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Zeta-Fimctions of Idéal Classes in Quadratic Fields

and their Zéros on the Critical Line

by K. Chandrasekharan and Raghavan Narasimhan

§ 1. If K is a quadratic field, and (£ is an idéal class in K, the Dedekind Zeta-
function of the class G in K is defined by the Dirichlet séries

Û6(£

where s is a complex variable, s G + it, a>\; the sum extends over the non-zero
intégral ideals a in (£, and Na is the norm of a. The function Ç(s9 (£) satisfies a func-
tional équation, the form of which dépends on the nature of K. If K is an imaginary

quadratic field, say K=Q(J -d\ d>0, then we hâve

s)C(l -s, (£). (1.2)

If K is a real quadratic field, say K=Q(^/d% then the corresponding functional
équation has a différent gamma-factor, and is of the form

The équations (1.2) and (1.3) take this form since the field is quadratic, so that
Ç(s, t£) Ç(s, É), where € is the class conjugate to G. It is known, after Hecke [1],
that the Zeta-function of an idéal class in an imaginary quadratic field has an infinity
of zéros on the critical line. It is not known, however, whether the corresponding
resuit is true in the case of a real quadratic field. The Dirichlet séries for ((s, (£), in
both cases, can be written in the form

oo

C*&Œ)=Y-f, *>1, 0-4)
Le ms

m=l
where

aett
Na m

and it is known, after Dedekind, that

A(x) y am ~ /ex, 0 < k < oo (1.5)
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Our object is to give, in both cases, a sufficient condition, in ternis of an estimate on
am9 for the existence of an infinity of zéros on the critical Une, and to show that that
estimate is actually true. Corresponding estimâtes exist for fields of degree n > 2, and
we postpone the more gênerai problem to a later occasion.

What we actually require is that

as T -> oo

for any irrational x. This is obtained from Hermann Weyl's estimate of exponential
sums. The connection between this estimate, and the existence of an infinity of zéros,
on the critical Une, for the corresponding Zeta-function, is established hère by a
combination of van der Corput's method [3, Ch. IV] for estimating exponential
intégrais, with the Hardy-Littlewood proof [3, p. 219] of Hardy's theorem establishing
the existence of an infinity of zéros of the classical Riemann Zeta-function on the
critical line. We prove the following simple results.

Theorem 1. For every irrational number x, we hâve the estimate

ame2nimx o(T), as T->oo. (1.6)

Theorem 2. Thefunction ÇK(l + /f, (£) vanishesfor an infinity ofreal values oft.

§ 2. Proofof Theorem 1. We consider two cases, according as the given field K is

real or imaginary.
Case (i). Let K= Q(y/d), d>0. From the définition of am it is seen that (refer, for

example [5, p. 87]) if

S(T)= yame

then
2 s (T) Ye2 n l |P(*' °'im))"l x (2.1)

Hère b is a non-zero intégral idéal in the class GT1 (where G is the given idéal class)
with a base (a, è), and if a\ bf dénote the conjugates of a and b, then

The summation in (2.1) is over integers k and /, such that

\P(k, 01 <T(Nb), l^Jl^o?2, (2.2)
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where n is a fundamental unit. This set is the set of lattice points in the plane set DT
defined by

\ua + vb I

where u and v are real numbers. This plane set is clearly contained, for instance, in a

square of side c^T, for a suitable constant c>0. And the intersection of any Une in
the (m, v) plane with this set consists of at most two intervais. Thus

2|S(T)|< Y Y o2izi\P(k,l)\(Nb)''x (2.3)

Now, for fixed k, P(k9 /) is a quadratic polynomial in /, with rational coefficients, and
since b^O, we see that P(k, l)(Nb)~1x is a quadratic polynomial with the leading
coefficient irrational, and independent of k. Hence, by Weyl's inequality [4, § 3],

2ni\P(k,l)\(Nb)-*x

uniformly in k, where / runs over any interval contained in (0, c^Jt). (The fact that
we hâve \P(k, l)\ instead of P makes no différence, since P can hâve at most two
changes of sign.) From (2.3) and the remark preceding it, it follows that S(T) o(T)
for any irrational x.

Case (H). Let K= Q(y/—d). The argument hère is similar. One has only to observe

that [5, p. 88]

where w is the number of roots of unity in K, and the summation is over the lattice-
points (k, l) in the domain defined by |P(w, v)\<T(Nb), where P(w, v) (ua-\-vb)2.

§ 3. Estimâtes of certain intégrais. For the proof of Theorem 2 we require a
séries of estimâtes of certain intégrais. The method of obtaining them is by now
classical, and was originated by van der Corput [3]. No attempt is made hère to state
the results with the fullest possible generality. The following is a variation of Titch-
marsh's exposition [3, Ch. IV].

Let Ck[a, b~\ dénote the class of real functions in [a, b\ which are k times con-
tinuously differentiable.

Lemma 1. Let FeCl[a, b"], such that Us first derivative Ff is monotonie, and

\F'(x)\>m>0 throughout the interval a^x^b. Then

eiFMdx
m

(3.1)
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We can assume, by taking conjugates if necessary, that F' is positive. Taking the
real and imaginary parts of the intégral separately, we see that

f v» ÇF'(x)c
j cos{F(x)}dx j -^J-^

(x)
a a

and an application of the second mean-value theorem gives

b

Similarly also

(cos{F(x)}d>

u

Jsin{F(x)} dx

m

m

and hence the lemma.

Lemma 2. Let F, GeC2 [a, b\ and (F'/G)' hâve at most p distinct zéros in [a, 6],

throughout [a, b]. Then

F'(x)

J

G(x)

G(x)eiFix)dx
m

We divide the interval [#, 6] into at most (/?+1) intervais in each of which
is monotonie, and apply an argument similar to that of Lemma 1 in each of them.

Lemma 3. Let FeC2[a, ô], and \F"(x)\èr>0, throughout [a, b~\. Then

b

J<

Proof. We can assume, as before, that F"(x)^r>0, which implies that Ff is

monotone increasing, and therefore vanishes at most once in the interval [a, 6], say,
at c. Let <5>0, and dénote by /, Il912,13, the following intervais.

h [^ - 5, c + 5]n/

h
[a, c — (5], if c — ô > a,
0, if c-ô^a.
[c + S, b~] if c + ô < b,
0, if c + 5 ^ 6. (3.2)
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We then hâve

It is immédiate that |j/2| <2<5, while in /3, we hâve, if it is not empty,
X

F'(x) f F"(t)dt > r(x -e)>rS,
C

so that Lemma 1 gives |Ji3|^4/r<5, and similarly, if It is not empty,

Hence

and if we choose ô 2jyfry we get what we want.

Lemma 4. Let FeC2 [a, b], and \F"(x)\ ^ r >0 throughout [a, b], Let GeC2 [a, b] ;

\G(x)\KM,for a^x^b; and(F'\G)' hâve at mostp distinct zéros in [a, b~\. Then
b

8M(p+ 1)IG{x)emx)dx

The proof runs along the same lines as in the previous lemma, except that instead of
Lemma 1, we now use Lemma 2.

Lemma 5. Let FeC3[a9 b], where a>0. Assume that

\F'"(x)\ < AÀ3, (3.4)

throughout the interval [a, b], where A is some positive constant. Let F'(c) 0, where

a^c^b. Let G(x) be apower ofx, and \G{x)\ <M in [a, b]. Let (F'jG)' hâve at most
d distinct zéros in [a, b]. We then hâve

b

a±in/4 + iF(c)

'"/VU1/*\F"(c)\

+
(3.5)
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Hère the sign in e±Iïr/4 is positive or négative according as F" is positive or négative.

Proof. Condition (3.3) implies that F' is monotonie in \a, i], so that it can vanish

at only one point in [a, ft], namely the point c. As in (3.2), we define again the intervais

Ix, I2, h in terms of a number <5>0. We write

13

and first consider /3. If it is not empty, it can be divided into at most (p + 1) sub-

intervals, the points of division being the zéros of (F'/G)', on each of which the func-
tion GjF' is monotonie. If, for instance, [cu c2] is one such interval in [c + <5, 6], so

that c2>c1 ^c+<5, then, as in the proof of Lemma 1, we hâve

where

so that

and hence we obtain

Similarly

J=0H

(3.6)

(3.7)

As for the intégral over J2, we observe that for xel2 we hâve

G(x) G(c) + O(|x-c|sup|G'(x)|),
ii

and since G is a power of x, and a>0, this gives
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so that
(g{x) elF^dx f G(c) JF<*>dx + û(^), (3.8)

Expanding Fin a neighbourhood of c, by Taylor's theorem, and noting that F'(c) 0,
we get

JG(c)elF(x)dx G(c)elF^

G(c)elFic)

The last intégral can be written as
c + ô

(e<!/*>•<*-* f-<odx= J -El-E2,

O{\x - c\3

0(MÔ%). (3.9)

c-ô
where

0, if

if c- ô <a,
c-Ô

and

0, if

if c + ô > b.

By Lemma 1 we see that, if c+ô>b,
c + ô

*J 1 / s I •

\ib-c)X1) \\F'(b)\j
b

On the other hand, by Lemma 3, the same intégral is O(lly/T2), so that

and similarly

If we now assume that F"(c)>0, and write

(3.10)

(3.12)
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then
c+ô (l/2)<52 F"(c)

P fa {* ^iu
I • \i ¦£ l @

)ll2einl*

IfF"(c)<0, we can replace F"{c) by its négative, and take conjugates. Thus, we have,

in gênerai
c + ô

c-ô

If we now use the estimâtes given by (3.13). (3.12) and (3.11) in (3.10), combine it
with (3.9), and revert to (3.8), we get

G(c)(2n)ll2e±in/*elFic) (M

+ 0{M min —— —\\ + O\M min —— -1=)>+ (3.14)

Ifwe choose <5 (A2 A3)"1/5, and combine (3.14) with (3.7) and (3.6), we get the lemma.

§ 4. ProofofTheorem 2. If K=Q(S/- d\d>0, the functional équation of ÇK(s, d)
is given by (1.2), which can be written in the form ((s> <£) x(s) C(l-£> C), where

x(s) (r(l-s)ir(s))(XI2ny-2s,X Jd. If K=Q(y/d),ihecorresponding équation is

(1.3), which can again be written as

where

l~2s

In either case, we have %(s)x(l--•?)= 1> which implies that %(!+/*) %(£ — /*)= 1,

from which it follows that IxCi+if)!5**» s™ce x(s) is real for real s. Let 0 0(f)=
/r), so that x(i + ^)"=e~2ie. Define

^)}"1/2CK(i + it9 (S). (4.1)
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Since F (s) has no zéros, and only real pôles, the function {#(•*)}-1 has a square root
{x(s)}~i/2 in the simply connectée région t>t4, if t4 is large enough.

In the case of équation (1.2), we hâve

and therefore

If we set

then the functional équation (1.2) takes the form £ (s) {(1 - s). Set ij/ (s)=s(s -1) {(5).
Then \j/(s)=il/(l--s). If s=%+iz, where z is complex, and

then
iz) <M± - iz) E(-z).

Now ^(5) is real for real s, hence also \l/(s). Therefore \j/ assumes conjugate values at

conjugate points, hence \l/(%+iz) is real for real z, and therefore E(t) is real for real t.
Since

it follows, from (4.2), that
(1/2)/27r\(

W
and that

Z (Ois real for reaH, (4.3)
and, because of (4.1), that

\Z(t)\ \ÇK(i + it,<£)\. (4.4)

The same is true also in the case of équation (1.3), corresponding to K=Q(y/d).
Now consider the intégral

j (4.5)

taken along the contour fé7, which is a rectangle with sides a=\, a=f, /=T, and ?=27",
where 7">c>0. The intégral vanishes by Cauchy's theorem. The contribution from
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that part of # which lies on o \ is

1/2 + 2iT 2T

J {x(s)yil2Us,<&)ds ijz(t)dt, (4.6)

1/2 + ir r
because of the définition of Z(t) given in (4.1). To estimate the contributions from the
other three sides of the rectangle, we use Stirling's formula, namely: in any fixed strip
— oo<a^(T<j8<+ 00, as /-» + oo, we hâve

r(a + it) f + lt-1/2e-{1/2)nt-lt+(l/2)in(°-1/2)(2n)1/2{l +0(1/0}.

We then obtain, in the case of équation (1.2),

(4.7)

and in the case of équation (1.3), the only change is that there is an additional factor
e~l1l/4. On the other hand, we hâve

CK(s,C:) O01-ff+£), i^a^l, £>0, (4.8)

as f-> + oo. Hence
(f<r-l/2 tfl-<T + e\ _ n

Hence the contributions from the intégrais parallel to the real axis are 0(r3/4+e)
o(T), if e<|. The intégral along the line a=| gives, because of (4.7),

&40•-*
T m=l

where cx 1 if K= Q (y/ - d), and ct e "in/4 if #= g (>/rf), together with an O-term,
which is

2T

T

If we put

then

;(r) log— -logm,In
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so that F^(t) 0 for t 2mn/X9 while F^(t)=llt, and F£(t)= ~\/t2. We can then
write the séries in (4.9) as a constant multiple of

2T

Il+l2+l3, (4-10)

L 1

\
m=l T

where J]l5 £2> Z3 are respectively the sums of the séries extended over the range

À X À 2 TAl^m^iT---, iT-— <m<4T'-, m > —-2tt 2tt 2tt 71

In ^x we hâve, for T^t^2T, the inequality F^(f)^log2, and if we apply Lemma 2

(with/?=l), we get

(^^ o(T). (4.11)

In 5]3, on the other hand, we hâve, for T^t^lT, the inequality F^(t)^ -Iog2,
and if we apply Lemma 2, and use (1.5), we get

o(T). (4.12)

Finally in Yji we use Lemma 5 with the substitutions

This can be done provided that a zéro of F' falls in the interval \T,2T\ that is, if
In that case we get, as the main term, a constant multiple of

Zam ^-2m*:i/A.m3/4+l/2 V
m5/4 ^

where x is irrational, which is o(T) by Theorem 1, together with an error term which,
because T=0(m), is of the order

/ Y1 a 1 \\ / V1 ani \ ^-min(r1/2 ll + O( ; — min
V L mm ¦ \ 'log(mlc2T)JJ \ L m112
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If, however, we hâve Tj2<,2mnjX<T, or ITKlmnjX^AT, we write
2T 2T T 2T AT 4T

/¦/-/• - /-/-/¦
T T/2 T/2 T T 2T

as the case may be, and apply Lemma 5 to each of the resulting intégrais. The main
term then cancels out, and the error terms in the intégrais give again O(m3/4 + 2/5),

since T=O(m), which leads to the same estimate as before. Hence

£2 o(T). (4.13)

If we combine (4.13), (4.12), and (4.11), with (4.10) and (4.9), we see that the
contribution of the intégral in (4.5) along the line <t J; gives altogether o(T). From (4.6)
we conclude that 2 t

(4.14)

On the other hand, if k is a positive integer such that ak^0, then we hâve

2T 2T I2T

and

2T

J \Z(t)\dt J \U(i + it, <S)\dt ^ Jc*(i + lu &)fclf

J
1/2 + iT

iT iT iT

dt,

1/2 + iT 2 + iT 2 + 2iT 2 + iT 1/2
Y"1 a 1 ~12 + 2iT

~ /^W2'(rnïkYÏo^m 4-

Hence 2 t

j \Z(t)\dt>BT, (4.15)

where B is a positive constant. From (4.14), (4.15) and (4.3) it follows that Z{i) cannot
be ultimately of one sign. It then follows from (4.4) that ÇK(i + it9 (£) vanishes for an

infinity of values of t, which proves Theorem 2.
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§ 5. We conclude by remarking that the same argument gives the following

Theorem 3. If&i, (£2> ^3» •••> &r are idéal classes in afield K—Q(y/±d)i then the

function

where the coefficients oij are real numbers, has infinitely many zéros on the Une g \.
We are thankful to Professor C. L. Siegel for his critical reading of the manuscript.
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