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Uber isometrische Abbildungen in abzâhlbar dimensionalen

Râumen liber reellen Kôrpern

von H. Gross (Zurich)

Meinem verehrten Lehrer, Herrn Dr. Julius Rùtsch, gewidmet.

0. Einleitung

Seien k ein Kôrper, char k^2,Eein A>Vektorraum, <P : E x E->k eine s-hermitesche

Form; seien ferner Fund Fzwei beliebige, bezûglich $ isometrische Teilrâume. In [1]
wurde die Frage untersucht, unter welchen Bedingungen es unter den Isometrien

t: F= F eine Isometrie t0 gibt, die sich zu einer Isometrie auf ganz E erweitern lâsst.

Fur endlich dimensionales E ist die Lôsung bekannt: der Wittsche Satz besagt, dass

sich jedes % zu einer Isometrie auf ganz E erweitern lâsst. Fur Râume E von ûber-
abzâhlbarer algebraischer Dimension ist fast nichts bekannt, es sei denn (E, <P) sei

zufallig ein Hilbertraum. Ist dagegen E von abzâhlbarer algebraischer Dimension, so

gibt [1] erschôpfende Auskunft auf die Frage, vorausgesetzt, dass die Râume Fund
F ,,genûgend viele" isotrope Vektoren enthalten. Dièse Bedingung ist fur grosse
Klassen von Kôrpern, unabhângig von dem speziellen #, automatisch immer erfûllt;
so etwa fur die Klasse der Kneserkôrper oder die Klassen der CrKôrper (s. [3], [4]).
Die in [1] verwendeten Beweise versagen aber, wenn zum Beispiei <P eine definite
Form iiber einem angeordneten Kôrper ist. Dass die Beweise in diesen Fâllen
versagen mùssen, folgt aus den weiter unten bewiesenen Sâtzen, aus denen nun hervor-
geht, dass der Sachverhalt bei Fehlen genûgend vieler isotroper Vektoren tatsâchlich
viel komplizierter ist als im andern Falle. Zur Illustration sei Folgendes erwâhnt. Ist
(E, <P) ein Raum uber den rationalen Zahlen, aufgespannt von einer abzâhlbaren ortho-
normierten Basis, dann lassen sich 2K° Hyperebenen Vx in E angeben mit ¥^ (0), von
denen keine zwei sich durch irgend einen orthogonalen Automorphismus von E auf
einander abbilden lassen. Dagegen gilt nach [1]: Definiert man anstelle von <P auf dem-

selben Raume eine Form W indem man eine orthogonale Basis einfuhrt, bei der un-
endlich vielen Basisvektoren die Lange 4-1 und unendlich vielen die Lange — 1 zuge-
schrieben wird, dann kônnen in dem Raume {E, W) irgendwelche zwei Hyperebenen V, V
mit VL= V1=(0) immer durch einen geeigneten orthogonalen Automorphismus von E
aufeinander abgebildet werden.

In dieser Note werden bloss Isometrien zwischen Hyperebenen betrachtet. Die
zugelassenen symmetrischen Formen sind beliebig, die zugelassenen angeordneten

Kôrper k sollen zwei Bedingungen erfùllen: (i) die Anordnung von k ist archimedisch,

(ii) es gibt eine naturliche Zahl m, nur von k abhângig, derart, dassjede nicht ausgeartete
Form im m Variablen uber k die Zahl +1 oder — 1 (oder beide) darstellt. Beispiele
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sind etwa die Kôrper der rationalen Zahlen, der reellen algebraischen Zahlen, der
reellen Zahlen; dabei ist der Reihe nach m 4, m= 1, ra= 1. Wegen (i) kann k immer
als Teilkôrper der reellen Zahlen aufgefasst werden ; wegen (ii) lâsst sich k aufhôchstens
eine Weise anordnen. Unter den angegebenen Bedingungen werden unten (Satz 4)

einfache, notwendige und hinreichende Bedingungen dafiir angegeben, dass zwei

Hyperebenen von E sich durch einen orthogonalen Automorphismus von E aufein-
ander abbilden lassen.

Gewisse offensichtliche Verallgemeinerungen auf beliebige e-hermitesche Formen
môgen bei dieser speziellen Untersuchung unerwâhnt bleiben. Dass es nicht gelungen
ist, Fâlle nicht-archimedisch angeordneter Kôrper mitzuerfassen, erscheint uns da-

gegen als unnatûrliche Einschrânkung. Schliesslich bleibt der vermutlich viel schwieri-

gere Fall beliebiger isometrischer Teilrâume von isûber angeordneten Kôrpern zu lôsen.

Es sei noch Folgendes bemerkt: jeder abzâhlbar dimensionale Raum {E, 4>) mit
nicht ausgearteter symmetrischer Form <2> iiber einem Kôrper der Charakteristik un-
gleich 2 und der Eigenschaft (ii) besitzt Orthogonalbasen mit sâmtlichen Basisvektoren
der Lângen1) ±1 ([2]). Ist k auch noch angeordnet, wie vorausgesetzt, so zerfâllt
(E, #) in einen positiv definiten und einen negativ definiten orthogonalen Summanden,

E= +E@-.E. Die Râume +E und _2s sind nicht eindeutig bestimmt, wohl aber ihre
Dimensionen +n dim+E, _n dim_E; wir sagendann,(£", #)seivomIndex(+«, _n).
Ober Kôrpern mit den Eigenschaften (i) und (ii) sind somit die abzâhlbar dimensiona-
len {E, 0) mit nicht ausgeartetem, symmetrischem <P durch den Index (+«, _«)
eindeutig charakterisiert. Beschrânken wir uns auf einen positiv definiten Raum (F, <P)

ùber einem Kôrper der angegebenen Art, so beruht der Existenzbeweis fiir orthonor-
mierte Basen auf dem folgenden Sachverhalt: Ist F irgendwie orthogonal zerlegt,

F=G@H mit unendlichdimensionalem H, so gibt es zujedem heH einen m-dimensio-
nalen Teilraum HmczH mit heHm und Hm aufgespannt von einer orthonormierten Basis.

(Siehe [2] oder den Beweis zu Theorem 1 in Gross/Fischer, Quadratic Forms and

Linear Topologies, II, Math. Ann. 159, 285-308.)

I. Ein Spezialfall

Im Folgenden sei k immer ein Teilkôrper der reellen Zahlen, /ccR, mit der

Eigenschaft, dass es ein m gibt, sodass jede Form ûber k in m Variablen +1 oder — 1

(oder beide) darstellt. Ist $ eine symmetrische Bilinearform aufdem fc-Vektorraum E,

0:ExE-+k, so sprechen wir manchmal vom Raume (E,<P). Zwei solche Râume

(E, <P) und (F, W) heissen isometrisch oder isomorph, falls es einen Vektorraumisomor-
phismus T.E-+F gibt mit <P(x,y)=W(Tx, Ty) fur aile x,yeE; T heisst dann eine

x) Unter der Lange eines Vektors x in (£", &) verstehen wir das Kôrperelement ||jc|| @(x, x);
x _L y ist gleichbedeutend mit <P(x9 y) 0.



350 H. GROSS

Isometrie. (E, $) und (Ë9 $) seien isomorphe Râume von abzâhlbarer algebraischer
Dimension, VczE und VczE Teilrâume mit der Eigenschaft

V1 (0), VL (0), dim E/V dim E\V 1 (1)

Wir wollen in diesem Abschnitt die Paare (E, V), (E, V) isomorph nennen, falls es

eine Isometrie T:E-+E mit T(V)= V gibt. Ferner betrachten wir in diesem Abschnitt
bloss Paare (E, V) mit positiv definitem Raum (F, #).

Unter einer Standardbasis eines solchen Paares (E, V) verstehen wir eine Basis

{eOi ei}i>i von E, wobei (ei)i^1 eine orthonormierte Basis von V ist und e0 irgend
ein Einheitsvektor, der nicht in Fliegt, also ||eo|| 1 und £*= V®k(e0); es gibt immer
unendlich viele Standardbasen. Fur solche Basen definieren wir die ,,zugehôrigen" yt:

yi <p(e0,ei) {i>\) (2)
und ihre Quadratsumme in R

s tyf (3)
1

Falls die Summe divergent ist, schreiben wir s= oo.

Es sei R*/k*2 die Faktorgruppe der multiplikativen Gruppe R* der von Null ver-
schiedenen reellen Zahlen modulo Quadratfaktoren aus k*. Zu dieser Gruppe von
Quadratklassen fugen wir noch die Klassen [0] 0- k*2 und [oo] oo-k*2 hinzu, die

nur aus 0 respektive oo bestehen sollen. (Das Rechnen mit oo befolgt die ûblichen
Gesetze: a< oo fur aile aeR, a- oo oo fur aile a>0 und aeR, &c.) Die so erhaltene

Menge aller Quadratklassen sei gk9 gk R*/fc*2u{[0], [oo]}. Wir kônnen dann den

folgenden Satz beweisen:

Satz 1. Sei {e0, ei}i^1 eine Standardbasis des Paares {E, V). s sei die in (2), (3)

definierte Grosse (also s= oo oder seR). Dann ist die Quadratklasse [s— 1] (s— l)k*2
von s—l eine Invariante des Paares (E, V), d.h. sie ist unabhângig von der speziellen
Wahl der Standardbasis.

Korollar. Falls {E, V) und (Ë, V) isomorph sind, dann ist [5— 1] [s— 1].

Beweis. Es seien B= {e0, ei}i>l und B= {ê0, êj^ t zwei Standardbasen von (E, V).
Wir betrachten noch die Standardbasis B* {e0, êj^i- s, s, s*, yi9 yt und yf seien

die entsprechenden, gemâss (2) und (3) eingefùhrten Grôssen. Wir betrachten zu-
nâchst den Basiswechsel B-+B*. Es gibt eine zeilenfinite invertierbare Matrix (a^)
mitê^Xa^e,, (/>1). Ferner ist yf <f>(e0, êf) #(^0, Zau^)=Zayy7- Da (4>i.
(êi)i^l orthonormierte Basen sind, ist (afJ) eine gewôhnliche orthogonale Matrix und
definiert einen orthogonalen Automorphismus A im gewôhnlichen Hilbertschen
Folgenraum. Ist also s¥^ 00, dann ist (y^x ein Vektor dièses Hilbertraumes und die

Norm seines Bildes unter A ist gerade ^y*2=s*, also ist s=s*. Mit demselben

Argument folgt naturlich, dass s* 00 falls ,y= 00 ist. Also gilt beim Ûbergang B-+B*
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sogar s=s*. Es bleibt der Ûbergang B*-+B zu diskutieren. Fur eine geeignete natûr-
liche Zahl N gilt

êo Vo + IM (Ao^O) (4)
1

Also, da aile Vektoren Einheitsvektoren sind

ll^oll l=A2 + lA? + 2AolAlyf (5)
Nach (4) ist

fj <P (ë0, ëj) À0<P (e0, êj) + £ A, <ï> (ê,, ëy) Ao y? + A,-

JV N

also folgt wegen (5), dass Xyi=E(Aoy* + ^)2=^oE);*2+1-Ao ist. Schliesslich ist
1 1

fiir alley>Nnach (4) yj <&(ê0, êj) Àoy*. Ist also s* 00 dann auch 5=00. Andern-
N 00 00

falls ergibt unsere Rechnung ,s=£y2 + £ 7; =^oZy*2 + -^0 ^0^* +1 -^o- Somit
1 jv + i 1

ists-l=Àl(s*-l)unddaher(s-\)k*2 (s*-l)k*2. Damit ist Satz 1 bewiesen. Das

Korrolar ist eine unmittelbare Folge, denn bei einer Isomorphie der Paare gehen
Standardbasen in Standardbasen iiber.

Die Invariante \_s— 1] (s— 1) k*2 lâsst sich auch geometrisch deuten. Es sei K die

Einheitskugel von F, K={xeV; ||x|| l}. Ist e0 irgend ein Einheitsvektor mit
E= V®k(e0), so betrachten wir den ,,Winkel" <P(e0, x) zwischen e0 und den Vektoren

x auf K, oder bequemer, dessen Quadrat #2(e0, *)• Ist z.B. stets <&2(e0, x)<\ auf K,
so heisst das, dass (£, 4>) définit ist; umgekehrt ist (E, 0) indefinit, falls <&2(e0, x) auf
K nicht durch 1 beschrânkt ist. Man uberzeugt sich ohne Mûhe, dass die Invariante
[s— 1] des Paares (E, V) gerade durch das Supremum in R von ^2(e09 x) auf K defi-
niert wird; genauer, es ist einfach [s— l] [sup <?>2(e0, x)— 1] (wobei fiir das Supre-

xeK
mum 00 gesetzt wird, falls <&2(e0, x) auf K nicht beschrânkt ist).

Die Niitzlichkeit der Invarianten [s— 1] besteht in dem folgenden

Satz 2. Sind (E, V), (Ê, V) zwei Paare mit gleichen Invarianten [^—1], [j—1],
dann sind sie isomorph.

Beweis. Wir bemerken zunâchst, dass man in (E, V) oder (Ë, V) Standardbasen

so einfûhren kann, dass s s ist.Ist,y=l oder5"=oo so ist wegen [5— l] [i— 1] auch

s s fur irgendwelche Standardbasen. Es môgen dièse Fâlle nicht vorliegen und es sei

etwa s<s. Es ist also s— l=À2)(s— 1) fiir ein /ioeA:* und 0< k< 1. Nach Voraussetzung
m

ûber unsere Kôrper k gibt es m Kôrperelemente ku..., Àm mit 5]A?= 1 — A2,. Wâhlen
1

wir daher im Raume e^nV m orthonormierte Vektoren e*,..., e* und setzen
m

e* Ao e0 + Xktef so gilt ||e% || 1. Die Vektoren e*,..., e% kônnen ferner zu einer ortho-
1
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normierten Basis von F ergânzt werden, V=k(ef)i^l. Fur die Standardbasis
{e%, ef}i^l gilt dann s* — l=ll(s—l) nach dem Beweis von Satz 1. Also hat man
jetzt •$•*¦— 1 =»y—1,5* =s.

Wir wollen also im Folgenden annehmen, dass s=s ist fur zwei festgewâhlte
Basen (e^)i>l9 (^),^i von F und F respektive. Die gesuchte Isometrie T\E-*Ë mit
T(V)= V wird dann folgendermassen konstruiert. Wir nehmen an, wir hâtten bereits
endlichdimensionale Teilrâume VraV, VrcV konstruiert mit den Eigenschaften:
(i) Es gibt eine Isometrie Tr:k(e0)®Vr-+k(ê0)®Vr mit Tre0 ë0 und Tr(Vr)= Pr, (ii)
Vr und Vr werden von orthonormierten Basen aufgespannt.

Ist en der erste Basisvektor mit en$Vr9 so soll in V^nV ein endlichdimensionaler
Raum W bestimmt werden, der von einer orthonormierten Basis aufgespannt wird
und derart, dass eneVr®W ist. Ferner soll dann in F^n F ein Raum JF konstruiert
werden, der gleiche Dimension hat wie W, ebenfalls von einer Orthogonalbasis
aufgespannt wird und derart, dass sogar <P(ê0, w^) <^{e^ wt) ist fur aile Vektoren zweier

geeigneter orthonormierter Basen (w,),. und (wf)f von Wund W respektive. Folgendes
ist dann klar: Trkann zu einer Isometrie k(eo)®(Vr® W)-*k(êo)®(Vr® W) erweitert
werden, indem man einfach wt auf wt abbildet fur aile i. Setzt man also Vr+l Vr® W,

Vr+l Vr®W, so sind die Voraussetzungen (i), (ii) fur r+1 anstelle von r wieder
erfûllt. Zudem enthâlt Vr+1 einen vorgeschriebenen Basisvektor mehr als Vr. Alterniert
man zwischen den Rollen von Vr und Vr so erhâlt man zwei Folgen geschachtelter
Râume Vr und fr mit Fc (J Vr sowohl als auch Vc (J Vr. Es ist dann V= [J Vr und
p= \jVr\ ferner ist klar, dass man durch das schrittweise Erweitern von Tr eine

Isometrie T:E^>E konstruiert hat mit T(V)= V,

Es bleibt also noch zu zeigen, wie man die Râume W und W konstruiert. Da
V=Vr®Vr1 ist, kônnen wir en entsprechend in Komponenten zerlegen, en efn-{-ef^

e'neVn é^eVj-, Nach der am Schlusse der Einleitung gemachten Bemerkung gibt es

in Vr einen m-dimensionalen Raum W, aufgespannt von einer orthonormierten Basis

wu..., wm mit é'ne W. Also ist eneVr® W. Jetzt ist folgende Aufgabe zu lôsen: In V):

suche man m orthonormierte Vektoren wu..., wm derart, dass

$ (ë09 wt) <f> (^0, wt) (1 < i < m) (6)

gilt. Nehmen wir an, wir hâtten solche Vektoren wt mit der Eigenschaft (6) bereits

gefunden fur aile i<t^m. Der Fall, dass man noch gar keine wf gefunden hat ist
dabei eingeschlossen. Wir zeigen, wie man dann wt findet. In VrL und Frx wâhlen wir
orthonormierte Basen {v^i^u (vt)i^u wobei v( Wi (/</w) und ûf wf (i<t) sein soll.

Wegen (ii) kônnen dièse beiden Basen zu orthonormierten Basen B', B' von V und
F ergânzt werden durch Voranstellen orthonormierter Basen von Vr respektive Vr. Da
nun nach der eingangs vorgenommenen Normierung s=s ist, s und s aber nicht von
den in F, Fgewâhlten Orthogonalbasen abhângig sind (nach dem Beweise von Satz 1),
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oo oo

folgt X^2 X^2 fur die soeben eingefûhrten Basen Bf, Ë' von F und V. Wegen (i)
i i

kann man in diesen Summen zunâchst die ersten dim Vr Glieder wegkiirzen ; wegen
unserer Voraussetzung ùber die wt mit i<t kônnen auch noch in jeder Summe die
endlich vielen Glieder vor den Gliedern &2 (e0, vt) respektive $2 (ê0, vt) gekùrzt werden.
Es bleibt die Gleichung

00 00

t t

00

Wegen F1 (0) sind in der Summe Yj^2(eoyvd unendlich viele Glieder von Null

verschieden. Daher folgt aus (7), dass es eine natûrliche Zahl JV gibt mit sN
t + N t + N

Y, ^2(^o» Vi)><P2(e0, vt). Wir setzen x=&(e0, v^-s^1- £ ^(<?o> ^d^t- Es ist dann
t t

$(ë0, x) $(e0, vt); ferner ist ||x|| =<P2(e0, vt)'S^2^sN<\. In dem unendlichdimen-
sionalen Raume Vn[Vr@k(ê0)®k(wi)i<t®k(x)"]1 gibt es dann einen Vektor y mit
||y\\ l —1|;t|| >0. (Da a= 1 — ||x|| >0 ist, ist a jedenfalls Summe von m Quadraten in
k, also enthâlt schon jeder m2-dimensionale positiv definite Raum einen Vektor y der
Lange ||j||=a.) wt x+y ist der gesuchte Vektor. Durch m-maliges Wiederholen
dièses Schrittes findet man in V, m orthonormierte Vektoren wl9..., wm mit der Eigen-
schaft (6). Wir setzen l^=k(wi)i^m. Damit ist die Konstruktion der Râume W, W,
und damit der Beweis von Satz 2 beendet.

II. Verallgemeinerung der Invarianten

Es sei jetzt (E, 4>) von beliebigem Trâgheitsindex der Art (Ko, _«), _« endlich.
Wir sagen auch (E, $>) sei von endlichem negativem Index. Es sei wieder F ein Teil-
raum von E mit Fx (0) und dim EjV= 1. Da E von endlichem nagativem Index ist,
ist es auch der Teilraum (F, #). In diesem Abschnitt betrachten wir Zerlegungen von

F des folgenden Typs : Es sei F= + F® _ F irgend eine orthogonale Zerlegung von F
in einen positiv definiten Raum (+ F, $) und einen negativ definiten Raum (_ F, #),
beide Râume + F und _ F aufgespannt von ± 1-orthonormierten Basen (vt) und (~vt)
respektive. Eindeutig bestimmt sind dabei bloss die Dimensionen dim + V= Ko und
dim _ V=n. Wir sprechen kurz von der Zerlegung (Z),

F +V®.V, +V k(vt)^u _F k(-vtUn (Z)

Zu der Zerlegung (Z) wâhlen wir noch irgend einen Vektor e0 mit

eo±_F, lkoll l. (8)
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Solche e0 gibt es immer unendlich viele. Wir definieren

y, *(«<,.»«), » Êvf; (9)

s ist also nichts anderes als die frùher definierte Invariante des Paares + F©k (e0), + F),
genauer, invariant war dabei bloss die Quadratklasse [s— 1] (s— 1) k*2. Wir behaup-
ten, dass dièse Quadratklasse sogar eine Invariante des Paares (E, V) ist:

Satz 3. Sei s die durch (Z), (8) und (9) definierte Grosse (also s— 00 oder seR).
Die Quadratklasse [s—1] (^— l)k*2 hângt nicht von der speziellen Wahl der Zer-
legung (Z), der speziellen Wahl der Basen in (Z) noch von der speziellen Wahl von e0

in (8) ab.

Korollar. Sind(E, F), (E, F) isomorph, (E, 4>) und(Ë, $) von endlichem negativem
Index, dann gilt [s— 1] [s— 1].

Beweis. Basen (vt) und (~vt) einer Zerlegung (Z), zusammen mit einem Vektor e0

der Eigenschaft (8) wollen wir kurz eine Standardzerlegung nennen, auf die wir mit
,,<Z, eo>" hinweisen. Es sei also <Z, êo> eine zweite Standardzerlegung,

E=V®k(êo)9 êol_F, ik"oil l. J
K }

Sie definiert gemâss(9) eine Grosse s und es ist zuzeigen, dass (s~ l) k*2 (s — l) k*2

gilt. Zu diesem Ende schieben wir eine Standardzerlegung <Z*, e*} dazwischen, der-

art, dass (s— 1)k*2 (s*-~ l)k*2 und s* s gilt. Eine Zerlegung <Z*, e*} mit dieser

Eigenschaft findet man wie folgt:
Da _F endlich dimensional ist, gibt es eine natûrliche Zahl N derart, dass

_Pc -V®k(vl)i^l^N und êoe -V®k(vt)i^l^N®k(e0) ist. Es sei K der Orthogonal-
raum zu _Fin -VQkty^^^N, also

a©_F. (10)

Aus V=k(vl)l>N®(k(vl)^N®-^)=:H^i\>N®(K®-V) folgt daher, dass

P (ii)
ist. Wegen F^ - V und (10) ergibt sich aus dem Wittschen Satz (fur endlich di-
mensionale Râume) insbesondere, dass K eine orthonormierte Basis (2,)1<J<N besitzt.
Die Abbildung definiert durch ~vt-+~vl9 Vj-tZj (1 ^i^n; 1 ^j^N) ist eine Isometrie
A. Fur jedes JV>«-Tupel <a1?..., %, /?l5..., )?„> von Kôrperelementen, das mit Hilfe

N n

der Matrix von A (bezuglich der beiden Basen) transformiert wird, bleibt £a?
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invariant. Insbesondere gilt
N n N n

1 11 1

Wegen unserer Wahl von N hat man eine Darstellung

e0 Xoêo + t*iZi + f>!»!. (*o * 0) (13)
i i

Insbesondere ist

Ikoli 1 Ag + f A? - f>? + 2Aof]AI*(ëo, zf) (14)

Setzt man fur e0 in (12) die Darstellung (13) ein, so erhâlt man
JV N

£ <P2 (e0, Vj) Aq X ^2 tà» zi) + 1 - Ao (15)
i i

Ferner ist wegen (13)

JV+l N+l

Wir definieren also die Zerlegung <Z*, e*> folgendermassen

et ë09 +F* +f und »* zf fUr 1 < i < iV, »? vt fur i > Ni
_F*=_f und -i;?--»! (l<i<») J

l }

Durch Addition von (15) und (16) erhalten wir ^ kl s* -4-1 — Aq, also s— 1 Aq(.s* — 1).

(Der Fall ^=oo ist miteingeschlossen.)
Um schliesslich von <Z*, e*> zu <^> ^o> zu gelangen, hat man lediglich in

+ F* + V die Basistransformation (t;l*)->(t?/) durchzufûhren. Dass dabei sogar s* s

ist, haben wir schon im Beweise von Satz 1 gesehen. Damit ist Satz 3 bewiesen.

III. Beliebige Unterrâume der Kodimension 1

Unsere verschiedenen Teilbetrachtungen kônnen jetzt in dem folgenden Satz zu-
sammengefasst werden :

Satz 4. k sei ein Teilkôrper des reellen Zahlkôrpers, kcR, mit der Eigenschaft,
dass es eine natiirliche Zahl m gibt derart, dassjede nicht ausgeartete Form uber k in m
Variablen 4-1 oder — 1 (oder beide) darstellt.

(E9 0) und (Ë9 0) seien halbeinfache isometrische k-Râume abzàhlbarer (algebra-
ischer) Dimension. V und V seien isometrische Unterrâume der Kodimensionen 1 in E
respektive Ë.

Dann gibt es eine Isometrie To : V-* V, die sich zu einer Isometrie T: E-+E erweitern
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lâsst, dann und nur dann, wenn einer derfolgenden vier sich gegenseitig ausschliessenden

Fâlle vorliegt.

(ii) F-V(O), F1*F, VL^?L
(iii) F-L=(0), <f> ist vom Index (Xo> «o)
(iv) Fx (0), 4> i£f vom 7/îûfejc (No, _w) wo _« endlich ist, die Quadratklassen

{s— 1) £*2 und(s— 1)&*2 .«Wgleich. (Um s zu erhalten zerlege man V in irgend einer
Weise in eine orthogonale Summe V— + F© _ F mit positiv definitem + V, negativ de-

finitem _ F, frezYfe Râume +V, _ F aufgespannt von ± l-orthonormierten Basen. Man
wâhle einen Einheitsvektor v0 von E mit vo$V, v0 1_ F w«rf definiere mit irgend einer

oo

orthonormierten Basis (vi)i^i von +V die Summe 5" ^]^2(î;0, ^). Es ist 5=00

(v) Fx (0), ^ ist vom Index (+n, Ko) wo +n endlich ist. Die Teilrâume (F, —0),
(F, — $) von (E, —<P) respektive (Ë, —$) haben dieselben in (iv) definierten Quadratklassen.

Beweis. Die vier Fâlle schliessen sich gegenseitig aus; umgekehrt fâllt jedes Paar

(E, F) unter einen der fûnf Fâlle:

(i) FV(0), VlczV, (ii) FV(0), ^X*F, (iii) Fx (0), 0 vom Index (Ko, Ko),

(iv) F1=(0), <P vom Index (Ko, n), (v) Fx (0), ^ vom Index (n, Ko). Es bleibt also

zu zeigen, dass die in jedem Fall zusâtzlich angegebenen Bedingungen notwendig und
hinreichend sind fur die Existenz einer Isometrie der gewùnschten Art. Zu (i). Es sei

Fo ein algebraisches Komplement von F1 in V, {v^^ sei irgend eine feste Ortho-
gonalbasis von Fo. Ferner sei V± k(v). Da F isotrop ist, besitzt E eine Basis aus

isotropen Vektoren, also gibt es ein isotropes eeE mit E= V®k(e). Da E halbeinfach
ist, ist <P(v, e)¥zO. Ersetzt man also v durch ein Vielfaches falls notwendig, so darf
man voraussetzen, dass <P(v, e)=l ist. Schliesslich setzen wir noch v'^Vf—#(% e)v
und V^kty'ùtei. Nach diesen Normierungen hat man F= VQ®k(v), E= Vo®k(v, e)

und <P(vl, Vj) <P(Vi, Vj). Nunistwegen F^ Fauch Vr\VL^Vr\VL und F fâllt daher
ebenfalls unter (i). Man hat eine entsprechende Zerlegung V=V0(&V1. Bei einem

Isomorphismus To: V-* V wird F1 auf F1 abgebildet und man kann Fo T0(y0) und

vt T{v^ annehmen, (vt) eine Orthogonalbasis von Fo. Schliesslich seien v und ë

analoge Objekte zu den oben betrachteten, ||ê||=0 und <P(v, ê)=l. Die lineare Ab-
bildung definiert durch e-*ë, v-+v, t?J-»i;i — 0(vt, ê)v ist eine Isometrie T.E-+Ë mit

Zu (ii). In diesem Falle ist F© VL=E, also V1=k(v) nicht total isotrop. Ist daher
zusâtzlich V1 £ F1, dann ist auch F1 nicht total isotrop, also F1 cf: F und daher auch

V@V1=E9 da E halbeinfach und dim£/P=l ist. Es ist jetzt klar, dass es eine

Isometrie der gewùnschten Art gibt. Ist umgekehrt T(F)=F fur eine Isometrie
T:E-*E9 so ist hatûrlich T(VX)= V1, also F1 s F1.
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Zu (iii). Wir zitieren das Scholion in [1] pag. 159.

Zu (iv). Die eine Hâlfte der Behauptung liefert das Korollar zu Satz 3. Es sei also

umgekehrt^— l)/c*2 (»s—l)fc*2 vorausgesetzt fur die beiden Râume VcE, VczË.

Wir haben eine Isometrie T.E-+E mit T(V)=V anzugeben. Jedenfalls gibt es Zer-
legungen von der Art

E= + V® _V®k(e), V=+V®-V, el_V, \\e\\ 1

und eine entsprechende Zerlegung des Paares (Ë, F), wobei _ V und _ V von einer
— 1-orthonormierten Basis aufgespannt werden. Aus F= V folgt dim _F=dim _F,
also ist _ V^, _ V. Da dièse Râume senkrecht zu den algebraischen Komplementen

+ V®k(e) respektive + V@k{e) stehen, ist es fur die Existenz des gesuchten T hin-
reichend, eine Isometrie To: + V®k(e)^> + V®k(ê) anzugeben mit To(+ V)= + V. Auf-
grund der Voraussetzung (s— l)k*2 (s— l)k*2 kônnen wir Satz 2 zitieren.

Zu (v). Es ist klar, dass sich durch Obergang zu der entgegengesetzten Form dieser

Fall auf den vorangehenden zurùckfûhren lâsst. Damit ist der Beweis von Satz 4

vollstândig.
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