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On the H-space structures of finite complexes?)

by C. R. CURJEL

1. The results

The purpose of this paper is to study the isomorphism classes of H-space structures
on one and the same underlying topological space. The notion of isomorphism used
here is the one appropriate to homotopy theory, viz. that of isomorphism of multi-
plicative objects in the homotopy category. Our results answer questions raised in
Massey’s list of problems in algebraic topology [6].

Throughout we work in the homotopy category of countable CW-complexes
which is denoted by T,. The objects of T, are pathwise connected topological spaces,
with a basepoint and of the homotopy type of a countable CW-complex, and the
morphisms are homotopy classes of basepoint preserving maps. The set of morphisms
A— B is denoted by [4, B]. Following [4] we consider H-spaces consistently as objects
in T,. Thus an H-space structure or a multiplication on a space X is an element
mel[X x X, X] such that

mjl = mjz = IXE[Xa X],

where j,, j, are the homotopy classes of the two injections X— X x X, and an H-space
is then a couple (X, m) of a space X together with a specific multiplication m. A
multiplication m is associative if the relation

m(m x 1y)=m(lx x m)

holds in [X' x X x X, X]. We recall from [5] that under our hypotheses on the spaces
involved every associative multiplication on X has an inverse i: X— X. Therefore an
associative multiplication m on X will also be called a group-like structure on X, and
in this case (X, m) is a group in T,.

Let (Y, n) be another H-space. Then fe[X, Y] is a homomorphism of (X, m) into
(Y, n)if fm=n(fxf):

XxX5X
Vrxr lrs

YxYSY

A homomorphism f is an isomorphism if f is an equivalence in T,, i.e. if f is the

1) Research supported partially by the National Science Foundation (NSF-GP 5874).
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homotopy class of a homotopy equivalence. Two H-spaces which are isomorphic in
this sense are equivalent in the homotopy category in exactly the same way as two
isomorphic groups are equivalent for all purposes of group theory. The proper
categorical classification problem for H-spaces is therefore the problem of describing
and enumerating the different possible isomorphism classes of H-spaces. This was
suggested already in [6, p. 350].

The underlying spaces of two isomorphic H-spaces are homotopy equivalent.
Thus one is led to consider the H-space structures on homotopy equivalent spaces or,
equivalently, the H-space structures on one and the same CW-complex. Now it
was shown in [1] that practically all finite complexes which are known to carry an
H-space structure admit not only one such structure, but infinitely many of them.
What can one say about the number of isomorphism classes of H-space structures on a
finite complex?

THEOREM 1. A connected finite CW-complex admits at most a finite number of
mutually non-isomorphic structures as a group in T,
Some restriction on the underlying space is necessary, as is shown in

PROPOSITION la: S* x K(Z,2)admits infinitely many mutually non-isomorphic struc-
tures as a group in T},

For non-associative multiplications the situation is different. Let §;(X) be the
i-th Betti number of X and y;(X) the rank of ;(X).

THEOREM II. Let (G, m) be a group in T, with G a connected finite CW-complex.
Then G admits infinitely many mutually nonisomorphic structures as a non-associative
H-space if and only if B,(G #G) y,(G)#0 for some n.

Theorems I and II solve Problem 43 of [6] in that they describe the situation
collectively for all H-spaces whose underlying spaces are of the homotopy type of a
finite complex. We remark to Theorem I that S is known to admit four isomorphism
classes of group-like structures. Theorem II shows that a group-like space admits
infinitely many non-isomorphic H-space structures as soon as it admits infinitely many
multiplications (which is, as pointed out, practically always the case).

The proofs yield additional information. Let #n,,..., n, be the integers k£ for which
7(G)#0.

THEOREM I (continued). If B, (G)=7,,(G) for all i then G admits only a finite
number of group-like structures. If B,.(G)>y,, (G) for some i then each of the finitely
many isomorphism classes of group-like structures contains infinitely many of them.

Let Q be the rationals.

THeOREM II (continued). If B,(G #G) y,(G)#0 for some n then infinitely many non-
isomorphic H-space structures m,, m,,... can be chosen in such a way that all Pon-
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tryagin algebras H, ((G, m;); Q) are non-associative. At least N of these algebras are
mutually non-isomorphic as algebras over Q, where N is the number of integers k such
that B (G #G) 7.(G) #O0.

The latter statement answers the question raised in Problem 45 of [6]. For instance
the different H-space structures on SU(n), n>6, give rise to at least n—4 mutually
non-isomorphic Pontryagin algebras.

The paper is organized as follows. In section 2 we set up the machinery for the
proofs which are outlined at the end of the same section. Sections 3 and 4 are purely
algebraic and deal with graded symmetric algebras over the integers. In section 5 we
collect facts about maps and their induced cohomology homomorphisms. These facts
are needed for the proofs of Theorems I, II which are given in § 6, 7 respectively.
Finally we prove Proposition Ia in § 8.

Last but not least the author wishes to acknowledge that some of the ideas
incorporated in this paper developed out of joint work with M. ARkowlITZ. It is a
pleasure to thank him for his contributions.

2. Structures on an object

To avoid repetitive reasoning it is convenient to introduce the following definition
of a ““collection of structures on an object.”

Let C be a category and T}, T, functors C—C. For an object X of C we denote by
E(X) the group of equivalences X— X. Then we define a collection 2=2(X;T,, T,)
of structures on X to be a subset of Hom(T;(X), T,(X)) such that ceZ implies
T,(0) 1o T,(0) € for any OeE:

T,(X) =~ B3 T, (X) > T,(X)

T2(0)1

—T,(X).

Now let E’ be a subgroup of E. Then two structures g, 6’ € X are isomorphic relative
to E', written as o0’ rel E', if 6 T, (6)=T,(0) ¢’ for some OeE":

g

T, (X)— T,(X)
T (0] 171200

T, (X) %> T, (X)

Isomorphism rel E’ is an equivalence relation on X. To study the isomorphism
classes rel E’ of structures on X it is convenient to define an operation of E’ on 2 by

Ox0=T,(0)" " o T, () *)

for 0eE’ and oeX. Thus o=¢’ rel E’ if and only if ¢ and ¢’ lie on the same orbit of
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the operation (*) of E’ on Z. Obviously E’ operates as a group on the set Z, i.e.

6'*x(0x0)=(0'0)x0
and
Iy*xo=0

for any 0, 'eE' and o€ZX. The isomorphism classes rel E’ of structures 2 on X are
therefore in 1 — 1-correspondence with the collection X // E’ of orbits of the operation
(*). In the following Lemmas 2.1, 2.2, 2.3, we state some obvious facts which will be
used in the proof of Theorems I and II.

LEMMA 2.1. Let E" be a subgroup of E'.

(i) If Z|| E" is finite, so is X[ E’.

(ii) Assume that E” is of finite index in E’. If X || E' is finite, so is L || E".

A subset 2’ of X is called invariant under E' if Oxc€X’ for any oceZ’ and OeE’.

LEMMA 2.2. Let X' c X be invariant under E'. If Z || E' is finite, so is L' || E’.
Now let ¢ be a fixed element of Z. The subset E'(¢) of E’ of all fe E’ with Oxc =g

T, (X) > T, (X)
TTe0) 17200
T, (X) = T,(X)
is clearly a subgroup of E’.

LEMMA 2.3. Let R be a system of representatives of the left cosets of E' modulo
E'(0). Then
E'*xc=Rxo-

The following two kinds of structures are considered in this paper:

(1) C=T,, T;(X)=Xx X, T,(X)=2X, X the collection M(X) of all me[X x X, X]
such that (X, m) is an H-space. Here E(X) is the group E(X) of homotopy classes of
homotopy equivalences X—X. Clearly m=~m’ relE(X) if and only if the H-spaces
(X, m) and (X, m') are isomorphic.

(2) C the category of graded connected algebras over the rationals Q, T, (X)=1X,
T,(X)=X®X, Z the collection 4(X) of all algebra maps 6:X—X®X such that
(X, &) is a Hopf algebra. Here E(X) is the group Aut,X of algebra automorphisms
of X.

The cases (1) and (2) are related by the functor h which assigns to a space X its
rational cohomology algebra H*=H*(X;Q). For, if me M(X), then h(m)e 4(H*).
Obviously

m = m’ rel E(X)
implies
h(m)=h(m')rel A'(H*)
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where A’ (H*)is the image of the antihomomorphism E(X)— Aut, H* induced by h.
Let A’(H*) be the image of the map M(X)— A(H*) induced by h. Clearly A'(H*)
is invariant under A’ (H*), and thus h induces a map

M (X)/[E(X)— 4" (H*)[| A" (H).

This observation also explains why one has to consider structures isomorphic not
only relative to the full group E(X) of equivalences, but also relative to a subgroup E’.

Now the method of our proofs can be described roughly as follows. Enough is
known on the way the functor h acts on maps to conclude that M(X)//E(X) is
finite if and only if the same is true for A'(H*)//A'(H*). Then one uses the same
kind of information on h to relate A'(H*)//A'(H*) to A(H*)//Aut,H* via the
Lemmas 2.1-2.3. Thus the problem has become a purely algebraic one. If m is as-
sociative, then the diagonal h(m) is associative, and the stepping stone for the proof
of Theorem I is Samelson’s theorem on the Hopf algebra structures on a certain
class of algebras. To prove Theorem II we construct sufficiently many non-associative
diagonals and observe that they all are elements of A’(H*), i.e. induced by multi-
plications of X. The proof of Proposition Ia proceeds similarly with associative
diagonals.

3. Automorphisms of a symmetric algebra
We consider a finite graded set

X = {x“,... xlm, le,... prz,... x,l, ...x,p,}

with degx; =i, and we write X,={x,;,... X,,,} for its component of degree n. Let
B=S(X) be the symmetric algebra of X over the integers Z. Let Y < B be the collection
of the monomials in at least two elements of X. For each n</ we order Y,, the
component of Y of degree n, in an arbitrary but fixed way. Then X, U Y, ={x,y,... X,,,

Vnts+- Vna,} is @ basis for the free abelian group B,. In terms of this basis any algebra
map ¢:B— B is represented in degree n<!/ by an integral ((p,+d,) x (p,+d,))—ma-

trix ¢, of the form
_ (P P,
»=\o o

where @, is a (p, x p,)-matrix corresponding to X,;,... X,,,, and @, corresponds to
Vuts--+ Yna, Since B is the free commutative algebra on X the matrices &, and @, are
not subject to any restrictions, whereas @, is uniquely determined by ®; and ; for
i <n. Thus any algebra map ¢: B— B can be considered as a sequence ¢ = (¢4, ... ¢;) of
such matrices ¢,.

If @, is nonsingular for all n</ then X<Img, i.e. ¢ is surjective. Since any
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surjective endomorphism of a finitely generated abelian group is an automorphism we
see that det &, = +1 for all n</implies that ¢ is an automorphism. Conversely if ¢
is an automorphism then det &,= +1 because ¢ induces an automorphism of the
free abelian group generated by X,. Thus ¢ is an automorphism of B if and only if
&, isnonsingular for alln</. We denote by Aut, Bthe group of algebra automorphisms
of B.

Let ¢ =(®y,... ?;) be an element of the graded group GL(py, Z)={GL(p,, Z),...
GL(p;, Z)}. We define a map j: GL(p,, Z)—Aut, B by

, ¢, O
where @, is determined by @; for i <n. Clearly j is a homomorphism. Denote by / the

identity matrix.

LEMMA 3.1. The set A of all algebra automorphisms ¢ =(¢,,... ¢;) such that

@,
Pn=\o @

for all n is a normal subgroup of Aut, B, and Aut, B is the semidirect product of A by
GL(px, Z). In particular A is a system of representatives of the left cosets of Aut,B
modulo j(GL(py, Z)).

Proof. Define ¢:Aut,B—GL(py, Z) as follows. If ¢ =(¢4,... ¢;) eAut, B,

_ (P P,
Py = 0 ¢I': ’

then o(¢)=(2(®);5--- e(@);), where
0(p), = (%;' q?)

1>A—>Aut,B—>GL(py, Z)— 1

Then the sequence

is exact. Let j:GL(py, Z)—>Aut,B be the map defined above. Clearly gj is the
identity of GL(p4, Z). Therefore Aut 4 B is the semidirect product of A by GL(py, Z).
Since every element ¢ of Aut, B has a unique representation ¢ =o-j(y) with ae A and
ye€GL(pi, Z) the group A is a system of representatives of the left cosets modulo

J(GL(px, Z)).

LEMMA 3.2. Let N be a positive integer. Then the set A(N)={p€eA, ®,=0(N)} is
a normal subgroup of finite index in A.
Proof. We first show that ¢ =(¢;,... ¢;)€A is an element of A(XN) if and only if
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@,=I(N) for all n. Let peA(N) and consider a monomial x, x,.... x, where x,,... x,
are some elements of X. Then

@ (X1 X2 %) = @ (x1) 9(x5) ... 0(x,)
because ¢ is an algebra map. On the other hand ®,=0(N) for all » implies
@(x)=x;+ Ny
where y; is a linear combination of monomials. Therefore

@(xyx3...%)=(x; + Ny )(x;+ Nyy)...(x, + Ny,)
=x1 x2...xr+NZ

for some decomposable z. Thus @€ A(N) means for

N
n=\o o

that @, =I(N), i.e. pe A(N) implies ¢, =I(N) for all n. Conversely, ¢,=I(N) implies
in particular @,=0(N). This shows that peA(N) if and only if @,=I(N).

Now let I'(s, N) be the kernel of the homomorphism GL(s, Z)—>GL(s, Zy), and
write G(py+dy, K) for the graded object {G(p, +d;, K),... G(p,+d,, K)} where G
is either I" or GL and K is one of the symbols N, Z, Zy. An element y of I'(py +dy, N)
is a sequence y=(yy,... ;) of nonsingular integral matrices such that y,=I(N). It
follows from the characterization of A(N) in the preceding paragraph that

A(N)=ANnTI(ps+ds N).

Therefore A(N) is a normal subgroup of A because I'(p4+dy, N) is normal in
GL(p4+dy, Z). Furthermore the map A/A(N)—>GL(p4+dy, Zy) induced by the
inclusion A—»GL(py+dy, Z) is a monomorphism. Since GL(py+dy, Zy) is a finite
group the same is true for A/A(N), i.e. A(N) is of finite index in A.

4. Hopf algebra structures on a symmetric algebra

Let B=S(X) as above and denote by n:Z— B the unit of B. Since B is connected
there exists a unique augmentation ¢: B—Z of B. By a diagonal of B we mean a map
0:B—B® B such that (B, d) is a Hopf algebra with unit n and counit &. It is not
assumed that a diagonal is associative. Clearly 6 is a diagonal of B only if it is an
algebra map B— B® B. Any such ¢ is uniquely determined by its values on the set X.
The diagonal d, defined by

() =x®1+1®x

for xeX is associative and commutative. The space of primitive elements of the
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Hopf algebra (B, d,) is the graded free abelian group F(X) generated by X (this
follows, for instance, from Prop. 3.7 of [3, 2-08] and the fact that the projection of
F(X) onto the indecomposables of B is an isomorphism). Since (B, J,) is primitively
generated an algebra map ¢:B—B is a map of Hopf algebras (B, §y)—(B, dy) if
and only if ¢ maps X into F(X). In the setup of § 3, a Hopf algebra map ¢:(B, d,)—
(B, 8,) is therefore represented as a sequence @ =(¢,,... ¢;) of integral matrices of the

form
(P, O
n=\o o)

Let Auty ,(B, d,) be the group of Hopf algebra automorphisms of (B, J,). Then
AutHA (B’ 50) =J(GL (p*9 Z))

where j is the monomorphism defined in connection with Lemma 3.1.

Now let 4(B) be the collection of all associative diagonals of B. Clearly A(B) is
a collection of structures on B in the sense of § 2, and the set 4(B)// Aut, B of orbits
(of the operation (*) of Aut, B on 4(B)) represents the isomorphism classes of Hopf
algebra structures with associative diagonals on the algebra B. A relation between the
standard diagonal é, and the other associative diagonals is established in the

THEOREM OF SAMELSON-LERAY. Let X be odd (ie., X,=0 for n even). Then
A(B)=Aut,Bxd,. In other words: A(B)/| Aut,B consists of one element.

This theorem is usually stated for algebras over a field. For algebras over Z it is
discussed in [3, Exp. 2].

5. Maps into group-like spaces

In this section we collect the facts needed to reduce the discussion of H-space
structures on a space to the discussion of Hopf algebra structures on the cohomology
algebra of the space. From now on G will always stand for a connected finite CW-
complex equipped with a fixed grouplike structure m.

The subspace of primitive elements of the Hopf algebra H*((G, m,); Q) is denoted
by P*(G). For any space 4 we consider [4, G] as an additively written group with the
group structure induced by m,. The functor H*( ; Q) induces a homomorphism

h:[A4, G] » Homqy (P*(G), H*(4; Q)).

LEMMA 5.1. Let A be a finite connected CW-complex. Then the collection T of
all elements of finite order in [A, G] is a finite subgroup of [A, G, and T is the kernel
of h. Furthermore the cokernel of h is periodic.

This Lemma follows from known properties of [4, G] and H*((G, m,); Q). For
a detailed discussion see e.g. [2].
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Let (G', mg) be another group-like space like G. We consider an ordered basis
X (resp. X') of P*(G) (resp. P*(G")) and the corresponding additive basis XU Y of
H*(G; Q) (resp. X'u Y’ of H*(G'; Q)) as in § 3. A map f:G'—>G is called integral
with respect to (X, X') if f*: H*(G; Q)»H*(G’; Q) is represented in terms of the
bases XU Y and X’ U Y’ by matrices with integral coefficients. Under our assumptions
on G and G’ the group [G’, G] is finitely generated (see e.g. [2]). Let f;... fr be a
system of generators of [G’, G]. Obviously every element of [G’, G] is integral with
respect to (X, X”) if and only if this holds for f,... fz.

LEMMA 5.2. There exists a basis X={xy} of P*(G) such that

(i) every map G—G is integral with respect to (X, X);

(ii) every map G x G—G is integral with respect to (X, X,) where X, is the basis
{xx®1, 1®x;} of P*(G % G).

Proof. In a) we show that a basis satisfying (i) also satisfies (ii). For the proof of
the remaining assertion in c¢) we condiser in b) the integral cohomology groups
modulo their torsion.

a) Let X’ be a basis of P*(G) satisfying (i). Consider a map f:G x G—G and an
element xeX,. Then

f*(x)=1®a; +a,®1+b

where 1®a,eH°(G; Q®H"(G; Q) and a,®1eH"(G; QQ®H’(G; Q). Denote by
i;, i, the two inclusions GG xG. Then (i, f)*(x)=a, and (i,f)*(x)=a,. By
hypothesis a, and a, are integral linear combinations of elements of X’ U Y’. Hence
1®a, and a,®1 are integral linear combinations of elements of X,uU Y,. Now we
change X, inductively to make the crossterm b integral for the system f,... fg of
generators of [G x G, G).

Define X; =X/. Then f *(x) is integral for every f and every xe X;. Therefore we
can assume for induction that we already have constructed X,,..., X,_; such that
/3 (x) is integral for every f; and every xeX;, i<n—1. Let x,;€X, and write

fj*(xrlx k) = a(ja k) + b(J’ k)

where a(j, k) corresponds to 1®a; +a,®1 above. There exists an integer N(J, k)
such that N(j, k) b(J, k) is an integral linear combination (of elements of the form
y®y' with dimy<n, dimy’<n). Let N be the product of all N(j, k), and define
X,=(Nx,y,... Nx,,) as basis for P"(G). Then f7(x) is integral for all f; and all
xeX,;, i<n.

b) For any space 4 define H?(A4) to be the factor group of H%(4) modulo its
torsion subgroup. Let n: H4(A4)—H?(A) be the projection and ¢: H1(4)-»H(4; Q)
the natural map. Clearly ¢ induces a monomorphism

7:H1(4) > H(4; Q).
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Note that the cokernel of 7 is periodic because the same holds for ¢. For A=G we
consider H?(G) as a subgroup of H?(G; Q) via the map t and define

P(G) = P*(G) n H*(G).

In (1)-(3) below we list some properties needed for c).

(1) PU(G)isadirect summand of P4(G). For there exists a basis X, ... X,, Xp41,... Xy
of the free abelian group H?(G) such that P/(G)=<a, x,,... «, x,,) for some integers
;> 1. Clearly 7(x;)e P(G). Hence x;eP?(G) for all i. Therefore x; is a linear com-
bination of a; x,... a, x,. Since the x; are linearly independent we conclude that
;= +1 for all i. Therefore P!(G)=<{x;,... x,).

(2) If {x;} is a basis of PU(G), then {t(x;)} is a basis of P%(G). The linear inde-
pendence of the 7(x;) follows from that of the x;. The t(x;) are seen to span P%(G)
because the cokernel of 7 is periodic.

We extend a basis {x;} of PY(G) to a basis X of H!(G). Then t(X) is a basis of
H%(G; Q). Let i be the inclusions of P?(G) into HY(G) and of P%(G) into HY(G; Q)
as direct summands in terms of the bases X and ©(X). Similarly let k£ be the projections
H?(G)-P*(G) and HY(G; Q)—P(G). Finally we observe that any f:G—G induces
an endomorphism f° of H?(G). The following statement (3) is an immediate con-
sequence of the definition of the maps involved:

(3) The diagram

i 5o k
P!(G)-» H'(G) - H!I(G) - PI(G)
Lol I I
PY(G) 5> H(G; Q)5 H(G; Q) > P(G)
is commutative.

c) Letf; ... fz be a system of generators of [G, G]. Pick a basis X; of P!(G)=P*(G).
Since P*(G)=H'(G) and P'(G)=H'(G; Q) we conclude from the diagram (3) that
/7 (x) is integral for all f; and all xet(X,). Therefore we can assume for induction the
existence of a basis X; for P*(G), i<n—1, such that f;*(x) is integral for all f; and all
xeX; i<n—1. Let x4,... x,, be an arbitrary basis of P"(G) and X,={t(x;)} the
corresponding basis of P*(G). In terms of X;,... X,_1, X, the map f j* is represented
in dimension »n by a matrix

jQr’: j¢n
)

For dimension reasons ‘@ is integral. It follows from (3) in b) that ‘&, is integral.
Let N be a positive integer such that N'®, is integral for all j. Then X,={N(x;)}
is a basis of P"(G) such that f;*(x) is integral for all f; and all xeX,. The proof of
Lemma 5.2 is complete.

We combine Lemma 5.1 and 5.2 in
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COROLLARY 5.3. There exists a basis X of P*(G) such that the homomorphism h
of Lemma 5.1 gives rise to homomorphisms
h,:[G, G] » Hom(F (X), S (X))
and
h,:[G x G, G] » Hom (F (X), S(X) ® S(X)).

The kernel and the cokernel of h; are finite, i=1, 2.

LEMMA 5.4. The restriction of the map h, of Corollary 5.3 to E(G) defines an
antihommomorphism

h':E(G) - Aut, S(X)

with the following property: There exists an integer N>0 such that the image of n
contains the group A(N) of Lemma 3.2.

Proof. a) We show first that for any given x;,€ X and any decomposable y;; there
exists a map f=£(i; k, j): G~ G such that

(i) f*(x;x)=Ay; ; for some integer A=A(i; k, j)>0;

(ii) f*(x,,)=0 for (r, s)#(i, k);

(iii) fx =0:7,(G)>m(G) for k<dimG.
It follows from Corollary 5.3 that there exists a map f':G—G and an integer A'>0
satisfying (i) and (ii). Let Q*(G) be the space of indecomposables of H*(G; Q).
Conditions (i) and (ii) express that the map Q*(G)— Q*(G) induced by f' is trivial.
Hence f,:H,(G; Q)— H,(G; Q) restricted to the homology primitives is also trivial.
Now it follows from a theorem of Cartan-Serre (see e.g. [7, p. 263]) that /,®1=0:
T4 (G)®Q-7,(G)®Q. Therefore there exists an integer A”>0 such that (A" f), =
0:7,(G)- 7 (G) for k<dimG. The map f=A"f" and the integer A=21" 1" satisfy (i),
(ii) and (iii). Note that A, (f(i; k,j)) is an elementary endomorphism of B=S(X) in
the sense that the matrices @, representing 4, ( f(i; &, j)) are of the form

0, =0 for ns#i

(p__0<1>
“\o 0

where @, ;=A(i; k, j) and &,,=0 otherwise.

b) Denote by N the product of the finitely many integers A(i; k, j) for all i, k, j.
Let peA(N) be given, and let ¢’ = (@}, ... ¢;) be the endomorphism of B obtained
from ¢ by removing the identity matrices in the upper left corners:

, (0 @, (1 @,
(pn"' 0 ¢:, ] (pn— 0 ¢;: .

This ¢’ is a sum of elementary endomorphisms B in the sense of a). Therefore one
can use repeatedly the result of a) to construct a map f: G—G such that f *=¢’ and
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f#=0:m(G)->m,(G) for k<dimG. The map 1+f€[G, G] is (the homotopy class of)
a homotopy equivalence of G because (1+f);=1,+fs=14:m(G)-n(G) for
k<dimG. Furthermore (1 +f)* = ¢. Thusthe given ¢ has been realized by a homotopy
equivalence of G. The proof of Lemma 5.4 is complete.

6. Proof of Theorem I

Sections a) and b) contain the reduction of the problem to an algebraic problem as
indicated at the end of § 2. In c) the proof of the first part of Theorem I is completed.
The remaining assertions are proved in d) and e).

The cardinality of a set S is denoted by |S|. We use freely the notation of the
preceding sections.

a) We let M,(G) stand for the collection of all associative multiplications of G.
The set My(G) is a subset of [G x G, G], and is obviously a collection of structures on
G in the sense of § 2. In the notation of § 2 the first part of Theorem I then asserts

|Mo (G) [/ E(G)| < o0

Let M(G)<[G x G, G] be the set of all multiplications of G which induce an associative
diagonal in the algebra H*(G; Q). The set M(G) is also a collection of structures on
G because the same holds for the collection of associative diagonals of H*(G; Q).
Furthermore M,(G) is invariant under E(G) in M(G). Since |M(G)//E(G)| < o0 im-
plies | My(G)//E(G)| < oo by Lemma 2.2 we see that it suffices to show that M (G)// E(G)
1s finite.

b) Let X be a basis of P*(G) with the properties described in Corollary 5.3. Let

h':E(G)—> Aut, B
be the antihomomorphism of Lemma 5.4, and
h":M(G)— A(B)

the function obtained from restricting 4, to M(G)<[G x G, G]. Clearly Imh" < A(B)
is invariant under ImhA’. Now we show that |ImA"//Imh’|<occ implies
|M(G)//E(G)| < co.

Let ImA”//Imh’ consist of the orbits [d,],... [4,] of r elements d4,... 5, of ImA”.
Denote by M" the set of all me M(G) with A" (m)=4; for some j. By Corollary 5.3 the
kernel of 4, is finite. Therefore M” is a finite set M"={m,,... m,}. Now let m be a
given element of M(G). Then for some j we have

[ (m)] = [5;]

§;=h(0"")xh"(m)
= h"(6*m)

in ImA”//ImA’, i.e.
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for some € E(G). This means that 0xme M”, i.e. 0xm=m, for some k=1,... s. Thus
any given m is isomorphic rel E(G) to one of the finitely many elements of M”.
Therefore it suffices to prove that ImA” //ImA’ is finite.

c) By Lemma 3.1 the subgroup A of Aut, B is a system of representatives of the
left cosets of Aut, B modulo j(GL(p4, Z)). As noticed in § 4 the latter group is the
group Auty (B, d,) of Hopf algebra automorphisms of (B, J,). Therefore by Lemma
2.3

Aut,B*d,=Ax%9,.

On the other hand the Samelson-Leray theorem shows that Aut,Bxd,=A4(B).
Therefore we obtain 4(B)=AxJ,, i.e.

|A(B)//Al =1<oo.

By Lemma 5.4 there exists an integer N> 0 such that A(N)cImh’. By Lemma 3.2
the index of A(N) in A is finite. Hence

|4(B)//A(N)| <o
by Lemma 2.1 (ii). Since A(N)<=Imh’' we infer
14(B)//Im k'] < oo

from Lemma 2.1 (i). Since Imh"< 4(B) is invariant under ImA’ we use Lemma 2.2 to
conclude

Imh”[[Imh'| <.

The proof of the first part of Theorem I is complete.

d) To prove the statement on the finite number of associative multiplications
(Theorem I (continued)) we assume B;(G)=7;(G) for i=ny,... n,, where ny,... n, are
the integers k for which y,(G)#0. If m is a multiplication of G we denote by P*(m)
the primitives of the Hopf algebra H*((G, m); Q). In particular P *(G) will be written
as P*(my).

Let m, any group like structure on G. By Samelson’s theorem H* = H*((G, m,); Q)
is the exterior algebra on P*(m;,), and P*(m,) is isomorphic to the indecomposables
of the algebra H*(G; Q) because both the multiplication and the diagonal of H* are
commutative. Passing to homology and arguing as in a) of the proof of Lemma 5.4
it is seen that dimP*(m,)=7;(G). We combine this with the hypothesis 8,(G)= y,;(G)
for i=ny,... n,, and conclude

P*(mg) = P*(m,)

for any group like structure m,. The element m, € [G x G, G]is of the form m; =my+qm
for some me[G#G, G), where q:G x G- G #G is the projection (see [1]). If m is of
infinite order in [G#G, G] then m*(x)s0 for some xeP*(m,) by Lemma 5.1. But
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m*(x)# 0 means exactly x¢ P*(m, ) because g induces a monomorphism in cohomology.
Thus xeP*(m,) and x¢ P*(m,), i.e.

P*(mo) a P*(m1)

if m is of infinite order. Therefore m must be of finite order. By Lemma 5.1 there are
only finitely many elements of finite order in [G # G, G]. Hence the number of group
like structures m, =mqy+q m is finite.

e) Now we prove the last statement of Theorem I (continued) and assume
B;(G)>7;(G)#0 for some j. Let X etc be as in b), and consider an arbitrary integral
matrix @ #0 with y;(G) columns and §;(G)—7v;(G) rows. By Lemma 5.4 there exists
an integer N> 0 and elements 6(k)eE(G), k any integer, such that §(k)* is represented
by a sequence {0(k),,... 0(k),} of matrices of the following form:

0= (o 7): <]

:=G ?NW)’ -y

—IO n>ij
“\o o) J

Now let m be any group like structure on G. Consider the infinite sequence
6(1)xm,...0(k)*m,... @)

of group like structures on G. We assert that 6(k)*m=0(k")*m implies k=k’'. For let

m induce m*e€A4(B). Then

for some @eA, as observed in c). Thus 0(k)*m=0(k")*m implies

(07" (R)* @) %80 = (07" (K)* ) % o .
By definition 8(k)*e A. Hence 0~ (k)* peA for all k. Since A is a system of represen-
tatives of Aut, B modulo Auty,(B, §,) we conclude 6~ '(k)* p=0""(k')* o, i.e.

0(k)* = 0(K)*.

This is only possible if k=k'. Thus k#k’ implies 0(k)*m#6(k')*m, i.e. the multi-
plications (*) are all different from each other. The proof of the entire Theorem I is
now complete.

7. Proof of Theorem II

Let X be a basis of P*(G) as in Corollary 5.3 and consider the homomorphism

h,:[G x G, G] » Hom (F(X), B® B)



On the H-space Structures of Finite Complexes 15

with B=S(X). We will construct an infinite sequence m,, m,, ... of multiplications of
G such that

hy(m;)) = h,(m;) relAut,B (1)

if and only if i=j,;
h(m;) is non-associative for all  i. (2)
From this we obtain the proof of Theorem II as follows. Let 4’ : E(G)—Aut, B be as
in § 6. Then h(m;)#h(m;) rel Aut, B obviously implies h(m;)%h(m;) rel Im#’, and
this in turn implies m; m; rel E(G). The second part of Theorem II follows from (2)

and the particular way the m; are constructed.
By our hypothesis on G there exists a dimension #» such that

Xn 7& 0 (*)
(B®B),#0.

Let x=x,, and pick monomials a, be B such that a®b#0e(B® B),. By Lemma 5.1
there exists an m:G #G—G and an integer N >0 such that

m*(x) = N(a ®b)
m*(x;,))=0 for x; #x.
For any integer r we define a multiplication m, by
m, = my + q(m + m +---+ m)(r times)
(recall that [G x G, G] is written additively). Write 8, for h,(m,). Let us assume that
0,0, rel Aut, B, i.e. (0®0)5,=0,0 for some feAut,B:

BLB®B
0] lo®o
B3B®B.
Let P*(B, §,) be the primitives of the Hopf algebra (B, J,). Note that

6’. = 50 on Xk
P¥(B, 3,) = X,

for k<n and all r. As observed in § 2 the automorphism 6 is determined only up to an
element of Auty (B, J,). Therefore we can assume

In dimension n we have 0(x)=Ax+ w for some integer 4. Using the latter two relations
one obtains from (0®0) J,(x)=25,0(x) by a direct computation (Nr—ANs)a®b=0,

1.e.
r=As
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for some integer A. Therefore (r,s)=1 implies 8,%, rel Aut,B. Let p,,... be the
sequence of primes and define

m; =my + q(p;m).

This sequence of multiplications satisfies (1). The non-associativity of 4(m,) is an im-
mediate consequence of the fact that the monomials a, b used in the definition of m
are of different length because their dimension is necessarily odd.

To prove the statement on the non-isomorphic algebra structures we pick a dimen-
sion n’ #n such that (*) holds for »’. Obviously the Hopf algebras corresponding to
n are not isomorphic over Q to those corresponding to »’ because their diagonals
deviate from associativity in different dimensions. Therefore the corresponding
Pontryagin algebras are nonisomorphic over Q, either.

8. Proof of Proposition Ia

We write K=S" x K(Z, 2). The discussion of maps K x K— K is particularly simple
because [K x K, K] is isomorphic to H'(K x K)+ H?*(K x K). Note that the Tor-term
in the Kiinneth formula for H'(K) and H'(K x K), i=1, 2, vanishes.

Let x’ generate H'(S'), and denote by x=x'®1 the generator of H'(K). Then
HY(Kx K)=1Z+ Zis generated by x® 1 and 1 ®x. Similarly let y’ generate H?(K(Z,2))
so that y=1®)’ generates H?(K). Then H*(KxK)=Z+Z+Z is generated by
1®y, x®x and y®1. Any map m: K x K— K is uniquely determined by its action on
xeH'(K) and ye H*(K). Let r be an integer, and define m,: K x K—K by

mix)=x®1+1®x
m(N=y@1+1Qy+ r(x®x).

For all r such a map m, exists and is furthermore a multiplication of K. A direct
computation shows that m, is a group-like structure on X for all r. Let us assume that
0eE(K) establishes an isomorphism between m, and m;:

KxK3K
lexo lo
KxKZK.

Since 6*: H*(K)— H*(K) is an isomorphism we necessarily have 0*(x)=¢; x, 0*(y)=
g,y with &= + 1. The relation m; 6*(y)=(6 x 6)* m}(y) immediately yields |s|=]r|.
Thus m,=m, rel E(K) implies |s|=|r|. Therefore the infinitely many group-like
structures .

Mgy, My, ..., M,, ...

on K are mutually non-isomorphic. This completes the proof of Proposition Ia.
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