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Quadratic Spaces of Countable Dimension
over Algebraic Number Fields

by LeoN E. MATTICS, Bozeman, Montana

Introduction

Because of work done by I. KAPLANSKY (see, for instance, [6]) and more recent
work done by H. R. FiscHER and H. Gross (see, for instance, [1], [2], [3], and [4])
it now seems natural to study vector spaces of countable dimension over algebraic
number fields.

One of the major accomplishments in the theory of quadratic forms is the charac-
terization of quadratic spaces of finite dimension over arithmetic fields by a set of
invariants which include the discriminant of the space, the dimension of the space,
the Hasse symbols at all discrete spots, and the positive indices at all real spots
(see [7], pp. 154-189).

In this paper we shall show that a denumerably infinite-dimensional vector space
supplied with a symmetric non-degenerate bilinear form over an algebraic number
field K is characterized by a set of 2» invariants. Here n is the number of distinct
orderings of K (or equivalent n is the number of distinct real archimedean spots on K).
Hence, if K is non-formally real, there is (up to orthogonal isomorphism) only one
denumerably infinite-dimensional vector space with a non-degenerate bilinear form
over K (cf. theorem 3 in [6]).

Sylvester’s theorem holds for countably infinite-dimensional quadratic spaces
over ordered fields (see [8], p. 522). Thus, if n>0, we shall obtain our 2# invariants
by the use of Sylvester’s theorem.

Many of the ideas in this paper were inspired by GRosS’ work in [4].

1. Notation and basic concepts

Let K be a field. By a quadratic space (E, ®) over K we mean a vector space E
over K with a symmetric bilinear form &: E x E— K. By a quadratic subspace (F, ®)
of (E, @) we shall mean that F is a linear subspace of E together with the form ¢
restricted to F x F. If there is no risk of confusion we shall write F instead of (F, ®).
A quadratic space (E, ®) is semisimple (regular) if and only if @ is non-degenerate.

If (E, ®) is a quadratic space over K and 4 and B are linear subspaces of E
such that 4nB=(0) then we shall denote the direct sum of 4 and B by A®B. If

L
we also have that @(A4, B)={0} then we shall write A@B. If Fis a linear subspace
of E then we denote by F* the linear subspace of E comprising all those vectors
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x of E such that &(x, y)=0 for every y in F. If (E, @) is semisimple, and F is a
1L

finite-dimensional linear subspace of E such that (F, ®) is semisimple then E=F@®F*.

Suppose (E, @) is a quadratic space over K and {e,},. 4 is a basis of (E, ®) where
A is some indexing set. {e,},. 4 is an orthogonal basis if and only if ®(e,, e,.)=0 for
t#1'. {e,},c 4 is an orthonormal basis if and only if {e,},. 4 is an orthogonal basis and
b (e,, e,)=1 for every ted.

If char K#2 then any quadratic space of countable dimension over K has an
orthogonal basis. This is not true in general for quadratic spaces of higher dimension
(see, for instance, GrRoss’ “Vandermonde” example [1], pp. 321-323).

We shall say that two quadratic spaces (E, @) and (G, ¥) over K are orthogonally
isomorphic if and only if there is a vector space isomorphism o from E onto G such
that @(x, y)=¥ (ax, ay) for every pair (x,y) in ExE. If (E, ®) and (G, ¥) are
orthogonally isomorphic we denote it by (E, ®)~(G, ¥). If the dimension of E is
countably infinite then we shall denote it by dim E=¥, or dim(E, ¢)=7N,.

II. Definition of the invariants and more terminology

From now on we assume that K is an algebraic number field.

Suppose K has precisely n orderings (n>0). We shall denote these orderings by
<1, <, Let (E, @) be a semisimple Ny-dimensional quadratic space over K. Since
(E, @) has an orthogonal basis, for each ordering <; we may decompose E such that

L
E=E,®E; where 0<,®(x, x) for each xeE; with x#0 and &(x, x)<;0 for each
xeE;” with x#0. Furthermore, since Sylvester’s theorem holds in the countable case
(see [8], p. 522), the dimensions of E; and E;” are unique (E; and E;” are not unique).

Define dimE;=n; and dimE; =n; for each i (1<i<n). It is obvious that
{ny,...,n,, ny,...,n; } is a set of invariants for quadratic spaces orthogonally iso-
morphic to (E, ®). We shall show that this is a complete set of (cardinal) invariants.

Let us consider for a moment the orderings on K. Each of these orderings is an
archimedean ordering and each defines an archimedean valuation (I should say spot)
on K say | |; from <;. Furthermore, these valuations are all inequivalent and are all
of the real archimedean valuations on K (see [7], pp. 30-35 and [5], pp. 287-289).

Now if Y jo; X7 is a quadratic form with coefficients in K such that Y jo, X7 is
indefinite under each ordering of K then from the Hasse-Minkowski theory and what
is stated above the form has a non-trivial zero in K. For an exposition of the Hasse—
Minkowski theory see [7], pp. 154-189.

Again consider' the orderings <,,:-, <, and the corresponding valuations
| l45...5 | |, defined by them. First of all, we may take | |; such that |[N|;= N for each
natural number N and all i (1 <i<n). Since | |, ..., | |,is a set of inequivalent valuations,
given ay,..., o, in K and a positive integer M there is a number « in K such that
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lo; —al ;<M ~! for all i between 1 and n. This is simply the weak approximation
theorem and will be used frequently in the following exposition.

We now introduce signature functions which will reduce the number of words
we must use later. For each i (1<i<n) we introduce the map ¥;: K*—{—1, 1} such
that for ae K*, ¥, («)=1 if 0<;0o; or ¥;(a)= —1 if a<,0.

Here 1 and —1 are in K. (This is not important.)

We now define the map ¢ : K—{—1, 1}" such that for ae K*,

'l’(“) = ('1/’1(“)’ ihes ll/n(a))

We are now in a position to prove a very useful lemma.

LEMMA 1. Let (E, ®) be a semisimple quadratic space over K. Suppose there exist
vectors xy,..., x, in E (not necessarily distinct) such that ®(x;, x;)#0 and
Yi(P(x;, x;))=s, for each i. Then there is a vector x€ E such that (D (x, x))=(sy,..., 5,)-

Proof. By Sylvester’s theorem in the finite case E must contain a semisimple sub-
space F with dimF=g<n and an orthogonal basis {e,..., ¢,} such that for each
i (1<i<n) there exists e; with y,;(®(e;, €;))=s;.

Let N be a positive integer (we shall assume that N is in K or in the reals whenever
convenient). For each i (1<i<n) define

Och-=0 if l/l,-(¢(e,, el)) =—3; or oy = N if ‘lll(¢ (el, e,) S Si'

Now from the weak approximation theorem we can find «; in K such that
lot;—oty;l; <N~ for each i.

Do this for each / between 1 and q. Then by taking N large enough we have, by
the continuity of multiplication and addition over valuated fields, that x=)% a,¢,
is the vector desired. .

We must note, however, that several rather delicate points in the above proof
must be cleared up. First of all, we have taken a fixed field of real numbers R with
an ordering <. The completion of K under each valuation | |; yields a field K; which
is order isomorphic to R. The ordering of K; when restricted to K is <;. Without
confusion we may say that the ordering on K; is <;. Secondly, if u is the order
isomorphism between K; and R and ] [; is the ordinary absolute value in K; then we
have that

() a<,;B ifand onlyif u(a)<p(p) (o, BeK)),

@ p(al)=p(0)=la; (aeK),

(3) Ja[;<;N~! ifand onlyis |a|;}<N~! (xeK).

Thus, we now note that |o; —a;;|; <N ~! for each i implies that — N ~' <0, —a;;<;N !
for each i.
and the “limit part” of the proof the Lemma 1 becomes clear.
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III. The characterization theorem

We are now in a position to state the main assertion of the paper.

CHARACTERIZATION THEOREM. Let (E, @) be a semisimple N -dimensional quadratic
space over an algebraic number field K with n orderings. Then (a) if K is non-formally
real, (E, @) has an orthonormal basis; (b) if n>0, (E, @) is completely characterized,
up to orthogonal isomorphism, by the invariants {ny,...,n,, n;,...,n, } defined in
Section II.

The proof of (a) follows from a known result of Gross’ (see Corollary 4 [2],
p. 290) which states that if a semisimple N,-dimensional quadratic space (G, ®) over
a non-formally real field has an X,-dimensional subspace F such that ¢(F, F)={0}
then (G, @) has an orthonormal basis. Since (E, ®) has an orthogonal basis and every
five-dimensional quadratic space over a non-formally real algebraic number field
contains a non-zero isotropic vector (i.e. a vector x 0 such that ¢ (x, x)=0) it follows
that (E, @) contains such a subspace.

A major part of the proof of part (b) will be contained in the following three
lemmas. The proof of part (b) of the characterization theorem will be completed in

Section 4. From now on, assume K is an algebraic number field with n orderings
(n>0).

LEMMA 2. Let (E, ®) and (F,¥) be two semisimple quadratic spaces over K
dimE=dimF=N,).

Suppose (1) dimE;=dimF; eachi (1<i<n),

(2) dimE; =dimF;” eachi (1<i<n),
(3) dimE; <N, or dimE; <N, eachi,
then (E, ®)~(F, ¥).

Proof. We first consider the case where dimE;=0 or dimE;” =0 for each i
(1<i<n). Let {x,};>, be a fixed basis of E and let {y;},>1 be a fixed basis of F.
We note that in this particular case Y (®(x, x))=y (¥ (», y) for every x#0, xe E and
for every y#0, yeF.

To prove that E and F are orthogonally isomorphic we shall use the standard
inductive procedure.

Suppose we have been able to find finite dimensional semisimple spaces ,EcE
and ,Fc F such that ,E~ F with x;€ E for i<p, and y;e F for i<p. Let x, be the
first vector of the fixed basis not in ,E. Since ,E is semisimple we may assume that
x,€,E*. Let y,, be the first vector of the fixed basis not in ,F. Since ,F is semisimple
we may assume that y, e F*.

If we can find a semisimple finite dimensional space £ in ,E* and a finite di-
mensional semisimple space ,F in ,F* such that x,e E, y,€,F and ,E~ F we shall
be done. Take four linearly independent mutually orthogonal vectors {y,,, f1, /2, f3}
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in ,F*. Then the quadratic form
- (p(xl’ xl) Zg + 'P(ym’ ym) Zi + Zi’ lP(fi, f:) Zi2

has a non-trivial zero since the form is indefinite with respect to each ordering on K
by the particular assumption of this case. Thus, the space generated by {y,., fi, /2, f3}
has an orthogonal basis {ug, uy, u,, u3} with @ (x;, x;)= ¥ (uo, u,). Call this space ,F.
Using the same sort of argument above we may find vectors i, i,, @3 in ,E* such that
{x,, Uy, U, i3} is a set of linearly independent mutually orthogonal vectors such that
@ (i, 4;)="Y (u;, u;); i=1, 2, 3. Denote by ,E the space generated by {x,, @, il,, ,}.
Then ,E~ F, each are semisimple with x,e ,F and y,.€ ,F and we are done with this
case.

We now finish the proof of Lemma 2 by the use of induction. Suppose for some
integer />0 we have proved: if n;</ or n; </ for each i (1<i<n) then E~F. Thus
suppose for each i that n;</ or n; <I. Furthermore, assume that for some i dim E; =1
or dimE;” =/. For otherwise we are done by induction hypothesis. We pick
(815---» S,)€{—1, 1}" in the following manner: for each i

Si_—- 1 if ISdimEl<No,
1 if dimE; =0,
—1 if 1<dimE; <¥N,,
—1 if dimE;=0.
By Lemma 1 there are xe E and yeF such that
Y (P (x, %)) =Y (P (¥, ¥)) = (5155 ).

L 1
Write E=K (x)®E and F=K (y)®F. Here K (x) and K () are the vector spaces
over K generated by x and y respectively. Now take (¢4,..., t,)e{—1, 1}" such that
for each i

ti = l if dim Ei = &0,
—1 if dimES =N,.

Again by Lemma 1 (used three times together with Sylvester’s theorem) we choose
three linearly independent mutually orthogonal vectors {y;, ¥,, 3} in F such that

W (¥ (i y))=(ty,.... t,) and

F=KG)®K(y)®K(y,)®K(y;)®H.

Now it is easy to see that the quadratic form

— D, X)ZE+ Y (13, V) 23+ P (01 V1) ZE+ P (320 ¥2) Z5 + ¥ (¥3, ¥3) Z5
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is indefinite under each ordering <;. Hence, the form has a non-trivial zero in K
and, thus, the space

1 1 1
K(y)®K(y,)®K(y;)®K(y;) N
contains a vector ¥ such that ®(x, x)=Y (%, x). Therefore E=K(x)®K (x)*,
1

F=K(X)®K(x)* and K(x)~K(%). The invariants of K(x)* and K(%)' are
{ml,..., m,,, ml_,..., m,,—} Whel’e mi=ni if ni=No; mi=ni"‘1 if n,-<N0; m,— =ni_ if
n; =Ny; and m; =n; —1 if n7 <N,;. By induction hypothesis we have that
K (x)*~K (%)* and hence E~F. This completes the proof of Lemma 2.

We continue our extensive task of bookkeeping by stating the following lemma.

LemMMA 3. Let (E, @) be a semisimple Ny-dimensional quadratic space over K.
Further suppose that the set of integers {iy,..., ix}<{l,...,n} such that dimE; =
dimE; =R, (1<j<k) is not empty and that if me{l,...n}—{iy,..., i} either
dimE, =0 or dimE,, =0. Then there is a semisimple X ,-dimensional quadratic space

1
(G, Q) with G=G*®G~ and such that
(1) if xeG™ (x#0) then

!/Iij(Q(x, X))= 1, Vije{il,..., ik}’
and if me(l,..., n)—(iy,..., i) then
Ym(2(x,x))=1 if dimE, =%,

—1 if dmE, =¥%;;
(2) if xeG™ (x#0) then

¥, (Q(x, x))=—1 Vije{iy,..., ik},
and if me{l,..., m}—{i,, -, i,} then
Yu(Q(x,x))= 1 ifdimE, =R,,
-1 ifdmE, =¥;;
3) (G, Q)~(E, D).
Note. It follows that dimG* =dimG~.
Proof. We first show the existence of such a quadratic space (G, Q). Let G=
K {e;}i>1®K{ f;}:>1 be an arbitrary N,-dimensional vector space over K. We have
only to define the bilinear form €.
Define (sy,..., 5,)€{—1, 1}" such that
- s, =1 ifizeliy, ..., ik},
s,=1 ifdimE, =N,,
—1 ifdimE, =N,,
for me{l,...,n} — {i,..., iy} -
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Now by the weak approximation theorem, given a positive integer N there is
o€ K such that

lo —s;|;, < N~! foreachj, 1<j<n.
Thus, if we take N large enough we have

(o) =(Sg5-ees Sy)-
Now define (¢,,..., #,)e{—1, 1}" such that
tij=__1 ifijE{il,..., ik},
tm=1 1fdimE, =§,,
—1 ifdimE, =¥N,,
forme{l,...,n} — {iy,..., i}.
Again by the weak approximation theorem we can find fe K such that

!//(ﬁ)=(t1,..., tn).
Thus we define G* =K{e;};»;, G~ =K{ f;}i»1, and Q by
Qe, f)=0 alli,j>1,
Q(e;, ej)=a5ij9
Q(fi,fj)=35ij

where ¢,; is the Kronecker delta. Hence we have proved (1) and (2) of the lemma.
It remains to prove (3).

Let {x; };>; be a fixed orthogonal basis for (E, #). The space K{e,, e,, 1, /2}
represents @ (x,, x,); for the form

~d(xy,x)Z  +aZi+aZi+BZL+ BZ2

is indefinite under every ordering of K. Thus,

K{ey, ey, f1, f2} = K{uy, uy, us, uy}

where {u;}; <;<4 18 an orthogonal basis with Q(uy, u;)=D(x;, x).
On the other hand, by Sylvester’s theorem and three successive uses of Lemma 1
we can find three linearly independent mutually orthogonal vectors in K (x)*

1
(E=K (x,)®K (x,)") say i, il3, i, such that &(d;, ;)= Q(u;, u;) for 2<i<4.
Set K {uy,...,us}=,G and K {x,, 4,, 43, il,} =, E. Now ;E~,G and we can con-

1 1
tinue this procedure in , £+ and ;G* to ‘“finally” show that E=@®,E; G=®7,G
with ;E;~G all i>1. Thus, (E, ®)~(G, Q) and this completes the proof of Lemma 3.

LEMMA 4. Let (E, @) have the same properties as in Lemma 3. Then if (F, V) is
another quadratic space with
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dimE; =dimF;,
dimE; =dimF;”
Sfor all i (1<i<n) we have that (E, ®)~(F, ¥).
Proof. The proof is obvious from the existence of (G, 2) in Lemma 3.

IV. Completion of the proof of the characterization theorem

We are now in a position to complete the proof of (b) in the characterization
theorem. We have in this case that the number n of orderings of K is positive. Let
(E, @) and (F, ¥) be two semisimple quadratic spaces over K such that

dimE;,=dimF,=n; eachi, 1<i<n;
dimE; =dimF, =n; eachi, 1<i<n.

Let A={1,...,n}

B={iecA] dimE;=dimE; =N;}
C={ieA| either dimE; <N, or dimE; <N}

Then A =BuC and BN Cis null. We now divide the proof of part (b) into several cases.
Case 1. If B is null then Lemma 2 is the proof of part (b).

Case 2. If Cis null then Lemma 4 is the proof of part (b).
Let

C={ieC| dimE;=0 or dimE; =0}
C={ieC] 1<dimE <¥, or 1<dimE <N,}.

Case 3. If C is not null and B is not null we shall show that we may reduce the
proof to the proof of Case 2.

Case 3a. If C is null then again we may apply Lemma 4.
Case 3b. We are now left with the case where B is not null and C is not null.
Define (t,,..., t,)eé{—1, 1}" such that for each i
;= 1 if dmE,=dimE; =¥§,,
—1 if dimE;=0,
1 if 1<dimE;<N,,
1 if dimE; =0,
—1 if 1<dmE; <¥N,.
Define (sy,..., s,)e{—1, 1}" such that for each i

Si —_ 1 if dim Ei = No,
—1 if 0<dimE, <N,
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By Lemma 1 there are xe E and ye F such that
Y(D(x, x)) =y (P, y)=(t1,.-» t).

By successive uses of Lemma 1 (and Sylvester’s theorem) there are three mutually
orthogonal linearly independent vectors in K (y)* say y;, y,, ¥ such that

1 1 1
F=K()®K(,)®K(y,)®K(3)® F
and

V(¥ y)) =(s0n ) 1<I<3,
By the choice of (¢4,..., t,) and (sy,..., $,) the form

- (D(x, x) Zg + W(ya y) Zi + ‘P(,Vb yl) Z:IZ + q’(yb y2) Z% + q/(y3’ yS) Z%

is indefinite under every ordering on K. Thus, the form has a non-trivial zero in K.
L 1

1
Hence, K (y)®K ()@ K (y,)®K (¥3) has a vector x#0 such that ¢(x, x)=¥ (x, X).
4 4

Hence E=K (x)®K (x)*, F=K(»)®K(y)* and K(x)~K (x). Continue to reapply
this procedure (the second time on K (x)* and K (X)*. After a finite number of steps
we obtain Ec E and F< F which are finite dimensional semisimple quadratic spaces

s 1
such that E~ Fandif E= E® E* and F= F@® F* then (again using Sylvester’s theorem)
for each i,
dim E}* = dim F}",
dim £~ = dim F!
and either
() dimE! =dimE'™ =¥,
or
2 dimE'=0 or dimE*" =0.

We can thus apply Lemma 4 to show that E+~F*. Hence (E, ®)~(F, ¥) in the
Case 3a and the characterization theorem is proved.

Remark. In retrospect, since the discriminant and the Hasse symbols in the sense
of finite-dimensional quadratic spaces fail to make sense in the denumerably infinite
case, one would expect that a denumerably infinite-dimensional quadratic space over
an algebraic field would have to be described by the positive and negative indices at
all real archimedean spots. For quadratic spaces of higher dimension, the field seems
to lose much of its importance as far as describing the quadratic spaces. In this case,
inductive proofs such as the ones used in the proofs of Lemma 2 and Lemma 3 are,
of course, not applicable. Again, as pointed out in the introduction, there are examples
of semisimple quadratic spaces of dimension greater than countable which do not
possess an orthogonal basis and, furthermore, cannot be imbedded in a quadratic
space which has an orthogonal basis.
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