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Ein Gitterpunktproblem im dreidimensionalen hyperbolischen Raum

François Fricker (Basel)

1. Problemstellung und Ergebnisse

Die vorliegende Arbeit ist als Beitrag zur Behandlung eines Problemkreises ge-
dacht, der erstmals von H. Huber und spâter auch von O. Herrmann aufgegriffen
wurde (siehe Literaturangaben [l]-[4]).

Es bezeichne § den dreidimensionalen hyperbolischen Raum, also einen einfach-
zusammenhângenden und vollstândigen dreidimensionalen Riemannschen Raum mit
konstanter negativer Gaussscher Krummung. Die Lângenmessung denken wir uns
etwa so normiert, dass § die konstante Gausssche Krummung —1 besitzt. Als
Modell von .£> dient bekanntlich der obère Halbraum des dreidimensionalen Eukli-
dischen Raumes: £> {(x, y, z)\ z > 0}, versehen mit der metrischen Fundamental-
form

2 _
dx2 + dy2 + dz2

ds - -~2

Die Geodâtischen sind dann die zur Hyperebene z 0 orthogonalen Halbkreise
und Halbgeraden. Die hyperbolische Distanz der Punkte p, qe$ bezeichnen wir mit
q(p, <ù-

F sei nun eine diskontinuierliche (nicht notwendig fixpunktfreie Bewegungs-

gruppe von £) mit kompaktem, messbarem Fundamentalbereich 3r- Ist P ein belie-

biger Punkt von £), so betrachten wir die Menge

und sagen, ©p sei das vom Punkte p aus durch F erzeugte hyperbolische Gitter. Jetzt
nehmen wirdie hyperbolische Kugel mit dem Zentrum/? und dem Radius t > 0:K(p, t)

{q\g(p, g) ^ t} und betrachten die Anzahl N(F,p, t) der Punkte des Gitters ©p,
die in dieser Kugel liegen1; oder, anders ausgedriickt, wir betrachten die Anzahl

N(F,p, t) der Elemente der Menge {S|Ser, g(S(p), p) < t}. (Wegen der Diskonti-
nuitât von F ist dièse Anzahl stets endlich). In der vorliegenden Arbeit stellen wir uns
die Aufgabe, das asymptotische Verhalten dieser Gitterpunktsanzahl zu untersuchen.

x) Dabei ist jeder Gitterpunkt so oft zu zâhlen, wie er als Bild von p auftritt. Ist N'(F, /?, t) die
Anzahl Gitterpunkte in der angegebenen Kugel, wobei aber jeder Punkt genau einmal gezâhlt wird,
so uberlegt man sich leicht: N(F, p, t) N'(F9p, f)*Ord FP (vgl. dazu die Vorbemerkung zu Satz 2
in Abschnitt 2).
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Unsere Lôsung steht im Zusammenhang mit dem Eigenwertproblem

A(p + Àcp O (1)

auf jr>, wobei A den zu £) gehôrigen Laplaee-Beltrami-Operator bezeichne. Dabei
heisse die (réelle oder komplexe) Zahl k Eigenwert, wenn es auf £> eine nicht identisch
verschwindende bezûglich F automorphe (réelle oder komplexe) Funktion <p gibt,
welche nach den Koordinaten von § zweimal stetig differenzierbar ist und die Dif-
ferentialgleichung (1) erfùllt. Jede solche Funktion heisse eine zum Eigenwert k ge-
hôrige Eigenfunktion.

Wir werden im nâchsten Abschnitt sehen: Es gibt stets unendlich viele Eigen-
werte; sie sind aile reell und, abgesehen vom trivialen Eigenwert k 0, positiv und
hâufen sich nirgends im Endlichen. Die zu jedem Eigenwert k gehôrigen Eigenfunk-
tionen bilden einen Vektorraum eA endlicher Dimension ùber dem komplexen Zahl-
kôrper. Ist dann {q>l9 <p29..., (pn} eine Orthonormalbasis von sA, dass heist, gilt

\ 1, tur / m

:(0, fur l±m
so setzen wir

(Man beachte: a) dp bezeichne hier und auch im folgenden stets das hyperbolische
Volumenelement; b) KÀ(p, q) ist eindeutig definiert, da Kx(p, q) offenbar einem Basis-

wechsel gegeniiber invariant ist). Um im folgenden die Schreibweise zu vereinfachen

setzen wir Kx(p, q) =0, falls k kein Eigenwert ist, und Kx(p,p) =KÀ(p). Bezeichnen

wir schliesslich mit |(Ç| den hyperbolischen Inhalt von 3, so kônnen wir die Lôsung
unseres Problems wie folgt formulieren :

Hauptsatz. Fur t -? + oo gilt:

V
L /

0<A<3/4

Es ist zu erwarten, dass die Anwendung dièses Satzes auf gewisse arithmetisch
definierte Bewegungsgruppen (siehe [5], p. 501-634) intéressante zahlentheoretische

Ergebnisse liefert. Darauf soll in einer spâteren Arbeit eingegangen werden.

Ich môchte an dieser Stelle Herrn Prof. Dr. H. Huber, der mich zu dieser Arbeit
angeregt hat, fur seine vielen wertvollen Hinweise meinen besten Dank aus-

sprechen.



404 FRANÇOIS FRICKER

2. Das Eigenwertproblem Acp + X (p =0 auf jr>

Die auf jr> beziiglich F automorphen Funktionen kônnen als eindeutige Funk-
tionen auf §/r aufgefasst werden. Enthâlt die Gruppe F keine Bewegungen mit
Fixpunkten, so wird $)/F eine geschlossene Riemannsche Mannigfaltigkeit und unser
Eigenwertproblem kann im Rahmen der Théorie linearer Integralgleichungen mit
symmetrischem Kern behandelt werden (vgl. [6] und insbesondere [7]). Dabei ergeben
sich die bereits im ersten Abschnitt genannten Resultate. Die zum Eigenwert A 0

gehôrigen Eigenfunktionen sind offensichtlich harmonisch auf der geschlossenen

Mannigfaltigkeit $/F und somit konstant; e0 hat deshalb die Dimension 1 und

<p l/>/l3fl ist normiertes Basiselement von e0. Im weiteren liefert die Integral-
gleichungstheorie den folgenden

Satz 1 (Entwicklungssatz). Ist f eine beziiglich F automorphe (réelle oder
/complexe) Funktion, die nach den Koordinaten von § zweimal stetig differenzierbar ist,

so konvergiert die Fourierreihe

Z
A

Kx(p,q)f(q)dq

absolut und gleichmâssig fur aile pe^ und stellt f{p) dar.

Fur die Behandlung unseres Problèmes ist es ausschlaggebend, dass aile bisher

zum Eigenwertproblem A<p + À<p 0 gemachten Aussagen (inkl. Entwicklungssatz)
auch dann richtig sind, wenn F Bewegungen mit Fixpunkten enthâlt.

Beweis: Es sei also F nicht mehr fixpunktfrei. Nach A. Selberg ([8], p. 154)

existiert ein fixpunktfreier Normalteiler N von F mit endlichem Index [F : N] =n.
Ist dann Sl9 S2,...9 Sn ein vollstândiges Reprâsentantensystem der Restklassen F

n

modN, so ist 5n U *Sj(5) em kompakter, messbarer Fundamentalbereich der

Gruppe N.
Wir definieren wie frùher

ex(F) {q>\(peC2(%)9(poS q> fur aile SeF9 Acp + kcp 0}

und analog

eÀ(N) {(p| (peC2($>), q)oT (pî'ùr aile TeN, Aç + kq> 0}.

Es ist offensichtlich ex(N)^ex(F) fur jedes X9 wobei fiir A 0 auf jeden Fall das

Gleichheitszeichen besteht. Wie wir wissen, ist dimeA(A^) r stets endlich und somit
erst recht dimeA(r) s stets endlich und s < r.

Es bezeichne

<pl9 (p2,-->, <pr
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eine Orthonormalbasis von ex(N) bezûglich des Skalarproduktes (cpn (pk)N

J <Pi(p) <Pk(P) dp. Wir diirfen und wollen annehmen, dièse Orthonormalbasis sei so

gewâhlt, dass die ersten s Basiselemente cpu <p2>---> (ps den Raum ex(F) aufspannen.
Der durch die restlichen Basiselemente <ps+i, <ps+2>---> <Pr aufgespannte Raum ex(F)L
ist orthogonal zu sx(F) im Sinne des eben definierten Skalarproduktes. Ist nun
q>l9 (pkeex(F), so gilt

(<P»<Pk)N= <Pi(p) <Pk(p) dp J (pt(p) <Pk(p) dp

Z J <Pi (p) <Ph (p) dp n J <pt (p) <pk (p) dp

Si (3f) 8f

(Bei dieser Umformung wurde ausgenùtzt, dass (pt und <pk bezûglich F automorph
sind und dass das Volumenelement dp gegeniiber den Bewegungen von § invariant
ist. Dièse Méthode der Umformung wird im folgenden noch mehrmals angewendet).

Deshalb ist

eine Orthonormalbasis von eA(T) (im alten Sinne). Mit den eben eingefiihrten Be-

zeichnungen ergeben sich die folgenden Beziehungen (l)-(3).

<pe8x(N)9 SEF=>(poSeeÀ(N). (1)

Ist nâmlich TeN beliebig, so existiert T*eN mit 507 7*05, also

q)oSoT (poT*oS (poS.

Weiter ist mit Acp + Àcp =0 auch A(cpoS) + À(cpoS) =0, da der Laplace-Beltrami-
Operator bekanntlich bewegungsinvariant ist.

F)1. (2)

Es genùgt offenbar, dièse Behauptung fur die Basiselemente q>t (/ s + 1, s + 2,..., r)
von e^CO1 nachzuweisen. Nach (1) ist jedenfalls (ptoSe&k{N) und wir erhalten als

Skalarprodukt mit einem beliebigen Basiselement cpk (k l, 2,..., s) von eA(r)

(cp, o 5, <pk)N J (pt (S (p)) cpk (p) dp

u sf(af)

<Pi(p) Vk(p) dp j (pl



406 FRANÇOIS FRICKER

Daraus folgt sofort (p^See^F)1.
n

X (ptoS^O fur î s + l,s + 2,...,r. (3)
1=1

n

Denn es ist einerseits nach (2) <f>i= £ (plo*S'|€eA(r)1 und andrerseits wegen (j)toS

£ (PioSioS= £ «P/oiSj 0, fur jedes «SeT auch ^ee^CT), also 0, =0.
J=l 1=1

Entsprechend den friiheren Bezeichnungen bilden wir jetzt

K?(p,q)= I <Pi(p)<f>t(q)
i=i

und ç

Dann gilt

Ersetzen wir hier das Argument /? durch 5/(7?) und summieren sodann iïber / 1,

2,...,«, so erhalten wir wegen (3)

Kx{p,q)= t Kï&iplq). (4)
i=i

Sei nun/eC2(§) und automorph bezuglich F. Dann ist erst recht/ automorph be-

ziiglich N und wir kônnen den klassischen Entwicklungssatz anwenden:

Wird hier wiederum p durch St(p) ersetzt und sodann ûber / 1, 2,..., n summiert,
so erhâlt man unter Beriicksichtigung von (4)

»/(?) £ (Kx(p,q)f(q)dq
k J

Ç J Kx(p9

also in der Tat ~

x J
5 q.e.d.

Neben dem Entwicklungssatz benôtigen wir noch eine Formel, welche die asymp-
totische Verteilung der Kx(p) beschreibt.
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Ist/?e£>, so bezeichne Fp die Gruppe derjenigen Bewegungen SeF, fiir die gilt:
S(p) =p. Wegen der Diskontinuitât von F ist die Ordnung dieser Gruppe OrdTp)
endlich. Die erwâhnte asymptotische Verteilung wird jetzt gegeben durch den

Satz 2. Es gilt

fiir x-> +00.

Beweis: N bezeichne wieder den fixpunktfreien Normalteiler von F; dabei kann

jetzt auch N F sein, nâmlich dann, wenn F schon fixpunktfrei ist. (In diesem Fall
ist Ord Fp 1 fiir aile p).

Der Arbeit [7] entnimmt man den folgenden - in seiner Formulierung fiir unsere
Zwecke zugeschnittenen -

Hilfssatz. Die Dirichletreihe

A>0

besitzt eine endliche Konvergenzabszisse d(p, q). In Res > g(p, q) gilt die Darstellung

l s 4n2 s — 3 KP>q}X '

wobei i _.
v \ 1 jur p q mod N

^ 0 fiir p ^ q mod iV

w«^/ G(P,q) holomorph ist in einem Gebiet, das Rcs ^f enthàlt.

Die Elemente von Tp: [/j Id., l/2» •••? ^m gehôren paarweise verschiedenen
Restklassen rmod TV an. Denn aus einer Beziehung ToUi Uk mit TeN folgt wegen
Ui(p) l/fe(/?) =p:T(p) =p9 was wegen der Fixpunktfreiheit von N nur fiir T Id.,
also Ui l/k môglich ist. Die Restklassen NUt (i 1, 2,..., m) sind also paarweise dis-

junkt. Um+1, Um+2,'", Un seien Reprâsentanten der ùbrigen Restklassen F mod N.
Hier gilt t/f(/?) #/> modN. Denn aus einer Beziehung Ut(p) T(/?) mit Te TV wùrde

folgen: T~loUieFp und l/f wùrde bereits einer der Restklassen NUk (k 1, 2,..., m)

angehôren. Aus dem Hilfssatz, Formel (4) und den besprochenen Eigenschaften
des Reprâsentantensystems Ul9U2,..-,Un ergibt sich nacheinander: Fur
Maxff(l/,(/O,/>)gilt

L *s LL
A>0 I=1A>O
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Die Reihe links besitzt eine endhche Konvergenzabszisse a und lasst sich uber dièse

hinaus meromorph in ein Gebiet fortsetzen, das ReOf enthalt. Die so fortgesetzte
Funktion besitzt einen einzigen Pol, der in s=f hegt. Daraus und aus KÀ(p)^0
folgt nach einem Satz von Landau ([9], p. 880), dass <r=f sein muss Zudem ist der
Pol der fortgesetzten Funktion einfach und das Residuum ist wegen m OrôFp gleich

OrdF,
An2

Die behauptete Formel (6) ergibt sich jetzt sofort aus dem Tauberschen Theorem
VOn WlENER-lKEHARA ([10], p. 127).

3. Beweis des Hauptsatzes

L Es sei FeC2(0, + 00) eine réelle Funktion mit kompaktem Trager Ist qE$$

ein behebiger Punkt, so betrachten wir die Funktion

fq(p)=lF(Q(S(p),q))
SeT

Dièse Funktion ist wohl defimert auf £), da F diskontinuierhch ist und F einen

kompakten Trager besitzt. Ausserdem ist offensichtlich/4(p)eC2(£)) und automorph
bezuglich F. Wir konnen deshalb auf dièse Funktion den m Abschnitt 2 genannten
Entwicklungssatz anwenden. Dazu berechnen wir zuerst die Fourierkoeffizienten.

2. Ist cpeeA, so erhalten wir als Fourierkoeffizienten

f E F(Q (S (p), q)) W)dp=Y, \ F(q(S(p), q)) cp(S(p)) dp

S f F(e(p, q))^{p~) dp f F(q(P, q)) ï(pj dp
SeT J J

3. Um das letzte Intégral weiter ausrechnen zu konnen, fuhren wir in § geoda-
tische Polarkoordinaten mit dem Pol# ein. Darunter ist folgendes zu verstehen: Ist
^ ein Punkt der zweidimensionalen eukhdischen Sphare S {^ ({15 £2, ^3)^1 +
£2+£3 1} und q eine réelle positive Zahl, so erhalt man den Punkt p— (<^, q),

indem man auf dem durch die Richtung des Ortsvektors <* festgelegten geodatischen
Strahl von q aus den Abstand q abtrâgt. In diesen neuen Koordinaten mmmt die



Ein Gitterpunktproblem im dreidimensionalen hyperbolischen Raum 409

metrische Fundamentalform die Gestalt

ds2 dq2 + Sin2 q do2 (2)

an, wenn d<7 das (euklidische) Linienelement auf ® bezeichnet (vgl. dazu etwa [11],
/?. 183). Daraus erhalten wir fur das Volemenelement

2
(3)

wenn d£ das (euklidische) Flàchenelement auf © bezeichnet. (1) kann jetzt deshalb
auch in der folgenden Gestalt

00

j F (q) Sin2 Q(j 4>(t,Q)dl?JdQ (4)

geschrieben werden, wenn wir $(£, q) cp(p) setzen.

4. Es ist allgemein in einem «-dimensionalen Riemannschen Raum mit Koordi-
naten (x1? x2,..., xn) und metrischer Fundamentalform

i,k=l
der Laplace-Beltrami-Operator A gleich

+>/g L dxXLt dxjil kl
Lt dxj
k=l

wo g det(gik). Daraus erhalten wir nach einer kleineren Rechnung fur den Laplace-
Beltrami-Operator von £>, ausgedriickt in geodâtischen Polarkoordinaten,

ô2 ô
7A= -î + 2 CtgQ - + SÛTV A99 (6)

ÔQ ÔQ

wobei A& der Laplace-Beltrami-Operator von S ist.

5. Wir konnen nun (4) weiter ausrechnen, wenn wir benùtzen, dass

Eigenfunktion ist. Wegen (6) bedeutet dies

^ q) + 2 Ctg^ ^ 0«, q) + Sin^ (Je0({, q)) + A0({, C) 0.

Durch Intégration ùber ® erhalten wir
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oder, wenn wir y y(g) J0({, g)d^ setzen, die Différentialgleichung
6

Dièse Differentialgleichung geht durch die Substitution z y Sin g iiber in

z" + (A- l)z 0.

Daraus erhalten wir als allgemeine Lôsung von (7)

-.— (^1 g + c2), fiir A 1

Sin g

—— (ct Sin +-*/l — A g + c2 Cos +<N/l — A g), fiir A < 1

Wegen

.— (cA sin +v/a — 1 ^ 4- c2 cos +X/A — 1 q), fiir A > 1.
Sing

/• ç /•

im 0({,^)df lim (p(p)dÇ= q>(q) dç 4nq>(q)
q[0 J QiOJ J
lim
q[0

erhalten wir aus (8)

fur A 1

4nq)(q) Sin+N/l -Xg>
5 fur

— A

4nç(q) sin +V^A - 1 q

und somit fur (4)

J-
4 7r (^ (^f) r

fiir A > 1

fur A

fur

-1J
jn +yA - 1 g Sin g </g, fur

(7)

(8)

(9)
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6. Wir setzen zur Abkiirzung

411

Die Anwendung des Entwicklungssatzes liefert jetzt
00

fq(p)= ^Kx(p,

00

,q)\
0

00

\ -^ Kk{p, q) \ F(q) si

A>1 0

Spezialisieren wir dièse Formel auf den Fall p q und beachten wir noch, dass

^oC/7» q) 1/131» so bekommen wir schliesslich

SeT

F (q) Sin e Sin a q dq

O<A<1
00

1(p)

00

(10)

Dièse Entwicklung ist also richtig fur jede réelle Funktion FeC2(0, +oo) mit kom-
paktem Trâger.

7. Es sei g(g)eC3 [1, 2] reell und erfulle die Bedingungen

fur

0,g(2) 0 fur î 1,2,3.

(Ein solches g gibt es offensichtlich). Bei fest gewâhltem t, das etwa grôsser als 3

sein soll, definieren wir die Funktion Ft(g) durch

0, fur 0 < q < 1

g(g), fur 1 ^ q ^ 2

1, fiir 2 < @ < r

k(Q) g(2-(Q-t)et/2)9 fur ^C<r + ^r/2
0, fiir q > t + e tl2
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und die Funktion G, (q) durch

(Ft(ô), fur 0^e^
(q + e r/2), fur g > t — e t/2.

Anhand des Verlaufes dieser beiden Funktionen macht man sich leicht die beiden

folgenden Ungleichungen klar:

SeT
G,(C(S(p), p)) < N(r, p, t) ^ N(r9 p9 2) + X Ft(Q(S(p)9 p)). (11)

T STSeT

Da Ft(g)eC2(0, +oo) ist und kompakten Tràger besitzt, lâsst sich auf die rechte
Seite von (11) die Entwicklung (10) anwenden. Wir untersuchen im folgenden (8.-11.)
die dabei entstehenden Intégrale.

8. Es ist

\ Ft(Q)S'm2QdQ= \ g(o) Sin2 q<1q+ iSin2 çdQ+ \

Beachten wir

jw e
— +O(t) fiir
8

und

I Sin2 q dg

so bekommen wir

f Ff(^)
J

fur

9. Es ist

Ft(@) Sing S'maQdQ

t

Sin^

e*

f k(q) Sin2 Qdg ^ f Sin2 gdg^ e~t/2 Sin2 (t + e~t/2) O (e3/2'),

(12)
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Wegen 0 < a < 1 ist

I Si
eil+a)t

Sing + O(é)

und

mithin

S'mQSinaQdQ J Sin2e O(e3/2(),

00

j Ft(g) Sin g Sin a g dg
*

+ O(e3/2t) fur t -? + oo

70. Es ist

r r
^1 (^) ^ Sin g dg

J J
o î

gSingdg+

Wegen

und

folgt

J.Si
2

k{g) g Sin gdg

t

00

Ff (g) g Sin j

o

77. Wegen g(g)eC3 [1, 2] sind die Maxima

f) fur

Max i 0,l,2,3

413

(13)

(14)

endlich und somit auch M— Max Mt endlich. Daraus und aus der Définition

k{Q) g(2 - (q - 0^f/2) ergibt sich fur i 0,1, 2, 3

Max |/c(0(C)| Max |(- l)1 eit/2 g(i) (2-(q- t) él2)\
*/2 t^Q^t + e-^2

e'(/2Max |g(i)(e)|<e"/2M,
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also

Max |/c(l)(g)| 0(elt/2) fur t -> + oo. (15)
Q^t + e-*/2

Anhand dieser Beziehung schâtzen wir das Intégral
00

Ft (g) Sin g sin a g dg

o

auf zwei Arten ab.

(A) Die partielle Intégration hefert unter Beachtung der Définition von Ft(g)

00 00

Ft (g) Sin g sin a g dg (Ft (g) Sin g)f cos a g dg

o o
2 t t + e t'2

— (#(£) Sin g)' cosagdg + Cosgcosagdg + (fc (g) Sm g)' cos a g dg
aLJ J J J

1 2 t

Man sieht sofort, dass j Cos g cos ccgdg =Q(e*). Zudem ergibt sich unter Benutzung
2

von (15)

f (k (g) Sin g)f cos a g dg < f |(fc (g) Sin g)'| dg < e~tl2 O {é12) 0 {é) 0 {é),
t t

also zusammengefasst
00

Ft(g) Sing sinagdg 0(é) fur t -> + oo (16)

0

(B) Dreimahge partielle Intégration hefert unter Beachtung der Définition von
Ft(g)

00 00

Ft (g) Sin g sin a g dg 3 (Ft (g) Sin g)'" cos a g dg

0 0
2 t

3 (g(o) Sing)'" cosagdg 4- Cosg cosagdg

1 2

V
w 1

J J
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t
Einerseits folgt unmittelbar J Cos g cos a g de =0(e'), andrerseits folgt wegen (15)

2
e-t/2 tJre-t/2
r r
j (/c (g) Sin g)"f cos ccgdg ^ I \(k (g) Sin g)'"| dg

J J

also zusammen
00

1C 1

\ Ft(Q)S'mQsin<xQdg -3O(e2t) fur t-+ + oo. (17)
J a
o

12. Aus dem im zweiten Abschnitt hergeleiteten asymptotischen Verhalten von
M {x)= £ Kx(p) folgt die Konvergenz der Reihe ]£(!£* OOA*4)» genauer:

kx(p) r dM(x) r m(x) r r m(x)M(x)
_

r m(x) r r m(

Ao

und daher

_^'=0 _-.- fur A0-+ + oo. (18)

Analog ergibt sich :

«2 =°(\/^) fur ^o-^ + ûo. (19)

A<A0

Unter Benùtzung von (16) und (17) folgt fiir jedes Ao > 1 :

>]fM Sin, si

Wâhlen wir insbesondere Ào —ex und beachten wir (18) und (19), so erhalten wir
schliesslich:

I Ft (q) Sin g sin ccgdg 0 (e3/2 f) fiir t -> + oo (20)
« J

A>1 0

75. Die Anwendung von (10) auf die rechte Seite von (11) liefert unter Beachtung
von (12)-(14) und (20)

0<A<3/4
wobei i?(0 0(e3/2t) fur t -> + oo.
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Man sieht leicht, dass die Beziehungen (12)-(14) und (20) richtig bleiben, wenn
Ft(g) durch Gt(g) ersetzt wird. Deshalb liefert die Anwendung von (10) auf die linke
Seite von (11) wiederum die Ungleichung (21), jedoch mit umgekehrtem Ungleich-
heitszeichen. Daraus ergibt sich aber der im ersten Abschnitt ausgesprochene Haupt-
satz.
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