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Einbettungen Riemannscher Flichen in den dreidimensionalen

euklidischen Raum

von RETO RUEDY (Basel)

1. Einleitung

1.1 Problemstellung

Flachen im Sinne der elementaren Differentialgeometrie konnen zu Riemannschen
Flachen gemacht werden, indem man die isothermen Parameter als lokale Koordi-
naten benutzt. Diese Struktur nennt man die natiirliche, weil genau diese lokalen
Darstellungen winkeltreu sind.

F. KLEIN warf schon 1882 in seiner Schrift Uber Riemanns Theorie der algebrai-
schen Funktionen und ihrer Integrale das Problem auf, ob sich jede Riemannsche Fliache
konform und bijektiv auf eine solche differentialgeometrische Fliache abbilden lasse.

Der Weg zu diesem iiberraschend schwierig zuginglichen Problem wurde durch
die fundamentalen Arbeiten von TEICHMULLER gedffnet; aber erst um 1960 gelang
der Beweis fiir den folgenden Satz:

EINBETTUNGSSATZ VON GARSIA. Jede kompakte Riemannsche Fliche ist konform
dquivalent zu einer differentialgeometrischen Fliche, die reell-algebraisch im dreidimen-
sionalen euklidischen Raum eingebettet ist. (Fiir nicht kompakte Fliachen ist das
Problem immer noch offen.)

GARsIA konstruiert seine Modelle, indem er an einer vorgegebenen eingebetteten
Flache eine endliche Folge von Abédnderungen vornimmt: Die Punkte werden bei
jedem Schritt in Richtung der jeweiligen Normalen verschoben. Die Anzahl der
Schritte hingt vom Modul ab, der realisiert werden soll, und ist unbeschrankt.

Wir werden aber sehen, dass man das Verfahren so modifizieren kann, dass fiir
jeden Modul eine einzige Abidnderung ausreicht. Fiir die Flichen des Geschlechtes
g =1 wird dadurch der Beweis erstaunlich einfach.

Ferner soll der Einbettungssatz noch auf alle Flichen mit endlich erzeugter
Fundamentalgruppe ausgedehnt werden: Es wird gezeigt, dass diese zu vollstindigen
differentialgeometrischen Fliachen konform dquivalent sind.

1.2 Begriffe und die Sdtze A und B

Es seien

C die komplexe Zahlenebene,

R" der n-dimensionale euklidische Raum,

E" die n-dimensionale Einheitskugel,

und differenzierbar bedeute immer unendlich oft differenzierbar.
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DEerFINITION 1. Eine Riemannsche Fldche ist eine zusammenhidngende analytische
zweidimensionale Mannigfaltigkeit.

DerINITION 2. Eine differenzierbare Abbildung ¢ einer Riemannschen Fliche R
in den R? ist eine Einbettung, wenn sie noch folgende Eigenschaften besitzt:

a) ¢ hat in jedem Punkt von R den Rang 2,

b) ¢ ist injektiv.

Weitere Eigenschaften der Einbettung, z.B. reell-analytisch, beziehen sich auf die
Abbildung ¢.

DEFINITION 3. Ist
X(x’ y) = (xl(x7 y)’ x2(x9 y)’ x3(xs y))9

eine lokale Darstellung einer eingebetteten Fliche ¢ (R), so definiert die Form

3 [0x; 0x; 2
ds* = (~—‘ dx + -—d
S igl 6x X 6y y)

die sog. natiirliche Metrik auf ¢ (R).
Ist auf einer Flache eine Metrik
ds? =Edx* +2Fdxdy + Gdy* = A(x, y)|dz + pu(x, y) dz|*, z=x+1iy,

definiert, ist u differenzierbar und
sup Jul <1,

was mit
inf(EG — F*) >0

dquivalent ist, dann besitzt die Beltramigleichung

W;=Uw,

differenzierbare Losungen w, die eine topologische Abbildung W =w. X! einer

Umgebung U von X (x, y) auf der Fliche in die Ebene induzieren. Diese Umgebungen
iiberdecken die ganze Fldche. Die so entstandenen lokalen Koordinatensysteme
(U, w) sind analytisch verkniipft und definieren folglich eine konforme Struktur. Die
Metrik stellt sich in diesen Parametern w (und nur in diesen) in der Form

ds* = Ay (w, W)+ |dw|?

dar, d.h. w sind die beziiglich der Metrik ds? isothermen Parameter.
Aus diesen Tatsachen entspringen folgende Definitionen:

DErFINITION 4. Ist eine Fliche mit einer differenzierbaren, nirgends ausgearteten
Metrik ds® versehen, so nennt man die oben beschriebene Struktur {(U, W)} die von
der Metrik ds* abgeleitete konforme Struktur.
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DEerINITION 5. Die von der natiirlichen Metrik einer eingebetteten Fldche abge-
leitete Struktur heisst die natiirliche Struktur der Flache.

DEerINITION 6. Die Riemannsche Flidche, die entsteht, wenn eine eingebettete
Fliche mit ihrer natiirlichen Struktur versehen wird, nennen wir eine differential-
geometrische Fldche (DF).

DEFINITION 7. Eine DF heisst vollstindig, wenn bez. der natiirlichen Metrik jede
Fundamentalfolge von Punkten auf der Flidche gegen einen Punkt der Fliache kon-
vergiert.

SATZ A. Vorgegeben seien

1) eine kompakte Riemannsche Fliche S,

2) eine reell-analytische DF S, desselben topologischen Typs,

3) eine Zahl ¢y > 0.

z sei ein uniformisierender Parameter, X,(z) eine Darstellung der Fliche S, und
N, (2) die positive Einheitsnormale zu S, im Punkte X,(z).

Dann gibt es auf S, eine reellwertige Funktion h mit den folgenden Eigenschaften:

a) h ist reell-analytisch,

b) || <eo,

¢) X(2) = X, (2) + h(X,(2)): No(2) stellt eine reell-analytische DF § dar,

d) S ist konform dquivalent zu S.

SATZ B. Zu jeder Riemannschen Fliche mit endlich erzeugter Fundamentalgruppe
gibt es eine konform dquivalente vollstindige DF.

1.3 K-quasikonforme Abbildungen

Im Hinblick auf unsere Anwendungen beschrinken wir uns auf topologische,
bis auf isolierte Punkte stetig differenzierbare Abbildungen f von Teilbereichen der
Ebene in die Ebene. Ferner nehmen wir an, die Funktionaldeterminante, det(df), sei
iberall positiv, wo sie definiert ist.

Fiir solche Funktionen f(x, y), z =x + i y, definieren wir die komplexen Ablei-
tungen f, und f; durch die Gleichung

df = f,dz + fzdz.

Diese komplexen Ableitungen sind mit den gewdhnlichen also durch die Gleichungen

fzz%(fx—ify)a f5=%(fx+ify)

verkniipft. Aus diesen Formeln folgen fast unmittelbar die nachstehenden Bezie-
hungen:
1) fist genau dann holomorph, wenn f; =0 ist,

2) det(df) =1£.1> —1£I* >0,
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3 (L= 1D1dzl < VI < (|f,| + | f3]):|dz] oder mit Richtungsableitungen ge-
schrieben

Max |0, f| = If.| + Ifsl,  Min|o, f| = |f.| = |fal.
(] (4

DeriNiTION 8. Der Dilatationsquotient der Funktion f an der Stelle z ist die Zahl

Er ldsst sich nach dem vorigen auch durch die folgenden Ausdriicke beschreiben:

2
PR et
T 1S det(df)

DErINITION 9. Die Abbildung f heisst im Definitionsbereich G K-quasikonform,
wenn gilt D,(z) < K fiir fast alle zeG.

Die nachstehenden Eigenschaften folgen wiederum leicht:

1) D;@)>1,

2) fist genau dann holomorph in z, wenn D (z) =1 ist,

3) Dp(z) =Dys-1(f(2),

4) D;.,(2) < D;(2(2)) D, (2),

5) Dy.s..(z) = D(g(2)), falls & und g holomorph sind.

Aus 5) folgt, dass die oben definierten Begriffe auch noch sinvoll sind, wenn man
sie auf Abbildungen iibertragt, die auf Riemannschen Flichen definiert sind, und
deren Bilder in Riemannschen Flachen liegen.

Schliesslich wollen wir noch | f;| mit D, ausdriicken: Aus

, 1 AR A AN Ak
D,— 1P —= : AL LI
(B =1) D, (lfzi-—w) If.l +1f:l det(df)
folgt
fr = B = g (df).
D,

2. Der Satz A fir g =1
2.1 Moduln und E-Metriken dsz

Jede kompakte Riemannsche Fliche vom Geschlecht g = 1 ist konform dquivalent
zu einer Fliche

- S(w) =C/{n + mw|n, m ganze Zahlen}, Imw > 0.
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P(w) sei das zugehorige Parallelogramm mit den Eckpunkten O, 1, w, @ + 1.

nennen wir einen Modul von S(w). Insbesondere ist der Modul £(i) der Kreisring-

fliche mit dem Radienverhéiltnis \/ 2 gerade null; denn diese Fliche S, ist konform
dquivalent zu (s. z.B. [15])

C/{n + im|n, m ganze Zahlen} .
Die natiirliche Metrik von S, hat die Gestalt
dX5(z) = A*(2)|dz)?>, z=x+1iy, 0<x,y<I1,
wobei A eine reelle, nach x und y differenzierbare, nirgends verschwindende Funktion
ist.

Mit einer linearen Abbildung f(z) verpflanzen wir die Metrik von P(w) auf das
Quadrat P(i):
i

f@="20 e

fiihrt 0in 0, 1in 1 und i/ in w, d.h. P(i) in P(w), also S(i) in S(w) iiber. Versehen wir
daher S, mit der von der Metrik

ds; = 2*(z)|dz + £dz)?

abgeleiteten Struktur, so bildet f diese neue Fldche So(dsj) konform auf S(w) ab.
So (ds:) besitzt folglich den Modul &.
Die natiirliche Metrik der abgednderten Fliache S in Satz 4 wird die Gestalt

(dX)? = (dX,)? + (dh)* + 2hdX,dN, + h* (dN,)?
aufweisen, da No = 1, NodN, = N,dX, =0 ist. Da aber & sehr klein sein muss, haben
wir auf der rechten Seite im wesentlichen nur
A%|dz|* + (dh)*.

Daher wollen wir auch ds? in dieser Weise aufspalten:
Mit den Bezeichnungen

ve=(1—1&)7% ek,
ocg = 27:(|¢] + Re )
B =27y:(1¢] — Rel)
und mit der Vorzeichenwahl
sgn (o B) = sgn(Im )
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erhalten wir (dz? = dx? — dy? + 2i dx dy)

verdsi = v¢A%(2) [1dz]* (1 + 1€1°) + (€ + &) (dx® — dy?) — 2idxdy (¢ — &)]
und wegen

ve H(ozdx + Bedy)? = 2(|€] + Re &) dx® + 2(|¢] — Re &) dy® + 4 Im Edx dy

=2¢-1dz|* + (& + O (dx* — dy*) - 2i(¢ — &) dxdy
die gesuchte Zerlegung
veds; = 2%(2)-(|dz|* + (xzdx + B:dy)?).

2.2 Der Verzerrungssatz fiir g =1 (s. [5], [6])

In diesem Abschnitt reproduzieren wir einen Satz von GARsiA und den Beweis
in einer leicht abgeinderten Form.

VORAUSSETZUNGEN.

1) 128, (ds:) — S’ sei eine topologische, K-quasikonforme Abbildung der Rie-
mannschen Fliche S, (dsf) mit dem Modul £ auf die Riemannsche Flache S’ mit dem
Modul ¢&'.

2) Ist X,(z) die konforme Abbildung von P(i) auf S, (|dz|?), so sei

D;(xo(z))<1+mnp VzeP(i)—F,
und fiir den euklidischen Flicheninhalt von F gelte

|F| <npg.
BEHAUPTUNG.
& — &l < 3(mp + /nrK).
BEMERKUNG. Uberraschend ist, dass in dieser Formulierung ¢ in der rechten Seite
gar nicht auftritt. Im Falle g > 1 hingegen werden wir erst dann eine solche Gleich-

massigkeitsaussage erhalten, wenn wir in der Voraussetzung ¢ auf ein Kompaktum
einschrinken.

Beweis. Wir wihlen die uniformisierenden Parameter so, dass die von finduzierte
Abbildung f von P(w) in die Ebene C die folgenden Eigenschaften besitzt:

fe+D)=f@D+1, f@z+o)=f(E+o, Imo >0,

wobei ¢’ = &(w’) ein Modul von S’ ist. Der Flidche F auf P(i) entspricht eine Fldche
F’ auf P(w) mit dem Inhalt
|F'| = |F|' Imw.

Es ist wegen der obigen Relationen

w—o = f f(2)dz,

oP(w)
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— die iibrigen Terme der Randintegration heben sich gegenseitig weg — und nach
dem Satz von STOKES

w—o = f d(f(z) dz) = f 2if,dxdy + fZiffdxdy.
P (o) P(w)~F' F

Die beiden Integrale lassen sich mit der Ungleichung von CAUCHY-SCHWARZ und
der Gleichung fiir |2£;|*> am Schluss von 1.6 so abschitzen:

| 2

| j 2if,dxdy

P—F'

’ (Df_ 1 ? 2 ’
< |P — F'| T ~det(df)dxdy < Imw-ny Imw
)
P—-F

2
J'Zifidxdyi <nrlmw-K-Imw'.

F’

Daraus aber folgt

i—w i—o
i+o i+o
2\/Imw \/Imw’

< i+ w)(l“_‘*_“‘a"),‘)*j (np + \/’;70 <30+ \/'U‘_K)’

2(0" — w) 1

le—¢l= (i+ o) (i+ o)

i

denn fiir Im z > 0 ist ja
li+zl=2(1 +Imz)>2\/lmz.

2.3 Der Kontinuitdtsschluss

&' (&) bilde die n-dimensionale Kugel M mit dem Zentrum &, und dem Radius &
stetig in den R" ab, und es gelte

&) —&l<e VEeM.
Dann liegt ¢, in &' (M).

Fir g =1 brauchen wir nur den Fall » =2 zu untersuchen. Hier aber geht der
Beweis aus einigen elementaren Eigenschaften der Umlaufszahl U(I', z) eines stetigen
Zyklus I' um einen Punkt z hervor. Es ist ndmlich zufolge der Voraussetzungen iiber
¢'(©)

U(E'(@M), 60) = U(aM’ 50) =1,
ferner gilt

U(¢'(eM), &) =0 VgL' (M),

da ¢'(0M) in &' (M) auf den Punkt ¢'(&,) zusammengezogen werden kann. Folglich
ist {,e&’'(M). Einen Beweis im Falle n> 2 findet man z.B. in [9], p. 75, Ex. VI,2.
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2.4 Die Stabilitit differentialgeometrischer Flichen

LEMMA 1. Mit den Bezeichnungen von Satz A gibt es zu jeder Fliche S, ein ¢, >0
derart, dass fiir alle auf S reell-analytischen Funktionen h mit
|h] <&,
S eine reell-analytische DF ist.

Beweis. Mit X (z) ist auch Ny(z), die Normalenfunktion, und damit auch

X(z) = Xo(2) + h(2)'No(2)
reell-analytisch.
Als nichstes wollen wir zeigen, dass der Rang stabil bleibt, d.h.
0X, Oh ON
"*9 + T No + h _*‘E
ox  0x b )
Rang =2 fir |hl<eg,.
5X0+6hN +haNO
dy dy °
Dieser Rang ist genau dann 2, wenn die Summe Z der Quadrate aller zweireihigen
Unterdeterminanten nicht null ist. ) ldsst sich aber mit Hilfe von Vektor- (x) und

Skalarprodukt leicht berechnen:

X, 0N, 0X, 0N, \\*
=({—+ BN ol — N ),
) <(6x BN, + ax)x<ay+ﬂ2 ot
oh oh
ﬁ1=a: 182= b O(=h
X

Fiir o =0 1st

e ()50

0X 2 0X 0X 2
* NO +ﬂ1'N0 X (_._WQ‘)) P (; 2 X _;0) =ZO’

Jy Ox dy

da die weggelassenen Vektoren senkrecht auf dem ersten Summanden stehen und
den Betrag deshalb hochstens vergrdssern wiirden. Y , wird aber nie null, da die
Abbildung X, iiberall reguldr ist, und besitzt als stetige Funktion wegen der Kom-
paktheit von S, ein positives Minimum 9.

Ferner ist )  eine stetige Funktion von (z, «) auf S, x [--1, +1], also auf diesem
Kompaktum gleichméssig stetig. Insbesondere gibt es ein ¢; > 0 derart, dass

L) -S@0l<) VzeS, ldl<e.

Fiir |h| <g, ist daher:) > §/2 und folglich der Rang der Abbildung X(z) zwei.
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Um einzusehen, dass X(z) schlicht ist, bemerken wir, dass die Abbildung
(x, y, 0) > Xo (x, ¥) + aNo (x, )
in jedem Punkt (x, y, 0) regulér ist, da ja die drei Vektoren
0X, 0Xo
w oy
linear unabhingig sind. Daraus folgt die Behauptung lokal sofort. Die globale Aus-
sage schliessen wir wieder aus der Kompaktheit von S,

No

2.5 Die Abdnderungsfunktion h,,

Wir wollen die Eigenschaften, die die Funktion 4 aus Satz A erfiilllen miisste,
zusammenstellen: Sehen wir von der Funktion A ab, so kénnen wir aus den Abschnit-
ten 1 und 4 dieses Kapitels schliessen:

1) (dh)* =~ (o, dx + B dy)?,

2) |hl <égy,

3) h ist differenzierbar,

4) h ist eine Funktion auf Sj,.

Aus 1) folgte h = a-x + f-y, was natiirlich 2) widerspricht. Deshalb miissen wir
die globale Linearitit fallenlassen und fiir 4 eine stiickweise lineare Funktion an-
setzen. Am einfachsten geht dies, wenn wir auf ax + By eine Sdgezahnfunktion mit
der Steigung +1 anwenden. Der Vorzeichenwechsel ist fiir die Bedingung 1) gliick-
licherweise belanglos. Hingegen wird bei den Spitzen 3) verletzt, was sich durch ein
Glittungsverfahren aber leicht gutmachen ldsst. Dabei wird aber wieder 1) verletzt
was jedoch nach dem Verzerrungssatz nichts ausmacht, wenn die Fldche, auf der
dies geschieht, geniigend klein bleibt. Bedingung 4) erzwingen wir dadurch, dass wir
h in einer Umgebung des Randes von P (i) null setzen und wieder glitten.

Wir bendtigen also zwei reelle differenzierbare Funktionen mit den folgenden
Eigenschaften: Es sei n < %,

fy(x):
a) Oy, <1

0 fir 0<x<pn/2
) “"(x)_{l fir n<x<%

C) #n(l - x) = Aun(x)

v, (x):
2) |1, <1

_)x fir p—-1<x<1l-1
&) v"(x)—{Z—x fir 1+49<x<3—1
c) v,(x+4)=v,(x).
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Es gilt fiir
F,={(x, y) lt,(x) 1, () #1, 0<x,y<1}
|F,l <4n
und fiir
F,={(x, )| (N [agx + B;y]) #1,0< x, y < 1}

IF,| <2n fir N> ./2//¢;

denn F, besteht aus dem Durchschnitt von P(i) mit den parallelen, dquidistanten
Streifen, die durch die Ungleichungen

1-n4+2m<N(ex+B:y)<1+n+2m, m=0,+1,..

definiert sind. Die Breite der Streifen verhdlt sich zum Abstand der Mittellinien

zweier benachbarter Streifen wie n:1; |F,| kann sich daher von n hochstens um die

Flache |F,| eines Streifens in P(i) unterscheiden; diese ist kleiner oder gleich dem

Minimum des Schnittes des Streifens mit der x-Achse oder der y-Achse, also (s. II1)
2n 2n 1

F U
1Pyl < N -Max (o], |B¢|)< N \/2|§| =1

Im Beweis werden wir ¢ auf eine kompakte Menge M < E?, die den Nullpunkt

nicht enthilt, beschrinken. Daher konnen wir die Bedingung N >\/ 2/\/ I—fvl durch
N > N, ersetzen. Es ist also

|F|<|F]+|F|<6n VN> Ny.

Wir definieren fiir (x, y)eP(i), EeM, N> Ny,

1
ho(x, y, ¢, N) = Nu,,(x)'u.,(Y)'i(x, Y): vy [N (o x + e y)].
Es ist

dho = 1y ) LN o+ Bo)] G + Bu) +0( ).

wobei O(1/N) fiir N - oo auf P(i) x M gleichméssig gegen null geht; denn alle darin
vorkommenden Funktionen sind auf diesem Kompaktum stetig und enthalten den
Faktor 1/N.

Vergleichen wir dieses Ergebnis mit der Schlussformel von Abschnitt 2.1, erhalten
wir

LEMMA 2. Fiir die Funktion h, gilt

[dh} + A%|dz|* — y,ds?| < R(n; N)ds; auf P—F,VieM,
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d
u |F| < ky'n fir N> N,,,

wobei ky; und Ny, nur vom Kompaktum M abhdingige Konstanten sind und R(n; N) fiir
Jjedes feste n mit N — oo beliebig klein gemacht werden kann.

BEMERKUNG. Das Symbol R (xq,..., x,; n,,..., n,) soll, ausfithrlich beschrieben,
folgendes besagen: Zu jedem System (¢, x,,..., X,), € >0, kann man zuerst n,, hierauf
n, usw. so gross wihlen, dass die zur Diskussion stehende Ungleichung richtig wird,
wenn man R durch ¢ ersetzt.

2.6 Eine Approximation von h,

LemMA 3. Gilt fiir die Funktionen h,(x, y, £) und ihre ersten Ableitungen
a) sie sind stetig auf dem Kompaktum S, x M,

b) sie streben fiir jedes feste & gleichmdssig gegen hy bzw. 0hy/0x, Ohy/0y,
dann ist

|dh} — dh}| < R(n, N;n)-ds;, ¢&eM,
wobei R(n, N; n) fiir n— oo beliebig klein gemacht werden kann.

Beweis. Aus b) folgt, dass die Ungleichung fiir jedes feste £ =&, gilt. Wegen a)
gilt sie dann auch noch fiir eine ganze Umgebung von &,. Die globale Aussage folgt
nun wiederum aus der Kompaktheit von M.

Die n-ten Partialsummen der zweifachen Fourierreihen der Funktionen Ay (x, y;
¢, N) erfiillen bekanntlich alle Vorzussetzungen von Lemma 3.

2.7 Vergleich der Metriken ng und a’sé2

LeEMMA 4. Die natiirliche Metrik der Fliche

Xe(x, y) = Xo(x, p) + hy(x, y; & N)*No(x, y)
befriedigt folgende Relationen:

sup (dX¢, /dX;)

¢

2 Snf(@x2 jax2)
@

-1 fur ¢,-¢

und zwar gleichmdssig auf P,

XZ 2
)st;p(d /dsg) { 14+R,(n;N,n) auf P—F

<
inf(dX}/ds;) ~ |4y:+ R,(n; N,n) auf F,
®

falls & dem fest vorgegebenen Kompaktum M angehért, wobei die Konstanten R, und
R, fiir ein festes n und geniigend grosse N und n beliebig klein gewdhlt werden kinnen.
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Beweis. Aus NZ =1, NydN, = N,dX, = 0 folgt
dX; = dX3 + dh? + 2 h,dX,dN, + hZ dN}.

Dieser Ausdruck ist aber stetig auf dem Kompaktum P x M, womit a) sofort folgt.
(Es ist sogar: dX},, — dX}).
Da h, fiir N — oo beliebig klein gemacht werden kann und #, gleichmissig gegen
h, strebt, ist
|dX§ — dh? —dX}| < R(y; N, n) dsé.

Zusammen mit Lemma 2 und 3 folgt

dX2 dX? + dh?
sup s’ 5 < sup OJ-Q-»—v + R(n; N, n)
¢ :
dX3 + dhj
<sup =5 4 R(n, Nim) + Ry N, )
@ Se

<7y:+ R(n; N)+ R(n, N;n) + R(n: N, n);

dX; axg
inf ~~2¢ = inf -~~—29 — R(n: N, n)
o ds; o ds;

A |dz|? B
o Z*HJ___?_‘_F (n; N, n)
o APldz + Edz|?
1 o
éeM(l e ( )
| B
>~-——R(ﬂ;N=n);

4
ausserhalb F = F, U F, gilt sogar

dX; -
1nf~—2 =>9:—R(n; N)—R(n, N;n)— R(n; N, n).
o ds%
Daraus folgt b) aber unmittelbar.
2.8 Der Beweis von Satz A (fiirg=1)

(Als Ausgangsfliche S, in Sazz A nehmen wir die zu
C/{n + im}

dquivalente Torusfliche mit dem Modul £(S,) =0. Fiir jede andere Fliache geht der
Beweis natiirlich ganz analog.)

"~ Essei &, # 0 ein beliebiger Modul: Wir wollen eine Fliche S mit dem Modul &,

konstruieren.
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Wir setzen dazu

1
£ = ) Mm(l - I‘EOL '50‘)’

M = {&] 1 — &l < ¢}

3
K=,
€

und wihlen 5 > 7, >0 und 5 > 0 so klein, dass in der Behauptung des Verzerrungs-
satzes

&'~ ¢l <e
wird (z.B. np =¢, np =&*/K = 3/3).

(Da M mindestens eine der beiden Halbachsen x >0 oder x <0 meidet, konnen
in 2.1 die Funktionen a, und f, so gewéhlt werden, dass sie auf M stetig sind und die
Gleichung

sgn (o f) = sgn(Im &)
erfiillt ist.)

Fir y, =(1 — |&))72 gilt auf M
1

2

y<
€\8

Um die Funktionen g, und v, festzulegen, wihlen wir 5 so klein, dass in Lemma 2

|F| < ng
wird.
Schliesslich miissen wir noch N und » angeben, um die gesuchte Abdnderungs-
funktion A, definieren zu kénnen: Zuerst wiahlen wir

Ny > — — Max |[A(z)|,
0 Min (g4, &) zepi @)

wobei ¢, die Konstante aus Lemma 1, &, die Konstante aus Satz A und A|dz|* die
natiirliche Metrik von S, ist. Dann nehmen wir N > N, + N,, und schliesslich n so
gross, dass fiir die in Lemma 4 vorkommenden Symbole R, und R?

R (n; N, n)=np,

5
Ry(n; N, ")=g5

gesetzt werden darf,
Die Fldchen

X(é’ X, y) = XO(x9 y) + hn(xa ya £)QNO(x9 y)a éEM,
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sind jetzt vollstindig bestimmt und stellen nach Lemma 1 reell-analytische DF S,
dar. Der Modul ¢'(£) von S, dndert sich nach Lemma 4 a) stetig; denn die Abbildung

fm: S{m""’S€

durch gleiche Parameter ist topologisch und quasikonform mit dem Dilatations-
quotienten
sup (dX? /dX?)

2 ®

was fast unmittelbar aus der Definition des Dilatationsquotienten folgt. D, strebt
daher fiir £, — ¢ gleichméssig gegen 1, woraus mit Hilfe des Verzerrungssatzes
(nr =0) die Beziehung &' (&,,) — &' (&) folgt.

Wendet man dieselbe Uberlegung auf die Abbildungen

feise— so(dsg)

durch gleiche Parameter an, so folgt aus Lemma 4 b) und unserer Wahl der Kon-
stanten
1+np<6<K auf P—F
D; <43

-=K auf P ’
g

IFI < ”Fa
also aus dem Verzerrungssatz
1€'(¢)—¢&l<e, VEeM.

Damit erfiillt &'(&) die Voraussetzungen des Kontinuitdtsschlusses; also besitzt fiir
einen gewissen Modul ¢, e M die Flache S;, gerade den Modul &,. Da 0 der Modul
von S, und &, # 0 beliebig war, ist damit Satz 4 (fiir g =1) vollstdndig bewiesen.

3. Der Satz A fiir g > 1

3.1 Der Teichmiillerraum T,(S,)

Die Paare (S, f) sollen aus einer kompakten Riemannschen Fliche S vom Ge-
schlecht g und einer topologischen Abbildung f der festen Fliache S, auf S bestehen.
In der Menge all dieser Paare fiihren wir folgende Aquivalenzrelation ein: (S, f)~
(S;, f1), wenn S durch eine zu f;.f ~! homotope Abbildung konform auf S, abgebildet

werden kann. Die Aquivalenzklassen beziiglich dieser Relation sind die Elemente
* des Teichmiillerraums T,(S,). Jeder Fliche S entsprechen dabei mehrere Elemente
des Teichmiillerraums, was aber fiir unsere Zwecke belanglos ist.
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Ein Satz von TEICHMULLER besagt, dass es zu zwei Elementen (S, f;) und (S,, f5)
aus T, genau eine quasikonforme Abbildung gibt, fiir die

supD, = K,, R:regulire Punkte von f,

zeR
in der Homotopieklasse von f,of, ' minimal ist. Fiir diese extremale Abbildung ist
D, konstant. Dies niitzte TEICHMULLER zur Definition einer Metrik T, aus: logK,
heisst die Teichmiiller-Distanz von (S}, f;) und (S,, 15).

Wir wollen noch angeben, wie T, mit den quadratischen Differentialen zusammen-
hingt, und wie man T, mit der n = (6g — 6)-dimensionalen Einheitskugel E" identifi-
zieren kann:

{#;}!- | sei eine Basis der holomorphen quadratischen Differentiale der kompakten
Fliche S, iiber R'; z sei ein uniformisierender Parameter, der im folgenden immer
beibehalten wird (zeE?). (§,, ..., £,) seien komplexe Zahlen mit der Eigenschaft

0<iEP=Y <.

i=1

Wir setzen

1
14
i=1
und

ds? = 22 (2)-|dz + |&] % dz)?,
i(Pgi
wobei, was hier noch keine Rolle spielt, 42|dz|? die natiirliche Metrik dX§ der Fliche
Sy aus Satz A ist. Ausser bei den Nullstellen P; von ¢ ist ds§ reguldr und iiberall
gilt
dX3-[1 — |&])2 < dsi- < dX3- |1 + |17

Wir versehen
4g—4

So=So_ U P
i=1

mit der zu ds; gehdrigen Struktur. S, (ds?) ldsst sich aber durch Hinzufiigen der P,

wieder zu einer kompakten Riemannschen Fliche vervollstindigen; denn fiir die

Dilatation D, der identischen Projektion I von Sy (ds;) auf So(47|dz|?) gilt

sup (ds;/A*|dz|
P

2

)
inf(ds/2* dz|") (1= 1E)*

Ist U; eine zum Kreis |z| <1 konform &dquivalente, keine weitere Nullstellen ent-
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haltende Umgebung von P; auf S, = S, (4%|dz|?), so wird

(U - P) (ds?)
durch I K-quasikonform auf
(U: — P) (2% |dz|?)

abgebildet und ist deshalb auch konform &dquivalent zu einer einfach punktierten
Kreisscheibe. (s. z.B. [11]).

Wir ordnen ¢ das Element aus T, zu, das durch (S, (ds‘?), I) repriasentiert wird.
Liegt (S, f) in dieser Klasse, so nennen wir £ einen Modul von S; S, selbst erhiilt den
Modul 0. Man kann aus den Teichmiillerschen Resultaten folgern, dass T, so topo-
logisch auf E” abgebildet wird. (s. [1], [2]).

3.2 Der Verzerrungssatz

Die Fliche S, sei konform dquivalent zum Poincaré-Modell E?/G. (E? ist die
universelle Uberlagerungsfliche von S,, G die zugehorige Gruppe der Decktransfor-
mationen.) P sei ein Fundamentalbereich von G mit einer stiickweise stetig differen-
zierbaren Randkurve (z.B. ein Fricke-Polygon). Im folgenden werden wir den Punkt
Xo(2)e S, mit dem zugehorigen Punkt ze P identifizieren.

VORAUSSETZUNGEN,

1) Jedem & des Kompaktums M < E®2~° sej eine Abbildung f¢ von So(dsg) auf
eine Riemannsche Fliache S’ (&) zugeordnet.

2) f: sei K-quasikonform, d.h. topologisch, fast iiberall stetig differenzierbar,
orientierungstreu und fast tiberall sei der Dilatationsquotient D, (z) < K.

3) Auf P— F sei sogar

: Dy (2)<1+mp

und fiir den Fldcheninhalt von F gelte

|Fl <npg.
BEHAUPTUNG.
Fiir den Modul & von S’ () gilt die Abschdtzung

&' — & < Fy5(M np + F,(M, K 1)),

wobei die Symbole F; und F, folgende Eigenschaften besitzen (vgl. die Bemerkung
am Schluss von 2.5)

a) F,(M; 6)— 0 fiir jedes feste M, wenn 6 - 0;
b) F,(M, K; ng)— 0 fiir jedes feste M und K, wenn 5 —0.
Fiir den Beweis verweisen wir auf [6], S. 100.

* 3.3 Die Metrik ds?

Ganz analog und aus demselben Grund wie im Fall g =1 (vgl. 2.1) wollen wir
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die schon in 3.1 definierte Metrik ds; geeignet in zwei Summanden zerlegen. Es ist

dsi = A% (2)1dz + e dz’,  Ye=1¢ 2, Wl =1l

7
|oel
Mit I1 (£) bezeichnen wir die folgende Menge:
M@= {zllzl<1, Imey(z)#0}.
Auf JT(£) ist ds; reell-analytisch und wir setzen

ye=(1—[&)~?
o = 27:(|¢] + Rey,)
BZ =27:(1¢] — Reyy).

In jeder Zusammenhangskomponente von I1(&) lassen sich stetige reelle Zweige o,
und S, derart finden, dass

gilt. Dieselbe Rechnung wie in 2.1 liefert

yeds; = 2%(z) (|dz|? + (2 dx + Bedy)?).
3.4 Die Hilfsfunktionen u, und p,.

Im Gegensatz zum Fall g =1 sind «, und B, keine Konstanten mehr, sondern
Funktionen von z, die noch nicht einmal auf ganz P definiert sind. Die Bestimmung
von h lauft andrerseits auf die Losung einer Differentialgleichung hinaus, in welcher
oy B und ihre Ableitungen als Koeffizienten auftreten. Da schon im vie leinfacheren
Fall g =1 alle Abdnderungen sorgfiltig kontrolliert werden mussten, wird es jetzt
darauf ankommen, a, und f, so auf ganz P fortzusetzen und zu glétten, dass sie
mitsamt ihren Ableitungen moglichst wenig verandert werden. Dazu bedarf es einiger
Vorbereitungen.

o und B, sind auf

N; = {z| zeE?, Im ¢,(z) = 0}

noch nicht definiert. Wir betrachten ¢.(z) als Funktion von (z, ¢), nennen sie deshalb
¢ (z, &), und stellen ihre fiir uns wichtigen Eigenschaften zusammen:

@) @(z, &) und 8/0z(z, &) = @' (z, &) sind stetig auf E* x E", n =6g — 6,

p) Fiir jedes feste ¢eE" — {0} ist ¢(z, £) holomorph und nicht konstant in E2.

LEMMA 5.

I'(a,&)={zlo(z, &) =a}

dndert sich stetig mit &, wenn jede a-Stelle mit ihrer Vielfachheit gezdhlt wird.



434 RETO RUEDY

Beweis. Ist z, n-fache a-Stelle von ¢(z, ;) und K irgendein Kreis um z,, in
dessen Hiille keine weiteren a-Stellen mehr vorkommen, so wird also behauptet, es
giabe eine Umgebung U von &, derart, dass ¢(z, £) in K fiir jedes £€ U n-mal den
Wert a annimmt. Dies folgt aber leicht aus dem Umlaufsprinzip.

LEMMA 6.
a) N, dndert sich auf jedem Kompaktum K < E? stetig mit &, d.h. zu jeder Um-
gebung U von N, n K ist fiir eine ganze Umgebung U’ von &.

(NenK)cU  VEeU'.

b) Ist M < E" kompakt, so gibt es zu jedem n>0 ein 6 >0 derart, dass der
Inhalt von K Ng(9),
N;(6) = {z| Distanz(z, N;) < 6} .

fiir alle £E€ M kleiner als n wird.
Diese Aussagen folgen leicht aus der Kompaktheit von K bzw. M und aus der
Stetigkeit bzw. der Holomorphie von ¢.

LeMMA 7. K < E? und M < E" seien kompakt. Zu jedem & > 0 gibt es dann endlich
viele reelle Zahlen x,, x,, ..., xy mit der folgenden Eigenschaft: Fiir

U(x;, &, 0) = U {zl 1z — 2yl < 6}

zijep~1(x, &)nkK

gilt
N
(KNN)c | J U(x;,¢,6) VieM.
i=1

Auch dies folgt leicht aus der Kompaktheit von M und den Lemmas 6 und 6a.

Nach diesen Vorbemerkungen wollen wir die Abidnderungsfunktionen y, u, und
U, konstruieren:

P sei der Fundamentalbereich aus Satz A.

Die Funktion u(z) >0 sei C® in C, identisch 0 auf einer Umgebung U; von
C — P und identisch 1 ausserhalb einer weiteren Umgebung U>U,; von C—P,

wobei IPAU|<n2

sein soll.
Die Funktion 7(x) sei fiir x >0 C* und es gelte

0 fiir X<
- ;0 0< <1.
() {1 fir x> 4 T)

Zu K = P und einem vorgegebenen Kompaktum M < E" widhlen wir nach Lemma
* 6 b) ein &' > 0 mit der Eigenschaft

IN¢(0") N P| < n/2;



Einbettung Riemannscher Flichen 435

und zu
0 =} Min (6, Distanz (0P, C — U,))

bestimmen wir nach Lemma 7 geeignete Zahlen x,, ..., xy mit

N
iszl U(x;, &, 0) > Kn N,

und setzen
N
re= {Zijl 9e(zij)€ U {xi}}9
'2
me =) 1 o(* 530
zijels
Es gilt:

N
a) [1"(2, é) =0 an L—Jl U(xi9 és 5)’

b) u,(z, &) =1auf P— F mit F=(N (') nP)u(PnU),
o |Fl<mn,

d) u,(z, &) ist auf C x M stetig.

a) und c) sind klar, wiahrend b) aus é < 34’, also

{z] |z — z;}] 0 '<2}c N,(d")

sofort folgt. Nach Lemma 5 sind die in der Definition von y, auftretenden Faktoren
auf C x M stetig. In U, ist pu, = 0; ist aber z, in C — Uy, so ist fiir allezmit [z — zy| < &
hochstens dann

7(]z ~ Zij|2'5_2) #1,
wenn
|z; j — 2ol < lz;; — 2| + |z — 24| < 36 < Distanz(z,, 0P),

d.h. z;;€P ist, also nur fiir endlich viele z;;. Bei z, ist also u, das Produkt endlich

vieler stetiger Funktionen und folglich selbst stetig, womit auch d) gezeigt ist.
Analog konstruieren wir eine Funktion p,.(z, £), die ebenfalls in einer Umgebung

von (C — P)u N, verschwindet, aber zudem hochstens dort nicht identisch 1 ist, wo

#y =0 gilt: 1= py(z)=0, falls p(2)#0.
3.5 Die Losung einer Differentialgleichung
Wir setzen z =x + iy =(x, y) und
Le = " X, BC My e+ 1=ty
womit &, und B ¢ auf ganz R? definiert und differenzierbar sind und die Beziehungen

Be>0, pote=p, G 1By =, B
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gelten; ferner sei

&
_B; s
Wir wollen die Differentialgleichung

ou
ox

a=-—

G A
b —_f 2 ] =, o = —_ s ERI .
<6x Ay Bg y Y —Yo Yo

0
(x,y, ) +a(x,y, ¢ az (x, 9, E)=b(x,y, %),

u(0,y,&)=0 fir (y,¢&)eR' xM

16sen.
Fiir jedes Paar (y, &) besitzt die gewohnliche Differentialgleichung
dy* . '
;1;{ (x’y09 6)=a(x5y +J’o,é), y (O:yo, é)_:(),

genau eine Losung. Ausserdem ist y*(x, yo, ¢) stetig in R* x M und nach x und y,
differenzierbar (s. [13], p. 70). Dasselbe gilt auch fiir die Funktion

u* (%, Yo, &) = f b(t, y* (1, yo. ), &) dt.
(0]

Die Abbildung g:R> x M >R? x M

g(x9 Yo, é) = (xs Yo + y*(x’ Vo> é)’ é) =(x’ y(x’ Yo, é)’ c)

ist stetig in R? x M und bijektiv, wie man leicht nachpriift, also nach dem Satz von
der Gebietsinvarianz auch topologisch.
Die Funktion
u=u*og ':R* x M > R!

ist die Losung der urspriinglichen partiellen Differentialgleichung und sie ist fiir ein
festes ¢ nach x und y differenzierbar (s. [13], p. 173). Aus den vorhergehenden Uber-
legungen folgt, dass u in R? x M stetig ist und daher auch auf E? x M beschrinkt:

lu(x, y, &)l <uo  V(x,y,&)eE* x M.
3.6 Die Abdnderungsfunktion hy(z, &, n, N)
o = e " (ddx + f,dy)

ist auf Grund obiger Differentialgleichung ein geschlossenes Differential und folglich
auf E? exakt; d.h.
= dk(x, Y, 6)’

wobei k stetig auf E? x M und differenzierbar in x und y ist.
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Wir setzen (vgl. 2.5)

1
ho(x, y; & N) = N A(x, y) ty (x, y, &) &> 97y [Nk(x, y, &)]

und finden wie in 2.5

1
dhg = A% pl v+ (azdx + Bedy)” + 0(N>

Wir miissen uns noch davon iiberzeugen, dass der Inhalt der Fliche

F = {(x’ y)] (xs y)eP, ﬂn(x’ Vs é)vrf [Nk(x’ Vs f)] #* 1}

unabhédngig von N und ¢ beliebig klein gemacht werden kann. Nach der Konstruktion
von u, ist dies nur fiir die folgende Teilfliche F; — F nicht selbstverstéindlich:

Fy={(x, )| % (Nk(x, y,8) # 1}

1 2
- {(x, Mk y, &) = | <z%m°dﬁ}'

Die Abbildung ®(x, y) = (%, k(x, y, &)

bildet P schlicht in die Ebene ab, da auf P

ok o —u
5}()6,}’,6)=e ﬁ§>0

ist. Die Funktionaldeterminante von ¢,
det(d®;) = e “B, >0
ist im Kompaktum P x M stetig, und folglich gilt
Min det(d®,) = ¢ > 0.

PxM

Da die Funktion k in P x M beschrinkt, <R, ist, ist auch
U @,(P)=[-1,+1] x[- R, +R],
éeM

also beschrinkt. Fiir den Inhalt der horizontalen, dquidistanten Streifen der Breite
2n/N, aus denen sich ¢.(F;) zusammensetzt, erhdlt man die Abschdtzung

200 (14|22 = n(ar+
|¢¢(F1)|<‘N“' ( +|: -N:D—'l( +1\;),

1
IFyl = f (det (d; )] dxdy < - 19g(F)l < Kyg'n.

Dz (F1)

und fiir |F|

Die Resultate von 3.3 und 3.6 konnen wir so zusammenfassen:
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Lemma 2 in 2.6 gilt auch im Fall g > 1. (Die Bedeutung von h,, 4, P, ... ist jetzt
natiirlich eine andere als im urspriinglichen Lemma 2.)

3.7 Eine Approximation von h, (vgl. 2.6)

Statt der Fourierentwicklung beniitzen wir im Fall g > 1 die Entwicklung nach
den Eigenfunktionen von
Au+du=0,

wobei A der Laplace-Operator auf der Fliache S,(4%|dz|?) sein soll. Die Vorausset-
zungen a) und b) von Lemma 3 sind fiir die n-ten Partialsummen der Entwicklung
von h, bekanntlich erfiillt.

3.8 Der Beweis von Satz A (vgl. 2.8)

Lemma 4 folgt allein aus Lemma 2 und Lemma 3, gilt also auch fiir g > 1.
Ebenso kann 2.8 wortlich iibernommen werden, wenn man nur die eingeklammer-
ten Zusitze iiberspringt.

4. Der Satz B

4.1 Die Fldchen mit endlich erzeugter Fundamentalgruppe

Eine Fliache vom Geschlecht g mit m parabolischen und » hyperbolischen Enden
heisse vom Typ (g, m, n). Zwei Flichen mit endlich erzeugter Fundamentalgruppe
sind genau dann quasikonform &quivalent, wenn sie vom selben Typ sind. (Dies folgt
z.B. aus den Betrachtungen des ndchsten Abschnittes.)

In den folgenden Spezialfidllen sind Flichen vom selben Typ schon konform

dquivalent:
0,4,0),i=0, 1, 2, 3: i-fach punktierte Kugel,
0,i,1),i=0,1: i-fach punktierter Kreis.

Wir wollen jeden Typ durch eine VDF (vollstindige differentialgeometrische
Fliche) reprasentieren. Fiir die obigen Félle ist damit Satz B schon bewiesen.

Die Ebene ist die einfachste VDF vom Typ (0, 1, 0). Flichen vom Typ (0, O, 1)
wurden in Arbeiten von OSSERMAN, JENKINS und H. HUBER (s. [8]) konstruiert, wobei
sich die letzteren durch besondere Anschaulichkeit und Einfachheit auszeichnen.
Sie liegen ndmlich schlicht iiber der Ebene, konnen also in der Form

X(x, y) = (x, y, f (x,¥))

dargestellt werden; und f hat u.a. die folgenden Eigenschaften:
a) fist differenzierbar,
b) f(x, y) =0 fiir (x, y)eE?,
c) |f(x,»)|<1V(x,y)eR%.
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Eine solche Fliche werde ich im folgenden Standardfliche vom hyperbolischen
Typus nennen.

Als Standardtyp F(g, 0, 0) einer VDF vom Typ (g, 0, 0) wihlen wir die Einheits-
sphiare mit g Henkeln, die alle im untern Halbraum {(x, y, z)|z <0} liegen sollen.
F(g, 1, 0) erhalten wir, wenn wir aus F(g, 0, 0) die Punkte in

{3, 2) | (x =) + y* < {%, 2 > 0}
herausnehmen und den Rest durch ein Zylinderstiick mit
{(X,Y’Z)l(x—%)z+y2>11—6,z=2}

verbinden und die so erhaltene Fliche glitten. Klebt man auf die gleiche Weise auf
F(g, 0,0) statt einer Ebene eine in Richtung der positiven z-Achse verschobene
Standardfliche vom hyperbolischen Typus, so erhidlt man ein Modell von Typ (g, 0, 1).

Um ein Modell vom Typ (g, m, n) zu konstruieren, muss man also auf F(g, 0, 0)
m Ebenen E,,..., E, und n Standardflichen vom hyperbolischen Typus H,,4,...,
H, ., setzen, indem man sukzessive jede dieser Flichen auf das im vorigen Schritt
entstandene Gebilde tiirmt; die zylindrischen Verbindungen werden am oberen Ende

also von
(___ 1)1 2 R 1 m+n
[ &) + . + = 7 =2
{(Xy2)1<x 5 yi=p2=2p

Jj=1

berandet. Die so aufgebaute Fliache ist frei von Selbstdurchdringungen und soll es
auch nach der Gléttung sein.

Die so entstandene VDF vom Typ (g, m, n) nennen wir im folgenden S,.

4.2 Der zu S gehorige Teichmiillerraum

KOEBE zeigte, dass jede Fliche S vom Typ (g, m, n) konform auf ein Teilgebiet
einer kompakten Riemannschen Fliche abgebildet werden kann, dessen Rand aus
m isolierten Punkten und n analytischen Jordankurven besteht.

AHLFORS zeigte in [1], wie sich die Teichmiillerschen Sétze auch auf berandete
Fliachen mit endlich vielen analytischen Randkurven und endlich vielen ausgezeich-
neten Punkten iibertragen lassen.

Mit diesen Resultaten werden wir im nachsten Abschnitt den Beweis von Satz A
so modifizieren, dass er zu einem Beweis von Satz B wird. In diesem Abschnitt
skizzieren und erginzen wir noch die Uberlegungen von AHLFORS:

S und S, seien Teilgebiete vom Typ (g, m, n) von kompakten Flichen mit den
m isolierten Randpunkten p; bzw. p{°’ und den n analytischen Randkurven y; bzw.
v Durch Hinzunahme der Randpunkte und Verdoppelung iiber die Randkurven
erhalten wir fiir n % 0 zwei kompakte Flichen S,S; mit je 2m (fiir n =0:m) ausge-
zeichneten Punkten, die den isolierten Randpunkten entsprechen. J bzw. J,, sei (fiir
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n # 0) die antikonforme Abbildung, die jedem Punkt sein Doppel zuordnet. Das
Geschlecht g von S und S ist 2g + n — 1. Der einfacheren Darstellung wegen treffen
wir noch folgende Vereinbarung: Durch eventuelle Auszeichnung weiterer Punkte
soll erreicht werden, dass die Anzahl N der ausgezeichneten Punkte auf jeder Hilfte
von S und S; gerade und die Gesamtanzahl grosser als 8 — 4n wird.

Schliesslich gehen wir zu den zweifachen Uberlagerungsflichen von § und S,
iiber, deren Verzweigungspunkte gerade die ausgezeichneten Punkte sind. Wegen
unserer Vereinbarung ist das Geschlecht ¢ dieser Flichen S bzw. S grosser
als 1:

g=28+iN—-1>4g4+2n—-3+4-2n>1.

Fiir n#0 seien J bzw. J, je eine der durch J bzw. J, induzierten antikonformen
Abbildungen von $ bzw. S, auf sich.

z sei ein uniformisierender Parameter von S; (zeE?), G, sei die Gruppe der
linearen Transformationen, die der Deckgruppe von S, entspricht, G die Obergruppe
von G, der Decktransformationen von E? iiber S;: [G:G,] =2. J, sei eine antikon-
forme Abbildung von E? auf E2, die J, entspricht.

AHLFORS zeigt:

a) Es gibt genau eine extremale quasi-konforme Abbildung

f:S—-)S(').

b) Zu f gehort ein bis auf einen positiven Faktor eindeutig bestimmtes holomor-
phes quadratisches Differential ¢ = ¢(z) dz? und eine Konstante k, 0 < k < 1, derart
dass

/] o P
f:S-8,(1dz + k — dz|
{ lol |
konform ist. .

c) Es gelten fiir dieses Differential die Gleichungen
&(Tz)=®(z),VTeG,
& (Jyz) = &(z).

d) finduziert eine konforme Abbildung von S auf

sif

_ Die holomorphen quadratischen Differentiale auf S, mit den Eigenschaften in

¢) bilden einen endlich-dimensionalen reellen Vekktorraum Q2 mit einer Basis ¢, ...,
¢,. Wir kénnen also auch fiir die Flichen vom Typ (g, m, n) wie in 3.1 einen Teich-
miillerraum definieren und ihn mit E identifizieren.

- 2
dz+k 2 il )
ol |
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4.3 Modifizierung des Beweises von Satz A (vgl. 2.8)

Der Verzerrungssatz gilt auch in den neuen Teichmiillerriumen. Denn wenn wir
die Basis ¢y, ¢,,..., ¢, von Q zu einer Basis aller holomorphen quadratischen Dif-
ferentiale auf S; ergdnzen, umfasst der zugehorige Teichmiillerraum den von Sj;
damit wird der neue Verzerrungssatz zu einem Spezialfall des friiheren.

e, M, K, np und n werden zum beliebig vorgegebenen Modul &, # 0 wie in 2.8
bestimmt.

S sei ein Teilgebiet einer kompakten Fliche, dessen Rand aus isolierten Punkten
und analytischen Kurven besteht, und das konform #dquivalent zum vorgegebenen
Normalmodell S, vom Typ (g, m, n) ist. Wir konstruieren wie im vorigen Abschnitt
S und zeichnen einen zu S, gehdrigen Fundamentalbereich P in E? aus.

S, konnen wir uns aus S} so entstanden denken: Die ausgezeichneten Punkte
P werden auf S, durch 4 N zueinander und zu den y? disjunkte Kurven so verbunden,
dass jeder der P? Anfangs- oder Endpunkt ist. Zwei lings dieser Kurven aufgeschnit-
tene Exemplare (S;);, i =1, 2, werden lings der Schnitte kreuzweise verheftet. I sei
die Vereinigung der diesen Schnitten und den y? entsprechenden Kurven auf P.

U’ und U seien offene Umgebungen von I' mit den folgenden Eigenschaften:

a) Uc U’

b) |U'| < ing )

¢) die P — U entsprechende kompakte Teilmenge von S, zerfillt in vier Zusam-
menhangskomponenten (zwei fiir » =0), die alle demselben Kompaktum S; von S
entsprechen.

Beziiglich dem zu S gehorigen Kompaktum S; von S, bestimmen wir nach
Lemma 1 das ¢, und nur auf S, wird S, im folgenden abgedndert. Wir identifizieren
zur Vereinfachung der Ausdruckweise S; mit einem der zugehorigen Teilbereiche Py
von P.

h = hy wird auf P, wie frither (s. 3.6) definiert, (wobei ny durch /8 ersetzt werden
muss,) und so abgedndert, dass 4 in Un P; verschwindet und ausserhalb U’ n P, un-
verindert bleibt. Die natiirliche Struktur der abgeinderten Fliche wird auf S ver-
pflanzt und mit J, und einer geeigneten Transformation aus G auf ganz $; fortge-
setzt, womit sich also alle Symmetrieeigenschaften von S, auf die abgeinderte
Fliche S}, (dX?) iibertragen.

Wegen der Kompaktheit von P — U kann der Beweis wie frither beendet werden.
Die Approximation von A& durch die Folge A, féllt hier allerdings weg.

Zufolge der Symmetrieeigenschaften der Flichen Sy (dX?) gehdren deren Moduln
zum Raum E'. Wir konnen deshalb den Kontinuitdtsschluss im E* anwenden und
erhalten so den Nachweis der Existenz einer Fliche Sg(dX f;"l) mit den Modul &,
Die zugehorige, aus S, durch Abinderung in der Richtung der Normalen entstandene
Fliche ist daher die gesuchte vollstindige differentialgeometrische Fliche.
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