
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1968)

Artikel: Famille des traces sur les droites complexes d'une fonction
plurisousharmonique ou entière dans Cn.

Autor: Hengartner, Walter

DOI: https://doi.org/10.5169/seals-32929

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-32929
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


358

Famille des traces sur les droites complexes d9une fonction

plurisousharmonique ou entière dans C"

Walter Hengartner (Paris)

On étudie dans cet article quelques propriétés des fonctions plurisousharmoniques
ou entières dans C" sur les droites complexes Cl(z-u). Si F est une fonction
plurisousharmonique non constante dans Cn, le maximum M(r) max V{z) est unefonc-

IUII-r
tion croissante et convexe de logr, et l'on a lim M{r) 00. Lorsque F est d'ordre fini,
c.à.d.

logM(r)
hm sup q < 00,

r-oo logr

possède un ordre précisé g(r) de Valiron [1] tel que

limsupM(r)-r~c(r) a ^ 0, 00, lim ç(r) q.
r-*ao y-»oo

Nous utiliserons de manière fondamental le fait que la régularisée supérieure de
l'indicatrice cerclée de F par rapport à l'ordre précisé g(r)

L*(z, F, (?(r)) lim sup lim sup V (z'-u)-|tir*H) ueC\ z'eCn
z'-*z |u|-+oo

est log-plurisousharmonique, c.à.d. logL* (z, F, Q(r)) est plurisousharmonique dans

C".
On montrera aussi que toute fonction entière dans Cn d'ordre fini est de même

ordre précisé g(r), de même genre q et de la même classe (de convergence ou de

divergence) [cf. R. Nevanlinna [1]] sur toutes les droites Cl(z-u) sauf pour les z

appartenants à un ensemble négligeable dans C. D'autre part, le fait que la régularisée
supérieure de l'indicatrice cerclée de la fonction

11*11

N(z,a9F)= J lnz(t9a,F)-nz(0,a,Fy]'r1

est log-plurisousharmonique dans Cn(nz(t, a, F) désignant le nombre de zéros dans

le cercle ||z-w|| <t sur Cl(z-u)) nous permet d'obtenir des résultats sur la distribution
de zéros sur les droites C^z-w) qui généralisent ceux de P. Lelong [1], [2],..., [7].

I. Les fonctions plurisousharmoniques d'ordre précisé g(r)

1.) Soit C* l'espace à n dimensions complexes, dont les points seront notés
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n

z={Vn >72,---> Vn\ n^C muni de la norme ||z|| £ 1j'1j)1/2-

Définition 1 : Une fonction V(z) à valeur réelle définie dans un domaine D de

C" sera dite plurisousharmonique, si

(a) pour tout zeD on a — oo ^ V(z)<oo
(b) V(z) est bornée supérieurement sur tout compact KcD
(c) la restriction de F à toute composante connexe de C1(zl+z2-u)nD est soit

la constante — oo, soit une fonction sousharmonique.
Pour une fonction plurisousharmonique non constante V le maximum M(r)

max V(z) est une fonction croissante et convexe de logr.
||z||=r

Définition 2: Une fonction plurisousharmonique dans Cn sera dite d'ordre
précisé g(r), si l'on a:

limsup V(z)- ||zH"e(l|z|l) a # 0, oo
IMI-oo

où g(r) est une fonction positive, continue, dérivable par morceaux et partout déri-
vable à droite et à gauche pour r > 0 telle que

lim g (r) g < oo, lim g (r) • r • log r 0.
r-+co r-*oo

En appliquant un théorème de B. J. Levin [1], on montre:

Proposition 1 : Toute fonction plurisousharmonique d'ordre fini et non constante
possède un ordre précisé g(r).

2.) P. Lelong [6] a introduit les ensembles polaires et négligeables de la manière
suivante:

Définition 3: Un ensemble E sera dit polaire dans un domaine D de C", s'il
existe une fonction plurisousharmonique dans D telle qu'on ait Ecz {z/V(z)= — oo}.

Définition 4: Un ensemble E sera dit négligeable dans un domaine D de Cw,

s'il existe une suite croissante Vq de fonctions plurisousharmoniques sur D, localement
bornée supérieurement telle qu'on ait lim Vq(z) W(z) et Ea \z\W(z)<regsup W(z)

Une réunion dénombrable d'ensembles polaires (resp. négligeables) dans un
domaine D est encore polaire (resp. négligeable). De plus tous les ensembles polaires
sont négligeables, et tous les ensembles négligeables sont de R2 "-capacité nulle.

x) L'inégalité (1 —£)•#?.r^o-) ^ (&-r)e(rr) ^0 + e)• &e•/*<»•> est uniforme par rapport à k, k> 0.
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3.) On appelle «indicatrice cerclée» d'une fonction plurisousharmonique dans

Cn d'ordre g(r) l'expression suivante:

Lc(z, F^(r)) limsupF(z-M)-|wre(M), ueC\ (1)
|t*|-00

et sa régularisée supérieure est

L* (z,V,q (r)) reg sup Lc (z,V,q (r)) lim sup Lc (z\ V, g (r)). (2)

On a le théorème suivant:

Théorème 1: Soit V une fonction plurisousharmonique dans Cn d'ordre o(r). On a:
(a) L*(z, V, g (r)) est plurisousharmonique
(b) L*(z-u, V,g(r)) \u\°-L*(z, V, g(r))
(c) logL*(z, F, Q(r)) est plurisousharmonique.

Démonstration: Soit K un compact contenu dans la boule B2n(0, R), et soit
lim supM(r)*r ~e(r) =##(), oo, où M(r)= max F(z). On peut choisir g(r) telle que

r-oo !UII r

rff(r)>l pour tous les r>0.
Il existe un uoeCl de façon que
(a) M(^-|w|)-(i?-|w|)-c(R-|M|)^a + e pour tous les |w|>|wo|,£>O
(b) (R'\u\)Q(R'lul)-\u\-QM)^Re + n pour tous les |u|>|wo|, *î>0.
On a alors:
Vu(z) V(z'u)'\u\~eW)^M(R'\u0\)-]-(a+8)-(Re + rj) pour tous les

zeKcB2n{09 R). Vu(z) est une famille de fonctions plurisousharmoniques localement
bornée supérieurement, et (a) du théorème 1 résulte d'un théorème de P. Lelong [6].
D'autre part le théorème de Hartogs (P. Lelong [6]) entraîne, que L* (z, F, #(r))
n'est pas identiquement nulle.

On obtient (b) du théorème 1 par l'égalité

Lc(z-w, F,e(r)) limsup V(z'U-v)-\wv\-e(]u'v{) lim |u-if(|M'y|)'M~e(M)
|u|-»oo |u|-»oo

\u\<-Le(z,V9Q(r)),

et (c) est une conséquence de (a) et (b) d'après un théorème de P. Lelong [6].

Remarques:
(a) Considérons l'ensemble de droites Ci(zi+z2'u), zleCn, z2eCn et ueC1. La

régularisée de l'indicatrice cerclée

Ûc{zu z2, F, ç(r)) reg sup lim sup V(zx + z2'uy\u\'Q{W
zi*z2 |u|-»oo

est plurisousharmonique de zx et de z2, et on a

L*c (zu z29 F, g (r)) » L*c (z2, F, e (r)).
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(b) On sait que pour toute fonction plunsousharmonique dans Cn satisfaisant à

V(z-u)=\u\°-V(z),

il existe une fonction entière dont l'indicatrice cerclée régularisée est V(z). Par contre,
on peut trouver des ordres précisés g(r) tendant vers g tel qu'il n'existe pas une fonction

entière F satisfaisant à

L*c(z,log|FU(r))=F(z).

Exemple: £(r)=log2r/logr, et L* ^.
Corollaire 1: L'ordre précisé d'une fonction V plunsousharmonique dans Cn est

l'ordre précisé de V sur toutes les traces Cl(z-u) sauf pour des z appartenant à un

ensemble négligeable.
Remarque: L'ordre q(z) d'une fonction plunsousharmonique V sur une droite

Cl(z-u) est défini par

e(z) hmsuplog+M(z-r)/logr, M+(z)= max V+(z-eie).
r-*oo 0e[O, 2 tt]

Soit ju> F+(0)+l. Il existe une fonction R(z, jj) telle que M + (z-R(z, /x))=ju.
Donc

^ F(0)+1<,<00log/i

est une famille de fonctions plunsousharmoniques dans Cn9 localement bornée

supérieurement, et
1 log R(z,n)

lim sup — ^ 0.
Q{z)

est donc égal à une constante pour tous les z hors d'un ensemble polaire. On peut
énoncer :

Si F est une fonction plunsousharmonique dans Cn d'ordre infini, alors F est d'ordre
infini sur toutes les droites C1(z-u) sauf pour les z appartenant à un ensemble polaire.

Corollaire 2: Si Vest une fonction plunsousharmonique dans Cn de type moyen
d'ordre q de Lindelof2), V est de type moyen d'ordre q sur toutes les traces Ci{ztu)
hors d'un ensemble {z} négligeable.

Corollaire 3: Soient C1(z1-u) et Cl(z2'u) deux droites complexes dans Cn et V
une fonction plunsousharmonique dans Cn, positive et d'ordre fini. En comparant V

2) On emploie comme fonction de comparaison de log M(r) les fonctions r^ • (log r)^ • (Iog2 r)e

•Qognr)«»,(? (<?o,(?i, ,Qn)
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sur les deux droites, alors

h(zu z2) lim sup V(zl-u)/V(z2-u)

est positive hors d'un ensemble {zx} négligeable.

Corollaire 4: Si Vt et V2 sont deux fonctions plurisousharmoniques dans Cn,

positives et du même ordre précisé Q(r), alors

lim sup Vi (z • u)j V2 (z • u)
M-oo

est positive sur toutes les droites complexes Cl{z-u) hors d'un ensemble {z} négligeable.
D'après le théorème 1 et l'inégalité de V. Avanissian [1]

L(V + 0, r) < M+ (r) ^ L(V+, 0, R)-(i + fc)-(l - k)~2n+ \ k r/R<l, (3)

où F est plurisousharmonique, M(r)= max V{z\ et où L est la moyenne sur la

sphère S2»-i(0,r), on a: 1|z|1=r

Corollaire 5: Si V est plurisousharmonique dans Cn, d'ordre g(r), M(r)
max V(z) et L(V, 0, r)=(l/o>2n_1)- J V(z) dœ2n_u on a:
|z|=r \\z\\=r

(a) L(F+,0,r) est d'ordre o(r)
(b) lim supL(F+, 0, r)/M(r)=a#0, oo

r-*oo
(c) lim supF(z-w)/Af(|w|)=a(z) est positive hors d'un ensemble {z} négligeable et

M-oo
finie pour ||z||<l, ueC1.

Remarques:
1.) (b) est un résultat plus précis que celui de Ph. Noverraz [i]
2.) Si F est de croissance régulière (c.à.d. lim inf Af(r)-r"c(r)>0), alors lim inf

r-*oo r-*oo

L(V + 0, r)/M(r) est positive et lim sup V(z-u)/M(\u\) est finie pour tous les zeCn.
|u|-oo

4.) Soit F une fonction plurisousharmonique dans C", d'ordre fini et F(0)> — oo,
in

et soient T(z, V)=(2n)-1- j V+(z-eie) ddetT(r9 V)=L{V + 0, r)=L(T(z, V), 0, r),
o

L étant définie dans le corollaire 5.

Définition 5: a) Nous dirons que F est de la classe de convergence (resp. de

divergence) par rapport à s, s>0, si

T(r, F)-r"s"1 dr

R

est convergente (resp. divergente).
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b) Nous dirons que V est de la classe de convergence (resp. de divergence) par
rapport à s, s>0, sur une droite complexe Cl(z-u), si

est convergente (resp. divergente).
Le théorème suivant précise un résultat de P. Lelong [7].

Théorème 2: Si V est une fonction plurisousharmonique dans Cn, et si V est de la
classe de convergence par rapport à s, s>0, sur un ensemble de droites C1(z'u), où z

appartient à un ensemble non négligeable, alors V{z-u), ueC1, est de la classe de

convergence par rapport à s.3)

Démonstration :

a) Si Kest d'ordre zéro, alors F est de la classe de convergence par rapport à tous
les s>0.

b) Soit l'ordre de F positif, et soit Kl(z)= j^f^7^ F(o)> _^
La fonction

l J t,v1yr"-i'dt, <x zi\\z\\ (4)J
0

est plurisousharmonique dans Cn, possédant un ordre précisé s(r), et W(z-u) est

d'ordre s(r) sur toutes les droites C1(z-u) hors d'un ensemble {z} négligeable. En

posant
r

J '-dt, W(z-r)=\\z\\s-rs-fa(r-\\z\\,S)>

</>a(r, s) est une fonction non décroissante, et il existe donc lim (j)a(r, s)^ oo.
r-+oo

Posons M(r, JF)=max W{z). D'après le corollaire 5 lim sup W(z-r)IM(r, W) est
||z||=r r-»oo

positive pour tous les ze[Cn — El]9 où Ex est négligeable.
Soit V(z-u), ueCl9 de la classe de convergence sur un ensemble {z} non négligeable

dans Crt. Il existe donc un ensemble E, non négligeable, où

lim <£a(r, s) Ka^0, oo c.à.d. lim W{z-r)-r~s^ 0, oo (5)
r-+oo

3) D'après la remarque qui suit la proposition 1 Kest d'ordre fini.
4) Ki et V sont de la même classe sur une droite complexe C^z-u).
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S'il existe une droite Ci(z'u), sur laquelle F est de la classe de divergence par
rapport à s, alors lim M(r, JF)*r~~s oo, et l'on a sur [E— E±]

r-+ao

lim W(z-r)-r-s= lim sup W(z-r)/M(r, W)-lim M(r, W)-r~s oo,
r-*oo r-*oo r-»oo

ce qui contredit (5). ^
II nous reste de montrer la convergence de J 7"(r, Fj-r"5"1-Jr. A cause de l'in-

R

égalité de Avanissian (3), T(r, F), T(r, F^, et M(r, Vx) sont de la même classe par
rapport à s. D'autre part, on a:

R 1

J T(z. t, ^r*-1-*^
R

ax W(z)^Rs- [Mir.y^r""-1-dr,
R

max

ce qui établit l'énoncé. °

Remarques: Si s est plus petit que l'ordre de F, F est de la classe de divergence et

V(z-u), ueC1, est de la classe de divergence par rapport à s pour tous les z hors d'un
ensemble négligeable. D'autre part, si s est plus grand que l'ordre de F, F et V(z-u)
sont de la classe de convergence pour tous les z.

2n

Soient N(z, V)={2n)~^ J V(z-eid)d9 et N(r, F)=L(F,0, r)=L(N(z, F), 0, r).
o

!|z||=r

Définition 6: Le genre q d'une fonction F plurisousharmonique dans C", d'ordre
fini g, est défini par

q [g], si g n'est pas entier, [g] désignant la partie entière de g.
OO

q=Q-l9 si g est entier, lim T(r, F)-r~c=0 et JiV(r, V)-r~~Q~1-dr<co

q=g, autrement. r~*°° R

On définit de la même manière le genre qz de F sur une droite Ci(z'u), et l'on
obtient:

Corollaire 6: Une fonction plurisousharmonique dans Cn, d'ordre fini possède le

même genre qz — q sur toutes les droites Cl{z-xi) hors d'un ensemble {z} négligeable.
P. Lelong [5] a donné une représentation d'une fonction F plurisousharmonique

dans Cn d'ordre fini et pluriharmonique dans une environ de z 0 par

V(z) H(z)+ eH(a, z, qN)-d/u(a)

Cn
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où H est une fonction harmonique dans Cn d'ordre fini et en(a, z, qN) s'obtient en
écrivant

a -z \2n-2

j désignant le polynôme homogène de degré j de l'ensemble des variables zi9 zk. Si

en(a, z, qN) - \\a - z\\2~2n + ||a||2-2"7l + ^Qj(zt9 fk)), n > 2,

et le genre q de V est déterminé par

qN désignant le genre de N(r, V) et q{H) l'ordre de H{z).

H. Les fonctions T et N de R. Nevanlinna d'une fonction entière dans C"
00

5.) Soit F(z)=F(0)+ Yj Ak(z) une fonction entière dans Cn à valeur complexe,

où les Ak sont des polynômes homogènes et Am^k0. Définissons d'après R. Nevanlinna

[1]
2n

?g \F(z-el )| dO (6)

N(z,a,F)

0, si la restriction de T à la droite C1 (z • u) est constante

J \nz{t9a9F)^nz^a9 ^•dt

+ nz(0, a F)-log ||z|| autrement,

(7)

nz(t, a, F) désignant le nombre de zéros de F{z-u) — a dans le cercle ||z-w|| <f. En

appliquant le premier théorème fondamental sur les fonctions méromorphes de

R. Nevanlinna [1], on a:

2tc

f

et

0, siF{z-u)- a =0 en m, ugC1
2tc

(2 tt)"1- Flog \F(z • ée) - a\ d6 - w(z) autrement,

(8)

(8')
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où w(z'ii), ueC1 est une constante en u et cette constante est égale à Iog|v4m(z/||z||)|

pour tous les z hors d'un ensemble polaire.
On voit aisément que T(z,F) et, si F(0)^a, N(z,a,F) sont non-négatives,

continues et plurisousharmoniques dans C\
00

Définition 7: Si F(z)=F(0)+ £ Ak(z)f Am^0, est une fonction entière dans Cn,

nous poserons:
k=m

T(r,F) L(log+|F|,0,r) (9)

" fl|' °' r) " log |F(0) " fl|' Si F(0) * " \N(r a F) I \1 ' ' ; [LOog \F - a|, 0, r) - L (log \Am\, 0, 1) autrement,]

L étant la moyenne sur la sphère S2n-i(0, r).
En utilisant la relation (6), la définition 5 est équivalente à la suivante :

Définition 7': Si F(z) est une fonction entière dans Cn,

T(r,F) L(T(z9F)909r) (11)

N(r, a, F) L(N(z9 a, F), 0, r) (12)

Soit m(r, a, F)=L(m(z, a, F), 0, r), où m(z, a, F) est la fonction osculatrice de

F(z'u) définie par
2n

m(z, a,F) {(2 n)~'¦ J'°8+ |1/(f (z"e'9) ~ a)l M' Si a ^ œ

0

T(z, F), si a 00.

La définition 5' permet d'énoncer les deux théorèmes fondamentaux de R. Nevan-
linna pour les fonctions entières dans C".

Théorème 3: Soit F(z) une fonction entière dans Cn et

ZdFZj'dz

(a) T(r, F)=N(r, a, F) + m(r, a, F) + O{\) pour tous les aeC1, r tendant vers

l'infini.
(b) Si F est d'ordre fini, m(r, oo, G/F) 0(logr), r->oo.
(c) Si al9a2,...,aq sont des nombres complexes et finis tels que at^ajt si i^jq et
2, et si F est d'ordre fini, on a:

q

(q - 1)-T(r, F) < / N(r, ap F) - N(r, 0, G) + O(log r), r-? oo
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Démonstration:
1. On obtient (a) aisément d'après la définition 7' et le premier théorème

fondamental de R. Nevanlinna.
00

2. Soit F(z)=F(0) + £ Ak(z) une fonction entière dans Cn d'ordre fini et G(z)

YJk-Ak{z)=z-%vdiAF{z), Am^Q. Posons

oùa et

S= Z \'U

K }

log h log 2

C3,

(13)

\\z\\-U(p'a(\\z\\'u).

Pour une fonction g(u) entière dans C1, g(0)^0, W. K. Hayman [1] a montré
l'inégalité suivante:

m(r9 oo, g/g) ^ 4-log+ T(R, g) + 4-log+ log+ (l/|g(O)|) + 5-log+ R

+ log+ (1/r) 4- 6*log+ (1/(K — r)) + 14, 0 < r < R.

Si F(0)=0, \l/z(u) (l)z(u)/um est entière dans C1 et i^z(0)^0 hors d'un ensemble {z}
polaire. En posant R 2- \\z\\ et r= \\z\\ dans la relation (14), on obtient

2%

m(z, oo, G/F) ^(l7r)-flog+|

^ 4-log+ T(2 z, F) + C, -log+ ||z|| + C2-log+

Cj étant constant et, en tenant compte de la définition 7',

m(r, oo, G/F) 4-log+ T(2 r, F) + O(log r), r-+ oo

Supposant que F soit d'ordre fini, c.à.d. log T(2r, F) O(logr), (b) est établi.
3. D'après les relations (10) et (12) on a:

N(r, 0, G) L(log |G|, 0, r) - L(log \m-Am\9 0, 1)

L(N(r-a, 0, <p'a)9 0, r) + log r, où m ^ 1, a z/||z|| et r ||z||.

Appliquant le deuxième théorème fondamental de R. Nevanlinna et le résultat de (b),
on obtient, compte tenu de la définition 1', (c).

6.) Proposition 2: L'indicatrice cerclée régularisée de N(z,a,F) par rapport à

l'ordre précisé <ra(r) de N(z, a, F) est log-plurisousharmonique dans Cn.

En effet, c'est évident, si F(0)¥za. Autrement, si F(0)=a, on a ou bien F(z) a
et N(z9 a, F) 0, ou bien

0, si F(z-u)-a =0 en m, ueC1

N(z,a,F)
2n

(2 tt)"1- flog \F(z-eie)-a\d0- w(z), autrement
(8')
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lit
où (27T)-1 \ \og\F(z-el0)~a\ dO est une fonction non constante et plunsousharmoni-

o

que dans Cn, donc 2n

L*c{z, N(z, a, F), aa(r)) L* (z, (2 tt)"1 • Jlog \F{z-ée) - a\ dO,.

o

Corollaire 7 : N(z, a, F) possède le même ordre précisé o*a(r) sur toutes les droites

C1(z-u) hors d'un ensemble {z} négligeable, et aa(r) g(r) pour tous les aeCx sauf
peut être pour une valeur a0> dans le cas, où q est entier.

La proposition 2 et le corollaire 3 nous donnent:

Théorème 4: Soit F une fonction entière dans Cn d'ordre fini et F=£0. Les limites
(a) hm sup T(zt • r, F)/T(z2 • r, F)

(b) hm supM(zt -r, F)/M(z2-r9 F)
r-+ao

(c) hm supN(zt-r, a, F)/N(z2-r, a, F), si N(z, a, F)^0,
r-+oo

sont positives hors d'un ensemble {zx} négligeable, M(z, F) définie par

Af(z, F) maxlog |F(z-é>1*) | et zl5 z2,eC"
0e[O, 2 7t]

En effet, il existe une fonction R(zu z2) qui est finie hors d'un ensemble {zt}
négligeable, telle que N(zx r, a, F)/N(z2 • r, a, F) est positive pour tous les r > R (zt, z2).

7.) Proposition 3 : Si N(z • r, a, F) es£ cfe la classe de convergence par rapport à

s>0 pour zeE, et si E n'est pas négligeable, alors N(z r, a, F) est de la classe de

convergence par rapport à s pour tous les z, et N(r, a, F) est de la même classe.

Démonstration

a) Si F{0)¥za, c'est une conséquence du théorème 2

b) Soit F(0)=a, ou bien F=aet N(z, a, F) 0, ou bien N(r, a, F) est une fonction
croissante, donc

0, si F(z-u)- a =0 eni
oo 2tt

f JV(oc-r,

R

et

(2 te)"1 [dr f log \F(a-r'el6) - al-r"8"1 dO + 0(1),
R 0

autrement, a z/||z||,

log|F(z)-a|-r-s-1da;2/l_1+0(l)J
* K ||||r2*
Le théorème 2, appliqué à (27c)"1 j log|F(z V)-a|d0, établit l'énoncé.

o
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8.) Une fonction F entière dans Cn d'ordre fini peut se représenter sur une droite
Cl(z-u) par

F(z.u)-a nz,«(")-ePz'a(u) (15)

où PZjfl(w) est une polynôme et f]z,a(w) *e Pr°duit canonique de Weierstrass par
rapport au genre qza, qza désignant le plus petit nombre entier s, tel que N(z, a, F)
est de classe de convergence sur C1(z-u). par rapport àq+1.

Proposition 4: Leproduit canonique Y\z,a(u) d'unefonction entière dans Cn d'ordre

fini, défini par (15), possède le même genre qz a sur toutes les droites C' (z-u) hors d'un
ensemble {z} négligeable.

Définition 6": Le genre q d'une fonction F entière dans Cd'ordre fini q est

défini par:
q [g], si q n'est pas entier, [q] désignant la partie entière de q,

q=Q-h si limr(r)-r-^=Oet J N(r, 0, F)-^'1 dr<oo,
r->co

q=Q, autrement.
On définit de la même manière le genre qz de F sur une droite C1(z- u). D'autre part
on peut obtenir qz par

Résumons l'énoncé précédent:

Théorème 5: Soit F une fonction entière dans Cn d'ordre fini.
a) F est d'ordre ç(r), de genre q et de la même classe (de convergence ou de

divergence) par rapport à s, s>0, sur toutes les droites C1(z-u) hors d'un ensemble {z}
négligeable.

b) N(z, a, F) est du même ordre précis oa{r), et de la même classe (de convergence
où de divergence) par rapport à s, s> 0, sur toutes les droites C1(z-u) hors d'un ensemble

{z} négligeable, et aa(r)=Q(r) pour tous les aeC1 saufpeut être pour une valeur a0,
dans le cas où q est entier.

HI. Sur la distribution des zéros et sur les défauts

d'une fonction entière dans C"

9) Soit Fune fonction entière dans Cn d'ordre fini q, et soient nz(r, a, F), N(z, a, F),
N(r9 a, F), T(z, F) et T(r, F) les fonctions définies dans le chapitre IL P. Lelong [1],
[2] a montré le résultat suivant:

Théorème (A): Soit F une fonction entière dans Cn. Si F(z-u)—a, ueC1, n'a
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aucun zéro pour zeE,et si E n'est pas négligeable, alors F(z-u) — an'a jamais de zéros.

Nous avons déjà montré (proposition 2) que N(z, a, F) possède le même ordre
précisé <ra(r) sur toutes les droites C1(z-u) hors d'un ensemble {z} négligeable. Le
résultat suivant généralisé le théorème (A).

Théorème 6: Soit F une fonction entière dans Cn. Si F(z*u), ueC1, n'a qu'un
nombre fini de zéros pour tout zeE, et si E n'est pas polaire, il existe un polynôme
Pm(z) de degré m et une fonction entière G(z) telle que

F(z) Pm(z)-eG(*>. (16)

F possède alors le même nombrefini m de zéros (compté avec leur ordre de multiplicité)
sur toutes les droites C1 (z • w) saufpour des z appartenant à un ensemble polaire. Sur une

droite correspondant à cet ensemble polaire, la fonction F(z-u) a un nombre de zéros

inférieur à m, ou est identiquement nulle.

Démonstration: En tenant compte de la proposition 1 et de la remarque qui suit
cette proposition, N(z,09F) possède un ordre précisé <x(r), limcr(r)=0, ou est

identiquement nulle. r~+0°

Nous montrons d'abord qu'il existe un polynômePm(z) de degré m et une fonction
entière G(z) satisfaisant à (16). Lorsque zeE, on a

où Pz(u) est un polynôme de u et gz(u) une fonction entière de u. D'autre part, il
existe d'après un théorème de P. Lelong [5] et [7] une fonction Fo entière dans Cn

et d'ordre zéro telle que

où G est une fonction entière dans Cn. (On voit aisément que F(z)=0oF0(z)=0.)
Sur une droite Cl{z*u), zeE,

est un polynôme de u. Le lemme suivant montre que Fo est un polynôme dans C.
Lemme: Soit Fo une fonction entière dans C". Si F0(z-u) sont des polynômes de u

pour les appartenant à un ensemble non polaire, alors Fo est un polynôme dans Cn.
00

En effet, si F0(z)= £ Ak(z) est une fonction transcendente (c.à.d. Fo n'est pas un
fc 0

polynôme) où les Ak sont des polynômes homogènes de degré k, alors l'ensemble
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oo

D=[jDk est polaire dans C", Dk étant défini par

371

autrement.

Lorsque Fo est transcendente, l'ensemble de z où F0(z-w) est un polynôme de w, est

contenu dans D et donc polaire, ce qui contredit l'hypothèse du lemme.
La régularisée de l'indicatrice cerclée de log|F0| par rapport à l'ordre précisé

loglogr/logr est une constante m, m entier, ce qui établit l'énoncé.

10.) Etudions maintenant la distribution des zéros d'une fonction F entière dans

C" et d'ordre fini q, et désignons par les {bkz}^=i les familles de zéros distincts de

l'origine sur les droites Ci(z'u) où F n'est pas identiquement nulle. L'intégration
partielle

2 | Kz'\ r"s-nz(r, 0, F) - r0"s-n2(r0, 0, F)

+ s-r"s-JV(a-r, 0, F) - rô'-s-N(a-r0, 0, F)

IV(a-f,0, F)'t~s~1dtJl

(17)

nous montre que £ \bh z\ s, s> 0, est ou bien convergente sur toutes les droites Cl(z-u)
k

où F(z-u) n'est pas identiquement nulle, ou bien divergente pour tous les zeCn hors
d'un ensemble négligeable. De plus, si F(0)#0, la fonction

f
(18)

est plurisousharmonique dans Cn pour tous les s>0. Il est évident, qu'on a la
convergence de Yj\bkz\~s si S>Q et divergence si 0<s<£. De plus, si l'ordre £ de F n'est

pas entier, £ \bk z\~s est convergente si et seulement si F est de la classe de convergence

par rapport à q.

Lorsque q est entier et positif, le théorème 5 nous donnera le résultat suivant. Soit

f(u) une fonction entière dans C1 d'ordre entier et positif q et d'ordre précisé g(r).
En désignant par les bk ses zéros distincts de l'origine, on pourra donc toujours (c.à.d.
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indépendent du genre de/) écrire cette fonction sous la forme:
Q

/(ii) uM-exp [

où m désigne un entier positif ou nul et où Ton s'est servie de la notation de Weier-
strass e

En posant S(r)=re-\ce + Q~K £ bk~e\, A. Pfluger [1], [2] et B.J. Levin [1] ont
montré que |ftk|o>

max[n(r,0,/),S(r)]
est d'ordre précisé Q(r). Appliquant le théorème 5, on obtiendra alors:

Proposition 6: Soient les {bk^£~ x les familles des zéros distincts de l'origine d'une

fonction entière dans Cn d'ordre entier et positif et d'ordre précisé o{r) sur les traces

^(z-u), z appartenant à Cn-Ef où E est défini par E={z/F(z-u) O,ueC1}. La
représentation (19) de F{z-u), zeCn — E, nous donnera:

(a) Si F appartient au type minimum d'ordre q, k^z + é?"1 '^bk,ez\ =0 pour tous les

zeCn — E. (Yjbk,l est donc convergente.) k

k

(b) Si F appartient au type moyen d'ordre q, alors lim sup| £ bk~ze\ < oo pour
tous les zeCn-E. r^°° ^^r

(c) SiN(r,0,F) o(r<*r)), alors Sz(r)=rQ-\ce + e"1 £ bï°\ est d'ordre q{r)
\bkz\^r

e* Yj \bk Z\~Q est du même ordre précisé r(r) sur toutes les droites Ci(z-u) hors
\bkz\^r

d'un ensemble {z} négligeable.

11) R. Nevanlinna et G. Valiron ont défini les défauts (ou valeur déficiente) pour
une valeur a, aeC1, d'une fonction méromorphe de la manière suivante:

Définition 8: Nous appellerons «défaut de Nevanlinna» pour la valeur a d'une
fonction entière dans Cn et non constante l'expression suivante:

ô(a) 1 - lim sup N(r9 a, F)IT(r, F)
r-*oo

et sur une droite complexe Cl{z*u):

11
- lim sup N(z'r,a,F)IT(z-r, F)

r-oo
si F(z-m) n'est pas une constante par rapport à u

0 sinon.
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Définition 9: Nous appellerons «défaut de Valiron» pour la valeur a d'une
fonction entière dans Cn et non constante l'expression suivante:

A(a)= 1 - lim infiV(r, a, F)/T(r, F)
r-*oo

et sur une droite complexe C1(z'u):

1 - lim inf JV(z-r, a, F)/T(z-r, F)
r-+oo

si F (z • m) n'est pas une constante par rapport à u

0 sinon.

Théorème 7: Soit F une fonction entière dans Cn, non constante et d'ordre précisé
g(r). Siô z(a) l sur un ensemble {z} non négligeable, alors:

(a) Az(a) 1 et ]T Ôz (b)=0 pour tous les z hors d'un ensemble négligeable.

(c) La fonction Sz(r) définie dans la proposition 6 par rapport à F(z)-- a estdyordre

q^r) pour tous les z hors d'un ensemble négligeable.

(d) S'il existe une droite complexe C1(z0-u), où lim inf T(zo-r, F)-r~e(r) est positive,

alors on a ÔZo(a) l et ô(à) l. r~*°°

Démonstration: L'inégalité

Lc(z, N(z,a, F), q (r)) ^ [1 - Sx (a)] • Lc(z, T(z, F), q (r)) (20)

et la proposition 2 entraînent que N(r, a, F)=o(r6(r)) et donc (c). D'autre part, on a:

Lc(z, T(z, F), 6(r)) < [1 - ^(fl)]-1-^, N(z, a, F),Q(r))

respectivement

lim sup T(r, F)'r~eir) ^ [1 - A (a)]"1 • lim sup N(r, a, F)-r"ff(r)
r-*oo r-»oo

et par suite A(a) l et Az(a) l pour tous les z hors d'un ensemble négligeable. Le
deuxième théorème fondamental de R. Nevanlinna (resp. le théorème 3) nous donne

T(z, F) ^ N(z, a, F) + N(z, &, F) + O(log r), r-^ oo et

T(r, F) ^ N(r, a, F) + N(r, b, F) + O(log r), r -> oo

ce qui établient (a) et (b).
S'il existe une droite Ci(z0-u) sur laquelle lim inf T(z0-r)-r~Q(r) est positive, alors

r-*oo
lim inf T(r, F)-r~e(r) est aussi positive et l'on a des inégalités

1 - ôzo (a) ^ Lc(z0, N(z,a, F), q (r)) • lim sup r Q{r)jT (z0 • r, F) 0 et
r-+oo

1 _ s (à) ^ lim sup N(r, a, F)-r~e(r)- lim sup r e(r)/T(r, F) 0.
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Définition 10: Nous dirons qu'une fonction F entière dans Cn est de croissance

régulière par rapport à l'ordre précisé g(r)y si

(a) F est d'ordre précisé o(r)
(b) lim

Définition 11: Nous dirons qu'une fonction entière dans Cn est de croissance

régulière sur les droites complexes Cx{z-u) par rapport à l'ordre précisé o(r)9 si

(a) F est d'ordre précisé g(r)
(b) lim inf T(z-r9F)'r~c(r)>0, si lim sup T(z r9F)'r~c(r)>0.

r~* oo r~* oo

On voit aisément qu'une fonction de croissance régulière sur les droites est de croissance

régulière.

Corollaire 8: Soit F une fonction entière dans Cn et de croissance régulière sur
les droites C1 (z-u) par rapport à l'ordre Q(r). Si a est une valeur exceptionelle de Borel
de F(z-u), (c.à.d. ôz(a) l), pour zeE, et si E n'est pas négligeable, alors a est une
valeur exceptionelle de Borel sur toutes les droites Cl(z-u) hors d'un ensemble {z}
négligeable.

Théorème 8: Soit F une fonction entière dans Cn d'ordre g(r).
(a) S'il existe une droite complexe C1(z0- u) telle que l'indicatrice Lc(z0, N(z9 a, F),

Q(r)) soit positive, on a alors ô(a)<\ et ôz(a)<\ pour tous les z hors d'un ensemble

négligeable.

(b) Soit (pz(u)=dF(z'u)/du. S'il existe une droite complexe Cl{z'u) telle que
lim supN(zo-r, 0, (p'z)'r~eir) soit positive, alors on a ]T (5(a)<l et £ ôz(a)<l pour

r-*co a# oo a^ oo

tous les z hors d'un ensemble négligeable.

Démonstration:
1. (a) est une conséquence de la proposition 2.

00

2. Soit F(z)=F(0)+ £ Ak(z), Am£0. La fonction G(z)=z-gradF(z) est aussi
k — tn

d'ordre g(r). Si la limite lim sup N(zo-r, 0, cpz)'r~~Qir) est positive, il existe un j^m
tel que

2%

N(zo-r, 0, <p'z) (2 ny1 ¦ Jlog \G(zo-r-eie)\ d6 - log |r^(zo/||zo||)|
0

-log||z0T||.

N(z9 0, <pz) et N(z, 0, G) sont alors d'ordre o(r), et l'on a les inégalités <5(0, G)<1
et ôz(O,(pz)<i pour tous les z hors d'un ensemble {z} négligeable. D'après un
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résultat de H. Wittich [1] on obtient donc

aï oo

On peut déduire de (11) et (12) la relation £ ô(a, F)^Ô(O, G), par laquelle (b) est
établi. fl*°°

IV. Quelques remarques et exemples

12.) H. Wittich [l] a étudié le défaut de R. Nevanlinna d'une fonction entière
dans C1 de la forme

Pj étant des polynômes non identiquement nuls, et il a trouvé:

N(r a n_fc*Yl'U(a1,a2, ,am,O)-r-(l+e(r)) si a * 0
(' 'J'~\(2n)-l-V{ai,a2, ,amyr-(\+z{r)) s«a#O,
T(r,f) N(r,a,f) + O(\ogr), a#0,

et5(0,/) l-f/(a,,a2,. ,am)IU{at,a2, ,am,0), où l/(*,, é2, bk) désigne le

périmètre du plus petit domaine convexe contenant les points bl,b2,...,bk, et où
hme(/-)=0.
r-*oo

Exemple 1: Soit F(z)=F(zu z2)=eZl + e22. On obtiendra d'après H. Wittich:

L'exemple 1 montre qu'il existe des fonctions entières d'ordre fini telles que pour
chaque valeur £e[0, 1] on ait une droite complexe Ci(z'u) sur laquelle <5Z(O, F) Ç.

Nous montrons maintenant q ue le corollaire 8 et par suite le théorème 7 n'est pas
vrai pour ôz(a)=d<l.

Exemple 2: Soit F(z)=F(zu z2)=eZl + eZ2 + ë Zi + ek (Z1+1 Zl\ k>\. Les défauts
de R. Nevanlinna sont:

<52(0, F) 0, si zx 0 ou z2 0, ou si arg(zt) + n < arg(z2) ^ arg(zi) + 3 tt/2.

5,(0, F) (2 - V2)/(2 + 2V(M2Tk2),
si z2 \_{ml 4- k-m3) + i'(m2 + /c-m3)]*z1, m^ep, 1] et
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Les trois ensembles

E2 {z/5,(0, F) (2 - V2)/(2 + 2-J(V^~ï)2~TJ?)

sont des ensembles non négligeables. D'autre part, la limite lim T(z-r, F)-r~l existe
r-*oo

pour tous les zeC2, et elle est positive hors d'un ensemble {z} négligeable. F est alors
de croissance régulière sur les droites Ci(z-u) par rapport à g(r)= 1 Le théorème 7

ne se généralise donc pas pour les défauts ôz(a9 F) d<\.

13.) Nous donnons maintenant une généralisation du théorème (A) de P. Lelong
pour les fonctions plunsousharmomques dans Cn.

Théorème 9. Soit V une fonction continue et plunsousharmonique dans Cn. Si

V(z'u), ueC1, est harmonique pour zeE, et si E n'est pas polaire, alors V est plun-
harmonique (c.à.d. V est harmonique sur toutes les droites complexes).

Démonstration. On peut supposer F(0) 0 sans diminuer la généralité.
2ït

a) La fonction N(z, V)=(2n)~1' J V(z-e10) dO est identiquement nulle. En effet,
o

N(z, F) est plunsousharmonique dans Cn et N(z-u, F), weC1, est identiquement
nulle lorsque z appartient à E. Le domaine Q {z/N(z, F)<1} est pseudoconvexe
contenant l'origine. Soit R(z) sup \u\. Alors —logi^(z) est plunsousharmonique

z ueQ
dans C", et l'on a ou bien R(z)=oo et N(z9 F) 0, ou bien R(z)<oo hors d'un
ensemble polaire et N(z-u9 F)^0 en u hors d'un ensemble {z} polaire, ce qui contredit
l'hypothèse.

b) Nous montrons maintenant l'harmonicité sur les droites complexes C1 (z+rj • u).

Il suffit d'établir «la propriété de la moyenne», car F est continue.
2n

Soit h(z9rj)=(2n)~1' j F(z + rç-e10) dO. Tenant compte de a), on obtient
o

2n 2n2n

.ny1 (h(z-elx9n)di: (2ny2 f (v(z-elt
0 0 0

2n2n

{2n)~2 V(z-el(x~
J J
0 0

2n2n

-(2,)-//
0 0

d% d6
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La fonction \j/(z,r])=h(z9f])—V(z) est continue et non-négative. D'autre part,
lit

(2n)~l- J il/(z-eix9 r\) dx est identiquement nulle, ce qui établit l'énoncé.
o

En posant F(z)=log|F(z)|, où F est une fonction entière dans Cn, on obtient le
théorème (A) de P. Lelong.
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