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On the //-space structures of finite complexesx)

by C. R. Curjel

1. The results

The purpose of this paper is to study the isomorphism classes of //-space structures

on one and the same underlying topological space. The notion of isomorphism used

hère is the one appropriate to homotopy theory, viz. that of isomorphism of
multiplicative objects in the homotopy category. Our results answer questions raised in
Massey's list of problems in algebraic topology [6].

Throughout we work in the homotopy category of countable CW-complexes
which is denoted by Tfc. The objects of T,, are pathwise connected topological spaces,
with a basepoint and of the homotopy type of a countable CW-complex, and the

morphisms are homotopy classes of basepoint preserving maps. The set ofmorphisms
A^B is denoted by [A, B]. Following [4] we consider /f-spaces consistently as objects
in Th. Thus an H-space structure or a multiplication on a space X is an élément

me[Xx X, X] such that

j\,j2 are the homotopy classes of the two injections X-*Xx X, and an H-space
is then a couple (X, m) of a space X together with a spécifie multiplication m. A
multiplication m is associative if the relation

ra(m x lx) m(lx x m)

holds in [XxXxX, X]. We recall from [5] that under our hypothèses on the spaces
involved every associative multiplication on Zhas an inverse i:X-^X. Therefore an
associative multiplication m on X will also be called a group-like structure on X, and

in this case (X, m) is a group in Th.

Let (Y, n) be another J/-space. Then/ejJf, Y] is a homomorphism of (X, ni) into
(Y, n) iffm n(fxf):

Y x YXY

A homomorphism / is an isomorphism if/is an équivalence in Th, i.e. if/is the
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homotopy class of a homotopy équivalence. Two if-spaces which are isomorphic in
this sensé are équivalent in the homotopy category in exactly the same way as two
isomorphic groups are équivalent for ail purposes of group theory. The proper
categorical classification problem for if-spaces is therefore the problem of describing
and enumerating the différent possible isomorphism classes of //-spaces. This was

suggested already in [6, p. 350].
The underlying spaces of two isomorphic H-spaces are homotopy équivalent.

Thus one is led to consider the /f-space structures on homotopy équivalent spaces or,
equivalently, the //-space structures on one and the same CW-complex. Now it
was shown in [1] that practically ail finite complexes which are known to carry an

//-space structure admit not only one such structure, but infinitely many of them.
What can one say about the number of isomorphism classes of ff-space structures on a

finite complex?

Theorem I. A connected finite CW-complex admits at most a finite number of
mutually non-isomorphic structures as a group in Th.

Some restriction on the underlying space is necessary, as is shown in

Proposition la : S1 x K(Z, 2) admits infinitely many mutually non-isomorphic structures

as a group in Th.

For non-associative multiplications the situation is différent. Let Pt(X) be the
/-th Betti number of X and yt{X) the rank of nt{

Theorem II. Let (G, m) be a group in Th with G a connectedfinite CW-complex.
Then G admits infinitely many mutually nonisomorphic structures as a non-associative

H-space ifand only if (in(G#G) yn(G)^0for some n.

Theorems I and II solve Problem 43 of [6] in that they describe the situation
collectively for ail //-spaces whose underlying spaces are of the homotopy type of a

finite complex. We remark to Theorem I that S3 is known to admit four isomorphism
classes of group-like structures. Theorem II shows that a group-like space admits

infinitely many non-isomorphic //-space structures as soon as it admits infinitely many
multiplications (which is, as pointed out, practically always the case).

The proofs yield additional information. Let nl9...9nrbe the integers k for which

Theorem I (continued). IfPni(G) yni(G) for ail i then G admits only a finite
number ofgroup-like structures. If pni(G)>yni(G) for some i then each of the finitely

many isomorphism classes ofgroup-like structures contains infinitely many of them.

Let Q be the ratiorjals.

Theorem II (continued). Ifpn(G#G)yn(G)^0 for some n then infinitely many non-

isomorphic H-space structures ml9m29"- can be chosen in such a way that ail Pon-
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tryagin algebras H*({G, mf); Q) are non-associative. At least N of thèse algebras are
mutually non-isomorphic as algebras over Q, where N is the number of integers k such

that pk(G#G)yk(G)*0.
The latter statement answers the question raised in Problem 45 of [6]. For instance

the différent H-space structures on SU(n), n^6, give rise to at least n — 4 mutually
non-isomorphic Pontryagin algebras.

The paper is organized as follows. In section 2 we set up the machinery for the

proofs which are outlined at the end of the same section. Sections 3 and 4 are purely
algebraic and deal with graded symmetric algebras over the integers. In section 5 we
collect facts about maps and their induced cohomology homomorphisms. Thèse facts

are needed for the proofs of Theorems I, II which are given in § 6, 7 respectively.
Finally we prove Proposition la in § 8.

Last but not least the author wishes to acknowledge that some of the ideas

incorporated in this paper developed out of joint work with M. Arkowitz. It is a

pleasure to thank him for his contributions.

2. Structures on an object

To avoid répétitive reasoning it is convenient to introduce the following définition
of a "collection of structures on an object."

Let C be a category and Tl9 T2 functors C-»C. For an object X of C we dénote by

E(X) the group of équivalences X-+X. Then we define a collection I I(X;T1, T2)

of structures on X to be a subset of Hom(T1(Z), T2(X)) such that ael implies
T2{ey1aT1{e)sI for any OeE:

Now let E' be a subgroup of E. Then two structures g, a'el are isomorphic relative

to Ef, written as g^g' rel E\ if gTx(6) T2(0) a' for some 6eEf:

Isomorphism relis" is an équivalence relation on I. To study the isomorphism
classes rel£" of structures on X it is convenient to define an opération of E' on Z by

for OeE' and <reZ. Thus o^g' relis" if and only if g and g' lie on the same orbit of
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the opération (*) of E' on I. Obviously E' opérâtes as a group on the set I, i.e.

and

for any 6, O'eE' and Gel. The isomorphism classes rel£" of structures I on X are
therefore in 1 — 1-correspondence with the collection E\\E' of orbits of the opération
(*). In the following Lemmas 2.1, 2.2, 2.3, we state some obvious facts which will be
used in the proof of Theorems I and II.

Lemma 2.1. Let E" be a subgroup of E'.
(i) Ifl/jE" isfinite, so is 1\\E'.
(ii) Assume that E" is offinite index in E'. If1)1 E' isfinite, so is Z//E".
A subset Z" of I is called invariant under E' if 6*GeX' for any Gel' and OeE'.

Lemma 2.2. Let l'czl be invariant under E'. If1)1E' isfinite, so is l'HE'.
Now let g be a fixed élément ofl. The subset E'(g)oî E' of ail 9e E' with 0*g g:

is clearly a subgroup of E'.

Lemma 2.3. Let R be a System of représentatives of the left cosets of E' modulo

E'{g). Then

E' *g
The following two kinds of structures are considered in this paper:
(1) C Th, Tt(X)=Xx X, T2(X)=X, I the collection M{X) of ail me[XxX9 X]

such that (X, m) is an H-space. Hère E(X) is the group E(Z) of homotopy classes of
homotopy équivalences X^X. Clearly m^m'relE(Z) if and only if the H-spaces

(X, m) and (X, rri) are isomorphic.
(2) C the category of graded connected algebras over the rationals Q, Tl(X)=X,

T2(X)=X(g)X, I the collection A{X) of ail algebra maps ô:X-+X®X such that
(X, ô) is a Hopf algebra. Hère E(X) is the group AutAX of algebra automorphisms
oîX.

The cases (1) and (2) are related by the functor h which assigns to a space X its
rational cphomology algebra #*=#*(Ar;Q). For, if meM(X), then h(m)
Obviously

m s m' relE(X)
implies
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where A'(H*)is the image of the antihomomorphism E(X)-+AutAH* induced by h.

Let A'(H*) be the image of the map M(X)-+A(H*) induced by h. Clearly A'(H*)
is invariant under A'(H*), and thus h induces a map

M(X)HE(X)->A'{H*)HA'(H*).

This observation also explains why one has to consider structures isomorphic not
only relative to the full group E(X) of équivalences, but also relative to a subgroup Ef.

Now the method of our proofs can be described roughly as follows. Enough is

known on the way the functor h acts on maps to conclude that M(X)/IE(X) is

finite if and only if the same is true for A'(H*)//A'(H*). Then one uses the same
kind of information on h to relate A'(H*)//A'(H*) to A(H*)HAutAH* via the
Lemmas 2.1-2.3. Thus the problem has become a purely algebraic one. If m is

associative, then the diagonal h(m) is associative, and the stepping stone for the proof
of Theorem I is Samelson's theorem on the Hopf algebra structures on a certain
class of algebras. To prove Theorem II we construct sufficiently many non-associative

diagonals and observe that they ail are éléments of A'(H*), i.e. induced by
multiplications of X. The proof of Proposition la proceeds similarly with associative

diagonals.

3. Automorphisms of a symmetric algebra

We consider a finite graded set

X {Xll> ••• Xlpi> X2U ••• X2p2> '" XU> ••• Xlpif

with degxlk i9 and we write Xn {xnU... xnPn} for its component of degree n. Let
B—S(X) be the symmetric algebra ofXover the integers Z. Let 7cB be the collection
of the monomials in at least two éléments of X. For each n^l we order Yn9 the

component of F of degree n9 in an arbitrary but fixed way. Then XnKj Yn {xnl9... xn]Pn,

ynu ••• yndn} is a basis for the free abelian group Bn. In terms of this basis any algebra

map cp:B^B is represented in degree n^l by an intégral ((/?„ + dn) x (pn + dn)) — ma-
trix cpn of the form

where &'n is a (/?nx/?n)-matrix corresponding to xnl9... xnPn, and <&nn corresponds to
ynu ••• yndn' Since B is the free commutative algebra on X the matrices d>£ and <Pn are
not subject to any restrictions, whereas $„ is uniquely determined by <P[ and <Pt for
/ <n. Thus any algebra map q> : B-*B can be considered as a séquence cp (q>l9... <pf) of
such matrices (pn.

If $'n is nonsingular for ail n^l then Xczlmcp, i.e. q> is surjective. Since any
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surjective endomorphism of a finitely generated abelian group is an automorphism we

see that det <P'n +1 for ail n < / implies that q> is an automorphism. Conversely if q>

is an automorphism then det $'n ± 1 because (p induces an automorphism of the
free abelian group generated by Xn. Thus cp is an automorphism of B if and only if
&'„ is nonsingular for ail n < /. We dénote by AutA B the group of algebra automorphisms
of B.

Let (p (<Pu... <Pi) be an élément of the graded group GL(/?*, Z)= {GL(pl9 Z),...
GL(ph Z)}. We define a mapj:GL(/?*, Z)-*AutAB by

where &"n is determined by #( for i<n. Clearlyj is a homomorphism. Dénote by / the

identity matrix.

Lemma 3.1. The set A of ail algebra automorphisms (p ((pt,... ç>j) such that

"¦=(0 3
for ail n is a normal subgroup of AutAB, and Aut^i? is the semidirect product ofA by
GL(/?*, Z). In particular A is a System of représentatives of the left cosets of AutAB
moduloj(GL(p*, Z)).

Proof Define o:AutAB->GL(p#, Z) as follows. If cp {cpu... cp^)eAutAB,

*

then q((p) {q{<p)u... q(<p),), where

Then the séquence

1 -> A -> AntAB -> GL(p*, Z) -> 1

is exact. Let j:GL(p*9 Z)-+AutAB be the map defined above. Clearly qj is the

identity of GL(/?*, Z). Therefore Aut^^ is the semidirect product of A by GL(/?*, Z).
Since every élément cp of Aut^i? has a unique représentation (p~oi'j{y) with aeA and

yeGL(p#, Z) the group A is a System of représentatives of the left cosets modulo

j(GL(p*,Z)).
Lemma 3.2. Let N be a positive integer. Then the set A(N) {cpeA, <Pn 0(N)} is

a normal subgroup offinite index in A.

Proof We first show that (p=((pu... (pi)eA is an élément of A(N) if and only if
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(pn I(N) for ail n. Let cpeA(N) and consider a motionnai xt x2.... xr where xl9... xr
are some éléments of X. Then

cp(xlx2.. xr) (p(xl)(p(x2).. cp{xr)

because cp îs an algebra map. On the other hand <Pn 0(N) for ail n implies

where yt îs a linear combination of monomials. Therefore

(p(x1x2 .xr) (xl + Nyl)(x2 + Ny2) (xr + Nyr)
xl x2 .xr + Nz

for some decomposable z. Thus (peA(N) means for

Hé lu
that <Pl I(N), î.e. (peA(N) implies cpn I(N) for ail n. Conversely, cpn I{N) implies
in particular &n 0(N). This shows that (peA(N) if and only if q>n I(N).

Now let F (s, N) be the kernel of the homomorphism GL(,s, Z)-*GL(.y, ZN), and

wnte G(p* + d*, K) for the graded object {G(pl +dl9 K)9... G(pt + dh K)} where G
îs either F or GL and Kis one of the symbols N, Z, ZN. An élément y of F{p^Jtd^ N)
îs a séquence y (y1,... yi) of nonsingular intégral matrices such that yn=I(N). It
follows from the charactenzation of A(N) in the preceding paragraph that

A(A0 A nr^ + J^iV).
Therefore A(N) îs a normal subgroup of A because F(p* + d*, N) îs normal in
GL(/?* + d*9 Z). Furthermore the map A/A(N)->GL(/?* + */*, ZN) induced by the
inclusion A-^GL^ + d*, Z) îs a monomorphism. Since GL(/?Hs +^, ZN) îs a finite

group the same îs true for A/A(N), î.e. A(N) îs of finite index in A.

4. Hopf algebra structures on a symmetric algebra

Let B S(X) as above and dénote by rj:Z->B the unit of B. Since B îs connected
there exists a unique augmentation s:B-+Z of B. By a diagonal ofB we mean a map
ô:B-*B®B such that (5, (5) îs a Hopf algebra with unit rj and counit s. It îs not
assumed that a diagonal is associative. Clearly ô is a diagonal of 5 only if it is an
algebra map B->B®B. Any such ô is uniquely determined by its values on the set X.
The diagonal <50 defined by

So (x) x ® 1 + 1 ® x

for xeX is associative and commutative. The space of primitive éléments of the
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Hopf algebra (B, ô0) is the graded free abelian group F(X) generated by X (this
follows, for instance, from Prop. 3.7 of [3, 2-08] and the fact that the projection of
F(X) onto the indécomposables of B is an isomorphism). Since (B, <50) is primitively
generated an algebra map (p:B-+B is a map of Hopf algebras (B, ôo)-*(B, <50) if
and only if <p maps X into F(X). In the setup of § 3, a Hopf algebra map q> : (B, ôo)-+
(B, ô0) is therefore represented as a séquence (p=(<Pi,... (pi) of intégral matrices of the
form

Let AutHA(B, ô0) be the group of Hopf algebra automorphisms of (B, ô0). Then

AutHA(B,ô0)=j(GL(p*9Z))

wherey is the monomorphism defined in connection with Lemma 3.1.

Now let A (B) be the collection of ail associative diagonals of B. Clearly A (B) is

a collection of structures on B in the sensé of § 2, and the set A (B)UAutAB of orbits
(of the opération (*) of Aut^l? on A(B)) represents the isomorphism classes of Hopf
algebra structures with associative diagonals on the algebra B. A relation between the
standard diagonal ô0 and the other associative diagonals is established in the

Theorem of Samelson-Leray. Let X be odd (Le., Xn=0 for n even). Then

A(B)=AutAB*ô0. In other words: A(B)l/A\xtAB consists ofone élément.

This theorem is usually stated for algebras over a field. For algebras over Z it is
discussed in [3, Exp. 2].

5. Maps into group-like spaces

In this section we collect the facts needed to reduce the discussion of H-space
structures on a space to the discussion of Hopf algebra structures on the cohomology
algebra of the space. From now on G will always stand for a connected finite CW-
complex equipped with a fixed grouplike structure m0.

The subspace of primitive éléments of the Hopf algebra H* ((G, m0); Q) is denoted

by P*(G). For any space A we consider [A, G] as an additively written group with the

group structure induced by m0. The functor H*( ; Q) induces a homomorphism

h:[A9G\-+ HomQ(P*(G),H*(A; Q)).

Lemma 5.1. Let A be a finite connected CW-complex. Then the collection T of
ail éléments offinite order in [A, G] is a finite subgroup of [A, G], and T is the kernel
ofh. Furthermore the cokernel ofh is periodic.

This Lemma follows from known properties of [A, G] and H* ((G, m0); Q). For
a detailed discussion see e.g. [2].
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Let (G\ m'o) be another group-like space like G, We consider an ordered basis

X(resp. X') of P*(G) (resp. P*(<7)) and the corresponding additive basis X\j Y of
H*(G; Q) (resp. fuF of H*(G'; Q)) as in § 3. A map f:G'->G is called intégral
with respect to (X, Xf) if/*://*((?; Q)->//*((?'; Q) is represented in terms of the
bases lu F and X' u Y' by matrices with intégral coefficients. Under our assumptions

on G and G' the group [G\ G] is finitely generated (see e.g. [2]). Let/j.../^ be a

system of generators of [G', G]. Obviously every élément of [G', G] is intégral with
respect to (X, X') if and only if this holds forfl9...fR.

Lemma 5.2. There exists a basis X={xik} ofP*(G) such that

(i) every map G-+G is intégral with respect to (X9 X);
(ii) every map Gx G-+G is intégral with respect to (X, Xo) where Xo is the basis

{xik®Ul®xik}ofP*(GxG).
Proof. In a) we show that a basis satisfying (i) also satisfles (ii). For the proof of

the remaining assertion in c) we condiser in b) the intégral cohomology groups
modulo their torsion.

a) Let X' be a basis of P*(G) satisfying (i). Consider a map/:G x G-+G and an
élément xeX'n. Then

/*(x) l®ai+a2®\+b
where l®a1eH°(G;Q)®Hn(G;Q) and a2®leHn(G; Q)®H°(G; Q). Dénote by

il9i2 the two inclusions G->GxG. Then (iif)*(x) al and (i2f)*(x) a2. By
hypothesis at and a2 are intégral linear combinations of éléments of fuf. Hence

l®at and a2®l are intégral linear combinations of éléments of XqU Yq. Now we

change X'n inductively to make the crossterm b intégral for the system/l5.../K of
generators of [G xG,G].

Define Xl=X{. Then/*(.*) is intégral for every/and every xeXv Therefore we

can assume for induction that we already hâve constructed Xu...,Xn_1 such that

fj(x) is intégral for every fj and every xeXh i^n—l. Let x'nkeX'n and write

where a(j,k) corresponds to \®al+a2®l above. There exists an integer N(j,k)
such that N(j9 k) b(j, k) is an intégral linear combination (of éléments of the form
y®yf with dimj<«, dim/<«). Let N be the product of ail N(j9k), and define

XH (Nx'nl9... Nx'npn) as basis for Pn(G). Then/*(x) is intégral for ail/^ and ail

xeXh i^n.
b) For any space A define Hq(A) to be the factor group of Hq(A) modulo its

torsion subgroup. Let n:Hq(A)-*Hq(A) be the projection and Q:Hq(A)->Hq(A; Q)
the natural map. Clearly q induces a monomorphism
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Note that the cokernel of t is periodic because the same holds for g. For A —G we
consider Hq(G) as a subgroup of Hq(G; Q) via the map % and define

In (l)-(3) below we list some properties needed for c).

(1) P*(G) is a direct summandofPq{G). For there exists a basis xu... xp,xp+1,...xN
of the free abelian group H€(G) such that P€(G) <a1 xu... ap xp} for some integers

af^l. Clearly T(xt)ePq(G). Hence xteFq(G) for ail L Therefore jq is a linear com-
bination of a1 xu... ocpxp. Since the xt are linearly independent we conclude that

af= +1 for ail L Therefore P9(G) <x1?... xp>.
(2) If{xt} is a basis 0/P«(G), then M*,)} w a basis of Pq(G). The linear inde-

pendence of the i(xf) follows from that of the xt. The x(xf) are seen to span Pq(G)
because the cokernel of t is periodic.

We extend a basis {*,} of P9(G) to a basis X of H^G). Then t(JST) is a basis of
#«((?; Q). Let i be the inclusions of Fq(G) into H«(G) and of Pq(G) into ATg(G; Q)
as direct summands in terms of the bases Zand t(Z). Similarly let k be the projections
Hq(G)->¥q(G) and Hq(G; Q)-*Pq(G). Finally we observe that any/:G->G induces

an endomorphism/0 of H^(G). The following statement (3) is an immédiate

conséquence of the définition of the maps involved :

(3) The diagram

^ H* (G) -+ H* (G) ->P«(G)

is commutative.
c) Let/i... fR be a System of generators of [G, G]. Pick a basis Xx of P1 (G)czP1 (G).

Since P1(G) H1(G) and P1(G) H1(G; Q) we conclude from the diagram (3) that

f*(x) is intégral for ail/} and ail xez(X1). Therefore we can assume for induction the
existence of a basis Xt for P\G), i^n — 1, such that//(x) is intégral for ail/} and ail
xeXh /<«— 1. Let #!,... jtPfi be an arbitrary basis of P"(G) and X'n {T{x^} the

corresponding basis of Pn(G). In terms of Xu... Xn-U X'n the map// is represented
in dimension n by a matrix

o vj
For dimension reasons J4>1 is intégral. It follows from (3) in b) that J'$'n is intégral.
Let N be a positive integer such that NJ<Pn is intégral for ail y. Then Xn {NT(xi)}
is a basis of Pfl(G) such that//(x) is intégral for ail/} and ail xeXn. The proof of
Lemma 5.2 is complète.

We combine Lemma 5.1 and 5.2 in
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Corollary 5.3. There exists a basis X of P*(G) such that the homomorphism h

of Lemma 5.1 gives rise to homomorphisms

A1:[G,G]-»Hom(F(JO,S(X))
and

h2 : [G x G, G] -+ Hom (F (X), S(X)®S (X)).

The kernel and the cokernel ofht are finite, /= 1, 2.

Lemma 5.4. The restriction of the map ht of Corollary 5.3 to E(G) defines an
antihommomorphism

hf:E(G)-+AutAS(X)

with the following property : There exists an integer N>0 such that the image of h

contains the group A(N) of Lemma 3.2.

Proof a) We show first that for any given xikeXand any decomposable ytj there
exists a map/=/(/; kJ)\G-+G such that

(i) f*(xik) Àyij for some integer À À(i; k9j)>0;
(ii) f*(xrs) 0 for (r, s)^(i, k);
(iii) /# =0;nk(G)->nk(G) for k^dimG.

It follows from Corollary 5.3 that there exists a map/':G->G and an integer A'>0
satisfying (i) and (ii). Let Q*(G) be the space of indécomposables of H*(G;Q).
Conditions (i) and (ii) express that the map Q*(G)->Q*(G) induced by/' is trivial.
Hence/*:H*(G; Q)-*H*(G; Q) restricted to the homology primitives is also trivial.
Now it follows from a theorem of Cartan-Serre (see e.g. [7, p. 263]) that/#® 1 =0:
7r*(G)®Q->7is|s(G)®Q. Therefore there exists an integer À">0 such that (A"/)#
0:nk(G)-+nk(G) for k^dimG. The map/=A"/' and the integer À À' X" satisfy (i),
(ii) and (iii). Note that hi(f(i; k,j)) is an elementary endomorphism of B S(X) in
the sensé that the matrices q>n representing hl(f(i; kj)) are of the form

(pn 0 for n =£ i

0

where <Pkj A(i; kj) and #rs 0 otherwise.

b) Dénote by N the product of the finitely many integers A(i"; kj) for ail /, k9j.
Let (peA(N) be given, and let (pf ((p'i,... (p[) be the endomorphism of B obtained
from q> by removing the identity matrices in the upper left corners:

This 9; is a sum of elementary endomorphisms B in the sensé of a). Therefore one
can use repeatedly the resuit of a) to construct a map/:G->G such that/* (p' and
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f# =O:nk(G)-+nk(G) for k^dimG. The map 1 +/e[G, G] is (the homotopy class of)
a homotopy équivalence of G because (!+/)# 1#+/# 1# : nk(G)-+nk(G) for
k < dim G. Furthermore 1 -+-/)* (p. Thus the given (p has been realized by a homotopy
équivalence of G. The proof of Lemma 5.4 is complète.

6. Proof of Theorem I
Sections a) and b) contain the réduction of the problem to an algebraic problem as

indicated at the end of § 2. In c) the proof of the first part of Theorem I is completed.
The remaining assertions are proved in d) and e).

The cardinality of a set S is denoted by 15*1. We use freely the notation of the

preceding sections.

a) We let M0(G) stand for the collection of ail associative multiplications of G.

The set M0(G) is a subset of [G xG, G], and is obviously a collection of structures on
G in the sensé of § 2. In the notation of § 2 the first part of Theorem I then asserts

|Mo(G)//E(G)|<oo.

Let M (G) cz[GxG, G] be the set of ail multiplications of G which induce an associative

diagonal in the algebra H* (G; Q). The set M(G) is also a collection of structures on
G because the same holds for the collection of associative diagonals of H*(G; Q).
Furthermore M0(G) is invariant under E(G) in M(G). Since |M(G)//E(G)|<oo
implies | Afo(G)//E(G)| < oo by Lemma2.2 we see thatit sufficestoshow that Af(G)//E(G)
is finite.

b) Let X be a basis of P*(G) with the properties described in Corollary 5.3. Let

h':E(G)-+AutAB
be the antihomomorphism of Lemma 5.4, and

h":M{G)-+A(B)
the function obtained from restricting h2 to M(G)c[GxG, G]. Clearly Imh" ci A(B)
is invariant under Im/z'. Now we show that |Im/*"//ImA'|<oo implies
|Af(G)//E(G)|<oo.

Let Imh"I/Imh' consist of the orbits [5J,... [ôr] of r éléments ôl9... ôr of Im/z".
Dénote by M" the set of ail meM(G) with h"(m) ôj for some/. By Corollary 5.3 the
kernel of h2 is finite. Therefore M" is a finite set Àf"={ml5... ms). Now let m be a

given élément of M{G). Then for somey we hâve

ih" (m)-] [«,]
in Imh"IJImh', i.e.

,5; /,'(0-1)*/j"(m)
h"(0*m)
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for some OeE(G). This means that 6*meM", i.e. 8*m=mk for some k= 1,... s. Thus

any given m is isomorphic rel E(G) to one of the finitely many éléments of M".
Therefore it suffices to prove that Imh" l/lmh' is finite.

c) By Lemma 3.1 the subgroup A of Aut^i? is a System of représentatives of the
left cosets of Aut^i? moduloy(GL(/?#, Z)). As noticed in § 4 the latter group is the

group AutHA(B, ô0) of Hopf algebra automorphisms of(B, <50). Therefore by Lemma
2.3

Autx B * <50 A * <50.

On the other hand the Samelson-Leray theorem shows that AutAB*ôQ A(B).
Therefore we obtain A(B) A*ô0, i.e.

\A(B) H A\ Kœ.
By Lemma 5.4 there exists an integer N>0 such that A(N)dmh'. By Lemma 3.2

the index of A(iV) in A is finite. Hence

\A(B)HA(N)\<œ

by Lemma 2.1 (ii). Since A(N)almh' we infer

\A(B)I/Imh'\<œ

from Lemma 2.1 (i). Since Imh"czA(B) is invariant under Imh' we use Lemma 2.2 to
conclude

\Imh"Hlmhr\ <oo.

The proof of the first part of Theorem I is complète.
d) To prove the statement on the finite number of associative multiplications

(Theorem I (continued)) we assume Pi(G) yi(G) for i=nu... nn where nl9... nr are
the integers k for which 7fc((j)#0. If m is a multiplication of G we dénote by P*(m)
the primitives of the Hopf algebra H* ((G, m); Q). In particular P*(G) will be written
asP*(m0).

Let m1 any group like structure on G. By Samelson's theorem H* H*((G, m^ ; Q)
is the exterior algebra on P*{m^), and P*{m^) is isomorphic to the indécomposables
of the algebra H*(G;Q) because both the multiplication and the diagonal of H* are
commutative. Passing to homology and arguing as in a) of the proof of Lemma 5.4

it is seen that dimPI(m1)=<yi(G). We combine this with the hypothesis jSf(G)= yf(C7)

for i=nl9... nr9 and conclude

P*(mo) P*(mi)

for any group like structure m t. The élément m^ [G x G, G]is of the form ml=mo + qm
for some me[G#G, G], where q:GxG-+G#G is the projection (see [1]). If m is of
infinité order in [G#G, G] then m*(x)^0 for some JceP*(m0) by Lemma 5.1. But
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m* (x) # 0means exactly x$P* (/Wj) because q induces a monomorphism in cohomology.
Thus xeP*(m0) and xÇP*^), i.e.

if m is of infinité order. Therefore m must be of finite order. By Lemma 5.1 there are

only finitely many éléments of finite order in [G#G, G], Hence the number of group
like structures m1 =mo + q m is finite.

e) Now we prove the last statement of Theorem I (continued) and assume

Pj(G)>yj(G)^O f°r some/ Let Xetc be as in b),and consider an arbitrary intégral
matrix $#0 with yj(G) columns and Pj(G) — yj(G) rows. By Lemma 5.4 there exists

an integer N>0 and éléments 6(k)eE(G)9 k any integer, such that 6(k)* is represented

by a séquence {0(k)u... 6(k)l] of matrices of the following form:

(I 0 \
(o ci' n>)-

Now let m be any group like structure on G. Consider the infinité séquence

0(l)*m9...O(k)*m9... (*)

of group like structures on G. We assert that 0(k)*m 6(k')*m implies k k'. For let

m induce m*eA(B). Then
m* cp * ô0

for some (peA, as observed in c). Thus 6(k)*m 6(k')*m implies

By définition 6(k)*eA. Hencefl"1^)* (peAforallk. Since A is a System of représentatives

of Aut^i? modulo AutHA(B, ô0) we conclude 9~1(k)* cp Q~1(k')* ç, i.e.

This is only possible iî k k\ Thus k^k' implies 6(k)*m^6(k')*m, i.e. the
multiplications (*) are ail différent from each other. The proof of the entire Theorem I is

now complète.

7. Proof of Theorem II

Let X be a basis of P*(G) as in Corollary 5.3 and consider the homomorphism

h2 : [G x G, G] -> Hom (F(X% B®B)
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with B — S(X). We will construct an infinité séquence mu m1,... of multiplications of
G such that

h2(md^h2(mj) rc\AutAB (1)

if and only if i=j;
h (rtii) is non-associative for ail /. (2)

From this we obtain the proof of Theorem II as follows. Let h' :E(G)-+AutAB be as

in §6. Then h{m^h{mj) rel Aut^i? obviously implies h{m^h{mj) rel lmh'9 and
this in turn implies m^nij relE(G). The second part of Theorem II follows from (2)
and the particular way the mf are constructed.

By our hypothesis on G there exists a dimension n such that

Let x xnl and pick monomials a, beB such that a®b^0e(B®B)n. By Lemma 5.1

there exists anm:G#G-^G and an integer jV>0 such that

m*(x) N(a®fc)
m*(xik)= 0 f°r xik^x'

For any integer r we define a multiplication m'r by

m'r m0 + q(m + m-\ h m) (r times)

(recall that [GxG, G] is written additively). Write ôr for h1{m'r). Let us assume that
ôr^ôs rel AutAB, i.e. (0®0) ôr ôs0 for some 6eAutAB:

Let P*(£, ôr) be the primitives of the Hopf algebra (B, ôr). Note that

ôr ô0 on Xk

for k<n and ail r. As observed in § 2 the automorphism 9 is determined only up to an
élément of Aut/fA(^, ôr). Therefore we can assume

e(xkj) xkJ for k<n.
In dimension n we hâve 6 (x) kx -f w for some integer À. Using the latter two relations

one obtains from (6®9) ôr(x) ôs9(x) by a direct computation (Nr—ANs) a®b 0,

r As
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for some integer A. Therefore (r,s)=l implies ôrqkôs rel AutAB. Let/?l5... be the

séquence of primes and define

Wi mQ-\-q(pim).

This séquence of multiplications satisfies (1). The non-associativity of A(mf) is an
immédiate conséquence of the fact that the monomials a, b used in the définition of m
are of différent length because their dimension is necessarily odd.

To prove the statement on the non-isomorphic algebra structures we pick a dimension

«'#« such that (*) holds for ri. Obviously the Hopf algebras corresponding to
n are not isomorphic over Q to those corresponding to ri because their diagonals
deviate from associativity in différent dimensions. Therefore the corresponding
Pontryagin algebras are nonisomorphic over Q, either.

8. Proof of Proposition la

We write K=Si x K(Z, 2). The discussion of maps K x K-+K is particularly simple
because [KxK, K] is isomorphic to Hl(KxK) + H2(Kx K). Note that the Tor-term
in the Kûnneth formula for Hl(K) and H1 (KxK), / 1, 2, vanishes.

Let x' generate H1 (S1), and dénote by x=x'®l the generator of H^K). Then
H1 (Kx K) Z + Z is generated by x® 1 and 1 ®x. Similarly let y' generate H2 (K(Z9 2))
so that j=l®/ générâtes H2(K). Then H2(KxK)=Z + Z + Z is generated by

x®x and y® 1. Any map m:KxK-+Kis uniquely determined by its action on

^) and yeH2(K). Let r be an integer, and define mr:KxK-+K by

m* (x) x ® 1 + 1 ® x

™f (y) y ® i + i ® y + r(x ® x).

For ail r such a map mr exists and is furthermore a multiplication of K. A direct

computation shows that mr is a group-like structure on K for ail r. Let us assume that
9eE(K) establishes an isomorphism between mr and ms:

KxK^K.
Since 0*:H*(K)-+H*(K)is an isomorphism we necessarily hâve 6*(x)=slx9 9*(y)=
e2y with et=±l. The relation m*9*(y)=(9x6)* m*(y) immediately yields |j| |r|.
Thus mr=ms rel E(K) implies |.s| |r|. Therefore the infinitely many group-like
structures

m0, ml5..., mr,...

on K are mutually non-isomorphic. This complètes the proof of Proposition la.
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