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Einbettungen Riemannscher Flâchen in den dreidimensionalen

euklidischen Raum

von Reto Rûedy (Basel)

1. Einleitung

1.1 Problemstellung

Flâchen im Sinne der elementaren Differentialgeometrie kônnen zu Riemannschen
Flâchen gemacht werden, indem man die isothermen Parameter als lokale Koordi-
naten benutzt. Dièse Struktur nennt man die naturliche, weil genau dièse lokalen
Darstellungen winkeltreu sind.

F. Klein warf schon 1882 in seiner Schrift Uber Riemanns Théorie der algebrai-
schen Funktionen undihrer Intégrale das Problem auf, ob sich jede Riemannsche Flâche
konform und bijektiv auf eine solche differentialgeometrische Flâche abbilden lasse.

Der Weg zu diesem uberraschend schwierig zugânglichen Problem wurde durch
die fundamentalen Arbeiten von Teichmûller geôffnet; aber erst um 1960 gelang
der Beweis fur den folgenden Satz:

Einbettungssatz von Garsia. Jede kompakte Riemannsche Flâche ist konform
àquivalent zu einer dijferentialgeometrischen Flâche, die reelUalgebraisch im dreidimensionalen

euklidischen Raum eingebettet ist. (Fur nicht kompakte Flâchen ist das

Problem immer noch offen.)
Garsia konstruiert seine Mo délie, indem er an einer vorgegebenen eingebetteten

Flâche eine endliche Folge von Abânderungen vornimmt: Die Punkte werden bei

jedem Schritt in Richtung der jeweiligen Normalen verschoben. Die Anzahl der
Schritte hângt vom Modul ab, der realisiert werden soll, und ist unbeschrânkt.

Wir werden aber sehen, dass man das Verfahren so modifizieren kann, dass fur
jeden Modul eine einzige Abânderung ausreicht. Fur die Flâchen des Geschlechtes

g 1 wird dadurch der Beweis erstaunlich einfach.
Ferner soll der Einbettungssatz noch auf aile Flâchen mit endlich erzeugter

Fundamentalgruppe ausgedehnt werden : Es wird gezeigt, dass dièse zu vollstândigen
differentialgeometrischen Flâchen konform équivalent sind.

1.2 Begriffe und die Sâtze A und B

Es seien

C die komplexe Zahlenebene,
Rn der n-dimensionale eukjidische Raum,
Ew die n-dimensionale Einheitskugel,
und differenzierbar bedeute immer unendlich oft differenzierbar.
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Définition 1. Eine Riemannsche Flâche ist eine zusammenhângende analytische
zweidimensionale Mannigfaltigkeit.

Définition 2. Eine differenzierbare Abbildung <j) einer Riemannschen Flâche R
in den R3 ist eine Einbettung, wenn sie noch folgende Eigenschaften besitzt:

a) <j) hat in jedem Punkt von R den Rang 2,

b) (j> ist injektiv.
Weitere Eigenschaften der Einbettung, z.B. reell-analytisch, beziehen sich auf die

Abbildung $.

Définition 3. Ist
X(x, y) (xt (x, y)9 x2 (x, y), x3 (x, y)),

eine lokale Darstellung einer eingebetteten Flâche (t>(R), so defïniert die Form

die sog. naturliche Metrik auf <j){R).

Ist auf einer Flâche eine Metrik

ds2 Edx2 + IFdxdy + G dy2 À(x, y) \dz -f ^(x, y) dz\2, z x +

definiert, ist fi differenzierbar und

was mit
M(EG-F2)>0

âquivalent ist, dann besitzt die Beltramigleichung

differenzierbare Lôsungen w, die eine topologische Abbildung w wo X'1 einer

Umgebung U von X(x, y) auf der Flâche in die Ebene induzieren. Dièse Umgebungen
ûberdecken die ganze Flâche. Die so entstandenen lokalen Koordinatensysteme
(U, w) sind analytisch verknûpft und definieren folglich eine konforme Struktur. Die
Metrik stellt sich in diesen Parametern w (und nur in diesen) in der Form

ds2 Xl(w9 w)-\dw\2

dar, d.h. w sind die beziiglich der Metrik ds2 isothermen Parameter.
Aus diesen Tatsachen entspringen folgende Définitionen:

Définition 4. Ist eine Flâche mit einer differenzierbaren, nirgends ausgearteten
Metrik ds2 versehen, so nennt man die oben beschriebene Struktur {((/, w)} die von
der Metrik ds2 abgeleitete konforme Struktur.



Einbettung Riemannscher Flâchen 419

Définition 5. Die von der natiirlichen Metrik einer eingebetteten Flâche abge-
leitete Struktur heisst die natiirliche Sîruktur der Flâche.

Définition 6. Die Riemannsche Flâche, die entsteht, wenn eine eingebettete
Flâche mit ihrer naturlichen Struktur versehen wird, nennen wir eine différential-
geometrische Flâche (DF).

Définition 7. Eine DF heisst vollstândig, wenn bez. der naturlichen Metrik jede
Fundamentalfolge von Punkten auf der Flâche gegen einen Punkt der Flâche kon-
vergiert.

Satz A. Vorgegeben seien

1) eine kompakte Riemannsche Flâche S,

2) eine reell-analytische DF So desselben topologischen Typs,
3) eine Zahl e0 > 0.

z sei ein uniformisierender Parameter, X0(z) eine Darstellung der Flâche So und

N0(z) die positive Einheitsnormale zu So im Punkte X0(z).
Dann gibt es auf So eine reellwertige Funktion h mit den folgenden Eigenschaften :

a) h ist reell-analytisch,
b) \h\<e0,
c) X (z) Xo (z) + h (Xo (z)) • No (z) stellt eine reell-analytische DF S dar,

d) S ist konform âquivalent zu S.

Satz B. Zu jeder Riemannschen Flâche mit endlich erzeugter Fundamentalgruppe
gibt es eine konform âquivalente vollstândige DF.

1.3 K-quasikonforme Abbildungen

Im Hinblick auf unsere Anwendungen beschrânken wir uns auf topologische,
bis auf isolierte Punkte stetig differenzierbare Abbildungen / von Teilbereichen der
Ebene in die Ebene. Ferner nehmen wir an, die Funktionaldeterminante, det (<#*), sei

ùberall positiv, wo sie definiert ist.
Fur solche Funktionen/(jc, y), z x + iy, definieren wir die komplexen Ablei-

tungen/z und/^ durch die Gleichung

df=fzdz+f-zdz.

Dièse komplexen Ableitungen sind mit den gewôhnlichen also durch die Gleichungen

verkniipft. Aus diesen Formeln folgen fast unmittelbar die nachstehenden Bezie-

hungen:
1) /ist genau dann holomorph, wenn/^ 0 ist,

2) 22
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3) (l/zl - |/f|)l«fe| < W\ < (|/z| + |/f|)-|<fe| oder mit Richtungsableitungen ge-
schrieben

Max \dj\ |/J + \ft\, Min \Ô9f\ |/,| - |/f|.

Définition 8. Der Dilatationsquotient der Funktion/an der Stelle z ist die Zahl

Er lâsst sich nach dem vorigen auch durch die folgenden Ausdriicke beschreiben :

MaxIS^/l2

Df{z)=\fT-\h\= ~à*ûn~ ¦

Définition 9. Die Abbildung / heisst im Definitionsbereich G ÀT-quasikonform,

wenn gilt
Dy(z) < K fur fast aile zeG.

Die nachstehenden Eigenschaften folgen wiederum leicht :

2) /ist genau dann holomorph in z, wenn Z>/(z) 1 ist,

3)Df(z)=Df-i(f(z)),
4)Dfog(z)^Df(g(z))Dg(z),
5) Dhofog(z) Df(g(z)), falls /? und g holomorph sind.
Aus 5) folgt, dass die oben definierten Begriffe auch noch sinvoll sind, wenn man

sie auf Abbildungen ûbertrâgt, die auf Riemannschen Flâchen definiert sind, und
deren Bilder in Riemannschen Flâchen liegen.

Schliesslich wollen wir noch |/f| mit Df ausdrûcken: Aus

(D - \Y ^ 2UÀ Y " lf~zl

:l + l/*l det(d/)
folgt

2. Der Satz A fur g 1

2.1 Moduln und Ç-Metriken ds\

Jede kompakte Riemannsche Flâche vom Geschlecht g 1 ist konform âquivalent
zu einer Flâche

• 5 (co) C/{n + m ct> | n, m ganze Zahlen}, Im œ > 0.
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P(co) sei das zugehôrige Parallelogramm mit den Eckpunkten 0, 1, œ, œ + 1.

«(») !-°W
1 + 0)

nennen wir einen Modul von S(œ). Insbesondere ist der Modul £(/) der Kreisring-
flâche mit dem Radienverhâltnis Jl gerade null; denn dièse Flâche So ist konform
âquivalent zu (s. z.B. [15])

C/{n + im\n,m ganze Zahlen}

Die natiirliche Metrik von So hat die Gestalt

dX20(z) *2(z)'\dz\\ z x + iy, 0 ^ x, y ^ 1,

wobei A eine réelle, nach x und y differenzierbare, nirgends verschwindende Funktion
ist.

Mit einer linearen Abbildung/(z) verpflanzen wir die Metrik von P(co) auf das

QuadratP(/):

flihrt 0 in 0, 1 in 1 und / in œ, d.h. P(i) in P(œ), also S(i) in S(a>) ùber. Versehen wir
daher So mit der von der Metrik

abgeleiteten Struktur, so bildet/dièse neue Flâche S0(ds2) konform auf S(co) ab.

SQ(ds2) besitzt folglich den Modul £.

Die naturliche Metrik der abgeânderten Flâche S in Satz A wird die Gestalt

(dX)2 (dX0)2 + {dhf + 2hdX0 dN0 + h2 JN0)2

aufweisen, da Nq 1, N0^N0 No dX0 0 ist. Da aber h sehr klein sein muss, haben

wir auf der rechten Seite im wesentlichen nur

Daher wollen wir auch ds2 in dieser Weise aufspalten:
Mit den Bezeichnungen

und mit der Vorzeichenwahl
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erhalten wir (dz2 dx2 — dy2 + 2idx dy)

y^ds2=y^2(z) t\dz\2(l + |£|2) + ({ + l){dx2 - dy2) -2idxdy(t ~
und wegen

Ref) rfx2 + 2(|{| - Re£) «// + 4

z|2 + « + l)(dx2 - dy2) - 2/(É -
die gesuchte Zerlegung

2.2 i)er Verzerrungssatz fiir g 1 (s. [5], [6])

In diesem Abschnitt reproduzieren wir einen Satz von Garsia und den Beweis

in einer leicht abgeânderten Form.

VORAUSSETZUNGEN.

1) f:S0(ds2)-+S' sei eine topologische, À^quasikonforme Abbildung der Rie-
mannschen Flâche S0(ds2) mit dem Modul £, auf die Riemannsche Flâche 5" mit dem

Modul £'.
2) Ist X0(z) die konforme Abbildung von P(i) auf S0(\dz\% so sei

D/(x0(z))<l + r/D, VzeP(ï)-F9
und fiir den euklidischen Flâcheninhalt von F gelte

\F\<rjF.
Behauptung.

Bemerkung. Oberraschend ist, dass in dieser Formulierung £ in der rechten Seite

gar nicht auftritt. Im Falle g > 1 hingegen werden wir erst dann eine solche Gleich-
mâssigkeitsaussage erhalten, wenn wir in der Voraussetzung £ auf ein Kompaktum
einschrânken.

Beweis. Wir wâhlen die uniformisierenden Parameter so, dass die von/induzierte
Abbildung/von P(œ) in die Ebene C die folgenden Eigenschaften besitzt:

f(z + 1) f(z) + 1, /(z + œ) /(z) + cd', Ima/ > 0,

wobei £' ^(œ') ein Modul von S'ist. Der Flâche F auf P(i) entspricht eine Flâche

F' auf P(co) mit dem Inhalt
\F'\ \F\-lmco.

Es ist wegen der obigen Relationen

co-cû'= f(z)dz,
ôP(a>)
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- die ûbrigen Terme der Randintegration heben sich gegenseitig weg - und nach
dem Satz von Stokes

0) -co'= J d(/(z) dz) j 2 ifgdxdy + J 2if-zdx dy.
P(o>) P(o>)-F' F'

Die beiden Intégrale lassen sich mit der Ungleichung von Cauchy-Schwarz und
der Gleichung fur |2/f|2 am Schluss von 1.6 so abschâtzen:

P-F' P-F'

— l)2

J
F'

2if~zdxdy < r\F imo-K-lmw

Daraus aber folgt

/+

(i-

(o i -
co / H

Imcw ^
f o»)-(i

-co'

-œ'

/im
+ a»')

2(œ' -ca)

denn fur Im z > 0 ist ja

2.3 Der Kontinuitàtsschluss

Ç'(Ç) bilde die «-dimensionale Kugel M mit dem Zentrum <^0 und dem Radius s

stetig in den Rw ab, und es gelte

Dannliegt <Jo in ^'(
Fur g 1 brauchen wir nur den Fall « 2 zu untersuchen. Hier aber geht der

Beweis aus einigen elementaren Eigenschaften der Umlaufszahl U(F, z) eines stetigen
Zyklus F um einen Punkt z hervor. Es ist nâmlich zufolge der Voraussetzungen ûber

ferner gilt

da Ç'(dM) in ^'(M) auf den Punkt ^'(^0) zusammengezogen werden kann. Folglich
ist ÇoeÇ'(M). Einen Beweis im Falle «>2 findet man z.B. in [9], p. 75, Ex. VI,2.
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2.4 Die Stabilitàt dijferentialgeometrischer Flâchen

Lemma 1. Mit den Bezeichnungen von Satz A gibt es zu jeder Flâche So ein et > 0

derart, dass fur aile auf So reell-analytischen Funktionen h mit

IfcKe,
S eine reell-analytische DF ist.

Beweis. Mit X0(z) ist auch N0(z), die Normalenfunktion, und damit auch

X(z) X0(z) + fc(z)-N0(z)
reell-analytisch.

Als nâchstes wollen wir zeigen, dass der Rang stabil bleibt, d.h.

"ôX0 dh

dx dx °

Rang
dx

2 fur \h\ < ei

dy dy dy

Dieser Rang ist genau dann 2, wenn die Summe £ der Quadrate aller zweireihigen
Unterdeterminanten nicht null ist. £ lâsst sich aber mit Hilfe von Vektor- x und
Skalarprodukt leicht berechnen:

+/>.
ôX0 <5NO\\2

ôh ôh

Fur a 0 ist

da die weggelassenen Vektoren senkrecht auf dem ersten Summanden stehen und
den Betrag deshalb hôchstens vergrôssern wiirden. £0 wird aber nie null, da die

Abbildung Xo ùberall regulâr ist, und besitzt als stetige Funktion wegen der Kom-
paktheit von So ein positives Minimum <5.

Ferner ist ^ eine stetige Funktion von (z, a) auf So x [— 1, +1], also auf diesem

Kompaktum gleichmâssig stetig. Insbesondere gibt es ein el>0 derart, dass

Fur \h\ <st ist daher:^ >ô/2 und folglich der Rang der Abbildung X(z) zwei.
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Um einzusehen, dass X(z) schlicht ist, bemerken wir, dass die Abbildung

(x, y, a) -? Xo(x, };) + aN0(x, y)

in jedem Punkt (x, y, 0) regulâr ist, da ja die drei Vektoren

dX0 ÔX0

dx oy

linear unabhângig sind. Daraus folgt die Behauptung lokal sofort. Die globale Aus-

sage schliessen wir wieder aus der Kompaktheit von So.

2.5 Die Abànderungsfunktion h0

Wir wollen die Eigenschaften, die die Funktion h aus Satz A erfûllen musste,
zusammenstellen: Sehen wir von der Funktion À ab, so kônnen wir aus den Abschnit-
ten 1 und 4 dièses Kapitels schliessen:

2) \h\<el9
3) h ist differenzierbar,
4) h ist eine Funktion auf So.

Aus 1) folgte h=cc-x + fï-y, was natiïrlich 2) widerspricht. Deshalb mùssen wir
die globale Linearitât fallenlassen und fur h eine stiickweise lineare Funktion an-
setzen. Am einfachsten geht dies, wenn wir auf eux + fiy eine Sàgezahnfunktion mit
der Steigung ± 1 anwenden. Der Vorzeichenwechsel ist fur die Bedingung 1) glùck-
licherweise belanglos. Hingegen wird bei den Spitzen 3) verletzt, was sich durch ein

Glâttungsverfahren aber leicht gutmachen lâsst. Dabei wird aber wieder 1) verletzt

was jedoch nach dem Verzerrungssatz nichts ausmacht, wenn die Flâche, auf der

dies geschieht, genûgend klein bleibt. Bedingung 4) erzwingen wir dadurch, dass wir
h in einer Umgebung des Randes von P{ï) null setzen und wieder glâtten.

Wir benôtigen also zwei réelle differenzierbare Funktionen mit den folgenden

Eigenschaften: Es sei r\ < \,

a)
fO fur

fur
c) fin(l - x) ^(x)

a) \$n(x)\ ^ 1

— x fur l+rç<x<3 — y\

c) vJx-
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Es gilt fur
F, {(*, y) KOO^OO # 1, 0 < x, y < 1}

My<4ij
und fur

{(*, y) I *,2 (*[«<* + j^y]) * 1,0

<2ij fur N

denn Fv besteht aus dem Durchschnitt von P(ï) mit den parallelen, âquidistanten
Streifen, die durch die Ungleichungen

1 -rj + 2m^ N(aiçx + fiçy)^ 1 + rj + 2m, m 0, ± 1,...

definiert sind. Die Breite der Streifen verhâlt sich zum Abstand der Mittellinien
zweier benachbarter Streifen wie rç:l; \FV\ kann sich daher von rj hôchstens um die
Flâche |Fj| eines Streifens in P(ï) unterscheiden; dièse ist kleiner oder gleich dem

Minimum des Schnittes des Streifens mit der x-Achse oder der j-Achse, also (s. III)
2rç 2rj 1

|F1 < K " '
Im Beweis werden wir { auf eine kompakte Menge McE2, die den Nullpunkt
nicht enthâlt, beschrânken. Daher kônnen wir die Bedingung N>y/2ls/\£\ durch
N > NM ersetzen. Es ist also

\F\ <\Fn\ + \FV\ <6*1 VN>NM.

Wir definieren fur (x, y)eP(i), ÇeM, N>NM

Es ist

dh0 X • \i^ (x) • \in (y) - vn [N (a^ x + pç yj] (a^ dx

wobei O(l/N) fur N-* oo auf P(ï) x M gleichmâssig gegen null geht; denn aile darin
vorkommenden Funktionen sind auf diesem Kompaktum stetig und enthalten den

Faktor 1/N.
Vergleichen wir dièses Ergebnis mit der Schlussformel von Abschnitt 2.1, erhalten

wir

Lemma 2. Fur die Funktion h0 gilt

N) dsl auf P — F,
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\F\<kM-n fur N>iVM,

wobeikM und NM nur vont Kompaktum M abhângige Konstanten sind und R(rj; N)fiir
jedesfeste rj mit N->oo beliebig klein gemacht werden kann.

Bemerkung. Das Symbol R(xu...,xn; nl,...,nm) soll, ausfiihrlich beschrieben,

folgendes besagen: Zu jedem System (s, xl9..., xn), e > 0, kann man zuerst nu hierauf
n2 usw. so gross wâhlen, dass die zur Diskussion stehende Ungleichung richtig wird,
wenn man R durch s ersetzt.

2.6 Eine Approximation von h0

Lemma 3. Giltfiir die Funktionen hn(x, y, Ç) und ihre ersten Ableitungen
a) sie sind stetig aufdem Kompaktum So x M,
b) sie streben fur jedes feste Ç gleichmâssig gegen h0 bzw. dho/dx, dho/dy,

dann ist
\dh2n - dh20\ < R(rj, N; n)-^2,

wobei R(t]9 N; n)fur n -> oo beliebig klein gemacht werden kann.

Beweis. Aus b) folgt, dass die Ungleichung fur jedes feste £ £0 gilt. Wegen a)

gilt sie dann auch noch fur eine ganze Umgebung von £0. Die globale Aussage folgt
nun wiederum aus der Kompaktheit von M.

Die n-ten Partialsummen der zweifachen Fourierreihen der Funktionen ho(x, y;
Ç, N) erfûllen bekanntlich aile Vorzussetzungen von Lemma 3.

2.7 Vergleich der Metriken dX\ und ds\

Lemma 4. Die naturliche Metrik der Flàche

X?(x, y) X0(x, y) + hn(x, y; Ç, N)-N0(x, y)

befriedigt folgende Relationen:

su

a) ilm

und zwar gleichmâssig aufP,

^ 1 + Ri{fl.Ntn) auf P.F
mf(dXlldsl)^\4yi + R2(ri;N,n) auf F,

falls ^ demfest vorgegebenen Kompaktum M angehôrt, wobei die Konstanten Rt und

R2fur einfestes n und genûgend grosse N und n beliebig klein gewâhlt werden kônnen.
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Beweis. Aus Nj 1, NodNo NodXo 0 folgt

</X* dX* + dh2 +2hn dX0 dN0 + hl dN2.

Dieser Ausdruck ist aber stetig auf dem Kompaktum P x M, womit a) sofort folgt.
(Es ist sogar: dX\m-+dX\).

Da h0 fur N -? cxd beliebig klein gemacht werden kann und /*„ gleichmâssig gegen
/z0 strebt, ist

|dX| - dh2n - dX20\ ^R(rj;N,n) ds2.

Zusammen mit Lemma 2 und 3 folgt

dX2 dX20 + dh2n „.sup —2 < sup ——-— +R(rj;N,n)
<p ds4 ç> dsç

< sup—^y--0 + R(q, N; n) + R(rj: N, n)
S

:N, n);

nf-Xl^inf^-R(^:N,n)
(p US? (p ClSx

Iinf72

>

ausserhalb F F^uFv gilt sogar

dX2
inf T2 > y« ~ R(K N) - Rfa N; n) - R(rj;N, n).

ds\

Daraus folgt b) aber unmittelbar.

2.8 Der Beweis von Satz A (fiir g l)
(Als Ausgangsflâche So in Satz A nehmen wir die zu

C/{n + i m)

âquivalente Torusflâche mit dem Modul Ç(S0) =0. Fur jede andere Flâche geht der
Beweis natûrlich ganz analog.)

Es sei £0 # 0 ein beliebiger Modul: Wir wollen eine Flâche S mit dem Modul £0

konstruieren.
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Wir setzen dazu

s

M

K

1

~
2

{(

3

8

Min(l -
si IS "~ SO

9

und wâhlen 5>t]D>0 und rçf > 0 so klein, dass in der Behauptung des Verzerrungs-
satzes

wird (z.B. rjD a, rçF e2/A^ e3/3).

(Da M mindestens eine der beiden Halbachsen x >0 oder x ^ 0 meidet, kônnen
in 2.1 die Funktionen a^ und j9§ so gewâhlt werden, dass sie auf M stetig sind und die

Gleichung
sgn(a$/y sgn(Im£)

erfùllt ist.)
Fur 7(« (1-|£|)-2 giltauf M

Uni die Funktionen /^ und v^ festzulegen, wâhlen wir rj so klein, dass in Lemma 2

\F\ < f]F

wird.
Schliesslich miissen wir noch N und n angeben, um die gesuchte Abânderungs-

funktion hn definieren zu kônnen: Zuerst wâhlen wir

No>^^ -Max
Min(e1,60) zep

wobei st die Konstante aus Lemma 1, £0 ^e Konstante aus Satz A und À\dz\2 die

natiirliche Metrik von So ist. Dann nehmen wir N> No + NM und schliesslich n so

gross, dass fiir die in Lemma 4 vorkommenden Symbole i?t und R2

gesetzt werden darf.
Die Flâchen

X({, x, y) X0(x, y) + hH(x9 y, {)-N0(x, y),
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sind jetzt vollstândig bestimmt und stellen nach Lemma 1 reell-analytische ç

dar. Der Modul Ç'(Ç) von S% ândert sich nach Lemma 4 a) stetig; denn die Abbildung

durch gleiche Parameter ist topologisch und quasikonform mit dem Dilatations-
quotienten

sup (dX2JdX2)
n2 »

fm i

was fast unmittelbar aus der Définition des Dilatationsquotienten folgt. Dfm strebt
daher fur Çm-+Ç gleichmâssig gegen 1, woraus mit Hilfe des Verzerrungssatzes
foF =0) die Beziehung É'(«J-+É'(O folgt.

Wendet man dieselbe Ûberlegung auf die Abbildungen

durch gleiche Parameter an, so folgt aus Lemma 4 b) und unserer Wahl der Kon-
stanten

1 + rjD < 6 < K auf P - F
3

X auf P

\F\<r,F,

also aus dem Verzerrungssatz

Damit erfiillt £>'{£) die Voraussetzungen des Kontinuitâtsschlusses; also besitzt fiir
einen gewissen Modul ÇteM die Flâche Sçl gerade den Modul ^0. Da 0 der Modul
von *S0 und £0 ^ 0 beliebig war, ist damit Satz A (fur g 1) vollstândig bewiesen.

3. Der Satz A fik g > 1

3.1 Der Teichmullerraum Tg(S0)

Die Paare (S,f) sollen aus einer kompakten Riemannschen Flâche S vom Ge-

schlecht g und einer topologischen Abbildung/der festen Flâche So auf S bestehen.

In der Menge ail dieser Paare fiihren wir folgende Âquivalenzrelation ein: (S,f)~
($l9fi), wenn S durch eine zu/io/ ~x homotope Abbildung konform auf Sx abgebildet
werden kann. Die Âquivalenzklassen bezûglich dieser Relation sind die Elemente

des Teichmûllerraums Tg(S0). Jeder Flâche S entsprechen dabei mehrere Elemente

des Teichmullerraums, was aber fur unsere Zwecke belanglos ist.
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Ein Satz von Teichmûller besagt, dass es zu zwei Elementen (Sl9fl) und (S2,f2)
aus Tg genau eine quasikonforme Abbildung gibt, fur die

sup Df Kf, R : regulâre Punkte von /,
zeR

in der Homotopieklasse von f2ofîi minimal ist. Fiir dièse extremale Abbildung ist

Df konstant. Dies niitzte Teichmûller zur Définition einer Metrik Tg aus: \ogKf
heisst die Teichmiiller-Distanz von (Si9fl) und (S2,f2).

Wir wollen noch angeben, wie Tg mit den quadratischen Differentialen zusammen-
hângt, und wie man Tg mit der n (6 g — 6)-dimensionalen Einheitskugel En identifi-
zieren kann:

{(t>i}ï= i sei eine Basis der holomorphen quadratischen Differentiale der kompakten
Flâche »S0 iïber R1 ; z sei ein uniformisierender Parameter, der im folgenden immer
beibehalten wird (zeE2). (£i,..., {„) seien komplexe Zahlen mit der Eigenschaft

Wir setzen

und

0 =_ \ ^0 =(pdz\ zeE

wobei, was hier noch keine Rolle spielt, X2\dz\2 die natûrliche Metrik dXl der Flâche

50 aus Satz A ist. Ausser bei den Nullstellen Pt von <j>ç ist t/^2 regulâr und uberall

gilt
dx2-|i-i^ii2<^2-^^xMi + i^n2.

Wir versehen
4g-4

mit der zu ds\ gehôrigen Struktur. È0(ds\) lâsst sich aber durch Hinzufiigen der Pt
wieder zu einer kompakten Riemannschen Flâche vervollstândigen; denn fiir die

Dilatation Dl der identischen Projektion /von S^{ds\) auf S0(X2\dz\2) gilt

sup(ds2/l2\dz\2) 2

D2 _^ V^J^Ii _ K2
1

inf\dsllk2\dz\2) (\-W
<p

Ist Ut eine zum Kreis \z\ < 1 konform âquivalente, keine weitere Nullstellen ent-
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haltende Umgebung von Pt auf So S0(À2 \dz\2), so wird

durch / X-quasikonform auf

abgebildet und ist deshalb auch konform âquivalent zu einer einfach punktierten
Kreisscheibe. (s. z.B. [11]).

Wir ordnen £ das Elément aus Tg zu, das durch (S0(ds2),I) repràsentiert wird.
Liegt (S,f) in dieser Klasse, so nennen wir £ einen Modul von S; So selbst erhâlt den

Modul 0. Man kann aus den Teichmùllerschen Resultaten folgern, dass Tg so topo-
logisch auf E" abgebildet wird. (s. [1], [2]).

3.2 Der Verzerrungssatz

Die Flâche So sei konform âquivalent zum Poincaré-Modell E2/G. (E2 ist die
universelle Uberlagerungsflâche von So, G die zugehôrige Gruppe der Decktransfor-
mationen.) P sei ein Fundamentalbereich von G mit einer stiickweise stetig differen-
zierbaren Randkurve (z.B. ein Fricke-Polygon). Im folgenden werden wir den Punkt
X0(z)eS0 mit dem zugehôrigen Punkt zeP identifizieren.

VORAUSSETZUNGEN.

1) Jedem f des Kompaktums M<=E6g~6 sei eine Abbildung/* von S0(ds2) auf
eine Riemannsche Flâche S'(Ç) zugeordnet.

2) fç sei iT-quasikonform, d.h. topologisch, fast ûberall stetig differenzierbar,
orientierungstreu und fast iiberall sei der Dilatationsquotient Dyç(z) ^ K.

3) Auf P- F sei sogar

und fur den Flâcheninhalt von F gelte

|F|<ijf.
Behauptung.

Fur den Modul Ç von S'(£) gilt die Abschâtzung

|<T - É| < FL;(M fyD + F2(M, K; rjF)),

wobei die Symbole Ft und F2 folgende Eigenschaften besitzen (vgl. die Bemerkung
am Schluss von 2.5)

a) Ft (M; ô) -> 0 fur jedes feste M, wenn <5 -* 0;
b) F2 (M, K; t]F) -> 0 fur jedes feste M und K, wenn rjF -> 0.

Fur den Beweis verweisen wir auf [6], S. 100.

3.3 Die Metrik ds2

Ganz analog und aus demselben Grund wie im Fall g 1 (vgl. 2.1) wollen wir
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die schon in 3.1 definierte Metrik ds\ geeignet in zwei Summanden zerlegen. Es ist

ds\ l\z\\dz + ^dz\2, ^ If | ^ |^| |{|.
\(pt\

Mit /7(^) bezeichnen wir die folgende Menge:

Auf n(Ç) ist t/s| reell-analytisch und wir setzen

In jeder Zusammenhangskomponente von FI(Ç) lassen sich stetige réelle Zweige a5

und /?,* derart finden, dass

sgn (a5 /^) sgn (Im ^), ^ > 0,

gilt. Dieselbe Rechnung wie in 2.1 liefert

y, ds2t A2 (z) (|<fc|2 + (a4 rfx + j84 ^)2).

3.4 D/e Hilfsfunkiionen \in und nn>

Im Gegensatz zum Fall g 1 sind o^ und ^^ keine Konstanten mehr, sondera
Funktionen von z, die noch nicht einmal auf ganz P definiert sind. Die Bestimmung
von h lâuft andrerseits auf die Lôsung einer Differentialgleichung hinaus, in welcher

o^, flç und ihre Ableitungen als Koeffizienten auftreten. Da schon im vie leinfacheren
Fall g 1 aile Abânderungen sorgfàltig kontrolliert werden mussten, wird es jetzt
darauf ankommen, a5 und fi^ so auf ganz P fortzusetzen und zu glâtten, dass sie

mitsamt ihren Ableitungen môglichst wenig verândert werden. Dazu bedarf es einiger

Vorbereitungen.
<X£ und fiç sind auf

noch nicht definiert. Wir betrachten <p$(z) als Funktion von (z, £), nennen sie deshalb

(p(z, £), und stellen ihre fur uns wichtigen Eigenschaften zusammen:

a) <p(z, Ç) und d/dz<p(z9 Ç) q>'(z, £) sind stetig auf E2 x E", n 6g - 6,

P) Fur jedes feste £eE" - {0} ist <p(z, Ç) holomorph und nicht konstant in E2.

Lemma 5.

àndert sich stetig mit Ç, wennjede a-Stelle mit ihrer Vielfachheit gezâhlt wird.
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Beweis. Ist z0 /i-fache a-Stelle von cp(z, £0) und K irgendein Kreis um z0, in
dessen Huile keine weiteren a-Stellen mehr vorkommen, so wird also behauptet, es

gâbe eine Umgebung U von £0 derart, dass (p(z, Ç) in K fur jedes ÇeU «-mal den

Wert a annimmt. Dies folgt aber leicht aus dem Umlaufsprinzip.

Lemma 6.

a) Nç ândert sich auf jedem Kompaktum ^cE2 stetig mit Ç, d.h. zu jeder
Umgebung U von NçonKistfiïr eine ganze Umgebung U' von Ç.

b) Ist McEn kompakt, so gibt es zu jedem n>0 ein ô>0 derart, dass der

InhaltvonKnN^S),
N4(ô) {z | Distanz(z, AQ < 0}

fiir aile Ce M kleiner als n wird.
Dièse Aussagen folgen leicht aus der Kompaktheit von K bzw. M und aus der

Stetigkeit bzw. der Holomorphie von (p.

Lemma 7. KczE2 und McE" seien kompakt. Zu jedem ô>0 gibt es dann endlich
viele réelle Zahlen x1,x2,.*.,xN mit derfolgenden Eigenschaft: Fiir

,5)= U {z\ \z - ztJ\ < 0}

gilt

Auch dies folgt leicht aus der Kompaktheit von M und den Lemmas 6 und 6a.

Nach diesen Vorbemerkungen wollen wir die Abânderungsfunktionen fi, nn und

\in> konstruieren:
P sei der Fundamentalbereich aus Satz A.
Die Funktion /i(z)>0 sei C00 in C, identisch 0 auf einer Umgebung Ut von

C — P und identisch 1 ausserhalb einer weiteren Umgebung U^>UX von C — P,
WObei

sein soll.
Die Funktion z(x) sei fur x > 0 C00 und es gelte

Zu K P und einem vorgegebenen Kompaktum M c E" wâhlen wir nach Lemma
6 b) ein ô' > 0 mit der Eigenschaft

\Nt(S')nP\<til2;
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und zu
ô i Mm (5', Distanz(dP, C - Ut))

bestimmen wir nach Lemma 7 geeignete Zahlen xu ,xN mit

U
und setzen

Es

a)

b)
c)

d)
a)

gilt.

|F|<
£)=1

und c) sind

auf U U(xl9 {, 5),

auf P — F mit F (N^(5') nP) u

auf C x M stetig.
klar, wahrend b) aus ô < \è', also

{z\\z-zlJ\ô-1<2}czN4(ôf)
sofort folgt. Nach Lemma 5 smd die in der Définition von iin auftretenden Faktoren
auf C x M stetig In U1 ist yin 0, ist aber z0 m C — l^, so ist fur allez mit \z — zo\ < ô

hochstens dann

T(|z-z,/.a-Vi,
wenn

|ziy - zo\ < |zt/ - z| + |z - zo| < 3d ^ Distanz(z0, dP)9

d.h. ztJGP ist, also nur fur endlich viele ztJ Bei z0 ist also \in das Produkt endhch
vieler stetiger Funktionen und folghch selbst stetig, womit auch d) gezeigt ist.

Analog konstruieren wir eme Funktion fin (z, Ç), die ebenfalls in einer Umgebung
von (C — P) u Nç verschwindet, aber zudem hochstens dort nicht identisch 1 ist, wo
Ai,=Ogdt: l-ft,(z) 0, falls /i,(z)^0.
3 5 Die Losung einer Differentialgleichung

Wir setzen z x + ly (je, y) und

womit a^ und j8$ auf ganz R2 defimert und differenzierbar smd und die Beziehungen
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gelten; ferner sei

a* f
/dp, d&.\ 1

*

Wir wollen die Differentialgleichung

— (x, y, Ç) + a(x, y, Ç) (x, y, £) 6(x, .y, £),
dx cty

m(0,3;, £) 0 fiir (^Qe^xM
lôsen.

Fur jedes Paar 0>0 Ç) besitzt die gewôhnliche Differentialgleichung

genau eine Lôsung. Ausserdem ist j*(x, j0, ^) stetig in R2 x M und nach x und y0
differenzierbar (s. [13], p. 70). Dasselbe gilt auch fur die Funktion

Die Abbildung g:R2 x M-»R2 x M

g(x> yo, 0 (x, y0 + y*(x, y0, il £) (x, y(x, y0, Ç), Ç)

ist stetig in R2 x M und bijektiv, wie man leicht nachpriift, also nach dem Satz von
der Gebietsinvarianz auch topologisch.

Die Funktion
M u*og""1:R2 xM-^R1

ist die Lôsung der urspriinglichen partiellen Differentialgleichung und sie ist fur ein

festes Ç nach x und y differenzierbar (s. [13], p. 173). Aus den vorhergehenden Ûber-

legungen folgt, dass u in R2 x M stetig ist und daher auch auf E2 x M beschrânkt:

\u(x9y90\<u0 V(x,j;,0eE2xM.

3.6 Die Abânderungsfunktion ho(z, Ç, rj, N)

ist auf Grund obiger Differentialgleichung ein geschlossenes Differential und folglich
auf E2 exakt; d.h.

wobei k stetig auf E2 x M und differenzierbar in x und y ist.
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Wir setzen (vgl. 2.5)

9 V\ «. N) ~ k{x9 y) ^(x, y, Q ^'-o-"0 v,[iVfc(x, y,
1

N
und finden wie in 2.5

Wir mùssen uns noch davon uberzeugen, dass der Inhalt der Flâche

F {(x, y) | (x, ^)eP, ^(x, y, Ç)-v2n [Nk(x, y, 01 * 1}

unabhângig von N und Ç beliebig klein gemacht werden kann. Nach der Konstruktion
von \in ist dies nur fur die folgende Teilflâche FxczF nicht selbstverstândlich:

DieAbbildung *,(,,,) (*,*(*.*«))
bildet P schlicht in die Ebene ab, da auf P

dk

dy

ist. Die Funktionaldeterminante von 0^

det(J^) e"0""^ > 0

ist im Kompaktum P x M stetig, und folglich gilt

PxM

Da die Funktion k in P x M beschrânkt, < R, ist, ist auch

also beschrânkt. Fur den Inhalt der horizontalen, âquidistanten Streifen der Breite

2ri/N, aus denen sich ^(F^ zusammensetzt, erhâlt man die Abschâtzung

- J

Die Resultate von 3.3 und 3.6 kônnen wir so zusammenfassen:
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Lemma 2 in 2.6 gilt auch im Fall g > 1. (Die Bedeutung von hOi À, P,... ist jetzt
natùrlich eine andere als im ursprùnglichen Lemma 2.)

3.7 Eine Approximation von h0 (vgl. 2.6)

Statt der Fourierentwicklung beniitzen wir im Fall g > 1 die Entwicklung nach
den Eigenfunktionen von

Au + Au 0,

wobei A der Laplace-Operator auf der Flâche S0(À2\dz\2) sein soll. Die Vorausset-

zungen a) und b) von Lemma 3 sind fiir die w-ten Partialsummen der Entwicklung
von h0 bekanntlich erfullt.

3.8 Der Beweis von Satz A (vgl. 2.%)

Lemma 4 folgt allein aus Lemma 2 und Lemma 3, gilt also auch fiir g > 1.

Ebenso kann 2.8 wôrtlich ubernommen werden, wenn man nur die eingeklammer-
ten Zusâtze ûberspringt.

4. Der Satz B

4.1 Die Flàchen mit endlich erzeugter Fundamentalgruppe

Eine Flâche vom Geschlecht g mit m parabolischen und n hyperbolischen Enden
heisse vom Typ (g, m, n). Zwei Flàchen mit endlich erzeugter Fundamentalgruppe
sind genau dann quasikonform équivalent, wenn sie vom selben Typ sind. (Dies folgt
z.B. aus den Betrachtungen des nâchsten Abschnittes.)

In den folgenden Spezialfâllen sind Flàchen vom selben Typ schon konform
équivalent :

(0, i, 0), i=0, 1,2, 3: /-fach punktierte Kugel,
(0, i, 1), i=0,1 : /-fach punktierter Kreis.
Wir wollen jeden Typ durch eine YDF (vollstândige differentialgeometrische

Flâche) reprâsentieren. Fur die obigen Fâlle ist damit Satz B schon bewiesen.

Die Ebene ist die einfachste VDF vom Typ (0, 1, 0). Flàchen vom Typ (0, 0, 1)

wurden in Arbeiten von Osserman, jenkins und H. Huber (s. [8]) konstruiert, wobei
sich die letzteren durch besondere Anschaulichkeit und Einfachheit auszeichnen.
Sie liegen nâmlich schlicht ùber der Ebene, kônnen also in der Form

X(x,y) (x,y,f(x,y))

dargestellt werden; und/hat u.a. die folgenden Eigenschaften:
a) /ist differenzierbar,

c) \f(x,y)\<lV(x,y)eR2.
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Eine solche Flâche werde ich im folgenden Standardflàche vom hyperbolischen
Typus nennen.

Als Standardtyp F(g, 0, 0) einer VDF vom Typ (g, 0, 0) wâhlen wir die Einheits-
sphâre mit g Henkeln, die aile im untern Halbraum {(x, y, z) \ z < 0} liegen sollen.

F(g, 1, 0) erhalten wir, wenn wir aus F(g, 0, 0) die Punkte in

herausnehmen und den Rest durch ein Zylinderstiick mit

{(x, y, z) | (x - l)2 + y2 > -fV, z 2}

verbinden und die so erhaltene Flâche glâtten. Klebt man auf die gleiche Weise auf
F(g, 0, 0) statt einer Ebene eine in Richtung der positiven z-Achse verschobene
Standardflàche vom hyperbolischen Typus, so erhâlt man ein Modell von Typ (g, 0, 1).

Um ein Modell vom Typ (g, m, ri) zu konstruieren, muss man also auf F(g, 0, 0)

m Ebenen El9...9Em und n Standardflâchen vom hyperbolischen Typus /fm + 1,...,
Hm+n setzen, indem man sukzessive jede dieser Flâchen auf das im vorigen Schritt
entstandene Gebilde tiirmt; die zylindrischen Verbindungen werden am oberen Ende
also von

r / (— 1V\2 1

(x, y, z) | x + + y2 -, z 2j\ 2 / 16

berandet. Die so aufgebaute Flâche ist frei von Selbstdurchdringungen und soll es

auch nach der Glâttung sein.

Die so entstandene VDF vom Typ (g, m, ri) nennen wir im folgenden So.

4.2 Der zu S gehôrige Teichmullerraum

Koebe zeigte, dass jede Flâche S vom Typ (g, m, ri) konform auf ein Teilgebiet
einer kompakten Riemannschen Flâche abgebildet werden kann, dessen Rand aus

m isolierten Punkten und n analytischen Jordankurven besteht.

Ahlfors zeigte in [1], wie sich die Teichmùllerschen Sâtze auch auf berandete

Flâchen mit endlich vielen analytischen Randkurven und endlich vielen ausgezeich-

neten Punkten ûbertragen lassen.

Mit diesen Resultaten werden wir im nâchsten Abschnitt den Beweis von Satz A

so modifizieren, dass er zu einem Beweis von Satz B wird. In diesem Abschnitt
skizzieren und ergânzen wir noch die Uberlegungen von Ahlfors :

S und S'o seien Teilgebiete vom Typ (g, m, ri) von kompakten Flâchen mit den

m isolierten Randpunkten pt bzw. p\0) und den n analytischen Randkurven yt bzw.

y\°\ Durch Hinzunahme der Randpunkte und Verdoppelung ûber die Randkurven
erhalten wir fur n # 0 zwei kompakte Flâchen £,£q mit je 2m (fur n=0:m) ausge-

zeichneten Punkten, die den isolierten Randpunkten entsprechen. J bzw. Jo sei (fur
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n # 0) die antikonforme Abbildung, die jedem Punkt sein Doppel zuordnet. Das
Geschlechtg von S und S'oi$t2g + n — l. Der einfacheren Darstellung wegen treffen
wir noch folgende Vereinbarung: Durch éventuelle Auszeichnung weiterer Punkte
soll erreicht werden, dass die Anzahl N der ausgezeichneten Punkte auf jeder Hâlfte
von S und S'o gerade und die Gesamtanzahl grôsser als 8 — 4n wird.

Schliesslich gehen wir zu den zweifachen Ûberlagerungsflâchen von S und S'o

ûber, deren Verzweigungspunkte gerade die ausgezeichneten Punkte sind. Wegen

unserer Vereinbarung ist das Geschlecht g dieser Flâchen § bzw. S'o grôsser
als 1:

Fur n #0 seien 3 bzw. Jo je eine der durch J bzw. Jo induzierten antikonformen
Abbildungen von S bzw. S'o auf sich.

z sei ein uniformisierender Parameter von $'o (zeE2), G2 sei die Gruppe der
linearen Transformationen, die der Deckgruppe von §'o entspricht, G die Obergruppe
von G2 der Decktransformationen von E2 ûber S'o: [G:G2] =2. Jo sei eine antikonforme

Abbildung von E2 auf E2, die Jo entspricht.
Ahlfors zeigt:
a) Es gibt genau eine extremale quasi-konforme Abbildung

b) Zu/gehôrt ein bis auf einen positiven Faktor eindeutig bestimmtes holomor-
phes quadratisches Differential $ cp{z) dz2 und eine Konstante k, 0 < k < 1, derart
dass

7Z 2\

M
konform ist.

c) Es gelten fur dièses Differential die Gleichungen

d) /induziert eine konforme Abbildung von S auf

ç ^
dz + k --, dz

M

Die holomorphen quadratischen Differentiale auf §f0 mit den Eigenschaften in
c) bilden einen endlich-dimensionalen reellen Vekktorraum Q mit einerBasis$l9...,
0r. Wir kônnen also auch fur die Flâchen vom Typ (g, m, n) wie in 3.1 einen Teich-
mûllerraum definieren und ihn mit Er identifizieren.
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4.3 Modifizierung des Beweises von Satz A (vgl. 2.8)

Der Verzerrungssatz gilt auch in den neuen Teichmiillerrâumen. Denn wenn wir
die Basis 01? <^2>...» <t>r von & zu einer Basis aller holomorphen quadratischen Dif-
ferentiale auf S'o ergânzen, umfasst der zugehôrige Teichmullerraum den von S'o;

damit wird der neue Verzerrungssatz zu einem Spezialfall des frûheren.
g, M, K, rjD und r\F werden zum beliebig vorgegebenen Modul £0 #0 wie in 2.8

bestimmt.
S'o sei ein Teilgebiet einer kompakten Flâche, dessen Rand aus isolierten Punkten

und analytischen Kurven besteht, und das konform équivalent zum vorgegebenen
Normalmodell So vom Typ (g, m, n) ist. Wir konstruieren wie im vorigen Abschnitt
S'o und zeichnen einen zu §'Q gehôrigen Fundamentalbereich P in E2 aus.

§'Q kônnen wir uns aus S'o so entstanden denken: Die ausgezeichneten Punkte
P? werden auf S'o durch \N zueinander und zu den y? disjunkte Kurven so verbunden,
dass jeder der P? Anfangs- oder Endpunkt ist. Zwei làngs dieser Kurven aufgeschnit-
tene Exemplare (Sf0)h i 1, 2, werden lângs der Schnitte kreuzweise verheftet. F sei

die Vereinigung der diesen Schnitten und den y? entsprechenden Kurven auf P.

U' und U seien offene Umgebungen von F mit den folgenden Eigenschaften :

a) OcU'
b)\Uf\<irjF
c) die P — U entsprechende kompakte Teilmenge von §'o zerfâllt in vier Zusam-

menhangskomponenten (zwei fiir n 0), die aile demselben Kompaktum S[ von S'o

entsprechen.
Bezùglich dem zu S[ gehôrigen Kompaktum St von So bestimmen wir nach

Lemma 1 das e0 und nur auf St wird So im folgenden abgeândert. Wir identifizieren

zur Vereinfachung der Ausdruckweise St mit einem der zugehôrigen Teilbereiche Pl
von P.

h=h0 wird auf Pt wie friiher (s. 3.6) definiert, (wobei qF durch rjF/S ersetzt werden

muss,) und so abgeândert, dass h in Un Pi verschwindet und ausserhalb U' nPt un-
verândert bleibt. Die natiirliche Struktur der abgeânderten Flâche wird auf S'o ver-

pflanzt und mit Jo und einer geeigneten Transformation aus G auf ganz §r0 fortge-
setzt, womit sich also aile Symmetrieeigenschaften von §0 auf die abgeânderte
Flâche §'0(dX2) ûbertragen.

Wegen der Kompaktheit von P - U kann der Beweis wie frùher beendet werden.

Die Approximation von h durch die Folge hn fâllt hier allerdings weg.

Zufolge der Symmetrieeigenschaften der Flâchen §'0(dX2) gehôren deren Moduln
zum Raum Er. Wir kônnen deshalb den Kontinuitâtsschluss im Er anwenden und

erhalten so den Nachweis der Existenz einer Flâche S'0(dX^) mit den Modul Ço.

Die zugehôrige, aus So durch Abânderung in der Richtung der Normalen entstandene

Flâche ist daher die gesuchte vollstândige differentialgeometrische Flâche.
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