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Uber isometrische Abbildungen in abziihlbar dimensionalen

Réumen iiber reellen Korpern

von H. Gross (Ziirich)

Meinem verehrten Lehrer, Herrn Dr. JuLius RUTSCH, gewidmet.

0. Einleitung

Seien k ein Korper, char k #2, E ein k-Vektorraum, @: E x E—k eine e-hermitesche
Form; seien ferner ¥ und V zwei beliebige, beziiglich @ isometrische Teilriume. In [1]
wurde die Frage untersucht, unter welchen Bedingungen es unter den Isometrien
1: V=V eine Isometrie 7, gibt, die sich zu einer Isometrie auf ganz E erweitern lésst.
Fiir endlich dimensionales E ist die Losung bekannt: der Wittsche Satz besagt, dass
sich jedes t zu einer Isometrie auf ganz E erweitern ldsst. Fiir Rdume E von iiber-
abzidhlbarer algebraischer Dimension ist fast nichts bekannt, es sei denn (E, ®) sei
zufillig ein Hilbertraum. Ist dagegen E von abzdhlbarer algebraischer Dimension, so
gibt [1] erschopfende Auskunft auf die Frage, vorausgesetzt, dass die Rdéume ¥ und
V ,.geniigend viele* isotrope Vektoren enthalten. Diese Bedingung ist fiir grosse
Klassen von Ko6rpern, unabhéngig von dem speziellen @, automatisch immer erfiillt;
so etwa fiir die Klasse der Kneserkorper oder die Klassen der C;-Korper (s. [3], [4]).
Die in [1] verwendeten Beweise versagen aber, wenn zum Beispiel ¢ eine definite
Form iiber einem angeordneten Korper ist. Dass die Beweise in diesen Fillen ver-
sagen miissen, folgt aus den weiter unten bewiesenen Sitzen, aus denen nun hervor-
geht, dass der Sachverhalt bei Fehlen geniigend vieler isotroper Vektoren tatséchlich
viel komplizierter ist als im andern Falle. Zur Illustration sei Folgendes erwéhnt. Ist
(E, @) ein Raum iiber den rationalen Zahlen, aufgespannt von einer abzihlbaren ortho-
normierten Basis, dann lassen sich 2%° Hyperebenen V, in E angeben mit V. =(0), von
denen keine zwei sich durch irgend einen orthogonalen Automorphismus von E auf-
einander abbilden lassen. Dagegen gilt nach [1]: Definiert man anstelle von ® auf dem-
selben Raume eine Form ¥ indem man eine orthogonale Basis einfiihrt, bei der un-
endlich vielen Basisvektoren die Linge + 1 und unendlich vielen die Linge —1 zuge-
schrieben wird, dann kinnen in dem Raume (E, W) irgendwelche zwei Hyperebenen V, V
mit V+=V"1=(0) immer durch einen geeigneten orthogonalen Automorphismus von E
aufeinander abgebildet werden.

In dieser Note werden bloss Isometrien zwischen Hyperebenen betrachtet. Die
zugelassenen symmetrischen Formen sind beliebig, die zugelassenen angeordneten
Korper k sollen zwei Bedingungen erfiillen: (i) die Anordnung von k ist archimedisch,
(ii) es gibt eine natiirliche Zahl m, nur von k abhdingig, derart, dass jede nicht ausgeartete
Form im m Variablen iiber k die Zahl +1 oder —1 (oder beide) darstellt. Beispiele
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sind etwa die Korper der rationalen Zahlen, der reellen algebraischen Zahlen, der
reellen Zahlen; dabei ist der Reihe nach m=4, m=1, m=1. Wegen (i) kann k immer
als Teilkorper der reellen Zahlen aufgefasst werden ; wegen (ii) ldsst sich k auf héchstens
eine Weise anordnen. Unter den angegebenen Bedingungen werden unten (Satz 4)
einfache, notwendige und hinreichende Bedingungen dafiir angegeben, dass zwei
Hyperebenen von E sich durch einen orthogonalen Automorphismus von E aufein-
ander abbilden lassen.

Gewisse offensichtliche Verallgemeinerungen auf beliebige e-hermitesche Formen
mogen bei dieser speziellen Untersuchung unerwéhnt bleiben. Dass es nicht gelungen
ist, Falle nicht-archimedisch angeordneter Korper mitzuerfassen, erscheint uns da-
gegen als unnatiirliche Einschrankung. Schliesslich bleibt der vermutlich viel schwieri-
gere Fall beliebiger isometrischer Teilrdume von E {iber angeordneten Korpern zu 16sen.

Es sei noch Folgendes bemerkt: jeder abzdhlbar dimensionale Raum (E, ¢) mit
nicht ausgearteter symmetrischer Form @ iiber einem Korper der Charakteristik un-
gleich 2 und der Eigenschaft (ii) besitzt Orthogonalbasen mit simtlichen Basisvektoren
der Lingenl) +1 ([2]). Ist £ auch noch angeordnet, wie vorausgesetzt, so zerfillt
(E, @) in einen positiv definiten und einen negativ definiten orthogonalen Summanden,

E= +E(5+L-)_E. Die Rdume | E und _F sind nicht eindeutig bestimmt, wohl aber ihre
Dimensionen ,n=dim , E, _n=dim _E; wir sagendann, (E, ®)seivom Index (,n, _n).
Uber Ko6rpern mit den Eigenschaften (i) und (ii) sind somit die abzdhlbar dimensiona-
len (E, ) mit nicht ausgeartetem, symmetrischem @ durch den Index (,#n, _n) ein-
deutig charakterisiert. Beschrinken wir uns auf einen positiv definiten Raum (F, @)
iiber einem Korper der angegebenen Art, so beruht der Existenzbeweis fiir orthonor-
mierte Basen auf dem folgenden Sachverhalt: Ist F irgendwie orthogonal zerlegt,

F= Gé—)H mit unendlichdimensionalem H, so gibt es zu jedem he H einen m-dimensio-
nalen Teilraum H, <= H mit heH,, und H,, aufgespannt von einer orthonormierten Basis.
(Siehe [2] oder den Beweis zu Theorem 1 in GROSS/FISCHER, Quadratic Forms and
Linear Topologies, 11, Math. Ann. 159, 285-308.)

I. Ein Spezialfall

Im Folgenden sei & immer ein Teilkdrper der reellen Zahlen, k<R, mit der
Eigenschaft, dass es ein m gibt, sodass jede Form iiber k£ in m Variablen +1 oder —1
(oder beide) darstellt. Ist @ eine symmetrische Bilinearform aufdem k-Vektorraum E,
@:E x E—k, so sprechen wir manchmal vom Raume (E, ®¢). Zwei solche Rédume
(E, @) und (F, V) heissen isometrisch oder isomorph, falls es einen Vektorraumisomor-
phismus 7: E- F gibt mit &(x, y)=¥(Tx, Ty) fiir alle x, yeE; T heisst dann eine

1) Unter der Linge eines Vektors x in (E, @) verstehen wir das Korperelement ||x| = &(x, x);
x 1 y ist gleichbedeutend mit @(x, y) = 0.
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Isometrie. (E, @) und (E, ®) seien isomorphe Riume von abzihlbarer algebraischer
Dimension, V< E und V< E Teilrdiume mit der Eigenschaft

yt=(0), P'=(0), dimE/V=dimE/V=1 (1)

Wir wollen in diesem Abschnitt die Paare (E, V), (E, V) isomorph nennen, falls es
eine Isometrie 7: E— E mit T(V)=V gibt. Ferner betrachten wir in diesem Abschnitt
bloss Paare (E, V') mit positiv definitem Raum (V, ).

Unter einer Standardbasis eines solchen Paares (E, V) verstehen wir eine Basis
{eo, €;}i>1 von E, wobei (e;);», eine orthonormierte Basis von V ist und e, irgend
ein Einheitsvektor, der nicht in V liegt, also |ley|| =1 und E=V®k(e,); es gibt immer
unendlich viele Standardbasen. Fiir solche Basen definieren wir die ,,zugehorigen* y,:

vi=P(es &) (i=1) 2
und ihre Quadratsumme in R

s=Yy? (3

Falls die Summe divergent ist, schreiben wir s= co.

Es sei R*/k*? die Faktorgruppe der multiplikativen Gruppe R* der von Null ver-
schiedenen reellen Zahlen modulo Quadratfaktoren aus k*. Zu dieser Gruppe von
Quadratklassen fiigen wir noch die Klassen [0]=0-k*? und [00]= 00 -k*? hinzu, die
nur aus 0 respektive oo bestehen sollen. (Das Rechnen mit oo befolgt die iiblichen
Gesetze: a< oo fiir alle aeR, a- o0 = o0 fiir alle >0 und aeR, &c.) Die so erhaltene
Menge aller Quadratklassen sei g, g,=R*/k*?*U{[0], [c0]}. Wir koénnen dann den
folgenden Satz beweisen:

SATZ 1. Sei {ey, €;};> eine Standardbasis des Paares (E, V). s sei die in (2), (3)
definierte Grosse (also s= oo oder s€R). Dann ist die Quadratklasse [s—1]=(s—1)k*?
von s—1 eine Invariante des Paares (E, V), d.h. sie ist unabhdngig von der speziellen
Wahl der Standardbasis.

KOROLLAR. Falls (E, V) und (E, V) isomorph sind, dann ist [s—1]=[5—1].

Beweis. Es seien B={e,, e;};>, und B={é,, é;},» zwei Standardbasen von (E, V).
Wir betrachten noch die Standardbasis B*={ey, €;}i> - 5, 5, s*, 7;, 7; und y} seien
die entsprechenden, gemiss (2) und (3) eingefiihrten Grossen. Wir betrachten zu-
nichst den Basiswechsel B—B*. Es gibt eine zeilenfinite invertierbare Matrix (a;;)
mit ;=) a;;e;, (i>1). Ferner ist y;=®(e,, &;)=P(eo, Y. 0;;€;)=2.a;;7;- Da (€)i>1,
(€,);» orthonormierte Basen sind, ist («;;) eine gewShnliche orthogonale Matrix und
definiert einen orthogonalen Automorphismus 4 im gewoOhnlichen Hilbertschen
Folgenraum. Ist also s# 00, dann ist (y;);» ein Vektor dieses Hilbertraumes und die
Norm seines Bildes unter A4 ist gerade Zy;"z:s*, also ist s=s*. Mit demselben
Argument folgt natiirlich, dass s* = oo falls s=co ist. Also gilt beim Ubergang B— B*
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sogar s=s*. Es bleibt der Ubergang B*— B zu diskutieren. Fiir eine geeignete natiir-
liche Zahl N gilt

N
€y = Aoy + ;Aiéi (Ao #0) . 4)

Also, da alle Vektoren Einheitsvektoren sind

léoll =1 =25 + 347 + 240 . 477 (5)
Nach (4) ist

7= P (€0, €;) = Ao P (€0, €;) + Y. A, P(6;, &) = Ao ¥} + 4;

also folgt wegen (5), dass Z =3 (Ao?] +4,)°= AOZ yi2+1—25 ist. Schliesslich ist
fiir alle j> N nach (4) 7;= cb(eo, ) Ao Y- /j- Ist also s* =00 dann auch §=oo. Andern-
falls ergibt unsere Rechnung S—Z 7+ Z 73 —lOZy*Z +1-A2=A2s*+1—A3. Somit

ist §—1=21%(s*—1) und daher (s— l)k"=2 —(s* 1)k*2. Damit ist Satz 1 bewiesen. Das
Korrolar ist eine unmittelbare Folge, denn bei einer Isomorphie der Paare gehen
Standardbasen in Standardbasen iiber.

Die Invariante [s—1]=(s— 1) k*? ldsst sich auch geometrisch deuten. Es sei K die
Einheitskugel von V, K={xeV; ||x||=1}. Ist e, irgend ein Einheitsvektor mit
E=V®k(ey), so betrachten wir den ,,Winkel* @(e,, x) zwischen e, und den Vektoren
x auf K, oder bequemer, dessen Quadrat ®*(e,, x). Ist z.B. stets ®*(e,, x)<1 auf K,
so heisst das, dass (E, ®) definit ist; umgekehrt ist (E, ®) indefinit, falls #*(e,, x) auf
K nicht durch 1 beschrinkt ist. Man iiberzeugt sich ohne Miihe, dass die Invariante
[s—1] des Paares (E, V) gerade durch das Supremum in R von ®?(e,, x) auf K defi-
niert wird; genauer, es ist einfach [s—1]=[sup ®*(e,y, x)— 1] (wobei fiir das Supre-

xeK

mum oo gesetzt wird, falls ®2(e,, x) auf K nicht beschrinkt ist).
Die Niitzlichkeit der Invarianten [s— 1] besteht in dem folgenden

SATZ 2. Sind (E, V), (E, V) zwei Paare mit gleichen Invarianten [s—1], [§—1],
dann sind sie isomorph.

Beweis. Wir bemerken zunichst, dass man in (E, V) oder (E, V) Standardbasen
so einfiihren kann, dass s=3§ ist. Ist s=1 oder s= 00 so ist wegen [s—1]=[§—1] auch
s=35 fiir irgendwelche Standardbasen. Es mogen diese Fille nicht vorliegen und es sei
etwa §<s. Esist also §— 1 =13 (s—1) fiir ein Aoek* und 0 <A< 1. Nach Voraussetzung

iiber unsere Korper k gibt es m Korperelemente 4,,..., 4,, mit Zliz= 1—A2. Wihlen
wir daher im Raume ejnV m orthonormierte Vektoren e},..., e} und setzen

m
e*=2pe,+Y 1;€ so gilt |leg|| = 1. Die Vektoren e?, ..., ey konnen ferner zu einer ortho-
- .
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normierten Basis von V erginzt werden, V=k(e]);»,. Fir die Standardbasis
{e}, ef};>, gilt dann s*—1=A2(s—1) nach dem Beweis von Satz 1. Also hat man
jetzt s¥*—1=s5—1, s*=s.

Wir wollen also im Folgenden annehmen, dass s=3 ist fiir zwei festgewihlte
Basen (e,);>1, (¢;)i»1 von V und ¥ respektive. Die gesuchte Isometrie 7: E— E mit
T(V)=V¥ wird dann folgendermassen konstruiert. Wir nehmen an, wir hétten bereits
endlichdimensionale Teilriume V,cV, V,<V konstruiert mit den Eigenschaften:
(i) Es gibt eine Isometrie T, k(ey)®V,—k(é)®V, mit T,eq=é, und T,(V,)=V,, (ii)
V. und V, werden von orthonormierten Basen aufgespannt.

Ist e, der erste Basisvektor mit e,¢V,, so soll in V!NV ein endlichdimensionaler
Raum W bestimmt werden, der von einer orthonormierten Basis aufgespannt wird
und derart, dass e,e V,@® W ist. Ferner soll dann in ¥;*n¥ ein Raum W konstruiert
werden, der gleiche Dimension hat wie W, ebenfalls von einer Orthogonalbasis auf-
gespannt wird und derart, dass sogar &(é,, w;)=®(e,, w;) ist fiir alle Vektoren zweier
geeigneter orthonormierter Basen (w;); und (w;); von W und W respektive. Folgendes
ist dann klar: T, kann zu einer Isometrie k(e,)®(V,® W)—k(é,)®(V,® W) erweitert
werden, indem man einfach w; auf w; abbildet fiir alle i. Setzt man also V,, ;=V,®@ W,
V..1=V.®W, so sind die Voraussetzungen (i), (i) fiir r+1 anstelle von r wieder
erfiillt. Zudem enthélt V, ., einen vorgeschriebenen Basisvektor mehr als V,. Alterniert
man zwischen den Rollen von V, und ¥, so erhilt man zwei Folgen geschachtelter
Riume V, und ¥, mit V< |V, sowohl als auch V< |J ¥,. Es ist dann V= (J V, und
V=1|JV,; ferner ist klar, dass man durch das schrittweise Erweitern von T, eine
Isometrie T: E— E konstruiert hat mit 7(V)= V.

Es bleibt also noch zu zeigen, wie man die Riume W und W konstruiert. Da
V=V,@V, ist, konnen wir e, entsprechend in Komponenten zerlegen, e,=e,+e’,
e.eV,, e’e V. Nach der am Schlusse der Einleitung gemachten Bemerkung gibt es
in V, einen m-dimensionalen Raum W, aufgespannt von einer orthonormierten Basis
Wi, ..., W, Mit ele W. Also ist e,e V,@® W. Jetzt ist folgende Aufgabe zu 16sen: In V;
suche man m orthonormierte Vektoren w,,..., w,, derart, dass

D (&5, W) = P(eo, W) (1<i<m) (6)

gilt. Nehmen wir an, wir hétten solche Vektoren w; mit der Eigenschaft (6) bereits
gefunden fiir alle i<#<m. Der Fall, dass man noch gar keine w; gefunden hat ist
dabei eingeschlossen. Wir zeigen, wie man dann #, findet. In V,* und ¥;" wihlen wir
orthonormierte Basen (v;);> 1, (7;);5 1, Wobei v;=w; (i<m) und &;=w; (i<t) sein soll.
Wegen (ii) konnen diese beiden Basen zu orthonormierten Basen B, B’ von ¥ und
V erginzt werden durch Voranstellen orthonormierter Basen von V, respektive ¥,. Da
nun nach der eingangs vorgenommenen Normierung s=3 ist, s und § aber nicht von
denin V, ¥V gewéihlten Orthogonalbasen abhingig sind (nach dem Beweise von Satz 1),
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folgt ) y;>=) 7:? fiir die soeben eingefiihrten Basen B’, B’ von ¥ und V. Wegen (i)
1 1

kann man in diesen Summen zunichst die ersten dim V, Glieder wegkiirzen; wegen
unserer Voraussetzung iiber die w; mit i<t konnen auch noch in jeder Summe die
endlich vielen Glieder vor den Gliedern @2 (e,, v,) respektive &2 (&, o,) gekiirzt werden.
Es bleibt die Gleichung

i(pz (€0, v;) = iqu (6o, 1y) @)

Wegen V'=(0) sind in der Summe Y ®*(e,, v;) unendlich viele Glieder von Null

verschieden. Daher folgt aus (7), dass es eine natiirliche Zahl N gibt mit sy=
t+N t+N

=) ®2(&,, i;)>D*(eo, v,). Wir setzen x=0(eq, v,) sy '+ Y B(éy, ;)5;. Es ist dann
t t

®(&y, x)=D(eq, v,); ferner ist || x| =P*(ey, v,): sy 2 sy<1. In dem unendlichdimen-
sionalen Raume Vn[V,®k(€,)@k(W;);<.@k(x)]" gibt es dann einen Vektor y mit
Iyl=1—|x||>0. (Da a=1-||x|| >0 ist, ist a jedenfalls Summe von m Quadraten in
k, also enthilt schon jeder m*-dimensionale positiv definite Raum einen Vektor y der
Léange | y|=a.) w,=x+y ist der gesuchte Vektor. Durch m-maliges Wiederholen
dieses Schrittes findet man in ¥;* m orthonormierte Vektoren w,, ..., w,, mit der Eigen-
schaft (6). Wir setzen W=k(W,);<,,. Damit ist die Konstruktion der Riume W, W,
und damit der Beweis von Satz 2 beendet.

II. Verallgemeinerung der Invarianten

Es sei jetzt (E, ) von beliebigem Trigheitsindex der Art (N,, _n), _n endlich.
Wir sagen auch (E, @) sei von endlichem negativem Index. Es sei wieder V ein Teil-
raum von E mit ¥ =(0) und dim E/V'=1. Da E von endlichem nagativem Index ist,
ist es auch der Teilraum (¥, @). In diesem Abschnitt betrachten wir Zerlegungen von

V des folgenden Typs: Es sei V=, Vé_ V irgend eine orthogonale Zerlegung von V
in einen positiv definiten Raum (, ¥, @) und einen negativ definiten Raum (_V, &),
beide Rdume . ¥ und _V aufgespannt von =+ 1-orthonormierten Basen (v;) und (~v;)
respektive. Eindeutig bestimmt sind dabei bloss die Dimensionen dim , V=, und
dim _¥V=n. Wir sprechen kurz von der Zerlegung (Z),

V= +V€l9—V, TV =k@)iz1, -V =k(T0)i<a (2)
Zu der Zerlegung (Z) wihlen wir noch irgend einen Vektor e, mit

E=V@k(eo), eo_L_V, lle()”:l. (8)
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Solche e, gibt es immer unendlich viele. Wir definieren

7= P (e, 1), S=‘1Lv3; 9)

s ist also nichts anderes als die friiher definierte Invariante des Paares (, V®k(eo), + V),
genauer, invariant war dabei bloss die Quadratklasse [s— 1]=(s— 1) k*2. Wir behaup-
ten, dass diese Quadratklasse sogar eine Invariante des Paares (E, V') ist:

SATZ 3. Sei s die durch (Z), (8) und (9) definierte Grosse (also s= oo oder seR).
Die Quadratklasse [s—1]=(s—1)k*? hingt nicht von der speziellen Wahl der Zer-
legung (Z), der speziellen Wahl der Basen in (Z) noch von der speziellen Wahl von e,
in (8) ab.

KOROLLAR. Sind (E, V), (E, V) isomorph, (E, ®) und (E, ®) von endlichem negativem
Index, dann gilt [s—1]=[5—-1].

Beweis. Basen (v;) und (" v;) einer Zerlegung (Z), zusammen mit einem Vektor e,
der Eigenschaft (8) wollen wir kurz eine Standardzerlegung nennen, auf die wir mit
»{Z, eyy‘ hinweisen. Es sei also (Z, é,) eine zweite Standardzerlegung,

V= +Vé._l7, +V=k(i5i)i>l’ —Vzk(uﬁi)ién }

E=V®k(é), é& L_V, |é&l=1. 2)

Sie definiert gemaiss (9) eine Grosse § und es ist zu zeigen, dass (§—1) k*?=(s—1) k*?
gilt. Zu diesem Ende schieben wir eine Standardzerlegung {Z*, e}) dazwischen, der-
art, dass (s— 1) k*2=(s*—1) k*? und s*=35 gilt. Eine Zerlegung (Z*, e mit dieser
Eigenschaft findet man wie folgt:

Da _V endlich dimensional ist, gibt es eine natiirliche Zahl N derart, dass
Ve _V®k(v;),<i<y und ége _VOk (1)), <i<n®k(eo) ist. Es sei K der Orthogonal-
raum zu _V in _V®k(v;); <i<n» also

1 -
K®_V=k(®)i<isn® -V (10)
Aus V=k(vi)i>N@(k(vi)isN@_ V)=k(vi)i>N@(K@_ V) f01gt dahel‘, daSS
k(v)i>n@ K=,V (11)

ist. Wegen _ V= _V und (10) ergibt sich aus dem Wittschen Satz (fiir endlich di-
mensionale Rdume) insbesondere, dass K eine orthonormierte Basis (z;), <; <y besitzt.
Die Abbildung definiert durch ~v;— "9, v;—z; (1<i<n; 1 <j< N) ist eine Isometrie
A Fiir jedes N+n-Tupel <a,,..., ay, Bi;-.., B,) von Korperelementen, das mit Hilfe

N n
der Matrix von. 4 (beziiglich der beiden Basen) transformiert wird, bleibt ) o? — )" B2
1 1
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invariant. Insbesondere gilt

N n N n
Z_quz (e0s v;) — ‘1;02 = IZ(PZ(eO, z;) - ;qsz (€0, "0y (12)
Wegen unserer Wahl von N hat man eine Darstellung
N n
eo=Aolo + Y Aizi+ Y uiv;, (Ao #0) (13)
1 1
Insbesondere ist
N n N
leol =1 =25 + X A7 =Y ui + 240 ). 4D (&, z)) (14)
1 1 1
Setzt man fiir ¢, in (12) die Darstellung (13) ein, so erhdlt man
N N
Y. ®*(eq, v;) = A5 ), D% (€0, z)) + 1 = 45 (15)
1 1
Ferner ist wegen (13)
2 @ (eo,v)) =145 3. 9 (&0, 1) (16)
N+1 N+1

Wir definieren also die Zerlegung (Z*, e}) folgendermassen

(%)

=&y, +V¥*=_,Vund vf=z fir 1<i<N, vof=v fir i>N
_V*= _Vund vf="5 (<i<n) }
Durch Addition von (15) und (16) erhalten wir s=A2s*+1— A3, also s—1=A3(s*—1).
(Der Fall s= oo ist miteingeschlossen.)
Um schliesslich von {(Z*, e3> zu {Z, é,> zu gelangen, hat man lediglich in
+V*=_V die Basistransformation (v}")—(%;) durchzufiihren. Dass dabei sogar s* =3
ist, haben wir schon im Beweise von Satz 1 gesehen. Damit ist Satz 3 bewiesen.

III. Beliebige Unterriume der Kodimension 1

Unsere verschiedenen Teilbetrachtungen kdnnen jetzt in dem folgenden Satz zu-
sammengefasst werden:

SATZ 4. k sei ein Teilkorper des reellen Zahlkirpers, k=R, mit der Eigenschaft,
dass es eine natiirliche Zahl m gibt derart, dass jede nicht ausgeartete Form iiber k in m
Variablen +1 oder —1 (oder beide) darstellt.

(E, @) und (E, ®) seien halbeinfache isometrische k-Rdiume abzdhlbarer (algebra-
ischer) Dimension. V und V seien isometrische Unterrdume der Kodimensionen 1 in E
respektive E.

Dann gibt es eine Isometrie Ty: V-V, die sich zu einer Isometrie T: E— E erweitern
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ldsst, dann und nur dann, wenn einer der folgenden vier sich gegenseitig ausschliessenden
Fiille vorliegt.
@) V+#(0), Vicy

i) VE#(0), ViV, vixpt

(iii) V*+=(0), @ ist vom Index (R, No)

(iv) V1t=(0), & ist vom Index (No, _n) wo _n endlich ist, die Quadratklassen
(s—1) k*? und (5—1) k*? sind gleich. (Um s zu erhalten zerlege man V in irgend einer
Weise in eine orthogonale Summe V= _V® _V mit positiv definitem .V, negativ de-
finitem _V, beide Rdume ,V, _V aufgespannt von + l-orthonormierten Basen. Man
wdhle einen Einheitsvektor vy von E mit vo¢V, vy L _V und definiere mit irgend einer

orthonormierten Basis (v,);, von .V die Summe s=) ®*(vy, v;). Es ist s=00 oder
seR) 1

(v) Vt=(0), & ist vom Index (,n, X,) wo ,n endlich ist. Die Teilriume (V, — ®),
(V, —®) von (E, —®) respektive (E, — ®) haben dieselben in (iv) definierten Quadrat-
klassen.

Beweis. Die vier Falle schliessen sich gegenseitig aus; umgekehrt fallt jedes Paar
(E, V) unter einen der fiinf Falle:

@) V+#(0), VicV, (i) V+#(0), V¢V, (iii) V+=(0), @ vom Index (N,, No),
(@iv) ¥*+=(0), ® vom Index (N, n), (v) ¥*=(0), & vom Index (n, X,). Es bleibt also
zu zeigen, dass die in jedem Fall zusétzlich angegebenen Bedingungen notwendig und
hinreichend sind fiir die Existenz einer Isometrie der gewiinschten Art. Zu (i). Es sei
V, ein algebraisches Komplement von V* in V, (v;);», sei irgend eine feste Ortho-
gonalbasis von V,. Ferner sei V*=k(v). Da V isotrop ist, besitzt E eine Basis aus
isotropen Vektoren, also gibt es ein isotropes e€ E mit E= V@k(e). Da E halbeinfach
ist, ist @(v, e)#0. Ersetzt man also v durch ein Vielfaches falls notwendig, so darf
man voraussetzen, dass @ (v, e)=1 ist. Schliesslich setzen wir noch v;=v;— ®(v;, e)v
und Vy=k(v});». Nach diesen Normierungen hat man V=V ®k(v), E=V;Dk(v, €)
und & (v}, vj)=P(v;, v;). Nunist wegen V=¥ auch VnV+=VnV* und V fillt daher
ebenfalls unter (i). Man hat eine entsprechende Zerlegung V= V,@® V*. Bei einem
Isomorphismus Ty: V— ¥ wird V* auf V* abgebildet und man kann V= To(V,) und
;=T(v;) annehmen, (7;) eine Orthogonalbasis von ¥,. Schliesslich seien & und &
analoge Objekte zu den oben betrachteten, €| =0 und &(7, €)=1. Die lineare Ab-
bildung definiert durch e—é, v—7, v;—7;— ®(D;, €) ¥ ist eine Isometrie T: E—E mit
T(V)="V.

Zu (ii). In diesem Falle ist V@ V' =E, also V' =k(v) nicht total isotrop. Ist daher
zusitzlich ¥+~ V+, dann ist auch ¥+ nicht total isotrop, also ¥* ¢ ¥ und daher auch
V@ V+=E, da E halbeinfach und dim E/V=1 ist. Es ist jetzt klar, dass es eine
Isometrie der gewiinschten Art gibt. Ist umgekehrt T(¥V)="V fiir eine Isometrie
T:E—E, so ist natiirlich T(V*)=V*, also V=TV,
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Zu (iii). Wir zitieren das Scholion in [1] pag. 159.

Zu (iv). Die eine Hilfte der Behauptung liefert das Korollar zu Satz 3. Es sei also
umgekehrt (s— 1) k*2=(s— 1) k*? vorausgesetzt fiir die beiden Riume V< E, VcE.
Wir haben eine Isometrie T: E—E mit T(V)=V anzugeben. Jedenfalls gibt es Zer-
legungen von der Art

E=.V® _V®kle), V=,V®_V, el V, |e=1

und eine entsprechende Zerlegung des Paares (E, V), wobei _V und _¥ von einer
— l-orthonormierten Basis aufgespannt werden. Aus V=¥ folgt dim _V=dim _V,
also ist _ V= _V. Da diese Riume senkrecht zu den algebraischen Komplementen
+ V@k(e) respektive , P@k(é) stehen, ist es fiir die Existenz des gesuchten T hin-
reichend, eine Isometrie Ty: , V®k(e)— , V®k(€) anzugeben mit Ty(, V)=, V. Auf-
grund der Voraussetzung (s—1) k*?>=(5—1) k** konnen wir Satz 2 zitieren.

Zu (v). Es ist klar, dass sich durch Ubergang zu der entgegengesetzten Form dieser
Fall auf den vorangehenden zuriickfiihren ldsst. Damit ist der Beweis von Satz 4
vollstindig.
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