations are hy(a, b)=a+1, h,(a, b)=a+b, h,(a, b)
=q-b, and h;(a, b)=a". The hierarchy satisfies the recursion formula A_,,(a, b+1)
=h,(h.+1(a, b), a); this generalizes the formulae a+(b+1)=(a+b)+1, a-(b+1)=
a-b+a,a®*'=a’-a. DoNER and TARrski [3] have also set up a hierarchy {g_}3) of
binary operations where each operation is related to the succeeding operation by
this same recursion formula, and which, moreover, has a rather simple definition:
go(a,b)=a+b,g.(a,b)= U [g.(g.(a,d),a)] for ¢>0. For every ¢ and every

d<b,e<c
a#0, g.(a, x) is a continuous strictly increasing function of x. On the other hand,

this can fail to be the case for %_.(a, x) if c is a limit ordinal. Our basic result is that
the Doner-Tarski hierarchy is essentially what one would get if one deleted from
Finsler’s hierarchy those operations whose subscript is a limit ordinal. We show also
that this deletion does not diminish the representation power of the hierarchy in the
sense that if d=h_(a, b) for some a, b, ¢, <d, then d=g . (a’, b’) for some a’, b, ¢’, <d.

Let {f.} be the hierarchy of continuous increasing functions defined inductively
by: fo(x)=w", if ¢#0 f, enumerates in order those ordinals which are fixed points
of f; for all s<c (existence proof given in [1]). The fixed points of the function £, (0)
are called the strongly critical epsilon numbers. In [6] we showed that the least strongly
critical epsilon number x, is the least number greater then « which is inaccessible
by means of Finsler’s hierarchy; by that we mean the least number d> w such that
a,b, c,<d implies A (a, b)<d. Using the results announced in the above paragraph
we will show that #, plays the same role with respect to the Doner-Tarski hierarchy.
FEFERMAN [4], ScHUTTE [9], [10], and TAIT [11] have obtained results which show
that x, plays a significant role in ramified type theory.

DEerINITION. To each ordinal ¢ we associate an ordinal ¢* as follows: c*=c+1
if c=d+n where d is a limit ordinal and 0<n<w, c*=c otherwise. It is easy to see

that:
at 4 1=(c+1)* (1)

THEOREM 1. If c>4 and a>w then g_, , .(a, 1 +b)=h(a, b).

1) This work was supported by a grant from the Office of Scientific Research of the United
States Air Force.

%) We write hc(a, b) for Finsler’s ¢.(b, a) (Note the interchange of the variables). Finsler’s
restriction that a, b, c<< £1 can be lifted [1; pg. 64].

%) We write gc(a, b) for Doner-Tarski’s a0cb.
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Proof: By transfinite induction on Q;c+b. Our induction hypothesis is that
c=4and Q;c'+b'<Q;c+b implies that g_, , .. (a, 1 +b)=h((a, b’) for all a> w.%)
We must show under this assumption that g_,, .(a, 1 +b)=h.(a, b) for all a=w.
Let a> w be given:

CASE 1. ¢=4; using [3; 3(ii))] and [5; pg. 80] we get:
g_14c(a, 14+ b)=gs(a, 1+ b)=a" = hy(a, b) = h.(a, b) = h.(a, b).
CASE 2. ¢>4;
CASE 2.1 b=0; using [3; 17(iii)] and [5; th. 9] we get:
g-14c(a, 1+ b)=g_14c(a, 1) =a = hu(a,0) = he(a, b).
CASE 2.2 b#0;

CASE 2.2.1 b is a limit ordinal; using [3; 17(vi)], our induction hyp. and the fact
that 4. (a, x) is a continuous increasing function of x [1; pg. 65] we get:

g-1+c(a, 1 +b)=supg_;,.(a,1 +d)=suph.(a,d)=h.(a,b).
d<b d<b

CASE 2.2.2 b is a successor ordinal v+1;

CASE 2.2.2.1 ¢ is a successor ordinal d+1; then using [3; 17(iv)] and the fact
that a>w we get:

g._1+,_‘(a, 1 + b) = g._1+(d+1)(a, 1 + (U + 1)) = g(_ 1+d)+1(a, (1 + U) + 1)
= g-1+a(g(—1+a)+1(as 1 +v), a) = g—-1+d(g(—1+d)+1(a9 1+v),1+a).

Now by [3; corr. 5(i)] we note that g_,.,(a, 1 +v)=>a>w, so using successive
applications of our induction hypothesis followed by (1), [5; pg. 6] and (1) again,
we get:

g-1+a(8-140+1(a; 1+ 0), 1+ a) = hu(g_ 14 as1)(a, 1 +0), a)
= hd" (h(d+ 1)* (a, v), a) = hd*(hd*-*-l (a, v), a)
= hd"‘+1 (a, v+ 1) = h(d+ 1)*((1, b) = hct(a, b).

CASE 2.2.2.2. cis a limit ordinal; using [3; 17(v)] we get:

g-1+c(a,1+b)=g(a,1+(+1)=g(a,(1 +v)+1) "
=supgy(g:(a, 1 +v),a) =supg_,.,(g.(a, 1 +v), a)
d<c

d<c

= Supg—-1+d(g—1+c(a3 1+ U), a)-

d<c

4) Our induction is up to £2;2, where £ is an initial ordinal and a, b, c<< ;.
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Now by [3; corr. 5(i)] and induction hyp. o <g_;,.(a, 1 +v)=h(a, v) so
Supg‘1+d(g—l+c‘(a’ 1+ U), Cl) = Supg—l-f-d(hc*(a’ U), a)
d<c d<c =supg_q+q4(hee(a, v), 1 + a).
d<c .
Now by a further application of the induction hypothesis, Finsler’s definition, and
[5, pg. 6] we get:
supg_q+a(ha(a,v), 1+a)—suphd*(hc*(a v), a)
d<c
= sup hd (hes(a, v), a) = h (he(a, v), a) = h (h 41 (a, v), a)
d<c
=h,(a,v+1)=h.(a,b) (QE.D.).

COROLLARY 1. If a, b, ¢, <k, then g (a, b)<k,.
Proof: Follows from the main theorem together with the fact that Finsler’s
hierarchy has the same property [6, th. 3].

COROLLARY 2. If x=>1, then

g20+2(w’wx) lf.l c< W
_ g (w, 1 +x) if ¢ is a limit ordinal
fC( 1+x)- ga+zn(w,wX) if c = a + n where a is a limit
ordinaland1 < n< w
Proof: Follows from the main theorem together with [6, th. 1].

THEOREM 2. If d>w and d=h_(a, b) where a,b, c, <d, then d=g,(v, w) where
u, v, w<d.

Proof: By [6, th. 3] d#f,(0); but then by [8; (5.1)] d=a+b where a, b<d or
d=f,(a) where ¢, a<d:

CAsF 1. d=a+b where a, b<d; then d=g,(a, b).
CasE 2. d=f_ (a) where ¢, a<d; write a= —1+b where b>1:

CASE 2.1 ¢#0; then d is an epsilon number, so a<d implies b<d, 1 +b<d, and
wb<d.

CASE 2.1.1 c is a limit ordinal; then by corollary 2:
el+bw<d=f,(-1+b)=g/(w,1+D).
CASE 2.1.2 c=e+n where e is a limit ordinal and 1 <rn<w; then by corollary 2:
e+2n,0,0b<d=f(-1+b)=g. (0 0b)
Case 2.1.3 c is finite; then by corollary 2:
2¢+2,0,0b<d=f.(—1+b)=gss2(0, @b).
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CASE 2.2 ¢=0; now a=2 because w <d=f;(a)=w" thus by [3, 3(il)] d=f, (w, a)
>2,a,0. (QE.D.)

COROLLARY 3. K, (the least strongly critical epsilon number) is the least ordinal
inaccessible by means of the Doner-Tarski hierarchy.

Proof: k, is inaccessible by corollary 1. That it is the least such number follows
from the main theorem together with the result of [6] that x, is the least ordinal
greater than @ which is inaccessible by means of Finsler’s hierarchy.
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