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Ein Gitterpunktproblem im dreidimensionalen hyperbolischen Raum

FRrANCGOIS FRICKER (Basel)

1. Problemstellung und Ergebnisse

Die vorliegende Arbeit ist als Beitrag zur Behandlung eines Problemkreises ge-
dacht, der erstmals von H. HUBER und spiter auch von O. HERRMANN aufgegriffen
wurde (siche Literaturangaben [1]-[4]).

Es bezeichne §) den dreidimensionalen hyperbolischen Raum, also einen einfach-
zusammenhdngenden und vollstindigen dreidimensionalen Riemannschen Raum mit
konstanter negativer Gaussscher Kriitmmung. Die Lingenmessung denken wir uns
etwa so normiert, dass §) die konstante Gausssche Kriimmung —1 besitzt. Als
Modell von § dient bekanntlich der obere Halbraum des dreidimensionalen Eukli-
dischen Raumes: § = {(x, y, z)| z > 0}, versehen mit der metrischen Fundamental-
form
,  dx* +dy? +dz2*

22

ds

Die Geoditischen sind dann die zur Hyperebene z = 0 orthogonalen Halbkreise
und Halbgeraden. Die hyperbolische Distanz der Punkte p, ge$) bezeichnen wir mit
e(p, 9).

I' sei nun eine diskontinuierliche (nicht notwendig fixpunktfreie!) Bewegungs-
gruppe von $ mit kompaktem, messbarem Fundamentalbereich . Ist p ein belie-
biger Punkt von $), so betrachten wir die Menge

®,= {S(p)ISer}

und sagen, ®, sei das vom Punkte p aus durch I" erzeugte hyperbolische Gitter. Jetzt
nehmen wir die hyperbolische Kugel mit dem Zentrum p und dem Radius ¢ > 0:K(p, ?)
= {qlo(p, g) <t} und betrachten die Anzahl N(I', p, t) der Punkte des Gitters &,
die in dieser Kugel liegenl; oder, anders ausgedriickt, wir betrachten die Anzahl
N(I, p, t) der Elemente der Menge {S|Serl, ¢(S(p), p) <t}. (Wegen der Diskonti-
nuitdt von I' ist diese Anzahl stets endlich). In der vorliegenden Arbeit stellen wir uns
die Aufgabe, das asymptotische Verhalten dieser Gitterpunktsanzahl zu untersuchen.

1) Dabei ist jeder Gitterpunkt so oft zu zdhlen, wie er als Bild von p auftritt. Ist N’'(I', p, t) die
Anzahl Gitterpunkte in der angegebenen Kugel, wobei aber jeder Punkt genau einmal gezihlt wird,
so tiberlegt man sich leicht: N(I', p,t) = N'(I, p, t)-Ord I'p (vgl. dazu die Vorbemerkung zu Satz 2
in Abschnitt 2).
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Unsere Losung steht im Zusammenhang mit dem Eigenwertproblem
Adp+ip=0 (1)

auf &, wobei 4 den zu § gehorigen Laplace-Beltrami-Operator bezeichne. Dabei
heisse die (reelle oder komplexe) Zahl A Eigenwert, wenn es auf §) eine nicht identisch
verschwindende beziiglich I' automorphe (reelle oder komplexe) Funktion ¢ gibt,
welche nach den Koordinaten von $ zweimal stetig differenzierbar ist und die Dif-
ferentialgleichung (1) erfiillt. Jede solche Funktion heisse eine zum Eigenwert A ge-
horige Eigenfunktion.

Wir werden im ndchsten Abschnitt sehen: Es gibt stets unendlich viele Eigen-
werte; sie sind alle reell und, abgesehen vom trivialen Eigenwert A =0, positiv und
haufen sich nirgends im Endlichen. Die zu jedem Eigenwert A gehorigen Eigenfunk-
tionen bilden einen Vektorraum g; endlicher Dimension iiber dem komplexen Zahl-
koérper. Ist dann {@,, ¢,,..., ¢,} eine Orthonormalbasis von ¢;, dass heist, gilt

(1, fir I=m

f¢,(p)mdp=(0: fir l#m

g
SO setzen wir

K;(p,q) = ,an @:(p) m

(Man beachte: a) dp bezeichne hier und auch im folgenden stets das hyperbolische
Volumenelement; b) K, (p, q) ist eindeutig definiert, da K, (p, q) offenbar einem Basis-
wechsel gegeniiber invariant ist). Um im folgenden die Schreibweise zu vereinfachen
setzen wir K,(p, q) =0, falls A kein Eigenwert ist, und K,(p, p) = K, (p). Bezeichnen
wir schliesslich mit || den hyperbolischen Inhalt von &, so konnen wir die Losung
unseres Problems wie folgt formulieren:

HAUPTSATZ. Fiir t — + o0 gilt:

N(Fpt)=-LeZt+7t Z ~ ___-,Kl(p) S
o 2!3‘] +\/1_l(1++\/1—}~)

0<i<3/4

e(1++~/m): + O(e3/2').

Es ist zu erwarten, dass die Anwendung dieses Satzes auf gewisse arithmetisch
definierte Bewegungsgruppen (sieche [5], p. 501-634) interessante zahlentheoretische
Ergebnisse liefert. Darauf soll in einer spiteren Arbeit eingegangen werden.

Ich modchte an dieser Stelle Herrn Prof. Dr. H. HUBER, der mich zu dieser Arbeit
angeregt hat, fiir seine vielen wertvollen Hinweise meinen besten Dank aus-
sprechen.
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2. Das Eigenwertproblem 4¢ +1¢ =0 auf §

Die auf § beziiglich I' automorphen Funktionen kénnen als eindeutige Funk-
tionen auf $/I' aufgefasst werden. Enthélt die Gruppe I' keine Bewegungen mit
Fixpunkten, so wird $/I" eine geschlossene Riemannsche Mannigfaltigkeit und unser
Eigenwertproblem kann im Rahmen der Theorie linearer Integralgleichungen mit
symmetrischem Kern behandelt werden (vgl. [6] und insbesondere [7]). Dabei ergeben
sich die bereits im ersten Abschnitt genannten Resultate. Die zum Eigenwert 4 =0
gehorigen Eigenfunktionen sind offensichtlich harmonisch auf der geschlossenen
Mannigfaltigkeit $/I” und somit konstant; g, hat deshalb die Dimension 1 und

Q@ =1/\/ @ ist normiertes Basiselement von g,. Im weiteren liefert die Integral-
gleichungstheorie den folgenden

SAtz 1 (Entwicklungssatz). Ist f eine beziiglich I' automorphe (reelle oder kom-
plexe) Funktion, die nach den Koordinaten von §) zweimal stetig differenzierbar ist,
so konvergiert die Fourierreihe

;sz(p, q) f(q) dq
&

absolut und gleichmdssig fiir alle pe$) und stellt f(p) dar.

Fiir die Behandlung unseres Problemes ist es ausschlaggebend, dass alle bisher
zum Eigenwertproblem 4¢ + 1¢ =0 gemachten Aussagen (inkl. Entwicklungssatz)
auch dann richtig sind, wenn I' Be wegungen mit Fixpunkten enthilt.

Beweis: Es sei also I' nicht mehr fixpunktfrei. Nach A. SELBERG ([8], p. 154)
existiert ein fixpunktfreier Normalteiler N von I' mit endlichem Index [I':N]=n.
Ist dann S|, S,,..., S, ein vollstindiges Reprédsentantensystem der Restklassen I’

modN, so ist Fy = S,(F) ein kompakter, messbarer Fundamentalbereich der
=1

Gruppe N.
Wir definieren wie friiher

e, (N ={0|peC*(H), poS = ¢ fiiralle Sel', Ap + 1 ¢ =0}
und analog
&, (N)={0|peC*($), 9T = gfirralle TeN, Ao + Ap = 0}.

Es ist offensichtlich ¢;(N)>¢,(I') fiir jedes A, wobei fiir A =0 auf jeden Fall das
Gleichheitszeichen besteht. Wie wir wissen, ist dime; (N) =r stets endlich und somit
-erst recht dime; (I') = s stets endlich und s<r.

Es bezeichne

P1> P25 ees P
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eine Orthonormalbasis von ¢;(N) beziiglich des Skalarproduktes (¢;, @)y =

j ¢;(p) o (p) dp. Wir diirfen und wollen annehmen, diese Orthonormalbasis sei so
N

gewdhlt, dass die ersten s Basiselemente ¢, ¢,,..., ¢, den Raum ¢,(I') aufspannen.
Der durch die restlichen Basiselemente ¢, ., ¢, ,,..., @, aufgespannte Raum ¢,(I')*
ist orthogonal zu ¢,(I') im Sinne des eben definierten Skalarproduktes. Ist nun
@i pree (), so gilt

(@5 @)v = f 9:(p) @i (p) dp = f :(p) 0. (p) dp

8N n
U S (&)
=1

=él f co,-(p)@—(?)dp=nf¢i(p)mdp

51 (%) &

(Bei dieser Umformung wurde ausgeniitzt, dass ¢; und ¢, beziiglich I' automorph
sind und dass das Volumenelement dp gegeniiber den Bewegungen von $§) invariant
ist. Diese Methode der Umformung wird im folgenden noch mehrmals angewendet).

Deshalb ist - B B
\/n(ph \/"%»---a\/"(Ps

eine Orthonormalbasis von ¢,(I") (im alten Sinne). Mit den eben eingefiihrten Be-
zeichnungen ergeben sich die folgenden Beziehungen (1)—(3).

pee;(N), Sel'=¢@o.Seg;(N). (1)
Ist ndmlich TeN beliebig, so existiert 7*e N mit S.T = T*.S, also
¢oSoT=(poT*oS=¢oS.

Weiter ist mit 4¢ + 4@ =0 auch 4(@.S) + A(¢.S) =0, da der Laplace-Beltrami-
Operator bekanntlich bewegungsinvariant ist.

pee, (I, Sel'=@.See,(IN". ()

Es geniigt offenbar, diese Behauptung fiir die Basiselemente ¢; i =s+ 1,5+ 2,...,r)
von &,(I")* nachzuweisen. Nach (1) ist jedenfalls ¢;.Se€e;(N) und wir erhalten als
Skalarprodukt mit einem beliebigen Basiselement ¢, (k =1, 2,...,5) von ¢g,(r)

(@i0S, @)y = f 9:(S(p)) @ (p) dp

0 Si@®)
1=1

B f ¢:(p) m dp = f ®:(p) 5::(—1;5 dp = (@i, @)y = 0.

1S (§) O Si@®)
1 1=1

YCs
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Daraus folgt sofort ¢,.Seg, (I)*.
Y 908, =0 fir i=s+1,s+2,...,r. (3)
I=1

Denn es ist einerseits nach (2) ¢; = Z @;05,€¢,(I)* und andrerseits wegen ¢;0S =

Z @088 = Z @08, = ¢, fiir jedes Sel’ auch ¢;ee,(I), also ¢; =0.

Entsprechend den fritheren Bezeichnungen bilden wir jetzt

KY(p,q) = :Zl ¢:(p) 9:(4)
und . B — s -
K:(p,q) = i; (Vne:(p) (Vnoiq)=n ,; 0:(p) 0:(q).
Dann gilt 1
K (p,g)=- - Ki(p.q) + Z 9:(p) 0:(q).

i=s+1

Ersetzen wir hier das Argument p durch S;(p) und summieren sodann iiber /=1,
2,...,n, so erhalten wir wegen (3)

Ka(p.0) = Y. KX (Si(0).9). @

Sei nun fe C*($) und automorph beziiglich I'. Dann ist erst recht f automorph be-
ziiglich N und wir konnen den klassischen E ntwicklungssatz anwenden:

f(p)=§fKiv(p,q)f(q)dq-

Wird hier wiederum p durch S,(p) ersetzt und sodann iiber / =1, 2, ..., » summiert,
so erhdlt man unter Beriicksichtigung von (4)

nf(p)=Y, f Ki(p,q) f(q) dq

-Z f K;(p q)f(Q)dq=anK;(p, q) f(9) dq,

S1(%)

||c:

also in der Tat

f(p)= 2;, f K;(p, q) f(q) dq %)
& q.e.d.

Neben dem Entwicklungssatz bendtigen wir noch eine Formel, welche die asymp-
totische Verteilung der K, (p) beschreibt.
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Ist pe$, so bezeichne I', die Gruppe derjenigen Bewegungen Ser’, fiir die gilt:
S(p) = p. Wegen der Diskontinuitit von I' ist die Ordnung dieser Gruppe (= OrdI",)
endlich. Die erwdhnte asymptotische Verteilung wird jetzt gegeben durch den

SAatz 2. Es gilt

Ordr,
Y. K;(p) ~ o i e (6)

ASx

fiir x > 4 o0.

Beweis: N bezeichne wieder den fixpunktfreien Normalteiler von I'; dabei kann
jetzt auch N =T sein, ndmlich dann, wenn I" schon fixpunktfrei ist. (In diesem Fall
ist Ord I', = 1 fiir alle p).

Der Arbeit [7] entnimmt man den folgenden — in seiner Formulierung fiir unsere

Zwecke zugeschnittenen —
K (p. q)
AS

A>0

HiLrssATZ. Die Dirichletreihe

besitzt eine endliche Konvergenzabszisse o(p, q). In Res > a(p, q) gilt die Darstellung

ZK’J’ (p.a) _x(p,a) 1

Jr - 471_2 § - % + G(P, q) (S)
i>0
HGes (5, g)= (1 fiir p=q modN
Xp’q_(O fiir p#Zq modN
und G, . holomorph ist in einem Gebiet, das Res =3 enthdlt.

Die Elemente von I',: U; =1d., U,, ..., U,, gehdren paarweise verschiedenen Rest-
klassen I'mod N an. Denn aus einer Beziehung 7.U; = U, mit TeN folgt wegen
U;(p) = U(p) =p:T(p) =p, was wegen der Fixpunktfreiheit von N nur fiir T=1d.,
also U; = U, moglich ist. Die Restklassen NU; (i =1, 2, ..., m) sind also paarweise dis-
junkt. U,.q, Upsas-.., U, seien Repridsentanten der librigen Restklassen I'mod N.
Hier gilt U;(p) # p mod N. Denn aus einer Beziehung U;(p) = T(p) mit Te N wiirde
folgen: T~ '.U;el’, und U; wiirde bereits einer der Restklassen NU, (k =1, 2,..., m)
angehoren. Aus dem Hilfssatz, Formel (4) und den besprochenen Eigenschaften
des Reprisentantensystems U,, U,,..., U, ergibt sich nacheinander: Fiir Res>

Max o (U,(p), p) gilt
XKA(I’) Z ZKIV (U, (p).p)

1<i<n
1=14>0
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Die Reihe links besitzt eine endliche Konvergenzabszisse ¢ und ldsst sich iiber diese
hinaus meromorph in ein Gebiet fortsetzen, das Res >$ enthilt. Die so fortgesetzte
Funktion besitzt einen einzigen Pol, der in s=4% liegt. Daraus und aus K;(p) >0
folgt nach einem Satz von LANDAU ([9], p. 880), dass 6 =3 sein muss. Zudem ist der
Pol der fortgesetzten Funktion einfach und das Residuum ist wegen m =Ord I’ gleich

Ordr,

4 7*

Die behauptete Formel (6) ergibt sich jetzt sofort aus dem Tauberschen Theorem
von WIENER-IKEHARA ([10], p. 127).

3. Beweis des Hauptsatzes

1. Es sei FeC?*(0, + o0) eine reelle Funktion mit kompaktem Triger. Ist ge$
ein beliebiger Punkt, so betrachten wir die Funktion

fu(p)= X F(e(S(). 2))
Diese Funktion ist wohl definiert auf §), da I' diskontinuierlich ist und F einen
kompakten Tréger besitzt. Ausserdem ist offensichtlich f,(p)e C*($) und automorph
beziiglich I'. Wir konnen deshalb auf diese Funktion den in Abschnitt 2 genannten

Entwicklungssatz anwenden. Dazu berechnen wir zuerst die Fourierkoeffizienten.

2. Ist peg,, so erhalten wir als Fourierkoeffizienten

f f.(p) ¢ (p) dp
i
- f sng(Q(S(p), 9) o (p) dp =SZF f F(e(S(p), 9)) ¢(S(p)) dp (1)
& &

=s§rf F(Q(p, q))mdp=fF(Q(P, Q))mdp-

5(&) 5

3. Um das letzte Integral weiter ausrechnen zu kdnnen, fithren wir in §) geodd-
tische Polarkoordinaten mit dem Polg ein. Darunter ist folgendes zu verstehen: Ist
¢ ein Punkt der zweidimensionalen euklidischen Sphire & = {¢& = (§,, &,, &3)|E3 +
&2 4+E5=1} und g eine reelle positive Zahl, so erhdlt man den Punkt p =(¢, o),

indem man auf dem durch die Richtung des Ortsvektors 2 festgelegten geodétischen
Strahl von g aus den Abstand g abtrdgt. In diesen neuen Koordinaten nimmt die
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metrische Fundamentalform die Gestalt
ds* = dg* + Sin? g do*? 2)

an, wenn do das (euklidische) Linienelement auf S bezeichnet (vgl. dazu etwa [11],
p. 183). Daraus erhalten wir fiir das Volemenelement

dp = Sin® g dg d¢, A3)

wenn d¢ das (euklidische) Flachenelement auf & bezeichnet. (1) kann jetzt deshalb
auch in der folgenden Gestalt

}O F (o) Sin® ¢ ([ ¢ (¢, 0) dé) do “4)

geschrieben werden, wenn wir ¢ (&, ¢) = @ (p) setzen.

4. Es ist allgemein in einem n-dimensionalen Riemannschen Raum mit Koordi-
naten (xy, x,,..., x,) und metrischer Fundamentalform

ds? =
i,

ek

gikdxidxk
1

der Laplace-Beltrami-Operator 4 gleich

I Ve /v . 0
a= ) —(Z g”‘+Jg~), )
+\/g | Ox; 0
i=1 k=1

wo g = det(g;,). Daraus erhalten wir nach einer kleineren Rechnung fiir den Laplace-
Beltrami-Operator von $), ausgedriickt in geodatischen Polarkoordinaten,
2

0
A= - +2Ctgg — + Sin"?¢" 4¢, 6)
09 0o

wobei 4 der Laplace-Beltrami-Operator von & ist.

5. Wir konnen nun (4) weiter ausrechnen, wenn wir beniitzen, dass ¢ (¢, g)
Eigenfunktion ist. Wegen (6) bedeutet dies
0* 0 L
52 PG +2Ce, O 0) +Sin"2¢ (4 ¢ (&, @) + 20 (& 0) = 0.

Durch Integration iiber G erhalten wir

0? 0
é—“zjqb(é: o) d& +2Cth—J¢(é, 0) d¢ +AJ¢(§, 0)dé =0
0 do

S S S
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oder, wenn wir y = y(p) = j @ (&, 0)d¢ setzen, die Differentialgleichung
S

Diese Differentialgleichung geht durch die Substitution z =y Sin ¢ iiber in

y'+2Ctgey +1y=0.

274+ (A-1)z=0

Daraus erhalten wir als allgemeine Ldsung von (7)

Wegen

1
—(ci0+¢y), fir A=1
Sing

S——(c181n+\/1 lQ+c2Cos+\/1 Ag), fur A<1
ing

1 _—
§—~(c1 sm+\/,1—1Q+czcos+\/A—lg), fir A> 1.
ing

lim | ¢ (¢, Q)dé—llmjfp—(;jdéE:fa@dé:“nm

el0

erhalten wir aus (8)

und somit fiir (4)

ff.,(p)&“@)dp=
&

S
dnp@) 2 fir A=
Sng

4nqo(q) Sin \/1 —AQ )
f¢(5,g)d5= \/1 " fir A<
) ing

4@ sin i1

JI0 _S"”r @ fir A>1

A1 Sing

4n¢(q)JF(g)QSinng, fir A=1

4 T —
ne4) F()Sin,./1— AoSingde, fir i<

F () sin +\/l— 1¢Singdp, fir A>1.

(M

(8)

®
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6. Wir setzen zur Abkiirzung

a=a(d)= /|1 =4l

Die Anwendung des Entwicklungssatzes liefert jetzt

4r I
f.(p) = Z . K;(p, Q)JF(Q) Sina g Sin o dp

0<i<1

411

: 4n . )
+4nK,(p, Q)fF(Q)Q Singdp + Z ~O~C—K,1(p, q)J-F(Q) sina o Sin o do.
0 0

A>1

Spezialisieren wir diese Formel auf den Fall p =g und beachten wir noch, dass

Ko(p, q) =1/|F|, so bekommen wir schliesslich

Z F(e(S(p), p)

Serl’
[o o]

=,%JF(Q) Sin“odo + 4n Z Kl(p)jF(g) Sing Sina g dg
0

o
0<AiAx<1 0
K
+ 4nK1(p)JF(Q) 0 Singdp + 4n y L(P) F(g) Singsinagdo .
L, «
0 A>1 0

(10)

Diese Entwicklung ist also richtig fiir jede reelle Funktion Fe C?(0, + o0) mit kom-

paktem Tréger.
7. Es sei g(@)eC? [1, 2] reell und erfiille die Bedingungen
g'(@)=0 fir ge[l,2]

g(1)=0,g2)=1 g?1)=¢g"Q2)=0 fir i=1,2,3.

(Ein solches g gibt es offensichtlich). Bei fest gewdhltem ¢, das etwa grosser als 3

sein soll, definieren wir die Funktion F,(¢) durch

0, fir 0<o<1
g(0), fir 1<0<?2
F,(0)= i1, fir 2<g<t
k(@=g(2—(e—1e€"?), fir t<o<t+e”
0, fir o>1t+e "2

t/2

=




412 FRANCOIS FRICKER

und die Funktion G,(g) durch

F (o), fir 0<go<t—e "2
F(o+e™ %), fir g>1—e "2

G,(0) = {

Anhand des Verlaufes dieser beiden Funktionen macht man sich leicht die beiden
folgenden Ungleichungen klar:

SZrGt (e(S(», p)) SN, p, )< N(I, p, 2) +SZFF, (e(S(p), p)). (11)

Da F,(0)eC?(0, + ) ist und kompakten Triiger besitzt, ldasst sich auf die rechte
Seite von (11) die Entwicklung (10) anwenden. Wir untersuchen im folgenden (8.-11.)
die dabei entstehenden Integrale.

8. Es ist
0 2 t t+e-t/2
f F,(¢) Sin’gdo = f g(o) Sin% o dg + f Sin® g do + f k(o) Sin* o de
0 1 2 t

Beachten wir

t
2t

fSinZQdQ=%+0(t) fir t—> + ©
2

und
t+e~t/2 t+e-t/2

| k@sinedej< [ Sin'ode< e sint(t+ e = 0,
|

|t t

so bekommen wir

©
2t

[F@sintede=", +0@™) fir 1=+, 12
0
9. Es ist
[L9) 2 t
fF,(Q) Sin g Sinocgdg=fg(g) Sin g Sinocgdg+fSinQ Sino g do
0 1 2
t+e~t/2

+ f k() Sin g Sina g do.

t
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Wegen 0 <a <1 ist
t

(1+a)t
Sing Sinapdp = — 4+ 0(e
f ¢Sinagde = i+ 0()
2
und
t+e~t/2 t+e-t/2
f k(e¢) Sing Sinagdp | < f Sin? g = 0(e*?"),
t t
mithin
p (1+a)t
J‘E(Q)SingSinocgdg=4f(—1 +-&)+0(e3’2‘) fir t— + . (13)
0
10. Es ist
o0 2 t t+e—t/2
sz(Q)QSiUQdQ=fg(Q)QSinQdQ+fQSinQdéH- f k(e)e Singdo.
0 1 2 t
Wegen .
fgSingdg-—-O(te‘)
2
und t+e-t/2
f k(o) ¢ Singdg = O(té'’?)
t
folgt w
th(Q)QSinQdQ=O(t€t) fir t— + 00. (14)
0

11. Wegen g(p)eC? [1, 2] sind die Maxima
M; = Max [gP(g)) i=0,1,2,3

1<px52

endlich und somit auch M = Max M, endlich. Daraus und aus der Definition
0<i<3

k(o) =g(2 — (o — t)e'’?) ergibt sich fiir i =0, 1, 2, 3
Max [kP(g)l= Max |(—1)e"?g?(2—(e—1)e")
t<g<t+et/2 t<o<t+e-t/2

= eit/Z Max lg(t)(Q)l < eit/2M,

1<px<2
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also
Max  |kP(g)l = 0(e"?) fiir t— + . (15)
t<p<t+e~t/2
Anhand dieser Beziehung schitzen wir das Integral

e o]

f F,(¢) Sing sina g dg
0
auf zwei Arten ab.

(A) Die partielle Integration liefert unter Beachtung der Definition von F,(g)

1

JE(Q) Sing sinagdo = ~J(F,(Q) Sin g)' cosa g do
o

0 0

t t+e—t/2

2
1
_—__I:J‘(g(g)Sing)’cosagdg+JCosgcosanQ+ J (k(Q)Sing)’cosanQ]
o
1

t
t
Man sieht sofort, dass jCos o cos agdp =0(e"). Zudem ergibt sich unter Beniitzung
2
von (15)

t+e—t/2 t+e-t/2
f (k(0) Sing)’ cosagdp|< f I(k(¢) Sing)'| do < e ?0(e"?) 0(¢') = O ("),
t t

also zusammengefasst

th(Q)SinQ sinagdg=§0(e’) fir t- + . (16)
0

(B) Dreimalige partielle Integration liefert unter Beachtung der Definition von
F(0)

1

JF:(Q) Sing sinagdo = — °§J~(F,(Q) Sin )" cosa @ dg
o

0 0

t
1

2
== j(g(Q) Sing)” cos a g dp +jCosg cosa g do
1

2

t+e—t/2
ad

+ (k(e) Sing)" cosagdg ]
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t
Einerseits folgt unmittelbar | Cos ¢ cos agdg = 0(e'), andrerseits folgt wegen (15)
2

t+e-t/2 t+e—t/2

J (k (Q) Sin Q)’” CosaQ dQ < f I(k (Q) Sln Q)ml dQ

t | t

< e—t/2 O(e3/2t) O(et) — O(eZt)’
also zusammen

0

1

fE(Q)SianinanQ=7O(e2‘) fir t—>+o00. (17)
o

0

12. Aus dem im zweiten A bschnitt hergeleiteten asymptotischen Verhalten von
M (x)= ) K,(p) folgt die Konvergenz der Reihe Z(K A(p)a®), genauer:

PR
Kl(p) [ dM() [ M&HT L, ME)
(x— 1) [(x=1%], (x—1)°
Ao
und daher
KA(P) < 1 ) .
Mol —— fir A, —>4+00. (18)
at A °
AZ Ao \/ °
Analog ergibt sich:
,,,&2- = ( 0) ir Ag—>+o0. (19)
A<Ap

Unter Beniitzung von (16) und (17) folgt fiir jedes A, > 1:
K K
Z A(p)jF(g) Sing sinagdg = 0(¢') Z JQD«) + 0(e*") Z a(P)
o

A>1 0 1<A<ig

Wihlen wir insbesondere A, =e' und beachten wir (18) und (19), so erhalten wir
schliesslich:

K

Z ’{(p)JFt(g)Sianinagdg=0(e3/2') fir t->+o00. (20)
a

A>1

13. Die Anwendung von (10) auf die rechte Seite von (11) liefert unter Beachtung

von (12)-(14) und (20)
N(I,p,t)< = «——Ae "+ 7 Z Kl(p)

(1+a)t
a(l . a) + R(?), (21)

2|5l
wobei R(¢) =0(e*'?") fiir t - + .

0<A<3/4
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Man sieht leicht, dass die Beziehungen (12)-(14) und (20) richtig bleiben, wenn
F,(¢) durch G,(o) ersetzt wird. Deshalb liefert die Anwendung von (10) auf die linke
Seite von (11) wiederum die Ungleichung (21), jedoch mit umgekehrtem Ungleich-
heitszeichen. Daraus ergibt sich aber der im ersten Abschnitt ausgesprochene Haupt-
satz.
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