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Famille des traces sur les droites complexes d’une fonction
plurisousharmonique ou entiére dans C”

WALTER HENGARTNER (Paris)

On étudie dans cet article quelques propriétés des fonctions plurisousharmoniques
ou entiéres dans C”" sur les droites complexes C'(z-u). Si V est une fonction pluri-
sousharmonique non constante dans C", le maximum M(r)=max V(z) est une fonc-

fzlj=r

tion croissante et convexe de logr, et 'on a lim M(r)=o0. Lorsque V est d’ordre fini,
c.a.d. ree
log M (r
lim sup = —(-)=Q <,

50 logr
posséde un ordre précisé ¢(r) de VALIRON [1] tel que

limsup M(r) r " =a#0,0, limg(r)=g.
r—o P00
Nous utiliserons de maniére fondamental le fait que la régularisée supérieure de I’indi-
catrice cerclée de V par rapport a I'ordre précisé o(r)
L% (z, V, ¢(r)) = limsup limsup V (z'u)-[u]"¢"P, ueC', z'eC”

z'=z lul =

est log-plurisousharmonique, c.a.d. log L* (z, ¥, g(#)) est plurisousharmonique dans
Ccn.

On montrera aussi que toute fonction entiére dans C" d’ordre fini est de méme
ordre précisé ¢(r), de méme genre g et de la méme classe (de convergence ou de
divergence) [cf. R. NEVANLINNA [1]] sur toutes les droites C'(z-u) sauf pour les z
appartenants a un ensemble négligeable dans C". D’autre part, le fait que la régularisée
supérieure de I'indicatrice cerclée de la fonction

Izl
N(z,a,F)= f [n.(t, a, F) —n,(0, a, F)]'t"1 dt + n,(0, a, F)-log | z|
0

est log-plurisousharmonique dans C"(n,(t, a, F) désignant le nombre de zéros dans
le cercle ||z-u|| <t sur C'(z-u)) nous permet d’obtenir des résultats sur la distribution
de zéros sur les droites C'(z-u) qui généralisent ceux de P. LELoNG [1], [2],..., [7].

I. Les fonctions plurisousharmoniques d’ordre précisé o(r)

1.) Soit C" I’espace a n dimensions complexes, dont les points seront notés
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n
2=y, N25---s M), ;€ C muni de la norme |z|| =( Y, n;-n,;)"/%.
i=1

DEFINITION 1: Une fonction ¥(z) a valeur réelle définie dans un domaine D de
C" sera dite plurisousharmonique, si
(a) pour tout zeD ona —oo <V (z)<
(b) V(z) est bornée supérieurement sur tout compact K< D
(c) la restriction de ¥ a toute composante connexe de C'(z; +z, u)nD est soit
la constante — oo, soit une fonction sousharmonique.
Pour une fonction plurisousharmonique non constante ¥ le maximum M(r)=
max V(z) est une fonction croissante et convexe de logr.
flzll=r
DEFINITION 2: Une fonction plurisousharmonique dans C”" sera dite d’ordre
précisé o(r), si 'on a:
limsup V (z)-||z|| 72U = g £ 0, o0
llz|| = o
ol ¢(r) est une fonction positive, continue, dérivable par morceaux et partout déri-
vable a droite et a gauche pour r >0 telle que
lim g(r)=9¢ < o0, lim @ (r)-r-logr=0.

En appliquant un théoréme de B. J. LEVIN [1], on montre:

PROPOSITION 1: Toute fonction plurisousharmonique d’ordre fini et non constante
posséde un ordre précisé o(r).

2.) P. LELONG [6] a introduit les ensembles polaires et négligeables de la maniére
suivante:

DErINITION 3: Un ensemble E sera dit polaire dans un domaine D de C”, s’il
existe une fonction plurisousharmonique dans D telle qu'on ait Ec {z/V(z) = — o0}.

DEFINITION 4: Un ensemble E sera dit négligeable dans un domaine D de C”,
s’il existe une suite croissante ¥V, de fonctions plurisousharmoniques sur D, localement
bornée supérieurement telle qu’on ait lim V,(z)=W(z) et Ec {z/W(z)<regsup W(z)
=lim sup W(z')}. e

zZ' 2z

Une réunion dénombrable d’ensembles polaires (resp. négligeables) dans un do-
maine D est encore polaire (resp. négligeable). De plus tous les ensembles polaires
sont négligeables, et tous les ensembles négligeables sont de R?*"-capacité nulle.

1) L’inégalité (1 —g)-ke-re() < (k-r)etk'n) <(1 + g)-ke-re(r) est uniforme par rapport a &k, k> 0.
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3.) On appelle «indicatrice cerclée» d’une fonction plurisousharmonique dans
C" d’ordre ¢(r) expression suivante:

L.(z, V, o(r)) = limsup V (z-u)-ju| "?"P, yeC’, €))

luj— o0
et sa régularisée supérieure est
L (z, V, o(r)) =regsup L.(z, V, ¢(r)) = limsup L.(z', V, o(r)). )

z' >z

On a le théoréme suivant:

THEOREME 1: Soit V une fonction plurisousharmonique dans C" d’ordre o(r). On a:
(@) Li(z, V, o(r)) est plurisousharmonique

(b) Li(z-u, V, o(r))=|ul?-Li(z, V, o(r))

(©) logLt(z, V, o(r)) est plurisousharmonique.

Démonstration: Soit K un compact contenu dans la boule B,,(0, R), et soit
lim supM(r)-r "¢ =a#0, 00, ot M(r)= max V(z). On peut choisir ¢(r) telle que

r—o hzli=r

r¢®>1 pour tous les r>0.

I1 existe un uoeC! de fagon que

(@) M(R-u)) (R |u])” *®1*Dgg+¢ pour tous les |u|>|u,|, £>0

(b) (R-|u|)?®14D.|y|~el#D g ROy pour tous les |u| > |u|, n>0.

On a alors:

Vu(2)=V(z-u) |u|] "D M(R-|up|)+(a+e)-(R°+n) pour tous les
ze K< B,,(0, R). V,(z) est une famille de fonctions plurisousharmoniques localement
bornée supérieurement, et (a) du théoréme 1 résulte d’un théoréme de P. LELONG [6].
D’autre part le théoréme de HARTOGS (P. LELONG [6]) entraine, que L; (z, V, ¢(r))
n’est pas identiquement nulle.

On obtient (b) du théoréme 1 par I’égalité

LC(Z'u, V, Q(r)) = limsup V(z'u'v)-|u-v[—9““"’|) lim |u.vle(lu-vl).|vl~e(lvl)

[v]—= lv]=
= [ul*L.(z, V, o(v)),
et (c) est une conséquence de (a) et (b) d’apres un théoréme de P. LELONG [6].

REMARQUES:
(a) Considérons I’ensemble de droites C'(z, +z,-u), z,eC", z,eC" et ueC'. La
régularisée de I'indicatrice cerclée

LX(zy, 25, V, 0(r)) = regsup limsup V (z; + z,-u)- |u] "D

z1Xz2  |u|=o0

est plurisousharmonique de z, et de z,, et on a

Lt(zla Zys V9 Q(r)) = L,:(zza V3 Q(r))
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(b) On sait que pour toute fonction plurisousharmonique dans C" satisfaisant a
V(z-u)=u®V(z),

il existe une fonction enti¢re dont I'indicatrice cerclée régularisée est ¥(z). Par contre,

on peut trouver des ordres précisés o(r) tendant vers ¢ tel qu’il n’existe pas une fonc-
tion entiére F satisfaisant a

L%(z,log |F|,e(r)) =V (2).

Exemple: g(r)=log,r/logr, et Lt=1.
COROLLAIRE 1: L’ordre précisé d’une fonction V plurisousharmonique dans C" est

Pordre précisé de V sur toutes les traces C'(z-u) sauf pour des z appartenant @ un
ensemble négligeable.

REMARQUE: L’ordre ¢(z) d’une fonction plurisousharmonique ¥V sur une droite
C'(z-u) est défini par

0(z) = limsup log" M(z'r)/logr, M7*(z)= max V7' (z-€").

r—* o 6e[0, 2 n]

Soit u> ¥ *(0)+1. Il existe une fonction R(z, u) telle que M *(z* R(z, p))=p.
Donc

=20 YO+l <p< oo

est une famille de fonctions plurisousharmoniques dans C", localement bornée supé-
rieurement, et

1 log R(z,
_..____:hmsup__,_g_....E__‘uﬁ)<O.

e(2) o0 log p

est donc égal a une constante pour tous les z hors d’'un ensemble polaire. On peut
énoncer:

Si V est une fonction plurisousharmonique dans C” d’ordre infini, alors ¥ est d’ordre
infini sur toutes les droites C'(z-u) sauf pour les z appartenant a un ensemble polaire.

COROLLAIRE 2: Si V est une fonction plurisousharmonique dans C" de type moyen
d’ordre ¢ de Lindelif?), V est de type moyen d’ordre @ sur toutes les traces C*(z-u)
hors d’un ensemble {z} négligeable.

COROLLAIRE 3: Soient C'(z,-u) et C'(z,-u) deux droites complexes dans C" et V
une fonction plurisousharmonique dans C", positive et d’ordre fini. En comparant V

2) On emploie comme fonction de comparaison de log M(r) les fonctions r¢o-(log r)e1-(loga r)ez-

N
««+ «(logn r)e»; @ = (0o, 01, .., 0n).
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sur les deux droites, alors

h(zy, z;) = limsup V (z,-u)/V (2, u)

fu] >0

est positive hors d’un ensemble {z,} négligeable.

CoROLLAIRE 4: Si V| et V, sont deux fonctions plurisousharmoniques dans C",
positives et du méme ordre précisé o(r), alors
limsup V, (z-u)/V,(z"u)
luf— o0
est positive sur toutes les droites complexes C'(z-u) hors d’un ensemble {z} négligeable.
D’apres le théoréme 1 et I'inégalité de V. AVANISSIAN [1]

LV",0,r)SM*(r)<SL(V*,0,R)-(1 +k)-(1 —k)"2"*', k=r/[R<l, (3)

ou ¥ est plurisousharmonique, M(r)= max ¥(z), et ou L est la moyenne sur la
sphére S,,-,(0,r), on a: Nzl =r

COROLLAIRE 5: Si V est plurisousharmonique dans C", d’ordre o(r), M(r)=
max V(z) et L(V,0,r)=(1/wy,-4): | V(z2)dw,,-1, on a:

lzl=r lzil=r

(@) L(V*,0,r) est d’ordre o(r)
(b) limsupL(V™*,0,r)/M(r)=a#0, 0

r-w

(c) lim sup ¥V (z-u)/M(|ul)=a(z) est positive hors d’un ensemble {z} négligeable et

lul =
finie pour |z|| <1, ueC'.
REMARQUES:

1.) (b) est un résultat plus précis que celui de PH. NOVERRAZ [1]
2.) Si V est de croissance réguliere (c.a.d. lim inf M(r)-r =% >0), alors lim inf

r— o r— o

L(V™",0,r)/M(r) est positive et lim sup V(z-u)/M(|u|) est finie pour tous les zeC".

|u] = o0
4.) Soit V une fonction plurisousharmonique dans C", d’ordre fini et V' (0)> — oo,
2n
et soient T(z, V)=2n)™!- [ V*(z-€®)dbet T(r, V)=L(V"*,0,r)=L(T(z, V),0,r),
0
L étant définie dans le corollaire 5.

DEFINITION 5: a) Nous dirons que V est de la classe de convergence (resp. de
divergence) par rapport a s, >0, si

[eo]

fT(r, V)-r=*~! dr
R

est convergente (resp. divergente).



Fonction plurisousharmonique 363

b) Nous dirons que ¥V est de la classe de convergence (resp. de divergence) par
rapport a s, s>0, sur une droite complexe C'(z-u), si

[o o]

f T(ar,V)r="tdr, a=z/|z|

R

est convergente (resp. divergente).
Le théoréme suivant précise un résultat de P. LELONG [7].

THEOREME 2: Si V est une fonction plurisousharmonique dans C ,, et si V est de la
classe de convergence par rapport a s, s>0, sur un ensemble de droites C'(z-u), ot z

appartient @ un ensemble non négligeable, alors V(z-u), ueC*, est de la classe de con-
vergence par rapport a s.3)

Démonstration:

a) Si Vest d’ordre zéro, alors V est de la classe de convergence par rapport a tous
les s>0.
: .. : \V*(2) si V(0)=—o0
I =
b) Soit 'ordre de V positif, et soit V;(z)= ([V(z) V0)=1]*, si V(0)> —oo. 4)
La fonction
1 lell

W(z) = fT(Z't, Vi)t hdt = ||z f T(a-t, Vi)t hedt, a=z/lz] (4

0 0

est plurisousharmonique dans C”, possédant un ordre précisé s(r), et W(z-u) est

d’ordre s(r) sur toutes les droites C'(z-u) hors d’un ensemble {z} négligeable. En
posant

r

o (r, s) = ~[T(oz't, V)t hdt, W(zor)=|z|*r* g (relzl, 5),

0

¢.(r, s) est une fonction non décroissante, et il existe donc lim ¢,(r, s)< 0.

r—o

Posons M(r, W)=max W(z). D’aprés le corollaire 5 lim sup W(z-r)/M(r, W) est
izl =r r— o

positive pour tous les ze [C"— E|], ou E, est négligeable.
Soit ¥(z-u), ue C', de la classe de convergence sur un ensemble {z} non négligeable
dans C". 1l existe donc un ensemble E, non négligeable, ou

lim ¢,(r,s)=K,#0,00 cad. lim W(z'r)-r *#0, . (5)

r=wo r— o

3) D’aprés la remarque qui suit la proposmon 1 V est d’ordre fini.
4) V1 et V sont de la méme classe sur une droite complexe C1(z-u).
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S’il existe une droite C'(z-u), sur laquelle ¥V est de la classe de divergence par
rapport a s, alors lim M(r, W)-r~*=o00, et 'on a sur [E—E|]
lim W(z-r)-r~*=limsup W(z-r)/M(r, W)-lim M(r, W)'r° = o0,
ce qui contredit (5).
Il nous reste de montrer la convergence de jT (r, V)-r~s"'-dr. A cause de l'in-

égalité de AVANISSIAN (3), T(r, V), T(r, V1), et M (r, V1) sont de la méme classe par
rapport a s. D’autre part, on a:

R 1
RS'J\T(", Vl)'r_s_l'dr=(1/w2n_1)f f T(Z. t, Vl)'t_'s_l°dt‘dw2n_1
0 Y ”Z”:RR

< max W(z) < R*- fM(r V) -r~*"tdr,
izl =R
ce qui établit ’énoncé.

REMARQUES: Si s est plus petit que I'ordre de V, V est de la classe de divergence et
V(z-u), ue C', est de la classe de divergence par rapport a s pour tous les z hors d’un
ensemble négligeable. D’autre part, si s est plus grand que I'ordre de V, Vet V(z-u)
sont de la classe de convergence pour tous les z.

Soient N(z, V)=(2n) ! 2jnV(z-e“’) do et N(r,V)=L(V,0,r)=L(N(z, V),0,r).
(L(¥,0,r)=(1/wz-1)" | V(Z) dews,-1)-

lzll=r

DEFINITION 6: Le genre g d’une fonction V plurisousharmonique dans C", d’ordre
fini g, est défini par
g=[e], si o n’est pas entier, [¢] désignant la partie entiére de g.

g=0—1, si g est entier, lim T'(r, ¥)-r 2=0 et j'N(r V)-r~elidr<oo
g=0, autrement. 7%

On définit de la méme maniére le genre g, de V sur une droite C*(z-u), et 'on
obtient:

COROLLAIRE 6: Une fonction plurisousharmonique dans C", d’ordre fini posséde le
méme genre q,=q sur toutes les droites C'(z-u) hors d’un ensemble {z} négligeable.

P. LELONG [5] a donné une représentation d’une fonction V plurisousharmonique
dans C" d’ordre fini et pluriharmonique dans une environ de z=0 par

V)= H )+ [ a2 0 du(a)

Cn
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ol H est une fonction harmonique dans C" d’ordre fini et e,(a, z, gy) s’obtient en

écrivant -
la —z|>""% = llall“'z'(l 4 ZQJ(% fk)>, nx=2,
j=1

Q; désignant le polyndme homogene de degré j de ’ensemble des variables z;, Z,. Si
z#a,

qanN

en(a, z, qn) = — la — 272" + uanz'“-(l + ZQ,-(zi, z'k)), n>2,
i=1

et le genre g de V est déterminé par

q = max(qy, ¢ (H)),
gy désignant le genre de N(r, V) et o(H) 'ordre de H(z).

II. Les fonctions 7 et N de R. Nevanlinna d’une fonction entiére dans C"

5.) Soit F(z)=F(0)+ ) A(z) une fonction entiere dans C" & valeur complexe,

k=m
ou les A, sont des polyndmes homogenes et 4,,#0. Définissons d’aprés R. NEVAN-

LINNA [1]
2n

T(z, F)=Q2n)" ' J‘logJr |F(z-€'%)| dO (6)
0

0, si la restriction de T a la droite C' (z-u) est constante
1zl

N(z a, F) = f[nz(t,a,F)——nZ(O,a,F)]-t"l-dt %
0

+ n,(0,a F)-log ||z]| autrement,

n,(t, a, F) désignant le nombre de zéros de F(z-u) — a dans le cercle |z-u| <t. En
appliquant le premier théoréme fondamental sur les fonctions méromorphes de
R. NEVANLINNA [1], on a:

2n

N(z,a,F)=Q2mn)~ " flog |F(z-€'°) —a| d0 — log |F(0) — a|, siF(0)#a (8)
0

et
0, siF(zu)—a=0 enu, ueC'’
2

N(z,a,F)= (2n)‘1-floglF(Z'eio)‘alde_w(z) autrement, ®)
(0]
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ol w(z-u), ueC' est une constante en u et cette constante est égale & log|A4,,(z/|z|)|
pour tous les z hors d’un ensemble polaire.

On voit aisément que 7(z, F) et, si F(0)#a, N(z,a, F) sont non-négatives,
continues et plurisousharmoniques dans C".

DEFINITION 7: Si F(z)=F(0)+ ). Ax(2), A, #0, est une fonction entiére dans C",
nous poserons: k=m

T(r, F) = L(log* |F), 0, 1) (9)

_{L(log |F —al,0,r)—log [F(0) —a|, siF(0)#a
N(r,a, F)= {L(log |F —al,0,r)— L (log |4,],0,1) autrement, (10)
L étant la moyenne sur la sphére S,,_,(0,r).
En utilisant la relation (6), la définition 5 est équivalente a la suivante:
DEFINITION 7': Si F(z) est une fonction enti¢re dans C”,
T(r,F)=L(T(z, F),0,r) (11)
N(r,a,F)=L(N(z,a, F),0,r) (12)

Soit m(r, a, F)=L(m(z, a, F), 0, r), ou m(z, a, F) est la fonction osculatrice de
F(z-u) définie par
2
2n)~ J\log+ [1/(F(z-€'%) —a)| df, sia# o
0

T(z,F), sia= .

m(z, a, F) =

La définition 5" permet d’énoncer les deux théorémes fondamentaux de R. NEVAN-
LINNA pour les fonctions entiéres dans C".

THEOREME 3: Soit F(z) une fonction entiére dans C" et

n

G(z)=z-grad F(z) = Z 2.0

j=1
(@) T(r, F)=N(r,a, F)+m(r,a, F)+O(1) pour tous les acC', r tendant vers
Uinfini.
(b) Si F est d’ordre fini, m(r, oo, GIF)=0(logr), r— 0.
(c) Siay,a,,...,a, sont des nombres complexes et finis tels que a;#a;, si i#]j, et
q=2, et si F est d’ordre fini, on a:

q
(@ =1)-T(r, F) < ZN(r, a), F)= N(r,0,G) + O(logr), r—co.
j=1
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Démonstration:

1. On obtient (a) aisément d’apres la définition 7’ et le premier théoréme fonda-
mental de R. NEVANLINNA

2. Soit F(z)=F(0)+ Z A,(z) une fonction entié¢re dans C” d’ordre fini et G(z)=
Zk Ai(z)=z-grad F(z), A $0 Posons
F(z'u)=¢@,(u) = @,(lzl 'u) ova=z[|z|| etueC,, et
6(z4) = 1) = o1 (121w = Il 22

= llzll-u @ (llzll -u).
Pour une fonction g(u) enti¢re dans C', g(0)#0, W. K. HAYMAN [1] a montré I’in-
égalité suivante:

m(r, 0, g'/g) < 4-log” T(R, g) + 4-log* log* (1/|g(0)[) + 5-log™ R
+log" (1/r)+ 6-log* (1/(R—r)) + 14, O<r<R.

Si F(0)=0, y,(u)=¢,(u)/u™ est entiere dans C' et y,(0)#0 hors d’un ensemble {z}
polaire. En posant R=2-|z| et r=||z|| dans la relation (14), on obtient
2

m(z, 0, G/F) < (3 m)- f10g+ l9x (121l -€*)@a (Il 21 -€'*)| dO + log ||z|| + log 2

s=|lz|l-u (13)

)

0
<4-log" T(2z, F)+ C,-log" |z]| + C,-log™ (1/|z)) + C3,
C; ¢étant constant et, en tenant compte de la définition 7/,
m(r, 0, G/F)=4'log" T(2r,F)+0(logr), r— .
Supposant que F soit d’ordre fini, c.a.d. log T(2r, F)=0(logr), (b) est établi.
3. D’aprés les relations (10) et (12) on a:

N(r, 0, G) = L(log |G|, 0, r) — L(log [m-A4,], 0, 1)

=L(N(r'a,0,¢,),0,r)+logr, oum>=1,a=z/||z] etr=|z].

Appliquant le deuxi¢me théoréme fondamental de R. NEVANLINNA et le résultat de (b),
on obtient, compte tenu de la définition 7’, (c).

6.) PROPOSITION 2: L'’indicatrice cerclée régularisée de N(z, a, F) par rapport a
Pordre précisé o,(r) de N(z, a, F) est log-plurisousharmonique dans C".
En effet, c’est évident, si F(0)#a. Autrement, si F(0)=a, on a ou bien F(z)=a
et N(z, a, F)=0, ou bien
0, siF(zzuy—a=0 enu, ueC'
2r

N(z,a,F)= 2 n)'l'flog |F(z-€'®) —a| d0 — w(z), autrement ®)

0
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2zn
ot (27)™! [ log|F(z-€'®)—a| dO est une fonction non constante et plurisousharmoni-
V]

que dans C", donc o

L%(z, N(z, a, F), 0,(r)) = L} (z, 2n)~ ' ~"log |F(z-€'®) — a| do, aa(r)) :

0

COROLLAIRE 7: N(z, a, F) posséde le méme ordre précisé o ,(r) sur toutes les droites
C'(z-u) hors d’un ensemble {z} négligeable, et o,(r)=9(r) pour tous les ac C* sauf
peut étre pour une valeur a,, dans le cas, o g est entier.

La proposition 2 et le corollaire 3 nous donnent:

THEOREME 4: Soit F une fonction entiére dans C" d’ordre fini et F#£0. Les limites
(@) lim supT(z;-r, F)/T(z,-r, F)

r—>o

(b) lim supM(z,r, F)/M(z,r, F)

r—>w

(c¢) lim supN(z,-r, a, F)/N(z,'r, a, F), si N(z, a, F)#0,

r— o

sont positives hors d’un ensemble {z,} négligeable, M (z, F) définie par

M (z, F) = maxlog |[F(z-€'%)| etz z,,€C".
6e[0, 2 n]
En effet, il existe une fonction R(zy, z,) qui est finie hors d’un ensemble {z,}
négligeable, telle que N(z,r, a, F)/N(z,'r, a, F) est positive pour tous les 7> R(z,, z,).

7.) ProPOSITION 3: Si N(z'r, a, F) est de la classe de convergence par rapport a
s>0 pour z€E, et si E n’est pas négligeable, alors N(zr, a, F) est de la classe de con-
vergence par rapport a s pour tous les z, et N(r, a, F) est de la méme classe.

Démonstration:

a) Si F(0)#a, c’est une conséquence du théoreme 2.

b) Soit F(0)=a, ou bien F=aet N(z, a, F)=0, ou bien N(r, a, F) est une fonction
croissante, donc
[0, siF(z'u)—a=0 enu,uecC’

e8]

o0 2z
fN(oc-r, a, F)-r " ldr={(2n)"" fdrflog |F(a-r-€®) —al-r*"1do+0(1),
R R 0

ot autrement, o = z/||z||,

fN(r, a, F)-r " ldr= (1/w2n_1)fdr f log |F(z)—al'r* ' dw,,_; +0(1)
R.

R lizll=r

Le théoréme 2, appliqué & (2n) ™' [ log|F(z-€'’)—a|db, établit I’énoncé.
0
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8.) Une fonction F entiére dans C" d’ordre fini peut se représenter sur une droite
C'(z'u) par

F(z'u)—a =[], .(u) =" (15)

ol P, ,(u) est une polyndme et [], ,(v) le produit canonique de WEIERSTRASS par
rapport au genre ¢, ,, ¢, , désignant le plus petit nombre entier s, tel que N(z, a, F)
est de classe de convergence sur C'(z-u). par rapport a q+ 1.

PROPOSITION 4: Le produit canonique | |, ,(u) d’une fonction entiére dans C" d’ordre
fini, défini par (15), posséde le méme genre q, , sur toutes les droites C’'(z-u) hors d’un
ensemble {z} négligeable.

DEFINITION 6”: Le genre g d’une fonction F entiere dans C"d’ordre fini ¢ est
défini par:
qg=[e], si o n’est pas entier, [¢] désignant la partie entiere de g,

g=¢—1,si lim T(r)-r ¢=0et [ N(r,0, F):r° !'dr<o,
R

r=o0
q=0, autrement.

On définit de la m&me maniére le genre g, de F sur une droite C'(z-u). D’autre part
on peut obtenir g, par

q, = max[q, o p(eF=°")]

Résumons I’énoncé précédent:

THEOREME 5: Soit F une fonction entiére dans C" d’ordre fini.

a) F est d’'ordre o(r), de genre q et de la méme classe (de convergence ou de di-
vergence) par rapport a s, s>0, sur toutes les droites C*(z-u) hors d’un ensemble {z}
négligeable.

b) N(z, a, F) est du méme ordre précis o,(r), et de la méme classe (de convergence
ot de divergence) par rapport a s, s >0, sur toutes les droites C*(z*u) hors d’un ensemble
{z} négligeable, et o,(r)=g(r) pour tous les ac C' sauf peut étre pour une valeur a,
dans le cas ou g est entier.

III. Sur la distribution des zéros et sur les défauts
d’une fonction entiére dans C"

9) Soit Fune fonction enti¢re dans C" d’ordre fini g, et soient n,(r, a, F), N(z, a, F),
N(r,a, F), T(z, F) et T(r, F) les fonctions définies dans le chapitre II. P. LELONG [1],
[2] a montré le résultat suivant:

THEOREME (A): Soit F une fonction entiére dans C". Si F(z-u)—a, ue Cl, na
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aucun zéro pour ze E, et si E n’est pas négligeable, alors F(z-u)—a n’a jamais de zéros.

Nous avons déja montré (proposition 2) que N(z, a, F) posséde le méme ordre
précisé o,(r) sur toutes les droites C'(z-u) hors d’un ensemble {z} négligeable. Le
résultat suivant généralisé le théoreme (A).

THEOREME 6: Soit F une fonction entiére dans C". Si F(z-u), ueC', n'a qu'un
nombre fini de zéros pour tout zeE, et si E n’est pas polaire, il existe un polynéme
P,.(z) de degré m et une fonction entiére G(z) telle que

F(z) = P,(z)- €. (16)

F posséde alors le méme nombre fini m de zéros (compté avec leur ordre de multiplicité)
sur toutes les droites C'(z-u) sauf pour des z appartenant a un ensemble polaire. Sur une
droite correspondant a cet ensemble polaire, la fonction F(z-u) a un nombre de zéros
inférieur @ m, ou est identiquement nulle.

Démonstration: En tenant compte de la proposition 1 et de la remarque qui suit
cette proposition, N(z, 0, F) posséde un ordre précisé¢ o(r), lim ¢(r)=0, ou est
identiquement nulle. ro o

Nous montrons d’abord qu’il existe un polyndme P,,(z) de degré m et une fonction
entiére G(z) satisfaisant a (16). Lorsque zeE, on a

F(z-u) = P,(u) ™

ou P,(u) est un polyndme de u et g,(u) une fonction entiere de u. D’autre part, il
existe d’aprés un théoréme de P. LELONG [5] et [7] une fonction F, entiére dans C"
et d’ordre zéro telle que

Fy(z) = F(z) e ¢®

ou G est une fonction entiere dans C". (On voit aisément que F(z)=0<>F,(z)=0.)
Sur une droite C'(zu), z€E,

Fo(z ) = P (u)- 075

est un polyndme de u. Le lemme suivant montre que F, est un polyndme dans C”".

LEMME: Soit F, une fonction entiére dans C". Si F,(z-u) sont des polynémes de u
pour les appartenant @ un ensemble non polaire, alors F, est un polynéome dans C".

K
En effet, si Fo(z)= ) A;(z) est une fonction transcendente (c.a.d. F, n’est pas un
k=0

polyndéme) ou les 4, sont des polyndmes homogeénes de degré k, alors I’ensemble



Fonction plurisousharmonique 371

D= D, est polaire dans C", D, étant défini par

k=0
D, = 09 si Ak =0
*“ 1{z/A(z) =0} autrement.

Lorsque F, est transcendente, 'ensemble de z ol F(z-u) est un polyndme de u, est
contenu dans D et donc polaire, ce qui contredit ’hypothése du lemme.

La régularisée de I'indicatrice cerclée de log|F,| par rapport & 'ordre précisé
loglogr/logr est une constante m, m entier, ce qui établit I’énoncé.

10.) Etudions maintenant la distribution des zéros d’une fonction F entiére dans
C" et d’ordre fini g, et désignons par les {b,,},=, les familles de zéros distincts de

origine sur les droites C'(z-u) ot F n’est pas identiquement nulle. L’intégration
partielle

Z [bk_zsl =r*n,(r,0,F)—ro°n,(ry, 0, F)

ro<|bkz|<r

+sr *N(ar,0,F)—rg°s-N(arg, 0, F) 17

+ 5% fN(cx-t, 0, F)-t™*"'dt

0
nous montre que Y_ |, ,| %, s>0, est ou bien convergente sur toutes les droites C'(z-u)
k

ol F(z-u) n’est pas identiquement nulle, ou bien divergente pour tous les ze C” hors
d’un ensemble négligeable. De plus, si F(0)#0, la fonction

Va(2) = Izl Z byt~ = n.(111, 0, F)
|brz| < |2

(18)
=5'N(z,0, F) + s> fN(z-t, 0, F)-t " 'dt
0

est plurisousharmonique dans C” pour tous les s>0. Il est évident, qu’on a la con-
vergence de ) |b, .| ~* si s> et divergence si 0<s<g. De plus, si 'ordre ¢ de F n’est
k

pas entier, Y |b, ,|~* est convergente si et seulement si F est de la classe de convergence
k

par rapport a g.

Lorsque g est entier et positif, le théoréme 5 nous donnera le résultat suivant. Soit
f(v) une fonction entiére dans C' d’ordre entier et positif ¢ et d’ordre précisé o(r).
En désignant par les b, ses zéros distincts de ’origine, on pourra donc toujours (c.a.d.
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indépendent du genre de /) écrire cette fonction sous la forme:

e

1) =umexp | > it TTE@L 0 (19)
k=0 ,
ou m désigne un entier positif ou nul et ou I’on s’est servie de la notation de WEIER-

STRASS .

E(w,0)=(1 —w)-exp [Z w"/k] .

k=1

En posant S(r)=r%|c,+¢ ' ) 5,79, A. PFLUGER [1], [2] et B.J. LEVIN [1] ont
montré que b <r

max [n(r, 0, f), S(r)]

est d’ordre précisé g(r). Appliquant le théoréme 5, on obtiendra alors:

PROPOSITION 6: Soient les {b; .}~ les familles des zéros distincts de I'origine d'une
Jonction entiére dans C" d’ordre entier et positif et d’ordre précisé o(r) sur les traces
C'(z'u), z appartenant @ C"—E, ou E est défini par E={z/F(z'u)=0, ueC'}. La
représentation (19) de F(z-u), ze C"—E, nous donnera:

(a) Si F appartient au type minimum d'ordre ¢, |c, ,+0 '+ Y.b; 4| =0 pour tous les
zeC"—E. () b 2 est donc convergente.) k

3

(b) Si F appartient au type moyen d’ordre g, alors lim sup| Y b f<oo pour
tous les zeC"—E. row bl <r
(©) Si N(r,0, F)=o0(r*"), alors S,(r)=r%|c, ,+0™' Y b.¢ est dordre o(r)

bzl <r
et Y |b ,|7° est du meme ordre précisé t(r) sur toutes les droites C'(z-u) hors
|bkzl$r

d’un ensemble {z} négligeable.

11) R. NEVANLINNA et G. VALIRON ont défini les défauts (ou valeur déficiente) pour
une valeur a, aeC?, d’une fonction méromorphe de la maniére suivante:

DErFINITION 8: Nous appellerons «défaut de NEVANLINNA » pour la valeur a d’une
fonction enti¢re dans C” et non constante ’expression suivante:
é(a)=1— limsup N(r, a, F)/T (r, F)

r—o
et sur une droite complexe C*(z-u):

1— limsup N(z'r,a, F)|T(z-r, F)

6.(a)=1{si F (z-u) n’est pas une constante par rapport a u
' 0 sinon.
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DEFINITION 9:  Nous appellerons «défaut de VALIRON» pour la valeur a d’une
fonction entiére dans C" et non constante ’expression suivante:
4(a)=1- liminf N (r, a, F)/T(r, F)

r— o

et sur une droite complexe C'(z-u):

1 —liminfN(z:r,a, F)[T(z'r, F)

4.(a)=1{siF (z'u) n’est pas une constante par rapport a u
0 sinon.

THEOREME 7: Soit F une fonction entiére dans C", non constante et d’ordre précisé
o(r). Sid ,(a)=1 sur un ensemble {z} non négligeable, alors:
(@) 4,(@)=1et > 8,(b)=0 pour tous les z hors d’un ensemble négligeable.

b#a,n
(b) 4(a)=1et ) 6(b)=0
b#a,0
(c) La fonction S,(r) définie dans la proposition 6 par rapport a F(z)--a estd’ordre
o(r) pour tous les z hors d’un ensemble négligeable.
(d) S'il existe une droite complexe C'(zy-u), ot lim inf T(zy-r, F):r % est posi-
tive, alors on a 6,,(a)=1 et 6(a)=1. ree

Démonstration: 1’inégalité

LAz, N(z,a,F),¢(r) <[1 = 0,(a)]- Lz, T(z, F), e(r)) (20)

et la proposition 2 entrainent que N(r, a, F)=0(r%") et donc (c). D’autre part, on a:

Lz T(z F) e() <[1 - 4,()] "Lz, N (z. a, F), o(r))
respectivement
lim sup T (r, F)-r @ <[1 — 4(a)]" '+ lim sup N(r, a, F)-r °®

et par suite 4(a)=1 et 4,(a)=1 pour tous les z hors d’un ensemble négligeable. Le
deuxieme théoreme fondamental de R. NEVANLINNA (resp. le théoréme 3) nous donne

T(z, F)<N(z,a,F)+ N(z,b,F)+ O(logr), r—oo et
T(r, ) <N(r,a,F)+ N(r,b, F)+ O(logr), r— o,

ce qui établient (a) et (b).
S’il existe une droite C'(z, - u) sur laquelle lim inf T(zy r)-r ~ %" est positive, alors

r— oo

lim inf T(r, F)-r ™" est aussi positive et 'on a des inégalités

1 —6,,(a) < L{zo, N(z, a, F), o(r))-lim sup r ®?/T (zo'r, F) =0 et

r—+ o

1 —d(a) < limsup N(r, a, F)-r®-lim sup » /T (r, F) = 0.

r—>o r— oo
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DEerINITION 10: Nous dirons qu’une fonction F entiére dans C” est de croissance
reguliére par rapport a ’ordre précisé ¢(r), si

(a) F est d’ordre précisé o(r)

(b) lim inf T(r, F)-r 2" >0

DEFINITION 11: Nous dirons qu'une fonction entiere dans C" est de croissance
réguliére sur les droites complexes C'(z-u) par rapport & ’ordre précisé g(r), si

(a) F est d’ordre précisé o(r)

(b) lim inf T(z-r, F)-r %" >0, si lim sup T(z*r, F)-r ¢ >0.

r— o r-— o

On voit aisément qu’une fonction de croissance réguliére sur les droites est de crois-
sance réguliere.

COROLLAIRE 8: Soit F une fonction entiére dans C" et de croissance réguliére sur
les droites C'(z-u) par rapport d I'ordre ¢(r). Si a est une valeur exceptionelle de Borel
de F(z-u), (c.a.d. 6,(a)=1), pour zeE, et si E n’est pas négligeable, alors a est une
valeur exceptionelle de Borel sur toutes les droites C'(z-u) hors d’un ensemble {z}
négligeable.

THEOREME 8: Soit F une fonction entiére dans C" d’ordre o(r).

(a) S’il existe une droite complexe C'(z,"u) telle que I'indicatrice L (zy, N(z, a, F),
o(r)) soit positive, on a alors 6(a)<1 et 6,(a)<1 pour tous les z hors d'un ensemble
négligeable.

(b) Soit ¢.(u)=dF(z-u)/du. S’il existe une droite complexe C'(z-u) telle que
lim supN(zqy'r, 0, @;)-r ~? soit positive, alors on a Y, (a)<1l et Y d8,(a)<1 pour

r—oo a# o a¥ o

tous les z hors d’un ensemble négligeable.

Démonstration:
1. (a) est une conséquence de la proposition 2.

2. Soit F(z)=F(0)+ Y A.(z), 4,#0. La fonction G(z)=z"grad F(z) est aussi
k=m

d’ordre g(r). Si la limite lim sup N(zy-r, 0, @.)-r ") est positive, il existe un j=>m
tel que ree

2r
N(zo"’, 0, (P;) = (2 75)_1 : flOg IG(zO'r-eie)l do — log lj’A,-(zo/Hon)I
0
— log ||zo"rl .

N (2,0, .) et N(z, 0, G) sont alors d’ordre ¢(r), et 'on a les inégalités 6(0, G)<1
et 8,(0, p,)<1 pour tous les z hors d’un ensemble {z} négligeable. D’aprés un
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résultat de H. WitTICH [1] on obtient donc

> s(aH<s0.e)<1.

a¥ oo

On peut déduire de (11) et (12) la relation ) d(a, F)<d(0, G), par laquelle (b) est
établi. a¥ @

IV. Quelques remarques et exemples

12.) H. WrrTIcH [1] a étudié le défaut de R. NEVANLINNA d’une fonction entiére
dans C! de la forme

f(u)=ZP,~(u)'e“’"“, a;#a;, sii#j
j=1

P; étant des polyndmes non identiquement nuls, et il a trouvé:
_fen)y ' U(ay a0 0)r-(1+6(r)) sia#0
N(r.a f)= {(2 n) '-Ul(ay, ay, ...;a,) r-(L+e(r))  sia#0,
T(r,f)=N(r,a,f)+0(logr), a#0,
et (0, f)=1-U(ay, ay,..., a,)/U(ay, a,,..., a,,0), ou U(by,b,,...,b,) désigne le

périmeétre du plus petit domaine convexe contenant les points by, b,,..., b,, et ou
lim g(r)=0.

r—+ oo

EXEMPLE 1: Soit F(z)=F(z,, z,)=€"'+€*>. On obtiendra d’aprés H. WITTICH:

S.(a)=1— — 2=zl

( [z + |z5] + |21 — 2,

L’exemple 1 montre qu’il existe des fonctions entieéres d’ordre fini telles que pour

chaque valeur € [0, 1] on ait une droite complexe C'(z-u) sur laquelle 6,(0, F)=¢.
Nous montrons maintenant que le corollaire 8 et par suite le théoréme 7 n’est pas

vrai pour J,(a)=d<1.

EXEMPLE 2: Soit F(z)=F(z;, z,)=€"' +e>+e' *' 4+ *1 7 k51 Les défauts
de R. NEVANLINNA sont:
5,(0,F)=0, siz,=00uz,=0, ousiarg(z,)+ n<arg(z,)<arg(z,)+3n/2.

5.0.F) = 2= VDI + 2k = 1) + ).
si zp=[(my +k-my) +i(my+k-my)]-zy, mye[0,1] et

Zm1=1.

Jj=1
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Les trois ensembles
E, ={z/6,(0, F) = 0}

E, = {z/6,(0, F) = (2 — /2)I2 + 2:/(k — 1)* + k?)
E;=C>*-E,—E,

sont des ensembles non négligeables. D’autre part, la limite lim T(z-r, F)-r ~! existe

r— oo

pour tous les ze C2, et elle est positive hors d’un ensemble {z} négligeable. F est alors
de croissance réguliére sur les droites C'(z-u) par rapport a ¢(r)=1. Le théoréme 7
ne se généralise donc pas pour les défauts J,(a, F)=d<1.

13.) Nous donnons maintenant une généralisation du théoréme (A) de P. LELONG
pour les fonctions plurisousharmoniques dans C”".

THEOREME 9. Soit V une fonction continue et plurisousharmonique dans C". Si
V(z-u), ueC*, est harmonique pour zeE, et si E n’est pas polaire, alors V est pluri-
harmonique (c.d.d. V est harmonique sur toutes les droites complexes).

Démonstration: On peut supposer ¥(0)=0 sans diminuer la généralité.
2n

a) La fonction N(z, V)=(2n)"!- | V(z-€'?) db est identiquement nulle. En effet,
0

N(z, V) est plurisousharmonique dans C” et N(z'u, V), ueC’, est identiquement
nulle lorsque z appartient 3 E. Le domaine Q={z/N(z, V)<1} est pseudoconvexe
contenant l'origine. Soit R(z)= sup |u|. Alors —logR(z) est plurisousharmonique

z:uef
dans C", et ’'on a ou bien R(z)=00 et N(z, V)=0, ou bien R(z)< o hors d’un en-
semble polaire et N(z-u, V)#0 en u hors d’un ensemble {z} polaire, ce qui contredit
I’hypothése.
b) Nous montrons maintenant ’harmonicité sur les droites complexes C'(z+ 7 u).

Il suffit d’établir «la propriété de la moyenne», car V est continue.
2r

Soit h(z, n)=(2n) " § V(z+n-e'®) df. Tenant compte de a), on obtient
0

2n 2n

2n
(2 n)—lfh(z-e”, n)dt =2 ﬂ)_szV(Z'ei‘+n~ei”) dt do
0 0 0

2w 2=
r. * s .
=2n) 2| | V(z:"? 4 4% dz db
° %
27 2x
=2 n)"? V(e +1n)e’ldodi=0
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La fonction ¥(z, n)=h(z,n)—V(z) est continue et non-négative. D’autre part,
2zn

(2n)~'- [ ¢(z-€'", n) dt est identiquement nulle, ce qui établit 'énoncé.
0

En posant V(z)=log|F(z)|, ou F est une fonction enti¢re dans C", on obtient le
théoréme (A) de P. LELONG.
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