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Canonical Vector Fields on Spheres

P. ZVENGROWSKI

§ 1. Introduction

We are interested in norm-preserving bilinear forms
M:R"® R"— R",

where ® =®py and by norm preserving we mean || M (u®v)|| = |lu| - |lv||. Such a form
implies the existence of r—1 mutually orthonormal vector fields on $"~! (see 1.2
below). Given n, the question of finding the largest r so that such a form exists was
solved in 1923 by RADON [5], by HURwITZ [3], and again in 1942 by ECKMANN [2].
The methods of RADON and HURWITZ yield complicated iterative schemes for actually
constructing the forms, which have recently been simplified by Apams, LAx, and
PHILLIPS [1]. We now give a still simpler construction and prove certain relevant
properties of the “‘canonical” vector fields thus obtained. In particular, they are
closed under the intrinsic join operations of JAMES [4] (cf. Prop. 4.4).

Let M be a form as above and let ¢, ..., e,_; be an orthonormal basis for R". Then
one obtains r orthogonal transformations M,, ..., M,_,€0 (n) by defining

Mv)=M(e,®v), 0<i<r—1, veR".
Conversely, M is defined by the M, using the formula
M@u®uv)=) o;M(v), where u=)oe; and i=0,...,r—1.

1.1. THEOREM: The following are equivalent

A: M is norm-preserving,

B: {M;(v), M;(v))=6;;|v]|* VO<i,j<r—1 and veR",

C: M;eO(n) and M{ M; + M;M;=0, i %}.

This theorem has been used in one form or another by most of the above authors,
and its proof is omitted.

One can assume without loss of generality that M, =id, by following M with M,
if necessary. Then from (B) it follows that (v, M;(v))> =0, 1 <i<r—1, and hence if we
restrict v to S" 71, i.e. ||v| =1, we obtain

1.2. COROLLARY: M (v), ..., M,_, (v) define a family of r—1 orthonormal vector
fields on S" 1.
Furthermore, using (C) together with M,=id and M; M;=1, we obtain

1.3. COROLLARY: M;+ M!=0, M} = —1, M;M;+M;M,=0, 1<i,j<r—1.
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1.4. DEFINITION: A norm preserving form M:R"® R"—R" is orthogonal to the
identity if {v, M(u®v))=0 YueR', veR".

From the above remarks such a form is clearly equivalent to the existence of a
norm preserving form My=id and M; =M,_,, i>1. Furthermore, M then defines r
orthonormal vector fields on $"~! and M, M; satisfy 1.3, 0<i, j<r—1.

We will use the notation M,=M (u® —): R"->R", ueR'. Clearly M,/|u| €O (n),
and if M is orthogonal to id then M, is antisymmetric. In all cases one has the following
identity:

M
M (u®vy), M(uQu,)) = (M, vy, M) = llullz<" 1% g >= lull® <oy, 02 -

§ 2. Tensor Products of Inner Product Spaces

Let V, W be inner product spaces over a field F. Then V® W is an inner product
space, where

vy @ Wy, 1, @ W) = vy, V) KWy, W)

In case ¥=R™ and W=R", with their usual products, it is not hard to see that the
resulting inner product on R™" is also the usual one.
The following lemma will be exceedingly useful in the proof of Theorem 3.1.

2.1. ORTHOGONALITY LEMMA: Let V, W be inner product spaces with commutative
inner products and suppose A:V—V and B: W— W are endomorphisms such that

(i) A is orthogonal to idy, that is (v, Av) =0VveV, or B is orthogonal to idy

(ii) 4 is symmetric and B antisymmetric, or vice-versa.

Then the two endomorphisms o =A®1 and y=1Q B of V@® W are orthogonal, that is
{pa, Yya)=0YacVQRQW.

Proof: Let a=) v,®w;. Then

<(pa3 ‘/la> = <ZAvi®Wia Zvj®Bwj>
= Z <A Ui vj> <W,', Bwj> .

Now (i) clearly implies that the terms where i=j vanish. Then supposing A=A,
B'= — B, we have

{pa,Ya)y= Z (KA v, v;) Kwy, Bw;) + (Av;, v, w;, Bw,;»)

i<j
= Z (Kvy, Avy (Bwj, w) + v;, Av;y {— Bwj, w,))
i<j
=0.
. t
REMARK: The representation a= ) v,®w; is of course not unique. One can,

i=1
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however, always choose it so that v, ..., v, form a given basis of V, or similarly for the
w; (but not both).

§ 3. The Basic Construction

Let C: RE®® R®— R® be the Cayley multiplication. Let i: R”— R® be inclusion into

the last seven co-ordinates, then C, (i®1):R7®R89—’>R8 is a norm preserving multi-
plication orthogonal to the identity. Now define a form N:R’®R!'®— R'® by the
composition

R7 ®R16iR7 ®R8®R7 ®R8 C1®(’C1)R8® R81R16.

Clearly N is norm preserving, orthogonal to id, and for 0<i<6 each N, is antisym-
metric. Furthermore, N; has the form

Ni=(0 —B.~>’ B,c0O(8).

3.1. THEOREM: Let M:R" @ R"— R", n even, be a norm-preserving form such that
(a) M is orthogonal to id

b)Y M;U=—-UM,, 0<i<r—1, where U= ((1) (l))eo(n)
Then the form M defined by the composition below is norm preserving and also
satisfies (a), (b), (relative to r+8 and 16n):
Rr+8 ® R16 n

~

(Rr(_BR'I@RI)@Rn@RIG

\L
(Rr®Rn)®R16(_DRn®(R7 ®R16)®Rn®R16

1 0 0 -1
M®(0 __1>+U®N+1®<1 O)

v

Rll ® R16

~x

ﬁ\RlGn

Proof: Condition (b) follows readily from the fact that M ;= (Ai 0 ) ,0<i<r+7,

0 —A"

while M, , ;= <(1) .—(: ) . Let ((1) _01> =T, ((1) _01> =Ve0(16).
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From (b) it follows that M, U= — U M, YueR". Then U M, is symmetric. Similarly,
since N;= (ﬁi __OB ) satisfies (b), 0 <i<6, one sees that V' N, is antisymmetric YueR’

and TN, antisymmetric. Also, ¥V T is symmetric.

Now, starting with u@veR "8 @R®", let u=u, ®u,Pu;e RAR'@R' and
v=Yv;@v;eR"@R'®. Then M (u@v)=a+b+c, where

i

a=)M@u,@v)®Tvj,
J
b=)Uv,®N(u,®vy),
x
c=uz) @ V.
I

Toprove (a), we show v, ad ={v, b)={(v, ¢>=0. (v, a) =) {vi, M, (v})> <v;, Tv}>.
i,j

i,
Choosing v} =e,, the standard basis for R'®, (v}, Tv'>=+6;;and (v, a) =

Y+ <v}, M,, (v})) =0since M is orthogonal to the identity. {v, b) =

Y <o}, Uny (v}, N,,vg»=0 by the orthogonality lemma. (v, c)=u;Y <vj, v})

i1 1,1

(v}, Vv])=0 by choosing {v;} orthonormal and noticing that ¥ is orthogonal to id.
To show that M is norm preserving, we first prove that {a, b> =<a, ¢) =<{b, ¢)=0.

a,b) = jZk<Mu1(U}), Uu (Tvj, N, (vi)>
= 3 CUM,, @) 0> <0 TNy (0.

Choosing v =e; as before, one has (Tv/, N,,(v{)>= +<{v;,N,,(v{))=0. Thus one
need only consider the terms where j# k, which sum to zero since U M, is symmetric
and TN,, antisymmetric. The other two orthogonality relations are proved quite
analogously, where in b, c) one takes {v;} to be the standard basis for R" to insure
that the (i, i) terms vanish. Thus

1M (u®0)I* = llall® + 1B + llell®.

Choosing v; =e;, one easily sees that the individual terms in a, b, ¢ are mutually
orthogonal, being already orthogonal in the second factor. Then, since 7T, U, and V'
are all orthogonal transformations,

19 (u @ o))> = T s I N> 10712 + 2 oil ) o 1% + w3 3 llog 120712

= (lugl® + llugh® + u3) ¥ llogl* o)

= flull* o).
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3.2. COROLLARY: If n=s5-2*%% s odd, 0<b<3, then S"~! admits 8a+2"—1
orthonormal vector fields.

Proof: If n=s one has a trivial form R°®R‘—0>R‘. Applying the theorem “a” times
gives a norm preserving form orthogonal to the identity

R80®RS'16"__) RS'16“

(the fact that n is odd on the first iteration causes no trouble since r=0 there). This is
the case b=0. For b=1, 2, 3 one need only apply the theorem once more and observe
that M (uR®***2°~1@uR*1"2")c uR"'%?", where u denotes the generic inclusion of
R™ into the first m co-ordinates of R™** for any m, k. This is so because
N@uR* '@uR*)cuR?, b=1, 2, 3, corresponding to the complex numbers,
quaternions, and Cayley numbers respectively.

REMARK : ¢ (n)=8a+2" is called the Radon-Hurwitz function.

§ 4. Definition and Properties of Canonical Vector Fields

Let R®=lim R™. It is clear, using the definition of M, that the following com-

mutes: -
M

R"® R"—— R"™
Fu®u Pu
Rr+8 ®R16n_IT_I’R16n
Starting with R°®R1—O>R‘, we now iterate Theorem 3.1 and pass to the limit,
obtaining a norm preserving multiplication orthogonal to the identity
M:R” ® R* - R”.

Let p;: R"C— R> be the inclusion of R™into thei’'th block of m co-ordinates, 0 <.
Thus, for i<n, one has a commutative diagram

Rmui———)Rw

ﬁ )®e; Tdt
R™ ® R" (5 R™",
Also, po=p.
The following theorem says that M in effect gives a maximal family of orthonormal
vector fields on S"~! for every n.

4.1. THEOREM: If r <o (n)—1 then, for any i>0,

M(uR " ® u;R") < ;R".
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Proof: This property will certainly hold for n if it is true for some divisor of n, the
same r, and all i. Letting n=s5-2**? s 0dd, 0<b<3, it will thus suffice to prove the
theorem for 24°*?, since also ¢ (2****)=¢ (n). In other words, we can assume without
loss of generality that n=2%2"?, Furthermore, if the result holds for r=¢ (n)—1 it will
certainly hold for smaller r, so we also take r=¢(n)—1=8a+2"—1.

First consider =0 and let e, e,, ... be the usual basis for R*. We shall prove that
if the result holds for 0<i<16™—1 then it also holds for 0<ig<16™* ! —1, giving an
inductive proof of the theorem for the case =0 (clearly m =0 furnishes a base for the
induction). Write i=¢:16™+s, where 0<s<16™"**! and 0<¢<15. The inclusion

a lb m+a+1 o,
R"=R" SR " corresponds to the composition

a b m+a et m+a = mta+1
R16 —:)R16 S_l@..)Rl6 ® R16""’R16 .

6m+a

Then in the passage from M to M, i.e., from R®™*?~ 1@ R!
R3(m*atD—1 gy RI6™*%*! e have a commutative diagram

to

R8 (m+a+1)-1 ®R16m+ﬂ“ i Rs (m+a)y=—1 @ R8)®R16m+a® R15
2

n®u

RSa"l ®R16“ > (R3 (m+a)—1 ® RIG'"*“) ®R16 (_D (Rl6m+“ ®(R8 ®R16))

(1 © us) @ e, 0)

Performing the multiplications and applying the inductive hypothesis, we find
M(uR* ' ® 1;R'%) c M(uR* ® 4, ") ® ¢, < s, R'** @ ¢,

and the latter corresponds to p;R'®" under the isomorphism

R16(m+a) ®R16 ~ R16m+a+1

This completes the proof for 5=0. A similar method works for =1, 2, 3. For
example, if b=2, we use the existence of quaternions to establish the cases 0<i<3
(similar to the proof of Cor. 3.2) as base for the induction, then pass from
0<i<4:16"—1to 0<ig4-16"* 1 —1

. 4.2. CorOLLARY: If r<g(n)—1 then the following composition defines a norm
preserving multiplication orthogonal to id: -

R®R"45R* @ R*M R4 R,
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Denoting this multiplication “M; ,”, let us call the resultant r orthonormal vector
fields on S"~! “f .. More precisely, f;',:S""!—V, ,,, is the cross section of the
fibration V, ,,,;—S""! such that

X
n _ xO V h _ Mn
fi,r(x)—' : €Vnr+1, WHEIC X;= i,r(ej ®x)
xr— 1
These are our “canonical’ vector fields.

4.3. DErFINITION: Let M:R®R"—->R"™ and N:R"@R"—>R" be norm preserving
forms orthogonal to the identity. Then their intrinsic join M=*N is the composition
Rr®(Rm®N)iRr®Rm®Rr®R”mRm®R”iRm+n.

Clearly M*N is also norm preserving and orthogonal to id. If /:S™ " '> V,, .., and
g:8" 'V, .., are the corresponding cross sections, then their intrinsic join fxg is
defined as the composition

m+n—1 "> om—1, on—1/+8 ?
S *;S *S ——)Vm,r+1*Vn,r+1_”Vm+n,r+1’

@ being the intrinsic join map of JAMES [4]. One easily sees that fxg corresponds to
M=N, and it is then clear that the canonical vector fields can be joined together in
many ways to give other canonical fields. A typical example is the formula

4 4 8
fo,3*f1,3 =fo,3-

More generally, one can easily establish the following.

4.4. PROPOSITION: f7, it oo ¥ mim—1.r =fir
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