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Une Caractérisation de I’algébre des mesures de Radon

sur un groupe compact

par A. DERIGHETTI

Nous nous proposons dans ce travail d’obtenir une caractérisation de ’algébre
M (G) des mesures de Radon d’un groupe compact G. La multiplication, dont est
munie cette algebre, sera la convolution des mesures.

L’espace vectoriel M (G) est le dual de I’espace de toutes les fonctions continues
sur G, doté de la topologie de la convergence uniforme sur G. Considérons sur M (G)
d’une part la topologie forte et d’autre part la topologie faible: munie de la premiére,
M (G) est une algébre de Banach dont la structure est trés complexe, munie de la
seconde M (G) est une algébre localement convexe. C’est en tenant compte de
ces deux aspects présentés par M(G) que nous pourrons obtenir sa caractéri-
sation.

On se donnera donc une algébre réelle Z munie de deux structures topologiques
qui en font respectivement une algébre de Banach et une algébre localement convexe,
et on indiquera des conditions portant sur Z et les deux structures en question pour
qu’il existe un groupe compact G tel que Z soit isomorphe, dans un sens qui sera
précisé, a M (G) (Théoréme 7).

Dans le cas d’un groupe abélien localement compact certains résultats ont été
obtenus par M. A. RIerreL ([11]). Le point de vue adopté ici est tout a fait différent.
Nous nous sommes efforcé, en particulier d’utiliser des méthodes applicables au cas
d’une algeébre non nécessairement commutative.

Cette étude était déja commencée lorsque M. A. RIEFFEL m’a aimablement fait
parvenir les résultats qu’il avait obtenus dans le cas d’une algébre d’un groupe fini
(publiés depuis [12]). On peut ainsi, dans une certaine mesure, considérer notre travail
comme une généralisation du cas du groupe fini.

Ce travail est divisé en trois parties. La premiére est de caractére introductif, dans
la seconde nous obtenons (théoréme 4) une caractérisation de ’espace des mesures de
Radon sur un compact (le probléme analogue pour un espace localement compact est
également traité). Ce résultat est le pendant d’'un théoréme bien connu utilisé par
M. A. RIErreL pour le cas du groupe fini, & savoir que tout espace vectoriel réticulé
archimédien de dimension # (la structure réticulée étant supposée compatible avec la
structure d’espace vectoriel) est isomorphe a R”. Dans la troisiéme partie nous essay-
ons de donner un élément de réponse au probléme posé (Théoréme [7]).

Je tiens ici & remercier vivement M. le professeur Dr. C. BLATTER pour tous les
conseils qu’il m’a prodigués et M. le professeur Dr. A. PFLUGER auquel je dois
tant.
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1. Définitions et notations

Dans tout ce qui suit, Z est un espace vectoriel réel muni d’une topologie t©
d’espace localement convexe séparée. Une partie des concepts qui vont €tre introduits
posséde un sens dans des situations plus générales telles que: espaces localement
convexes complexes, espaces vectoriels topologiques ou méme espaces vectoriels tout
court. Nous nous contenterons de les exposer dans le cadre de I’hypothése ci-dessus.

On convient, une fois pour toutes, que I’'indice i va de 1 a 2.

I.1. Quelques définitions et propriétés se rapportant a des convexes de Z

I’enveloppe convexe fermée de K. Si K est un convexe, E(K) est I’ensemble des points
extrémaux de XK.

DEFINITION 1. Soit C un cbne de Z, on dit que B est une base du cone Csi BcC,
B+#0, B est convexe, 0¢ B et pour tout xe C— {0} il existe A>0 et be B avec x=A41b,
A et b étant uniques.

Si f est une fonctionnelle linéaire sur Z telle que xeC— {0} entraine f(x)>0,
dans ce cas f ! (1) C est une base du cone C et inversement, toute base B est sus-
ceptible de cette représentation. Si Z=C — C cette représentation est unique.

DErFINITION 2. La fonctionnelle f ainsi définie sera appelée la fonctionnelle
associée a la base B.

Si C—C#Z il n’y a pas univocité cependant les restrictions de ces fonctionnelles
au cdne C sont identiques. Per abus de language nous parlerons, méme dans ce cas,
de la fonctionnelle associée a la base B.

A l'aide de cette notion on montre facilement que si {b;};-,<=B et {4;};-,<R

sont tels que ), A;b;=0, alors Y 4;=0. (1)
i=1 =1

J

J

PROPOSITION 1. Si B et B’ sont deux bases compactes d’'un cone C de Z, alors,
E(B) et E(B'), munis respectivement des topologies induites sont homéomorphes.

Pour démontrer cette proposition, on prouve en premier lieu que B et B’ sont
homéomorphes.

I1 existe une bijection ¢ de B sur B'.

Tout be B admet la représentation univoque b=A4'b" oi '>0 et b'e B’. On définit
ainsi ¢ : B— B’ par ¢ (b)=0b'. En vertu de 1.1. Def. 1 ¢ est une bijection. Il estimmédiat
que c’est aussi une bijection de E(B) sur E(B’). 11 suffit donc de montrer que ¢ est un
homéomorphisme de B sur B’. Il existe une base compacte B” telle que sa fonction-
nelle associée f” est t-continue. Pour le prouver considérons la fonctionnelle f”
t-continue séparant strictement 0 du convexe compact B. On a donc un a>0 tel que
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pour tout beB, f”(b)=ua. "' (2)~ C est donc une base fermée B” de C (tout cone
possédant une base compacte est fermé c.f. [5] Theorem 3). De /"~ (a)n C<[0, 1] B
on tire que B” est compacte. f” est ainsi la fonctionnelle associée a la base compacte
B’. Soient ¢, et ¢, respectivement les applications de B dans B” et de B’ dans B”
définies comme ci-dessus, on a ainsi ¢ =¢; ' ¢,. De f”>0 sur B résulte que @, (b)=
=(at/f" (b)) b est une bijection continue de B sur B”, c’est donc un homéomorphisme.

Il en est de méme de ¢,. On en conclut que @ =¢; '@, est aussi un homéomor-
phisme.

1.2. A-L-espaces

Soit W, un espace de Banach pour la norme x+ |x||, muni d’une structure
d’espace de Riesz et tel que (x, y)—>xvy et (x,y)—>x Ay soient des applications
continues de W x W dans W (W étant muni de la topologie de la norme). On suppose
d’autre part que W satisfasse aux conditions suivantes:

(4) x Ay=0 entraine |x+y| =|x—y|

(L) x, y=0 entrainent ||x+y| =|x||+||¥|. Un tel espace est appelé A-L-espace.

D’aprés un résultat classique de S. KAKUTANI ([7]), & tout A-L-espace W on peut
associer un espace localement compact X et une mesure p sur X tels que Wet L' (X, p)
soient isomorphes pour leurs structures respectives d’4—L-espace.

1.3. Mesures de Radon

Soit K un compact. On désigne par C(K) I’espace vectoriel de toutes les fonctions
réelles continues sur K. M (K) et M * (K) sont respectivement I’espace des mesures de
Radon sur K et le cone des mesures positives.

q(k), ou keK, est la mesure de masse 1 concentrée au point k. On rappelle que g
est un homéomorphisme de K dans M (K) muni de la topologie faible.

Une fonctionnelle linéaire £ sur C(K) est un homomorphisme, pour les structures
respectives d’espace de Riesz de C(K) et de R, si et seulement s’il existe une constante
x>0 et keK avec £ =aq(k) ([8] Theorem 8). Or &, fonctionnelle linéaire positive, est
du type ci-dessus si et seulement si pour toute fonctionnelle linéaire p telle que
0= u=é, il existe un réel =0 avec u=o& ([9] 24. 2. démontre ce résultat pour une
situation plus générale). D’un point de vue plus géométrique ces fonctionnelles
ne sont autres que les points appartenant aux génératrices extrémales du cOne
M* (K).

Si X est un espace localement compact C,, (X)) désigne ’espace vectoriel de toutes
les fonctions réelles continues a support compact et C, (X) celui de toutes les fonctions
réelles continues et bornées sur X. Munis de la norme:

Sl fll=sup{l f (x)l|xeX}, Coo(X) devient un espace normé et C,(X) un espace
de Banach. Le dual M'(X) de Cyo(X) est 'espace des mesures de Radon bornées
sur X.
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I. 4. Groupe compact

Soit G un groupe compact dont e est ’élément unité. M (G) est muni d’une struc-
ture d’algeébre le produit de deux mesures A, ue M(G) étant défini par A*pu(p)=
= ([ ¢(xy)di(x)du(y) ot peC(G) et (x,y)>xy désigne le produit dans G.

Gx6

Précisons encore quelques notations. Si f est une fonction sur G, aeG, alors ,f
(resp. f,) désigne la fonction définie par , f (x) =f (ax) (resp. f,(x) =f (xa)) pour tout
x€G, de méme fest définie par f (x)=1(x"') pour tout xeG. v sera la mesure de Haar
normalisée sur G.

II. Une caractérisation de ’espace des mesures de Radon
sur un compact et sur un espace localement compact

Le cas de I’espace localement compact sera ramené a celui de 1’espace compact.
C’est donc ce dernier qui sera traité tout d’abord.

I1.1. Caractérisation de I'espace des mesures de Radon sur un compact

L’espace que nous désirons caractériser est, en tant qu’espace de Banach, le dual
fort d’'un C(K). Le théoréme suivant, di a J. LINDENSTRAUSS ([10] Theorem 6.6.),
donne des conditions nécessaires et suffisantes pour qu’un Banach soit un C(KX).

THEOREME 1. Pour qu’un espace de Banach V soit isométrique isomorphe a un espace
C(K) il faut et il suffit qu’il satisfasse aux trois conditions suivantes:

(a) le dual fort de V est isométrique isomorphe a un espace L' (X, ) (ou p est une
mesure sur un certain espace localement compact X ),

(b) la boule unité de V admet au moins un point extrémal h,

(c) l'ensemble des points extrémaux de la boule unité du dual fort de V est faible-
ment fermé.

REMARQUE.

1. L’isométrie-isomorphie dont il est question envoie le point extrémal 4 de la
boule unité de V sur la fonction 1.

2. V est muni d’une structure d’espace vectoriel ordonné, définie par le cOne:
x>0 si et seulement s’il existe A=0 et u dans la boule unité de ¥ tel que x =A(h+u).

3. K n’est autre que I’ensemble des points extrémaux positifs de la boule unité
du dual fort de V, ce dual étant muni de I’ordre dual de celui dont il est question
dans 2..

4. La démonstration du théoréme 1 utilise seulement le fait que ’ensemble des
points extrémaux positifs de la boule unité du dual fort de V est faiblement fermé.

Si ¥ est un espace de Banach, son dual faible est un espace localement convexe.
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Le théoréme suivant, di a D. A. EDWARDS ([5] Theorem 4), constitue, dans une
certaine mesure, une réciproque de cette affirmation.

THEOREME 2. Sil’espace Z posséde un cone C localement compact tel que C—C =Z,
dans ces conditions, B étant une base compacte du céne C, on a:

(i) la jauge x| x| de S =co (B (— B)) est une norme sur Z. Muni de cette norme,
Z est un espace de Banach, cette norme est d’une part additive sur le céne C et d’autre
part B= lxeClIIxM =1} et S={erH|xll <1}. (ii) La topologie déduite de la norme
est plus fine que t. Si B’ est une autre base compacte, x| x|’ la jauge de co(B' U
U (—B')), alors x| x||" est une norme équivalente a la précédente, il en est ainsi de
toute norme sur Z qui fait de Z un Banach dont la boule unité est t-fermée. (iii) Si V est
I’espace des fonctionnelles linéaires sur Z t-continues sur les ensembles norme-bornés,
alors V est un sous-espace fermé du dual fort de Z et Z est isométrique isomorphe au dual
fort de V. (iv) La topologie 6(Z, V) coincide avec t sur le cone C et sur les ensembles
norme- bornés. (v) Si fe V, alors || f |, =Sup {| £ (b)|| be B}. (vi) La boule unité Q de V
posséde un point extrémal h (qui n'est autre que la fonctionnelle h associée a la
base B).

Nous utiliserons aussi le corollaire suivant ([5] Corollary 3): si Z, en plus des
hypothéses du théoréme 2 est tel que le cone C munisse Z d’une structure d’espace de
Riesz, alors Z, doté de la norme définie dans le théoréme précédent (i) est un A-L-
espace.

THEOREME 3. Soit C un cdne définissant sur l'espace Z une structure d’espace de
Riesz et possédant une base compacte dont I'ensemble des points extrémaux est fermé.
On peut alors construire, de facon canonique, un compact K tel que Z et M (K) soient
isomorphes pour leurs structures respectives d’espace de Riesz et tel que, par cet iso-
morphisme, le céne C, muni de la topologie induite, soit homéomorphe @ M * (K) doté
de la topologie faible.

Soit B cette base compacte: d’apreés le théoréme 2 Z,en tant qu’espace de Banach,
est isomorphe au dual fort de ¥ décrit dans ce théoréme. Z est un A-L-espace, d’apres
le corollaire précédent, il est par suite (c.f. 1.2.) isométrique isomorphe a un espace
L' (x, u). Les hypothéses (a) et (b) du théoréme 1 sont satisfaites. Définissons sur V'
un ordre partiel en nous donnant le cone

D={feV|f(x)20 pourtout xeC}.

1. Lordre partiel dont est muni Z est dual de celui défini par D.

11 suffit de montrer que C={xeZ | f(x)=0 pour tout fe D}. Si xeC, feD alors
S (x)=0; inversement soit xeZ tel que f(x)=0 pour tout feD. Si x¢C, C étant
convexe et t-fermé, il existe alors une fonctionnelle linéaire sur Z, 7-continue avec
f(x)<inf{f(») | yeC}. C étant un cone f(x)<O et f est non négative sur C. Il en
résulte que feD. Il y a contradiction, donc xeC.
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2. Soit h le point extrémal de la boule unité Q de V, dont I’existence est garantie
par le théoreme 2 (vi); pour tout feV, feD si et seulement s’il existe A=0 et geQ
avec f=A(h+g).

Remarquons tout d’abord que pour feV, feQ si et seulement si —h< f<h. Ceci
est une conséquence directe de B=h""'(1)n C et de || f I, =Sup {| £ (b)| | be B}.

Soit donc feD; f peut sécrire f=| f|, (”»ff“~ ——h+h). lI\j{H €Q entraine
%%;)J <h(b) sur B. On a donc: ‘{;’fv ‘-h(b)i =h(b)— (f(i)‘/ =h(b) par conséquent
-Jj—— —he@. Si nous posons A=| f |, et g= wf*——h nous obtenons la premiére
ISy I/ 1y
moitié de 2..

Inversement supposons que I’on ait f=A(h+g) avec 120 et geQ. geQ entraine
g(b)= —h(b) pour tout be B, donc g+ heD, d’ou, A étant =0 et D un cdne, feD.

3. L’ensemble des points extrémaux positifs de la boule unité de Z est fermé.

Il suffit de montrer que E(S)nC=E(B). 1l est évident que E(S)nBcE(B).
Inversement, soit be E(B) avec b=as; + (1 —a)s, ou0<a<1ets;eS. Les s; admettent
la représentation univoque s;=A; b — A b, avec b;", b, €B et A b Al b =0.
De 1=||b||Sals.|| + (1 —a)|ls,|| il est immédiat que |s;]| =1. ||s;| =4 b, — A7 b || =
=|A"b +A b |=A"+A7, on a donc A+ =1. Or b=a(A{b{ —A;b])+
+(1—a)(A; b; —A; by)dou (c.f. L1. (D)) 1=a (A7 —A])+(1—a)(A; —47). A, A7 =
>0et A" +4, =1 entrainent ;" — 17 <1 d’olt A —A] =1 et par conséquent 1;" =1,
A7 =0. 1l en résulte b=ab] +(1—a) by . be E(B) implique b, =b; d’ou s; =s,, c’est-
a-dire be E(S), on a donc bien E(B)=E(S)nC.

Les hypothéses du théoréme 1, compte tenu de la remarque 4, sont satisfaites. 11
existe par conséquent un compact K tel que V soit isométrique isomorphe a C(K).
K étant, par exemple, E(B). Il en résulte que le dual fort de V est isométrique iso-
morphe & M (E(B)).

L’isométrie-isomorphie de ¥ sur C(K) envoie 4 sur 1y et la structure d’espace de
Riesz dont est naturellement muni C(K) peut étre décrite par le cone suivant:

{feC(K)]|ilexiste A = 0 et g de norme non supérieure a 1 avec f = A(g + 1x)}

On en déduit que I’application ci-dessus est une bijection de D sur le cone des fonctions
non négatives de C(K). Le cone C étant le cone d’ordre dual de celui de D, il en résulte
I’existence d’une bijection du cdne C sur le cdne M * (K) des mesures positives; C dé-
finissant sur Z une structure d’espace de Riesz, la bijection en question est un iso-
morphisme pour les structures respectives d’espace de Riesz de Z et de M (K). V et
C(K) étant isométriques isomorphes leurs duals faibles respectifs sont homéomorphes.
D’aprés le théoréme 2 (iv) la topologie o (Z, V) coincide sur C avec 7. Par conséquent
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C et M ¥ (K), munis respectivement de la topologie 7 et de la topologie faible, sont
homéomorphes.

Si nous choisissons une autre base compacte B’ et si on munit Z de la norme
déduite de B’ (donc de la jauge de co (B’ U (— B')), E(B’) étant, d’apreés la proposition 1,
fermé, Z et M(E(B’)) seront, en tant qu’A-L-espaces, isomorphes; par la méme
application, le cone C, muni de la topologie 7, sera homéomorphe a M * (E(B’)) doté
de la topologie faible. D’aprés cette méme proposition 1, E(B) et E(B’) sont homéo-
morphes, il en résulte que M (E(B)) et M(E(B')) sont isomorphes comme A-L-
espaces et homéomorphes comme espaces localement convexes, d’ou le caractére
univoque de la construction considérée.

THEOREME 4. Si Z satisfait aux hypothéses du théoréme 3 et si, pour U'ordre défini
par le cone C, Z est un A-L-espace dont la boule unité est 1-fermée et dont la norme est
t-continue sur le cone C, il existe alors un compact K déterminé a une homéomorphie
prés tel que Z et M (K) soient isomorphes pour leurs structures respectives d’A-L-espace
et tel que le cone C, muni de la topologie t, soit homéomorphe @ M * (K), doté de la
topologie faible.

Si la norme dont est muni Z est la jauge d’un convexe du type S=co(Bu (— B))
ou B est une base compacte du cone C, alors Z et M (E(B)) satisfont aux conclusions
du théoréme 3. Dans ce cas on voit sans peine que Z et M (E(B)) sont aussi iso-
morphes pour leurs structures respectives d’A-L-espace. Si K; et K, sont deux
compacts tel que M (K;) et M (K,) soient isométriques isomorphes et tels que leurs
cones positifs M (K;)et M ™ (K,), respectivement munis des topologies faibles, soient
(par la méme application) homéomorphes, il est clair que K, et K, sont homéomorphes.
Pour démontrer le théoréme il suffit donc de prouver que la norme x| x| est la
jauge d’un convexe du type S=co(Bu(—B)), o B est une base compacte du
cone C.

Désignons par J la boule unité de Z. Soit B={xeC | x|l =1}.

1. B est une base du cone C.

B est non vide; 0¢B; soient b,eB et O<a<l, ab+(1—a)b,eC et
lab; + (1 —0a) b,]l =1 donc ab; + (1 —a) b, B, B est donc convexe; il est d’autre part
évident que tout xeC— {0} admet la représentation univoque x=A4b avec A>0 et
beB.

2. B est 1-compacte.

La boule J étant t-fermée, la norme dont est muni Z est équivalente, d’apres le
théoréme 2 (ii), 4 une norme x+— p(x) jauge d’un convexe S’ du type co(B' U (—B’))
ou B’ est une base compacte du cone C. S’ étant I'image du compact B’ x B' x [0,1]
par P'application continue (b;, b,, A)>Ab;—(1—A4) b, il en résulte que S’ est -
compacte. La boule J est donc contenue dans un ensemble t-compact; étant t-fermée,
elle est T-compacte. Or B= {xeCl |x|=1}<J est t-fermée donc t-compacte.
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3. J==5.

S={Ab—2b"|2, 120,b,b'eB, 1+ 1 =1} et 0eS entrainent S={Ab—A"b"| 4,
A20b,b'eB, A+ A’ <1}. Si deJ il existe alors A*,17 =0 et b*, b”€B avec
AYb* AL =0 et ATb*—A"b " =d. Dans ce cas |d|=|ATbT—-A"b|=
=|A*bT+A" b7 ||=A*+1" donc AT+A7 <1 et ainsi deS. Inversement si deS,
d=Ab—A'b" avec 1,1’ 20,b,b’'eB et A+1' =<1 donc |d| A+ A L1 d’ou deJ, par
conséquent J=3S'; en d’autres termes la norme x+— | x| est la jauge de S.

REMARQUE. La structure d’espace localement convexe t de Z a été identifiée avec
la topologie faible de M (K) sur le cone C et non sur tout ’espace Z. Cela ne doit pas
surprendre. On peut en effet définir des topologies, coincidant avec la topologie faible
sur M * (K), mais qui en sont distinctes sur M (K). Pour le montrer il suffit de prouver
que lapplication ur>|u| n’est pas en général continue pour la topologie faible.
Prenons, par exemple, comme espace K I'intervalle [0,1] et considérons dans M ([0,1])
la suite de mesures {y,},- ; définie par u, =¢(0)—q(1/n). Il est clair que pour n— o, ,
converge faiblement vers 0 tandis que |u,| converge faiblement vers 24 (0).

I1.2. Une caractérisation de l'espace des mesures de Radon bornées sur un espace
localement compact

Les deux propositions suivantes dont la démonstration est immédiate nous per-
mettent de ramener le cas d’un espace localement compact au cas compact.

PROPOSITION 2. Soient X un espace localement compact et K=Xu {w} son com-
pactifié d’Alexandroff. M (K) est alors la somme directe topologique de M (X) et de
R, M (K) et M'(X) étant munis respectivement de la topologie faible et de la topologie
o (M (X), Co(X)).

PROPOSITION 3. Les notations sont celles de la proposition 2. Soit p’ = (o, p)eM (K).
weM™ (K) si et seulement si pe M** (X) et a2 |ul.

THEOREME 5. Si Z est un A-L-espace dont la structure d’ordre est définie par un
cone C t-fermé tel que, J désignant la boule unité de Z, J soit t-compacte et E(JNC)
t-fermé, il existe alors un espace localement compact X, déterminé a une homéomorphie
prés, tel que Z et M' (X)) soient isomorphes pour leurs structures respectives d’A-L-
espace et tel que par cet isomorphisme C soit homéomorphe @ M'™* (X)) muni de la topo-
logie (M (X), Co(X)).

On montre que la somme directe topologique R®Z satisfait aux hypothéses du
théoréme 4. Il en résulte alors I’existence d’un compact K tel que R®Z et M(K)
satisfont aux conclusions formulées dans ce théoréme. On détermine alors un point
weK qui nous permet d’identifier Z 2 M! (X) ot X=K- {w}.

Soit 7’-1a topologie de R®Z (il s’agit d’une topologie d’espace localement con-
vexe). Conformément & la proposition 3 considérons: C'={(a, z)eR®C |aZ=]z|}.
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1. C’ est un cone localement compact avec C'—C’'=R®Z.

Ilestimmédiat que C’ est une coneavec C'—C'=R®Zet que B'={(1,z) | zeCnJ}
est une base 7’-compacte du cone C'.

2. C’ définit sur R@® Z une structure d’espace de Riesz.

I1 suffit de montrer (c.f. [5] Theorem 1) que la base B’ est un simplexe de Choquet.

Soient A=0 et x'=(a, x)eR@Z. Nous avons alors Ialternative suivante: ou bien
BN (AB+x)=0 ou bien il existe u=0 et yeZ avec BN (AB+x)=uB+}y.

Distinguons les deux cas:

a) A+a#1 et b) A+a=I1.

a) A+a#l1

Dans ce cas il est immédiat que B'n(AB'+x")=0.

b) A+a=1

Un raisonnement élémentaire montre que B'n(AB'+x")#0 si et seulement si
B (AB+x)#0 et que alors, B n(AB +x')={(1,2)| ze Bn(AB+x)} =
={(1,z) | zeuB+y}=puB +(1—p, y). B est bien un simplexe de Choquet.

3. E(B’) est v'-fermé.

11 suffit de vérifier que E(B)={(1,z) | ze E(CnJ)}.

Munissons R®Z de la jauge de co(B'u(—B’)), d’aprés 1. (les hypothéses du
théoréme 2 étant vérifiées) c’est une norme (a, z)— || («, z)|| sur R®Z. Compte tenu
du corollaire du théoréme 2 R@®Z est un A-L-espace. Le point 3. montre que R®Z
satisfait bien aux hypothéses du théoréme 4. 1l existe alors un compact K, déterminé
a un homéomorphisme prés, et une application & de R®Z sur M(K) qui est un
isomorphisme pour les structures respectives d’A-L-espace de R®Z et de M(K) et
un homéomorphisme de C’ sur M " (K). De (1,0)eE(B’) on tire I'existence d’un
weK avec ¢(1, 0)=g(w). Posons X=K— {w}.

Pour z quelconque, considérons @ (0, z)=p', u'e M(K) et désignons par pu la
restriction de g’ a3 Cy(X). On obtient ainsi une application ¥ de Z dans M’ (X):
®(0,z) (f)=Y(z)(f) pour tout feC,(X). ¥ est donc I'application qui rend com-
mutatif le diagramme:

Z LR@®Z
¥] lo
M (X) < M(K)
ou I(z)=(0, z) et Pr(u')=p.

4. (0, 2)(f)=Y(2) (f—f (w) 1§) pour tout feC(K) et tout zeZ.

Montrons tout d’abord que pour tout (a, z)eR®Z a=®(a, z)(1g).

On pose @ (a, z)=pu’ € M(K). Soit («, z)eC". a=0 entraine ||z| =0 d’ou («, z)=0
C’est-a-dire @ (a, z) (15)=0. On suppose donc a>0. De («, z)eC’ résulte d’'une part
(1, z/o)e B’ d’ou (c.f. Théoréme 2 (i)) ||(1, z/«)|| =1 soit ||(a, z)| =« et d’autre part
weM™ (K) cest-a-dire |u'||=u' (1x). De |¢'ll=1(, z)| on tire a=P(a, z) (1)
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Pour (a, z) quelconque on se raméne au cas précédent en utilisant la décomposi-
tion univoque (o, z)=(oy, z;)— (a5, z;) ou (a;, z;)€C’ et (ay, z;) A (25, z,) =0.

On a donc pour toutze Z ¢(0, z) (15)=0 d’ou @(0,z) (f)=%(0, z)
(f—f(w)1x) =Y (z)(f—f (w)1K) pour tout fe C(K).

5. ¥ est une bijection de Z sur M (X).

Montrons que ¥ est surjective. Soit pue M'(X); pour tout feC(K) posons
W (f)=u(f—f(w)1k), on a w'eM(K). 1l existe donc (a, z) avec ®(a, z)=n'. De
W (1x)=0 on tire a=0 d’ou @(0,z)=p'. Pour tout feCy(X) p'(f)=u(f) et
@(0,2)(f)=Y(z)(f), par suite ¥ (z)=p.

Quant a I'injectivité de ¥ elle s’obtient en montrant que z=0 si ¥ (z) =0. Compte
tenu de 4., ¥ (z)=0 entraine ¢ (0, z) =0 d’ou z=0.

6. ¥ est un isomorphisme pour les structures respectives d’espace de Riesz de Z
et de M'(X).

Il suffit de montrer que ¥ (C)=M"'" (X). Soit zeC. Choisissons a=||z|| d’ou
@ (o, z)eM * (K). Pour tout feCo(X) ®(a,2) (f)=Y(2)(f). feCo(X) et f=0
entrainent donc ¥ (z) (f)=0.

Inversement soit ue M'* (X). Considérons, de méme, o avec o= |u| et formons
p' =(a, u); d’aprés la proposition 3, u'e M ™ (K); il existe alors («, z)e C’ (en particulier
zeC) avec & (a, z)=p" d’ou ¥ (z)=p.

7. ¥ est une isométrie.

Il suffit de le prouver sur le cone C. Soit donc zeC. De ®(0,z)(f)=
=¥ (z)(f—f(w) 1%) pour tout feC(K) on tire [|¥ (z)]| =%1(0, z)||. 11 suffit donc de
montrer que (0, z)|| =2|z| pour tout zeC.

Soit zeC. (0,z) admet la décomposition univoque (0, z)=(4, z;)— (4, z;) ou
(4, z)A(4,2,)=0 et (4,z)eC’. On a donc @(4,2z))AP(4,z,)=0 c’est-a-dire
Y (z,) A ¥ (z,)=0 donc d’aprés 6. z; Az, =0, d’ou z,=0. [|(0, 2)| =l(4, z)— (4, 0)| =
=(4, z)+ (4, 0)]| =2A4=2||z|. Par définition |(0, z)| =inf{g | >0, (0, z)eg co(B' U
U (= B'))}. Or (0, z)eg co(B'u (—B')) si et seulement s’il existe z;eC avec [z, <1 et
z=¢/2(z;—z,). On a donc

10, 2)I = inf{p | p > 0,z = p/2(z, — 2,), z€C, |z £ 1}
c’est-a-dire

”(0, Z)H = Zlnf{p | p > 09 zZ= p(zl - 22)9 ZiEC, Hzl” é 1}
I1 en résulte
10, 2)| =2inf{p|p>0,z=p(A1 by — A, b,), 4, 20,b;€B, A, + 4, < 1} =2]z|.

Cette derniére inégalité achéve de montrer 7.
En résumé, ¥ est un isomorphisme pour les structures respectives d’A-L-espace
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de Z et de M'(X); 'homéomorphie de C et de M'* (X), muni de la topologie
o(M'(X), Cy(X)) est évidente.

8. X est déterminé & une homéomorphie prés.

Soient X; deux espaces localement compacts et Q une application de M (X,) sur
M (X,) satisfaisant aux propriétés suivantes:

— Q est un isomorphisme de M'(X,) sur M'(X,), munis respectivement de leurs
structures d’A-L-espace,

— Q est un homéomorphisme de M'* (X;) sur M'* (X,) dotés respectivement des
topologies o (M' (X;), Co(X;)) et o (M (X,), Co(X,)).

Considérons alors les compactifiés d’Alexandroff respectifs X;,u {w;} de X,
Prolongeons Q en Q' sur M (X, U {w,}) en posant Q' (a, u) = («, Q(p)). Dans ce cas Q'
est un isomorphisme de M (X;u{w,}) sur M(X,uU {w,}) pour leurs structures
respectives d’A-L-espace, Q' est aussi un homéomorphisme des cones positifs dotés
des topologies faibles correspondantes. a =g, ' Q'g, est donc un homéomorphisme
de X, U {w;} sur X,u {w,} qui envoie w, sur w,, c’est donc aussi un homéomor-
phisme de X, sur X,.

ITI. Une caractérisation de P’algébre des mesures de Radon
sur un groupe compact

Nous avons indiqué que cette partie pouvait étre considérée, dans une certaine
mesure, comme une généralisation du cas du groupe fini. Précisons cette assertion en
résumant les résultats obtenus par M. A. RIEFFEL dans ce cas ([12]).

Si A est une algébre réelle, de dimension finie, munie d’une structure d’espace de
Riesz, ’ordre étant archimédien et si, de plus, A4 satisfait aux conditions suivantes:

1. CxCc=C (ou C={fed |f=20})

2. feC entraine

fx(g v h)=Sup{fixg + foxh | fi + fo=f, fieC}
(g Vv h)xf = Sup{g«f, + hxf, | fi + [ =1, fieC}

pour tout g, h €4,

il existe alors un groupe fini G, déterminé a un isomorphisme pres, tel que 4 et
L(G), algébre réelle du groupe G, soient isomorphes pour leurs structures respectives
d’espace de Riesz et 1’algébre réelle.

Une conséquence directe ([12] 2.2. Lemma) des conditions 1. et 2. est: f, élément
de C, appartient & une génératrice extrémale du cone C si et seulement si

f*(gv h)=(f*g) v (fxh) pourtoutg, heA

Vérifions que, dans le cas d’un groupe compact G, une propriété analogue est satisfaite
par M (G).
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PROPOSITION 4. Si G est un groupe compact et Ae M * (G), alors A appartient a une
génératrice extrémale du cone M * (G) si et seulement si Ax (uv &)=(Axp)v (A &) pour
tout u, Ee M (G).

Dire que A appartient & une génératrice extrémale de M * (G), cela signifie qu’il
existe >0 et geG tels que A=ug(g). Sans restreindre la généralité on peut supposer
a=1. Pour tout feC(G)ona A*pu(f)=p(,f): on définit ainsi une application linéaire
de M(G) dans M(G). Pour montrer la premiére partie de la proposition il suffit de
vérifier que =0 si et seulement si A*u=0. u=0 entraine évidemment A*u=0.
Inversement supposons que A*ueM ¥ (G). A £=0 on peut associer f' avec f'e C(G)
f'20et f'=fet par suite 0SA*xp(f")=pu(,f')=p(f) donc ueM* (G).

Inversement si Ax(uv &)=(A*u)v (A*&) pour tout u, e M(G), on obtient en
remplacant ¢ par —u:Ax|u|=|A*yu| pour tout ue M(G). Compte tenu de I. 3. il
suffit de montrer que A(|h|)=|A(h)| pour tout he C(G). Soient donc he C(G) et la
mesure définie par du=h dv: pour tout peC(G) on a A*u(p)=[¢(z) Axh(z) dv(z)
ot Axh(z)=[h(y™'z) dA(y) ([6] Th. 20.9.). Or d’aprés ([6] Th. 14.17) Ax|u| (@)=
=@ (2)|A*xh(z)| dv(z) pour tout ¢eC(G), en d’autres termes Ax|h| (z)=|A*h(2)|.
Or Aix|h|, |AxhleC(G) dou Ax|h|(e)=|Axh(e)| cCest-a-dire |[h(x)dA(x) =
—J1h ()] dA(¥)

REMARQUE. De fagon, tout & fait analogue, on montre que, pour ie M * (G), A
appartient & une génératrice extrémale du cone M ™ (G) si et seulement si (uv &)*x A=
=(uxA)v (£x4) pour tout u, Ee M (G).

Dans cette partie on supposera que ’espace Z est muni d’une structure d’algebre
localement convexe (la topologie étant notée t). T*:Z x Z—Z désigne ’application
définie par la multiplication dans Z.

PROPOSITION 5. Si Z est une algébre commutative munie d'un céne C localement
compact satisfaisant aux propriétés suivantes:

1) T*:Cx C—-C est continue,

2) C—{0} n’admet pas de diviseurs de 0,

3) C contient un compact N avec 0¢ N tel que pour tout, xe C— {0} il existe >0
avec {(Ax)"} = N.

C posséde alors une base compacte B, et une seule, telle que Bx B< B.

a) Toute génératrice du cone C posséde un élément x et un seul avec {x"} borné
et 0 non adhérend a cet ensemble.

Considérons une génératrice quelconque de C, d’apres 3) cette génératrice admet
au moins un tel x. Il existe un voisinage ¥ de 0, équilibré, avec x"¢ V pour tout n. Si
pour un t>1, {(tx)"} est borné, il existe un n & partir duquel ¢"x"enV; si nous
prenons »n suffisamment grand ¢">n, donc x"eV.

Soit & présent 0<t<1; lim ¢"=0 et {x"} borné entrainent lim ¢"x"=0.

n—> o n-— oo
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Désignons par B I’ensemble de ces éléments x. L’hypothése 3) entraine, pour tout
xeB, {x"}= N.
f) BxBc B.

Soient b;e B. {b7} est un compact et ainsi, vu la continuité de T*, (b1} % (B3} est

aussi. 11 en résulte que {(b; *b,)"} est borné. On tire de 2) que 0¢ {b}}* {b3}; cet
ensemble étant fermé, O n’adhére pas & {(b, *b,)"} et par conséquent b, xb, € B.

y) B est une base du cone C.

Pour tout xeC— {0} il existe, par hypothése, A>0 et beB avec x =1b. D’aprés
o) cette représentation est unique. 0¢ B.

Il reste 2 montrer que B est convexe. Soient 0<a<1, b,eBet z=ab, + (1 —a) b,.

co ({87} * {b3}) est borné ([3] chap. 111, § 2, prop. 2). Or {z" }cco({b Y x {b1}) donc {z"}

est borné. Montrons que 0 n’adhére pas a {z"}. co({b}}*{b} }) est fermé et borné,

C étant localement compact, cet ensemble est compact. Si Oeco ({67} * {b3}), alors 0
est point extrémal de cet ensemble puisque Oe E(C); d’aprés un résultat, bien connu,
qui précise le théoréme de KREIN-MILMAN ([2] chap. I1, § 4, prop. 4) 0 doit appartenir
a {b"} {b%} ce qui est exclu d’aprés ce qui précéde et par suite ze B.

0) B est compacte.

B étant contenue dans N, il suffit de montrer que B est fermée. Soit F un filtre sur
B convergeant vers d, le filtre produit Fx F converge vers (d, d). B) entraine que
T*(Fx F) est une base de filtre sur B donc sur N. T* étant continue sur Cx C,

T*(Fx F) converge vers d* donc, vu la compacité de N, e N. On montre ainsi que
{d"} = N d’ou deB.

REMARQUES. 1. Cette proposition fournit des conditions suffisantes pour ’exis-
tence d’une telle base B. Ces conditions ne sont évidemment nullement nécessaires.
Par exemple, la commutativité de Z, utilisée dans la démonstration proposée, ne nous
semble pas jouer un role fondamental; on verra que I’on peut éviter cette importante
restriction, en faisant cependant sur Z des hypothéses d’une tout autre nature.

2. Si Z est une algébre localement convexe, non nécessairement commutative,
munie d’un c6ne C avec une base compacte B telle que B* B< B, le point o), dont la
démonstration n’utilise pas la commutativité de Z, montre que cette base est unique.

3. Il nous semble plausible, mais nous ne sommes pas parvenus a le montrer,
que 3) puisse étre remplacée par 3'): pour tout xeC— {0} il existe A>0 avec {(1x)"}
borné et 0 non adhérent a {(ix)"}.

THEOREME 6. Si Z posséde un cone C satisfaisant aux propriétés suivantes:

1) C définit sur Z une structure d’espace de Riesz telle que I'application (x, y)—
XV Y Soit continue,

2) T*:Cx C-C est continue,
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3) C posséde une base compacte B avec Bx B B,

4) xeC— {0} appartient a une génératrice extrémale du cone C, si et seulement si
pour tout y, zeZ au moins l'une des deux conditions x*(yvz)=(x*y)v (x*z) ou
(yvz)xx=(y*x)Vv (z*x) est satisfaite,

il existe alors un groupe compact G, déterminé a un isomorphisme bicontinu prés,
tel que Z et M (G) soient isomorphes pour leurs structures respectives d’espace de Riesz
et d’algébre réelle et tel que, par cet isomorphisme, C et M ™ (G), muni de la topologie
faible, soient homéomorphes.

1. Z satisfait aux hypothéses du théoréme 3.

Considérons la base B. Pour y, zeZ arbitraires posons f,,(x)=(yvz)*x—
—(p*x)v (zxx). De 4) on tire que E(B)=Bn{x|f,.(x)=0 pour tout y,zeZ}.
D’aprés 1) f,, est continue, il en résulte que E(B) est fermé.

Il existe dans ces conditions, d’aprés le théoréme 3, un compact K et une bijection
@ de Z sur M (K). Cette bijection @ est un isomorphisme pour les structures d’espace
de Riesz de Z et de M(K) et un homéomorphisme de C sur M " (K). & permet
de définir sur M(K) une structure d’algébre @(x)*®(y)=P(x*y) pour tout x,
yeZ.
Soient P={aA|xe[0,1], Ae®(B)} et I'applicationT®:P x P-»M (K x K) définie
par T® (A, p)=A®pu ol A®u désigne la mesure sur K x K produit des mesures 1 et
UeP. P est compact donc borné et par conséquent, d’aprés ([4] chap. IlI, § 5, no. 3,
prop. 4) T® est continue. On désigne par P®P 'image de P x P par T®.

Considérons sur P x P la relation d’équivalence R définie par T® (1, u)=T% (', i)
ou 4, u, A', p'eP. Si A, ue P— {0} il est élémentaire que la classe d’équivalence, suivant
R, contenant (4, p) est {(aA, a”'p)ePx P | a>0}; quant 2 la classe contenant (4, 0)
ou (0, u) c’est Px {0} U {0} x P. 1l en résulte ’existence d’une application 7: PQ P—
—M " (K) qui rend commutatif le diagramme suivant:

P®P

PxP L M*(K)

2. T est continue.
Soit n: P x P—P x P/R I’application canonique associée a la relation d’équivalence
R. T® se factorise ainsi sur PxP/R en un homéomorphisme T de P xP/R sur
P®P ([1] chap. 1, § 3, prop. 6). De méme T* se factorise sur P x P/R en une applica-
" tion continue T de P x P/R dans M* (K).
De la description donnée ci-dessus des classes d’équivalence suivant R dans P x P
résulte la commutativité du diagramme suivant:
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PP
y \
T* =t N
PxP » M (K)
\ v TR
P x P/R

T2~ et Ty étant continues, il en est donc de méme de T.

3. T(¢(Kx K))=q(K).

Soient k;eK. T(q(ky, k,))=T(q(k;)®q(k,))=q(k,)*q(k,). 1l existe b;c E(B)
avec @ (b;)=q(k;), donc q(ky)*q(k,)=® (b)) * P (b,) =P (b, *b,). Or pour tout x, ye Z
(by*by)*(xvy)=(by*b,)*xVv (by*xb,)*y, donc d’aprés 4) b, *b, appartient 3 une
genératrice extrémale du cone C or d’aprés 3), b, *b, € B, il en résulte que b, *b, € E(B)
donc @ (b, xb,)eq(K), par suite T(q(K x K))=q(K).

Il résulte de 3. que a=q ' Tq est une application continue de K x K dans K.

4. Si A, ue M (K) et feC(K) alors

son(F) = [ [ £ @tk k) da (k) duer). (1)

KxK

o permet de définir une application u: C(K)—C(K x K) a savoir u( f ) =fo pour tout
feC(K). u est ainsi une application linéaire continue du Banach C(K) dans le Banach
C(Kx K). Par conséquent la transposée 'v de u est une application continue de
M(Kx K) dans M (K), ces deux espaces étant munis de leurs topologies faibles
respectives ([3] chap. 1V, § 4, corollaire de la prop. 6). Si £ =q(k,)®q(k,) avec k;eK,
il est évident que ‘u(&)=T(£). De fagon plus générale, vu la linéarité de T sur PQP,
si £ est le produit de deux mesures positives 4 support fini et de norme non supéri-
eure & 1 (donc £eP®P) on a encore ‘u(&)=T(&). Or d’aprés ([4] chap. III, § 3,
corollaire 2 du théoréme 1) toute mesure positive & est adhérente a I’ensemble des
mesures positives dont le support est fini, contenu dans celui de ¢ et dont la norme
est non supérieure & ||£||. Il résulte de 2. que pour tout 4, ueP T(AQu)="u(AQu); de
fagon plus explicite A*u(f)=A®u(fa) pour tout fe C(K) ou encore (1). La repré-
sentation analogue du produit A*u pour A, u quelconques dans M (K) est alors
immédiate.

Si nous posons a(k,, k,) =k, k, pour k;eK, on munit ainsi K d’une structure de
semi-groupe compact.

5. K est un groupe.

Si K n’est pas un groupe, il existe (c.f. [6] Theorem 9.16) {k,, k,, k3} =K avec
k,#ky et ki ky=k;k; (ou bien k,k,=ksk,). k,#k, entraine q(k,)Aq(k;)=0.
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Pour 4 =¢q(k;)* (‘I(kz) v q(k3)) on a d’une part 4 =g (k,)* (9(k2)+q(ks))=2q(k k;)
et d’autre part, vu 4), A=q(k,)*q(k;) v q(k)*q(ks)=q(k k;)v q(k ks)=q(k k;).
K est donc un groupe.

Supposons que G, et G, soient deux groupes compacts avec M (G,) et M (G,) iso-
morphes, en tant qu’algebres et espaces de Riesz, par une application Q et dont les
cones positifs M *(G,) et M *(G,), munis respectivement de la topologie faible,
soient homéomorphes par cette méme application; posons alors
B;={ueM* (G))| llul =1}. B; est une base compacte du cone M *(G,), et I'on a
B;*B;cB;. 1l est immédiat que Q(B,) est une base du céne M*(G,), et que
Q(By)*Q(By)=Q(By), or d’apres la remarque 2. de la proposition 5, une telle base
est unique donc Q(B,)=B,. Il en résulte I'existence d’un isomorphisme bicontinu de
G, sur G,. En posant G =K on obtient ainsi le résultat annoncé.

REMARQUES.

1. Nous avons utilisé de fagon essentielle la continuité dans les deux variables de
la convolution sur le cone M * (G). Dans le cas d’un groupe localement compact G’
cette propriété est, en général, non verifiée dans M'*(G’) (pour la topologie
o (M'(G’), C4(G"))). Ceci constitue un des obstacles principaux a une extension des
résultats qui vont suivre au cas du groupe localement compact.

2. A la place de ’hypothése 3) on peut, par exemple, imposer celles de la pro-
position 5. Une autre solution consiste & introduire sur Z, conformément a ce que
nous avons annoncé au début, une structure supplémentaire, a savoir une structure
d’algeébre de Banach.

THEOREME 7. Soit Z une algébre localement convexe munie d’'un céne C localement
compact définissant sur Z une structure d’espace de Riesz et d’une norme qui en fait un
espace de Banach. On suppose, en outre, que Z satisfasse aux propriétés suivantes:

1. (x, y)—>x vy est t-continue,

2. T*:Cx C—-C est 1-continue,

3. la norme, dont est munie Z, est sur le cone C multiplicative et t-continue,

4. Z, en tant qu'espace de Banach et espace de Riesz, est un A-L-espace dont la
boule unité est t-fermée.

5. xeC— {0} appartient a une génératrice extrémale du céne C si et seulement si
pour tout y,zeZ l'une au moins des deux conditions x*(yvz)=(x*y)v (x*z) ou
(yvz)xx=(y*x)Vv(z*X) est satisfaite.

Dans ce cas il existe un groupe compact G, déterminé a un isomorphisme bicontinu
preés, tel que Z et M (G) soient isomorphes pour leurs structures respectives d’ A—L-espace
et d’algébre réelle et tel que par cet isomorphisme C et M * (G), muni de la topologie
faible, soient homéomorphes.

11 suffit de montrer que B={xeC | x| =1}, dont nous savons (c.f. Théoréme 4)
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que c’est une base compacte du cone C, satisfait a I’hypothése 3) du théoréme 6. Ceci
est assuré par la multiplicativité de la norme x— | x| sur le cone C.

REMARQUES.

1. On peut vérifier directement que la structure d’4—L-espace introduite fait de Z
une algebre de Banach. 11 suffit de montrer que pour tout x, ye Z|jx* y|| < |lx| - | y]l.
Z étant un espace de Riesz et CxCc=C, on a [x*y| < |x|*|y|. Cette inégalité, jointe
au fait que Z est un A-L-espace, entraine

[xxplll < Mxl*lyll = Nxt- Myl
c’est-a-dire

x*yll < llxl- Nyl .

2. 1l n’a pas été supposé que I'algébre Z posséde un élément unité ni qu’elle soit
munie d’une involution. Il est intéressant de noter que les hypothéses faites, en
particulier 5., assurent I’existence de 'un et de I'autre.
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