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Uber Potentiale, welche auf vorgegebenen Mengen verschwinden
von ALFRED HUBER, Ziirich

Meinem verehrten Lehrer und Kollegen Albert Pfluger
zum sechzigsten Geburtstag gewidmet

1. Einleitung

Sei K eine kompakte zusammenhdngende Menge im reellen euklidischen Raum
E"(nz=2). Sei p ein Radonsches MaB, dessen Triger in K enthalten ist, und sei U*
das Newtonsche (im Falle n=2 das logarithmische) Potential von u. Fiir alle xeCK
(=Komplementdrmenge von K) ist also

U*(x) = Jh(lx =y du(y), (1)

wobei h(r)=r?""fiir n=3, h(r)= —logr fiir n=2. Hier bezeichnet |x| die euklidische
Norm des Vektors x=(x,, x5,..., X,):

n +
|x] = (Z xi) .
Jj=1

Welche kompakten zusammenhdngenden Mengen K besitzen die Eigenschaft, dass
auf ihnen ein Maf u=+0 existiert, dessen Potential U" auf CK identisch verschwindet?

Diese Frage ist eng verkniipft mit dem Problem der gleichméssigen Approximation
stetiger Funktionen durch harmonische, welches in Arbeiten von KELDYCH und
LAVRENTIEFF [8], BRELOT [2, 3] und DENY [6, 7] behandelt worden ist. Die Ergebnisse
der beiden letztgenannten Autoren implizieren folgende Antwort : Aufeiner zusammen-
hingenden kompakten Menge K existiert genau dann ein MaB p+0 mit auf CK
identisch verschwindendem Potential U*, wenn die Menge CK in mindestens einem
Punkte von K effiliert?) ist.

In der vorliegenden Note wird auf anderm Wege eine andere Charakterisierung
(Satz 1) hergeleitet und auf einen speziellen Mengentyp angewendet (Satz 2).

2. Kriterium

SATZ 1. Auf einer zusammenhdngenden kompakten Menge K in E" existiert genau
dann ein Maf3 pu+0 mit der Eigenschaft, dass U*(x)=0 fiir alle xeCK, wenn die

1) Nach der Definition von BRELOT (sieche z.B. [4, p. 82)).
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Bedingung

lim [maxfgj(x, y) dx] >0 2)

j—= o Lyef;
Q;

erfiillt ist. Dabei bezeichnet {Q;} eine monoton abnehmend gegen K konvergierende Folge
von Dirichletgebieten und g; die Greensche Funktion von Q;(j=1,2,3,...).

Bemerkung. Der Grenzwert in (2) existiert stets und ist nicht negativ, denn {s;},
wobel

sj=maxfgj(x, y)dx (3)

yef;
Q;

(j=1,2,3,...), ist eine monoton abnehmende Folge positiver Zahlen. Ausserdem ist
dieser Limes unabhingig von der Wahl der Gebietsfolge {Q,}.

LEMMA 1. Sei p ein reelles Maf auf K mit der Eigenschaft, dass U*(x)=0 fiir alle
xeCK. Dann gelten die Ungleichungen

f U (o)l dx = 5, [ @)

K

(j=1,2,3,...). Dabei bezeichnet ||u| die totale Variation des Mafes p.
Beweis von Lemma 1. Sei u=p* —p~ die Jordansche Zerlegung des MaBes u, und
sei

M = {x|U*" (x) = U* (x) =0} .
Fiir alle xeQ;=Q;— M gilt

0" = [ &(x,3) duty) )

(j=1,2,3,...). Denn die Funktion

x = U*(x) — fgj(X, y)du(y)

ist — nach geeigneter Fortsetzung in die Menge M — harmonisch im Gebiete Q; und
nimmt die Randwerte 0 an, verschwindet also identisch. Aus (5) folgt

- fg,-(x, y)du-(y) S U'(x) £ fg,-(x, y)dup+(y)

K K
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fiir alle xeQ}. Da M das Lebesguesche Mal} O besitzt, schliessen wir

[1wreonax = 1o ax
K 2 nggj(x, y)du+(y)+fg,-(x, y)dﬂ'(y)] dx =

= i y)ydx|du(y)+ B K
iujg ] ’ +ngj(x, y)dx] dp-(y) < s5llull.

Q.E.D.

Beweis von Satz 1. Wir diirfen uns auf reelle Male beschridnken.
I. Sei lim s;=0. Aus Lemma 1 schliessen wir, dass U*=0 fast iiberall in E"

jo o
(d.h. bis auf eine Ausnahmemenge vom Lebesgueschen Mass 0). Daraus folgt u=0.
II. Seilim s;=s>0. Wir wihlen zunichst y;eQ; (j=1, 2, 3,...) derart, dass

Jj- o
fgj(x, y;)dx=s;. (6)
Q;
Ferner sei A eine Zahl mit der Eigenschaft, dass 0 <A<d und

i

w,,f(h(r)—-h(d))r""ldr<§s, (7

0

wobei d den Durchmesser der Menge K und w, die Oberfliche der (n— 1)-dimensionalen
Einheitssphire bezeichnet.
Nun betrachten wir das MaB yu; (j=1, 2, 3,...), dessen Potential durch

0" (x) = min(g;(x, y;), h(1) — h(d)) fir xeQ;,
0 fir xeCQ,,

definiert wird. Sei p j=,u;’ —p; seine Jordansche Zerlegung. Das Mal} p; besitzt als
Triger die Niveaufliche {x|g;(x, y;)=h(1)—h(d)}, und p; liegt auf dem Rande von
Q;. Es gilt Hu}“ | =llu; =1, also |u;|| =2 fiir alle j.

Fiir die Greensche Funktion g; gilt die Abschidtzung

gi(x, y) <h(lx = yl) — h(d), (8)

denn Q;<{x| |x—y| <d} fiir alle yeQ;.
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Unter Anwendung von (6), (7) und (8) folgt

Jorwaxs [ an-[gmrpaxz

2; 2; 4y

v

s— | G0x-yh-h@)axz

Qin{x j1x—y;| <}
A

25— f(h(r) —h(d) w,r" " tdrzs; _;’

0

wobei 4;={xeQ;|g;(x, y;)=h(A)—h(d)}. Fiir genligend grosse Werte von j gilt also

fU"f(x) dx > ; ©)
2;

Die Folge {u;} (j=1, 2, 3,...) enthilt eine Teilfolge {y;, }, welche schwach gegen
ein MaB p auf K konvergiert. Wir diirfen annehmen, dass fast iiberall in E" die
Limesbeziehung

lim U**(x) = U*(x) (10)
k=
erfiillt ist. Denn ein Satz von DENY [5] sagt aus, dass man dies jedenfalls durch noch-
maligen Uebergang auf eine Teilfolge erreichen kann. Damit folgt:

(a) Fiir fastalle xe CK gilt U*(x)=0. Da aber U* auf C K stetig ist, folgt U*(x)=0
fiir alle xeCK.

(b) Unter Anwendung des Lebesgueschen Grenzwertsatzes schliessen wir aus (9)
und (10), dass
f U'(x)dx = lim | UMx(x)dx = 3>0.

k— o0 3
En En

Also ist u£0. Damit ist Satz 1 bewiesen.

3. Eine Anwendung

SA1z 2. Sei {D,} (k=1, 2, 3,...) eine Folge von offenen Kreisscheiben mit folgenden
Eigenschaften: (a) D,nD;=¢ fiir k+j; (b) DycE= {z] |z| £ 1} fiir alle k. Es bezeichne
r, den Radius von D,. Ist
-1

logr,| <o, (1D

o0
)
k=1

so gibt es auf der Menge K=E— | ) D, ein Maf u=+0, dessen Potential U* auf CK
identisch verschwindet. k=1
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ZuUsATz. Wird die Bedingung (11) abgeschwdicht in

Y <00, (12)
k=1

so braucht ein solches Maf nicht mehr zu existieren.

Bemerkung. Erfiillt K die Bedingung (12), so gibt es eine Distribution erster Ordnung
(Dipolbelegung) T+ 0 mit in K enthaltenem Triger und der Eigenschaft, dass UT=0
auf CK. (Man bringe etwa auf den Ridndern der Kreisscheiben E, D,, D,,... lineare
Dipolbelegungen konstanter Dichte an, deren Momente auf dem Rande von FE radial
nach aussen, auf den iibrigen Kreisen radial nach innen orientiert sind). Von dieser
Tatsache ausgehend wird man auf folgende — durch den Zusatz zu Satz 2 in negativem
Sinne beantwortete — Frage gefiihrt: Impliziert (12) auch die Existenz eines Mafes
u=+0 auf K mit der Eigenschaft, dass U*=0 auf CK?2)

Beweis von Satz 2. Die Bedingung (11) impliziert (12). Aus (12) folgt nach einem

Hinweis von MERGELYAN [9, p. 21], dass die Menge K positives Lebesguesches Maf}
besitzt. Also ist

Es bezeichne

Sei N eine natiirliche Zahl mit der Eigenschaft, dass

[e o]

Y rn<n. (13)
k=N+1
Wir definieren
2 : , 1 fii z] £1
e - e ir z| <1,
uo(z) =1 ™"\ jiog (1 = n)l "¢ 2 =
0 sonst;
2 |z — a )
u,(z) = max| ——— log — ,0
«(2) (log(l + 1) .

firk=1,2,...,N;

2 -
u(z) = max( log 1z = ad , O)

[log 7] T
fir k=N+1, N+2,....
Die Funktionen v;=min (ugs uys...su;) (=1, 2, 3,...) sind positiv und super-

2) Herr J. WERMER hat mich in einem Gesprich auf diese Frage aufmerksam gemacht.
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harmonisch im Gebiet
Gi={z|lzl< Llz—ad>n(k=12,..,j)}

und verschwinden identisch auf dessen Komplement. Es gilt v;= U*/, wobei der positive
Teil o] des MaBes a; in G, liegt und dessen negativer Teil «; den rand I'; von G; zum
Tréger hat. Durch Integration der Normalableitung ldngs I'; findet man fiir j=N+1,
N+2,...

J
lay | =2llog(1 —n)l "' +2N(log(1 +7)"" +2 > |logr]™".

k=N+1

Da [} || =« [, folgt fir j=N+1, N+2,...

la;| < 41log(1 — )| ™" + 4N (log(1 + 7)) ™" +4 y 1|logrk|—’ —A<w. (14)

=N+

Im folgenden bezeichne m F das Lebesguesche MaB} der (messbaren) Menge F. Es
gelten die Ungleichungen

m{zlug(z) =1} =n(1 —n), (15)
m{zlu(z) <1} =nrf(1 +n)(k=1,2,...,N), (16)
m{zlu(z)<1l}=nr, (k=N+1,N+2,..). (17)
Aus (16) und (17) folgen mit Beniitzung von (13) und der Definition von 5
N N

Y m{z|lu(z)<1}=n(l+1n) Y ri <n(l =3n) (18)

k=1 k=1

und © w
Y m{izlu(z)<1l}=n Y r.<nuny. (19)

k=N+1 k=N+1

Unter Anwendung von (15), (18) und (19) schliessen wir, dass fiir alle j

[e o]

m{z|U%(z) =1} 2 m{zluy(z) =1} - Z m{z|u(z) <1} > nn.
Da U =0, folgt

fo“f(z)dxdy>m1 (z=x+1iy). (20)
G,

Sei nun {Q;} eine monoton abnehmend gegen K konvergierende Folge von Dirichlet-
gebieten; dabei enthalte Q; die abgeschlossene Hiille des Gebietes G, (j=1, 2, 3,...).
Aus (14) und (20) schliessen wir unter Verwendung von Lemma 1, dass

sj>7—i—;~1>() (21)

fir j=N+1, N+2,.... Nun folgt Satz 2 durch Anwendung von Satz 1.
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Bemerkung. Die Anwendung des Kriteriums kann durch ein Zuriickgreifen auf
dessen Beweisidee ersetzt werden. Beim vorliegenden Beispiel wird dies durch ein
Resultat von ARSOVE (Theorem 23, p. 345in [1]) besonders erleichtert: Da die Funktio-
nenfolge { U/} im Mittel konvergiert und die Folge {||o;||} beschrankt bleibt, konver-
giert {a;} schwach gegen ein MaB yu, dessen Potential U* der Limes in medio von
{U%} ist.3) Offenbar ist u+0, U*=0 in CK und der Trdger von u in K enthalten.

Beweis des Zusatzes. Wir stiitzen uns auf Satz 1 und zwei noch zu beweisende
Hilfssdtze.4)

LEMMA 2. Zu beliebig vorgegebenen positiven Zahlen M, d, k und ¢ gibt es eine Zahl
o(M, d, k, €)>0 mit folgender Eigenschaft:

Sei Q ein Teilgebiet von {z||z—a|>r}, dessen Rand I den Kreis {z| |1z—al=r}
enthdlt. Sei h eine in Q definierte und harmonische Funktion, welche (a) die Ungleichung
0<h< M erfiillt, (b) in allen Punkten der Menge I' n{zl |z—a|<d} den Randwert 0
annimt.

Gilt dann r<o(M, d, k, ¢), so ist h<e in Qn{z|r<|z—a|<(1+k) r}.

Beweis von Lemma 2. Aus dem Maximumprinzip fiir harmonische Funktionen
folgt, dass die Funktion 4 in Qn {z|r<lz-al <d} die Ungleichung
|z — al

M
h(z) £ —— — —~log
logd — logr P

erfiillt. Fiir geniigend kleine r gilt in Q" {z|r<|z—a| <(1+k) r} die Abschitzung

M log(1 + k)

h .
logd — logr

1A

Diese Schranke konvergiert gegen 0, wenn — bei festgehaltenen M, k und d - r gegen
0 strebt. Daraus ergibt sich die Existenz der Zahl (M, d, k, ¢).

Q.E.D.

LEMMA 3. Sei Q, ein von Cy= {zl |z| =1} und den (miteinander fremden und im Innern
von C, liegenden) Kreisen C;= {z||z—a j=r;} (j=1,2,..., p) berandetes Gebiet. Seien
¢ und & vorgegebene positive Zahlen. Dann existieren endlich viele (miteinander und mit
den gegebenen fremde) Kreise C;={z||z—a;|=r;} (j=p+1,p+2,..., q) derart, dass

i ry<o (22)
Jj=pt+1
und
ffgq(z, {)dxdy<e (23)
2

3) Den Hinweis auf diese Konvergenzeigenschaft verdanke ich Herrn ARSOVE.
4) Ein wesentlicher Teil der nun folgenden Konstruktion ist aus einer anregenden Diskussion
mit meinem Kollegen HERSCH hervorgegangen.
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tiir alle Cqu={z||z|< 1, |z—a;|>r;(j=1,..., q)}. Dabei bezeichnet g, die Greensche
Funktion von Q,.

Bemerkung. Mit diesem Lemma wird auch der Zusatz zu Satz 2 bewiesen sein.
Denn es gestattet offenbar die Konstruktion einer Menge K, welche die Bedingung (12)
erfiillt, welche aber — vermége Satz 1 — kein MaB3 u+0 triagt, dessen Potential U* auf
CK identisch verschwindet.

Beweis von Lemma 3. Seien B, y und A(0<A<14) positive Zahlen mit folgenden

Eigenschaften:
3J224

(A) 27 j (1og§)rdr<;

0

(B) Keiner der Punkte (B+mA)+i(y+nA), m und n ganz, liegt auf einem Kreis

C_} (j=0, 1, ...,p).
(C) Keine der Geraden x=f+mA und y=y+ni, m und n ganz, tangiert einen

dieser Kreise.
Das Geradennetz

N={z|Rez=B+mi, mganz} u{z|Imz =y + nl, n ganz}
zerteilt , in endlich viele Gebiete @, @,, ..., ®,. Jedem derartigen Gebiet
w;=Q,n{z|f+miA<Rez<f+(m+1)Ay+ni<Imz<y+(n+1)1}

ordnen wir zu die ,,Umgebungen‘

U=Q,n{z|f+(m—-1)A<Rez<f+(m+2)4,
y+(m—1Di<Imz<y+(n+2)4}
und
Vi=,n{z|p+(m—-2)A<Rez<p+(m+3)4,
y+(n—2)A<Imz<y+(n+3)4}
Seien a1, dp42;--., Ap4s die in 2, liegenden Gitterpunkte des Netzes N. Wir

filhren Kreise C;={z||z—a;|=r;} (j=p+1,p+2,..., p+5)ein; diese sollen weder
einander noch die bereits vorhandenen Kreise schneiden, und es soll gelten

p+s 5
Z I’j < . (24)
j=p+1 2

Der Durchschnitt des Netzes N mit dem Gebiet
Qs = {z||zl <Llz=aj)>r; (j=12,..,p+5s)}

besteht aus endlich vielen Strecken. Der Uebergang von Q,, ; zum gesuchten Gebiet
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Q, geschieht durch Subtraktion von endlich vielen — noch zu definierenden - Kreis-
scheiben, deren Mittelpunkte auf diesen Strecken liegen.

Sei L die Summe der Langen dieser Strecken. Sei ¢ der kleinste aller Winkel, unter
welchen die Kreise C,, ..., C,, von den Geraden des Netzes N geschnitten werden;
nach (C) ist ¢ positiv. Wir definieren

1 2L
ko = max(-—~ w) (25)
sing 9

Sei T irgend eine der Strecken, in welche Nn Q. ; zerfillt. Es gibt eine positive
Zahl r; mit folgenden Eigenschaften:

(a) ryistkleiner als der Abstand der Menge 7" von der Vereinigung aller derjenigen
unter den Kreisen Cy, ..., C,,,, welche nicht durch die Endpunkte von T gehen;

2 £
b 1 ”a}"ky” s
(b) "T<Q<Ogl1 027:)

wobei ¢ die mit Lemma 2 eingefiithrte Zahl bezeichnet;

(c) es existiert eine natiirliche Zahl ny so, dass [2n; +ko(np+1)] rp=t, wobei ¢ die
Lange von T bezeichnet.

Wir fiihren ny Kreise vom Radius r; ein; ihre Mittelpunkte sollen auf T"'liegen und
von den Endpunkten dieser Strecke die Abstinde (ko+1)rr, Rko+3)rp,...,
(npko+(2np—1)) rr aufweisen.

Diese Konstruktion werde fiir jede Komponente von NN Q,, ; durchgefiihrt: so
definieren wir die Kreise C;={z| |z—a;|=r,} fir j=p+s+1,..., q.

Die Kreise Cy, ..., C, schneiden einander nicht. Dies folgt aus (a), der Anordnung
der Mittelpunkte und der durch (25) implizierten Ungleichung 1/(k,+ 1) <sin¢. Es
kann vorkommen, dass C, vorerst einige der neu eingefiihrten Kreise schneidet: diese
gehoren zu Strecken T mit auf C, liegendem Endpunkt. Durch nochmaliges Ver-
kleinern von r; kann auch das Auftreten dieser Schnittpunkte vermieden werden.

Aus (¢) und der durch (25) implizierten Ungleichung k, =2 L/é schliessen wir, dass

q

r.<

J
J=pts+1

N

(26)

Aus (24) und (26) folgt (22).
Es ist noch (23) zu beweisen. Jedes {eQ, liegt in der abgeschlossenen Hiille @;
eines w;. Wir zerlegen

”g(zC)dxdy— [[ eeoixays [ e@oaxay. @

24NV Q- (0 V)



50 ALFRED HUBER
Aus (ew;, zeV; folgt |z—{| =3 \/2/1, also mit (A) und der Abschitzung

2
gq(z’ C) < log ——

lz—¢|’
3224 2n
2 >
H g,(z,)dxdy < J J‘(log;)rdrd<p<2. (28)
QqnV;j =0 ¢=0

Der Rand des Bereiches Q,—(2,n V;) besteht aus endlich vielen Kreisbogen und
geradlinigen Streckenstiicken. Auf den Bogen nimmt g, den Randwert 0 an. Um die
Werte von g, auf den Strecken abzuschétzen, bemerken wir, dass jede dieser Strecken
an mindestens einem Kreis C; mit p+s5+1=</<q anstosst; ihre Liange betrdgt dann
kor,. Es bezeichne Q das Innere von Q,—(Q,nU;). In Q ist g, harmonisch. Auf dem
Rand I' dieses Gebietes gilt g, <log 2/4, also nach dem Maximumprinzip auch im
Innern. In allen Punkten von I' n {zl |z—a;| <A} nimmt g, den Randwert 0 an. Wegen
Eigenschaft (b) von r; kann mit Anwendung von Lemma 2 geschlossen werden, dass
g,<¢/2n im Gebiet Q@ {z|r,<|z—a] < (1+ko)r;}, und damit insbesondere auf der
betrachteten Randstrecke von Q,—(2, " V;). Durch nochmalige Anwendung des Ma-
ximumprinzips erhalten wir die Giiltigkeit der Ungleichung g, <¢/2n auf dem ganzen
Bereich Q,—(2,n V), und somit

Jj g,(z,0)dx dy<§7—t-7r=; (29)

Qq—(ﬂq s VJ)

Aus (27), (28) und (29) folgt (23).
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