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Riume mit Operatorengruppen und Cohomologie

G. MiIsLIN

Einleitung

Die vorliegende Arbeit handelt von Beziehungen zwischen einer endlichen Gruppe
n, die auf einem Polyeder X operiert, und der Cohomologie des Raumes X sowie des
Raumes X/n der Bahnkurven (Orbitraum).

Im Falle wo = fixpunktfrei operiert, wo also X eine regulidre Uberlagerung von X/n
ist, wird bekanntlich die Beziehung zwischen der (singuliren) Cohomologie von X und
derjenigen von X/r durch die Uberlagerungsspektralsequenz von LERAY-CARTAN ver-
mittelt. Sie beginnt mit H™(n; H"(X; G)) und konvergiert gegen H™ ""(X/n; G); wihlt
man als Koeffizientengruppe G etwa Q, so bricht sie zusammen, woraus resultiert,
dass der invariante Teil H*(X; Q)" zu H*(X/r; Q) isomorph ist. Diese Aussagen
bleiben auch richtig, wenn nicht vorausgesetzt wird, dass n fixpunktfrei auf X operiert.

Diese und dhnliche bekannte Resultate werden in § 1 auf ,,ausserordentliche
Cohomologietheorien verallgemeinert; wir nehmen nicht an, dass n fixpunktfrei ope-
riert. Das Haupthilfsmittel ist die verallgemeinerte Atiyah-Hirzebruch Spektralsequenz,
welche zu einer Faserung gehort; sie verbindet die gewohnliche Cohomologie der
Basis einer Faserung mit der ausserordentlichen Cohomologie des totalen Raumes,
und sie stimmt im Falle der gewohnlichen Cohomologie mit der iiblichen Leray-
Serre-Spektralsequenz einer Faserung iiberein. Wir betrachten im besonderen (§ 2)
den Fall in welchem n in der Cohomologie von X trivial operiert. Es ergibt sich eine
Anwendung auf die Cohomologie von Lie-Gruppen; so erhalten wir z.B. den Satz:
Ist G eine kompakte zusammenhidngende Liegruppe und bezeichnet 7 die Torsions-
untergruppe der Fundamentalgruppe von G, so besitzt der unitire K-Ring K*(G)
hochstens |T'|-Torsion (dies ist eine Verallgemeinerung eines Resultates von HODGKIN
[6], welches besagt, dass K*(G) torsionsfrei ist, falls die Fundamentalgruppe von G
keine Torsion besitzt).

Sodann betrachten wir in § 3 Operatorengruppen =, welche p-Gruppen sind. Fiir
solche erhalten wir einfache Beziehungen zwischen der g-Torsion der (ausserordent-
lichen) Cohomologie von X und jener des Orbitraumes X/, falls g teilerfremd ist zu
p: es gilt fiir die Bettizahlen p{® (d.h. die Z,-Range von A"( ;Z,))

P (X)=p?(X/r) mod.0(q)

wobei 0(g) den ,,Exponenten‘ von g mod.p bezeichnet (die kleinste Zahl k>0 mit
q*=1 mod.p); fiir die Bettizahlen p,=p'® kdnnen wir daraus folgern, dass

pn(X) = pn(X/n) mOd(p - 1)
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ist. Wir behandeln auch den Fall g=p; hier erhalten wir aber nur eine Abschitzung
fiir die p-Torsion von X, und auch dies nur fiir die gewohnliche Cohomologie; die
verwendete Methode, die von den iibrigen Teilen der Arbeit unabhingig ist, stiitzt
sich auf geeignete Wahl von lokalen Koeffizienten. Als Anwendung dieses Ergebnisses
im Falle g=p wird ein gruppentheoretischer Satz bewiesen: er liefert eine Abschiatzung
fiir den p-Rang eines Normalteilers H der Gruppe G, falls G/H eine p-Gruppe ist
(unter dem p-Rang von H verstehen wir wie iiblich die Dimension iiber Z, von
(HI[H, H])®Z,).

Herrn Prof. B. ECKMANN danke ich fiir seine zahlreichen Anregungen und sein
forderndes Interesse, welches er dieser Arbeit entgegenbrachte.

§ 0. Vorbereitungen
a) Bezeichnungen

Wir bezeichnen mit /" eine beliebige (ausserordentliche, reduzierte) Cohomologie-
theorie [vgl. 1], und mit A" die (reduzierte) zellulire Cohomologietheorie. Bekannt-
lich stimmen auf der Kategorie W der Rdume vom Homotopietypus eines endlichen
CW-Komplexes alle Cohomologietheorien mit Dimensionsaxiom mit der zelluldren
iiberein, weshalb wir A" hiufig als ,,gewdhnliche Cohomologie bezeichnen. Wie
iiblich schreiben wir X * fiir die disjunkte Vereinigung von X mit einem Punkt, den
man als Basispunkt von X* wihlt. Es ist dann per definitionem h"(X)=h"(X").
Operiert eine Gruppe n auf X, so erweitern wir ihre Operationen in evidenter Weise
auf X *: der Basispunkt von X * soll unter allen Operationen von = festbleiben. Mit
dieser Konvention ist klar, dass dann = auf A"(X)=h"(X*) operiert, #"(X) also ein
n-Modul ist. Unter n-Modul wollen wir immer n-links-Modul verstehen.

b) Die Spektralsequenz der Faserungen

Es sei F>E>5 B eine (Serre-) Faserung mit Ee (d.h. E hat den Homotopietyp
eines endlichen CW-Komplexes) und einem CW-Komplex B mit endlichen Skeletten
als Basis. Dann gibt es eine Spektralsequenz {E;"", d,} mit E{""=H™(B; h"(F)), die
gegen A™*"(E) konvergiert. Es ist also EJ'"=%"(h"*"(E)), wobei die graduierte
Gruppe #h%(E) assoziiert ist zu der Filtierung F™(h?(E))=Ker(h? (E)—J;hq (Ep-1))-
Dabei bezeichnet E,,_; das Urbild p~*(B,,_,) des (m—1)-Skelettes von B und j:
E, _,—FE die Einbettung. Die Filtrierung von A(E) ist vollstindig, da E in U liegt.
Man erhilt einen einfachen Beweis fiir die Konvergenz dieser Spektralsequenz mit
der Methode von ECKMANN-HILTON [vgl. 2].

c) Koeffizientengruppen

-Wir wollen kurz einige Definitionen und Sétze fiir Cohomologietheorien ,,mit
Koeffizienten Z,“ angeben [vgl. 3]. Es sei M, ein Cohomologie-Moore-Raum vom
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Typ(Z,,2). Um einen Raum M, zu fixieren, betrachten wir eine Abbildung f: S'—>S!
vom Grade g mit g> 1. Wir setzen M, gleich dem Abbildungskegel C(f)=S'u,CS".
Sind X und Y punktierte Rdume, so schreiben wir wie iiblich X A Y fiir das ,,smash*‘
Produkt von X und Y, also XA Y=XxY/XVvY.

Ist hi( ) eine Cohomologietheorie, so definiert man eine neue Cohomologietheorie
hi( ; Z,) mittels h'(X; Z,)=h"*?(X A M,) fiir alle i. Man verifiziert sofort, dass fiir
die gewohnliche Cohomologie folgt

fur n=0

zZ
A"(S°;Z2,)=HA""*(S° AM)=H"?(M)=1 "*
( o (5" My) (My) {0 fir n#0

Daraus ist ersichtlich, dass die Schreibweise A"( ; Z,) kompatibel ist mit der iiblichen
Schreibweise fiir zellulire Cohomologie mit Koeflizienten Z,.

Es ist ferner iiblich, Cohomologie mit Koeffizienten Q wie folgt zu definieren:
h"(X; Q)=h"(X)®Q. Fiir die rationalen Zahlen Q schreiben wir auch Z,.

Wie in der gewohnlichen Cohomologietheorie gibt es (fiir Xe) eine exakte
Koeffizientensequenz:

0->h(X)®Z,~» h(X;Z,)> Tor(h*'(X);Z,)—0

Dabei ist, gemiss unseren Konventionen, #'(X; Z,)=h"**(X* A M,) fiir g#0 und
R (X; Zo)=h' (X *)®Z,. Fiir ungerade q ist h"(X; Z,) ein Z,-Modul. Ist g gerade, so
kann es vorkommen, dass 4"(X; Z,) nur ein Z,,-Modul ist, die obige Koeffizienten-
sequenz also nicht aufspaltet [vgl. 3]. Doch kénnen wir auf jeden Fall schliessen, dass
die Multiplikation mit einer natiirlichen Zahl r, teilerfremd zu g falls g#0, einen
Isomorphismus 4"(X; Z,)~h"(X; Z,) induziert.

d) Transformationsgruppen

Es bezeichne n eine endliche Gruppe, die auf einem topologischen Raum X
operiert. Bekanntlich gibt es fiir 7 einen klassifizierenden Raum B, =K(=, 1), der ein
CW-Komplex mit endlichen Skeletten ist. Seine universelle Uberlagerung E, ist ein
zusammenziehbarer Raum, auf dem = fixpunktfrei operiert. Wir wollen n auf X x E,
operieren lassen mittels a(x, y)=(ax, ay) fir alle aen, xeX und yeE,. Mit X, be-
zeichnen wir den Raum der Bahnkurven (Orbitraum) X x E,/n beziiglich der Opera-
tionen von n. Die Projektion X x E,— E, ist mit dem Operieren von r vertriglich und
induziert somit eine Abbildung X,— B, zwischen den entsprechenden Orbitrdumen.
Diese Abbildung ist eine Faserung mit Faser X [vgl. 4, p. 52].

§ 1. Riume mit Operatorengruppen

Operiert die endliche Gruppe n auf dem Raum X, so gibt die Spektralsequenz der
Faserung X— X,— B, (vgl. § 0, (b)) einen Zusammenhang zwischen der Cohomologie



334 G. MISLIN

von X und der von X, an. Das folgende Lemma gestattet es dann, von der Cohomo-
logie von X, auf jene von X/n zu schliessen.

LeMMA 1. Die Projektion X x E,— X induziert eine Abbildung ¢:X,— X|n zwischen
den Orbitraumen. Sind X, und X|n in W und ist q=0 oder (q, |n|)=1, so induziert ¢
einen Isomorphismus h"(X[n; Z,)=h"(X,; Z,).

Beweis. Es sei ¢ die oben beschriebene Abbildung X,— X/n. Fir yeX/n gilt
¢~ (y)= E,/n(F), wobei je X ein Punkt ist, der iiber ye X/r liegt, und =(7) die Iso-
tropiegruppe von jeX bezeichnet (d.h. n(y)={aern|aj=y}). Wegen E,/n(y)=
=~ K(n(3), 1) ist somit, fir g=0 oder (g, |n])=1, A"(¢~ ' (»); Z,)=H"(n(j); Z,)=0;
denn die Ordnung von n(y) ist natiirlich ein Teiler der Ordnung von #. Also folgt
aus dem ,,Mapping-Theorem* von VIETORIS, dass ¢ einen Isomorphismus ¢*:
H"(X[n; Z,)= H"(X,; Z,) induziert. Im Falle ¢=0 folgt daraus direkt obiges Lemma,
wenn man beachtet, dass es fiir eine auf U definierte Cohomologietheorie 4" einen
natiirlichen Isomorphismus 4"(X; Q) @ H"(X;h*(S®)®Q) gibt [vgl. 5, p. 397].

r+s=n

Istg#0, so betrachtet man die durch ¢ induzierte Abbildung ¢: X" A M,—(X/n)* A M,.
Die Abbildung ¢*: H"((X/n)* A M)»H" (X, A M,) fillt offensichtlich mit ¢* zu-
sammen, ist also ein Isomorphismus. Da X," A M, und (X/n)* AM, in U liegen,
konnen wir schliessen [vgl. 5, p. 376], dass ¢ somit fiir eine beliebige Cohomologie-
theorie A" einen Isomorphismus A"((X/n)* A M,)—h"(X,;} A M,) induziert. Also ist
h'(X/n; Z)=h"(X,; Z,).

BEMERKUNG. Operiert r fixpunktfrei auf X, so sind X, und X/ homotopiedquiva-
lent, denn die Abbildung X,— X/n ist dann eine Faserung mit zusammenziehbarer
Faser E,. Das obige Lemma ist also fiir diesen Fall trivial.

SATZ 1. Es operiere die endliche Gruppe nt auf dem Raum X. Sind X, X, und X|n
in W, so ist fiir q=0 oder (q, |n])=1 der unter den Operationen von n invariante Teil
der Cohomologie von X (mit Koeffizienten Z,) isomorph zur Cohomologie des Orbit-

raumes X|n: (X, Z) =h"(X|n;Z,).

Beweis. Wir betrachten die Faserungs-Spektralsequenz {E;"",d,} der Faserung
X—-X,—B,. Sie konvergiert, da X, in A und B, ein CW-Komplex mit endlichen
Skeletten ist. Da die Multiplikation mit der Gruppenordnung |r| einen Isomorphis-

mus A"(X; Zq)'—’;lh"(X ; Z,) induziert (vgl. § 0, Abschnitt c) folgt
W"(X;Z)" fir m=0

ETs":H”(n;h"(XQZq))g{O fir m#0

Mithin sind alle Differentiale d,=0 fiir r>1, und es gilt also E{""=E2’". Wir er-
halten somit E{* "> h*(X; Z,)" = 9°h"(X,; Z,). Fiir p>0ist EX "~ P = 9P h"(X,; Z,)=0.
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Also ist, da die Filtrierung von #"(X,; Z,) vollstindig ist, ¥°h*(X,; Z,)=h"(X,; Z,).
Verwenden wir noch Lemma 1, so folgt 4"(X/n; Z,)=h"(X,; Z,)=h,(X; Z,)", wobei
die Isomorphismen von den kanonischen Abbildungen (X—X,—X/n)=(X-X/n)
induziert werden.

§ 2. Triviale Operationen auf den Cohomologiegruppen

Es sei weiterhin X ein Raum mit endlicher Operatorengruppe n. Die Ridume X,
X, und X/=x sollen in U sein. Wir wollen in diesem ganzen Paragraphen voraussetzen,
dass die Abelschen Gruppen A"(X) endlich-erzeugt seien.

SATZ 2. Es sei nt eine endliche Gruppe von Operatoren auf X und q>1 eine Zahl
mit (q, |n|)=1. Operiert © trivial auf h"~'(X; Z,) fiir eine bestimmtes neZ, so ist
Tor(#*(X), Z,)=Tor(h"(X/rn), Z,).

Beweis. Wir betrachten fiir i=n—1 und i=n die Koeffizientensequenzen

0->h(X)®Z, > h(X;Z) - Tor(h"'(X),Z,) -0
11102, 1 hi 1 Tor (fiv1, Zg)
0 h(X/n)®Z,— h (X[n; Z,) - Tor (k"' (X/r), Z,) >0

Die vertikalen Homomorphismen seien durch die kanonische Abbildung f: X— X/n
induziert. Dann ist das ganze Diagramm kommutativ wegen der Natiirlichkeit der
Koeffizientensequenzen. Nach Satz 1 ist £, ein Monomorphismus. Es folgt

) fA®Z,:h"(X[n)®Z,~h"(X)RZ, ist ein Monomorphismus.

Unsere Voraussetzungen iiber 4"~ '(X; Z,) ergeben mit Satz 1 zusammen, dass
f.— ein Isomorphismus ist. Also folgt

2) Tor(f,, Z,):Tor(h"(X/n), Z,)—Tor(h"(X), Z,) ist ein Epimorphismus.

Aus 1) und 2) kann man (fiir endlich-erzeugte Abelsche Gruppen) schliessen, dass
Tor(#"(X/n), Z,)=Tor(h"(X), Z,) ist.

Offensichtlich folgt dies auch schon, wenn man nur voraussetzt, dass die g-primé-
ren Teile von A"(X) und A"(X/rn) endliche direkte Summanden sind.

KOROLLAR 1. Operiert n trivial auf h*(X) fiir alle n, so ist i*(X)=h"(X/n) modulo
|n|-Torsion (d.h. h*(X) modulo der Untergruppe der Elemente, welche als Ordnung

einen Teiler einer Potenz von |rn| haben, ist isomorph zur entsprechenden Faktorgruppe
von h"*(X/[r)).

Beweis. Nach Satz 2 haben A"(X) und A"(X/n) die gleiche Torsion modulo
|z|-Torsion. Dass A"(X) und A"(X/n) den gleichen Rang haben folgt aus Satz 1, welcher
im Falle trivialer Operationen von = auf A"(X) impliziert #"(X)®@ Q=Ai"(X/n)®Q.
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BEMERKUNG. Dafiir, dass A"(Y) mit YeU endlich-erzeugt ist, geniigt die Voraus-
setzung: h'(S°) endlich-erzeugt fiir alle ic Z.

Wir wollen ein Beispiel einer Anwendung von Korollar 1 angeben. HODGKIN hat
in [6] unter anderem bewiesen, dass der unitire K-Ring K*(G) einer kompakten zu-
sammenhédngenden Liegruppe torsionsfrei ist, falls die Fundamentalgruppe =,(G)
keine Torsion besitzt. Wir kdnnen dies wie folgt verallgemeinern

KOROLLAR 2. Ist G eine zusammenhdngende und kompakte Liegruppe und bezeichnet
T die Torsionsuntergruppe der Fundamentalgruppe von G, so hat K*(G) hochstens
|T'|-Torsion.

Beweis. Es sei n,(G)=F@®T. Zum Normalteiler F von n,(G) gehért eine Uber-
lagerung G’ von G, auf welcher die Decktransformationengruppe nxn,(G)/F=T
operiert. Nun erfiillt aber G’ die Voraussetzungen des Satzes von HODGKIN (loc. cit.),
denn nach Konstruktion ist G’ eine kompakte zusammenhidngende Liegruppe mit
torsionfreier Fundamentalgruppe =, (G')= F. Also ist K"(G") torsionsfrei fiir alle ne Z.
Da G’ eine zusammenhéingende Liegruppe ist, sind die Operationen von n auf G’ vom
Homotopietyp der Identitit. Folglich operiert n trivial auf K”(G’), und wir erhalten
Korollar 2 aus Korollar 1 fiir #"=K".

§ 3. p-Gruppen, die auf endlichen CW-Komplexen operieren

Im folgenden bezeichnet 7 immer eine (endliche) p-Gruppe, also eine Gruppe,
deren Ordnung eine Potenz von p ist. Um Satze liber p-Gruppen zu beweisen, ist das
folgende bekannte Lemma ein niitzliches Hilfsmittel.

LEMMA 2. Operiert eine p-Gruppe n auf einer endlichen Menge M, so besteht
zwischen der Anzahl der Elemente von M und der Anzahl der Fixelemente unter n die
folgende Beziehung: |M|=|M™| mod.p.

Der Beweis ist evident: Die Menge M — M™ ist Vereinigung von disjunkten
n-Aquivalenzklassen, wobei die Anzahl der Elemente in einer solchen Aquivalenzklasse
ein Vielfaches von p betragt.

Ist g eine ungerade Primzahl oder 0, so ist #"(X; Z,) ein Z,-Vektorraum (vgl. § 0,
Abschnitt ¢). Ist seine Dimension iiber Z, endlich, so schreiben wir dafiir p2(X), und
nennen dies die n-te Bettizahl mod.q von X. Fiir p{®(X) schreiben wir auch p,(X).
Natiirlich hingt p!?(X) von der gewihlten Cohomologietheorie A" ab. Fiir die ge-
wohnliche Cohomologietheorie H” erhilt man die Bettizahlen mod. g von X im klas-
sischen Sinn. Im folgenden wollen wir einige Relationen angeben, die unabhingig
von der betrachteten Cohomologietheorie zwischen den Bettizahlen bestehen. Zum
Beispiel sagt Satz 1 aus, dass unter den dort angegebenen Voraussetzungen immer
POX) = pP(X/r) ist wegen h"(X; Z ) =h"(X[n; Z,).
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Wir werden nun Lemma 2 auf p-Gruppen anwenden, die auf endlichen Cohomo-

logiegruppen operieren. Dabei wollen wir immer voraussetzen, dass die Rdume X,
X,, und X/n in U liegen und somit Satz 1 gilt.

SATZ 3. Es operiere die p-Gruppe n auf X. Dann bestehen zwischen den Bettizahlen
(beziiglich einer beliebigen Cohomologietheorie) die folgenden Beziehungen

a) Ist q#0 und (p, q)=1, so ist fiir alle n:p'?(X)=p? (X/r) mod. 0(q), wobei 0(q)
den kleinsten Exponenten k>0 mit ¢*=1 mod.p bezeichnet.

b) Sind die Gruppen h"(X) und h"(X|n) endlich-erzeugt fiir alle n, so folgt p,(X)=
= p,(X/m) mod.(p—1).

Beweis. Nach Satz 1 ist h"(X; Z,)"=h"(X[n; Z,) falls g=0 oder (g, p)=1 ist.
Fall g#0. Wir schreiben kurz a und b fiir die Dimensionen p® (X) und p® (X/r). Aus
Lemma 2 folgt |h"(X; Z,)|=q°=|h"(X; Z,)"| =|h"(X/n; Z,)|=q" mod. p. Demnach ist
g° ®=1 mod. p, woraus mit der obigen Definition von 6(q) folgt a—b=k-0(q).

Fall g=0. Wir wollen diesen Fall auf den vorigen zuriickfiihren. Dies ist moglich,

wenn wir eine Primzahl r finden mit

D) po(X)=p(X) und p,(X/n)=p\’ (X|n)
I 6(r)=p-—1

Dann folgt ndmlich p,(X)=p,(X/n) mod.(p—1). Nach dem universellen Koeffizien-
tentheorem folgt

" (X;Z) = h"(X)® Z,® Tor (h""' (X), Z,)

fiir eine beliebige ungerade Primzahl s. Wahlt man s teilerfremd zu den Ordnungen
der (endlichen) Torsionsuntergruppen der Gruppen h"(X), h"*'(X), h*(X/r) und
h"*1(X/r), so ist die Bedingung I evidenterweise erfiillt.

Es sei nun g* eine natiirliche Zahl mit 6(¢*)=p—1, d.h. eine primitive (p—1)-te
Einheitswurzel mod. p. Dann ist (¢*, p)=1. Nach dem Satz von DIRICHLET gibt es
folglich in der Menge F={f| f=q*+mp, meZ, m>0} unendlich viele Primzahlen.
Aber fiir alle f e F gilt trivialerweise f * =(g* + mp)” =(g*)” mod.p, also 0(f)=0(g*).
Wir wihlen nun aus F eine Primzahl p*, welche die Ordnungen der Torsionsunter-
gruppen von A"(X), h"**(X), h"(X/r) und A"*!(X/r) nicht teilt. Dann hat p* die von
r geforderten Eigenschaften.

BEMERKUNG. Ein analoges Resultat erhilt man fiir g=2, wenn man sich auf
Cohomologietheorien beschrinkt, fiir welche 4"(X; Z,) ein Z,-Modul ist (z.B. unitére
K-Theorie).

Der Satz 3 gibt keine Auskunft iiber p{”(X). Wir wollen wenigstens fiir die ge-
wohnliche Cohomologie eine Abschiitzung dieser kritischen Bettizahl angeben.
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SATZ 4. Es sei n eine p-Gruppe, die fixpunktfrei auf einem Raum X operiere. Dann
erfiillen die gewohnlichen Bettizahlen mod.p von X und X/n die folgende Ungleichung:
PP (X)<|nl-p? (X]n).

Beweis. Wir zeigen dies vorerst fiir den Fall 1~ Z . Der allgemeine Fall wird sich
dann mit vollstindiger Induktion ergeben. Es gibt eine exakte Sequenz von n-Moduln
0-I-Z,[n]—>Z,—0 wobei I das Augmentationsideal von Z,[n] bezeichnet. Dieses
Ideal ist nilpotent und es gilt sogar I*/I**'~Z, fir 0<k<p(I°=Z,[x], I"=0), vgl.
[4, p. 39]. Wir haben somit eine Anzahl von Koeffizientensequenzen 0—7**1 5% -
—Z,—-0, zu welchen exakte Cohomologiesequenzen

oo HY (X [m; 1M ) > H' (X7 1) > H* (X n; Z,) » H"™ (X rs 1) > -

gehoren. Man liest daraus ab, dass fiir die Z,-Dimensionen gilt dim H"(X/r; I*)<
<dim H"(X/m; I** Y+ pP (X/n).
Wegen H"(X/n; I°)=H"(X/n; Z,[n])~H"(X; Z,) folgt

p{P(X) < dim H"(X/n; I') + piP(X/n) < dim H"(X/n; I?) + 2- pP (X /n)
<dimH"(X[r; IP7') + (p — 1) p{P (X [m)

Aber es ist 1P~ ' ]?"'/I?~Z , woraus schliesslich p{”(X)<p-p{P (X/r) folgt.
Ist = irgendeine p-Gruppe, so besitzt sie einen Normalteiler 7y vom Index p, denn
n ist aufiésbar. Man kann also die Abbildung &:X— X/n faktorisieren iiber X/ny als
P=P,P,:
x% x [ty % x |

Ein Induktionsschluss liefert sofort p{P(X)<|mylptP(X/ny)<p:|nypP(X/n)=
= || pP (X/r).

n

§ 4. Einige Anwendungen

Wir wollen einige einfache Korollare angeben, welche aus den Sidtzen der letzten
Paragraphen folgen. Die Rdume X, X, und X/n sollen wie immer in U liegen.

KOROLLAR 3. Es operiere die p-Gruppe n auf X. Sind die Gruppen h"(X) und h"(X|r)
endlich-erzeugt und ist p,(X)<(p—1) fiir alle n, so operiert  trivial auf h*(X; Q).

Beweis. Aus Satz 3 folgt p,(X)=p,(X/n) mod.(p—1). Anderseits ist allgemein
Po(X)=p,(X/n), sodass aus p,(X)<(p—1) folgt, dass p,(X)=p,(X/n) sein muss. Also
ist A"(X/n; Q)= h"(X; Q)" A" (X; Q) fiir alle n.

Einen analogen Satz erhilt man, wenn man in Korollar 3 die Bedingung p,(X)<
(p—1) ersetzt durch pi?(X)<6(q).

Die nun folgenden Korollare beziehen sich auf die gewohnliche Cohomologie-
theorie H".
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KOROLLAR 4. Es operiere die p-Gruppe n fixpunktfrei auf X. Ist p\P(X/n)=0 so ist
auch pP(X)=0.

Der Beweis folgt direkt aus Satz 4, welcher aussagt, dass die Ungleichung
P P(X) < |n|pP (X/n) besteht.

Fiir die anderen Bettizahlen p'?, g teilerfremd zu p, kann keine solche Bezichung
bestehen, wie einfache Gegenbeispiele zeigen.

KOROLLAR 5. Es operiere die p-Gruppe n fixpunktfrei auf X. Ist die Euler-Poincaré-
Charakteristik y(X)#0, so folgt max p,(X)=(p—1). (Es ist XeW, also H"(X) end-

lich-erzeugt fiir alle n und die Euler-Poincaré-Charakteristik y(X)=X(—1)"p,(X)
wohldefiniert.)

Beweis. Ware max p,(X)<(p—1), so wiirde aus Korollar 3 folgen p,(X)=p,(X/r)
und mithin y(X)=y(X/n). Da wir vorausgesetzt haben, dass = fixpunktfrei operiert,
gilt bekanntlich y(X)=|n| x(X/r). Wegen x(X)+#0 miisste somit |r|=1 sein, was wir
natiirlich ausschliessen.

Man kann aus diesen Korollaren Sdtze iliber beliebige Transformationsgruppen
auf X erhalten, wenn man das Operieren ihrer endlichen p-Untergruppen betrachtet.

Zum Schluss sei noch eine Anwendung auf die Gruppentheorie angegeben. Es
bezeichne G eine beliebige (nicht unbedingt endliche) Gruppe und R,(G)=dimg,
(G/[G, G])®Z, den p-Rang der abelsch-gemachten Gruppe G. Mit Hilfe von Satz 4
kann man eine Abschidtzung fiir den p-Rang eines abelsch-gemachten Normalteilers
von G gewinnen.

KOROLLAR 6. Es sei H ein Normalteiler der Gruppe G und G|/H eine (endliche)
p-Gruppe. Die abelsch-gemachten Gruppen G und H sollen endlich-erzeugt sein. Dann
gilt R,(H)<|G/H|: R,(G).

Beweis. Wir wihlen fiir X den Eilenberg-MacLane CW-Komplex K(H, 1), welcher
K(G, 1)iiberlagert. Decktransformationengruppe dieser Uberlagerungist die p-Gruppe
n=G/H. Nach Satz 4 (der auch fiir unendliche CW-Komplexe gilt) folgt p{”(X) <
<|G/H|-p'?(X/rn). Da G/[G, G]endlich-erzeugt ist, gilt H ' (X/n; Z,)~Hom(G/[G,G],
Z,)=~(G/[G, G])®Z, und somit p{”’ (X/r)= R,(G). Analog ist p{” (X)=R,(H), womit
das Korollar bewiesen ist.

Ist G eine freie Gruppe, so steht dieses Korollar im Einklang mit dem Satz von
Schreier, welcher besagt, dass (R,(H)—1)=|G/H|-(R,(G)—1) ist; also gilt R,(H)=
|G/H|" R,(G)—(IG/H|-1)<|G/H| R,(G).
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