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Râume mit Operatorengruppen und Cohomologie

G. MlSLIN

Einleitung

Die vorliegende Arbeit handelt von Beziehungen zwischen einer endlichen Gruppe
n, die auf einem Polyeder X operiert, und der Cohomologie des Raumes X sowie des

Raumes Xjn der Bahnkurven (Orbitraum).
Im Falle wo n fixpunktfrei operiert, wo also ^eine regulâre Uberlagerung von Xjn

ist, wird bekanntlich die Beziehung zwischen der (singulâren) Cohomologie von X und
derjenigen von Xjn durch die Ûberlagerungsspektralsequenz von Leray-Cartan ver-
mittelt. Sie beginnt mit Hm(n; Hn(X; G))und konvergiert gegen Hm+n(Xln; G); wâhlt
man als Koeffizientengruppe G etwa Q, so bricht sie zusammen, woraus resultiert,
dass der invariante Teil Hk(X; Q)n zu Hk(X/n; Q) isomorph ist. Dièse Aussagen
bleiben auch richtig, wenn nicht vorausgesetzt wird, dass n fixpunktfrei auf A" operiert.

Dièse und âhnliche bekannte Resultate werden in § 1 auf ^ausserordentliche^
Cohomologietheorien verallgemeinert ; wir nehmen nicht an, dass n fixpunktfrei
operiert. Das Haupthilfsmittel ist die verallgemeinerte Atiyah-Hirzebruch Spektralsequenz,
welche zu einer Faserung gehôrt; sie verbindet die gewôhnliche Cohomologie der
Basis einer Faserung mit der ausserordentlichen Cohomologie des totalen Raumes,
und sie stimmt im Falle der gewôhnlichen Cohomologie mit der ûblichen Leray-
Serre-Spektralsequenz einer Faserung ùberein. Wir betrachten im besonderen (§ 2)
den Fall in welchem n in der Cohomologie von X trivial operiert. Es ergibt sich eine

Anwendung auf die Cohomologie von Lie-Gruppen; so erhalten wir z.B. den Satz:

Ist G eine kompakte zusammenhângende Liegruppe und bezeichnet T die Torsions-

untergruppe der Fundamentalgruppe von G, so besitzt der unitâre K-Ring K*(G)
hôchstens |r|-Torsion (dies ist eine Verallgemeinerung eines Résultâtes von Hodgkin
[6], welches besagt, dass K*(G) torsionsfrei ist, falls die Fundamentalgruppe von G

keine Torsion besitzt).
Sodann betrachten wir in § 3 Operatorengruppen n, welche p-Gruppen sind. Fur

solche erhalten wir einfache Beziehungen zwischen der ^-Torsion der (ausserordentlichen)

Cohomologie von X und jener des Orbitraumes Xjn, falls q teilerfremd ist zu

p: es gilt fur die Bettizahlen p[q) (d.h. die Z^-Rânge von hn( ; Zq))

p(nq)(X)^p^(Xln) mod.0(q)

wobei 9(q) den ,,Exponenten" von q mod.p bezeichnet (die kleinste Zahl k>0 mit
qk= 1 mod.p); fiir die Bettizahlenpn =p(n0) kônnen wir daraus folgern, dass

mod.(p-l)
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ist. Wir behandeln auch den Fall q=p; hier erhalten wir aber nur eine Abschâtzung
fur die /^-Torsion von X, und auch dies nur fur die gewôhnliche Cohomologie; die
verwendete Méthode, die von den ûbrigen Teilen der Arbeit unabhângig ist, stûtzt
sich auf geeignete Wahl von lokalen Koeffizienten. Als Anwendung dièses Ergebnisses
im Falle q =p wird ein gruppentheoretischer Satz bewiesen : er liefert eine Abschâtzung
fur den p-Rang eines Normalteilers H der Gruppe G, falls GjH eine /?-Gruppe ist
(unter dem /?-Rang von H verstehen wir wie ublich die Dimension ûber Zp von

Herrn Prof. B. Eckmann danke ich fur seine zahlreichen Anregungen und sein

fôrderndes Interesse, welches er dieser Arbeit entgegenbrachte.

§ 0. Vorbereitungen

a) Bezeichnungen

Wir bezeichnen mit hn eine beliebige (ausserordentliche, reduzierte) Cohomologie-
theorie [vgl. 1], und mit Hn die (reduzierte) zellulâre Cohomologietheorie. Bekannt-
lich stimmen auf der Kategorie $1 der Râume vom Homotopietypus eines endlichen

CW-Komplexes aile Cohomologietheorien mit Dimensionsaxiom mit der zellulâren
iiberein, weshalb wir Hn hâufig als ,,gewôhnliche" Cohomologie bezeichnen. Wie
ublich schreiben wir X* fur die disjunkte Yereinigung von X mit einem Punkt, den

man als Basispunkt von X+ wâhlt. Es ist dann per definitionem hn(X) hn(X+).
Operiert eine Gruppe n auf X, so erweitern wir ihre Operationen in evidenter Weise

auf X+ : der Basispunkt von X+ soll unter allen Operationen von n festbleiben. Mit
dieser Konvention ist klar, dass dann n auf hn(X) hn(X+) operiert, hn(X) also ein
7c-Modul ist. Unter Ti-Modul wollen wir immer 7r-links-Modul verstehen.

b) Die Spektralsequenz der Faserungen

Es sei F^E^B eine (Serre-) Faserung mit Ee^H (d.h. E hat den Homotopietyp
eines endlichen CW-Komplexes) und einem CW-Komplex B mit endlichen Skeletten
als Basis. Dann gibt es eine Spektralsequenz {E?'n, dr) mit E™'n Hm(B; hn(F% die

gegen hm+n(E) konvergiert. Es ist also E™'n @m(hm+n(E)), wobei die graduierte

Gruppe &hq(E) assoziiert ist zu der Filtierung Fm(hq(E)) KQT(hq(E)^thq(Em.l)).
Dabei bezeichnet 2sm_i das Urbild p~1(Bm_l) des (m—1)-Skelettes von B und y:
Em_1-^E die Einbettung. Die Filtrierung von hq(E) ist vollstândig, da E in 91 liegt.
Man erhâlt einen einfachen Beweis fur die Konvergenz dieser Spektralsequenz mit
der Méthode von Eckmann-Hilton [vgl. 2].

c) Koeffizientengruppen

Wir wollen kurz einige Definitionen und Sâtze fur Cohomologietheorien ,,mit
Koeffizienten Z€" angeben [vgl. 3]. Es sei Mq ein Cohomologie-Moore-Raum vom
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Typ(Zq, 2). Um einen Raum Mq zu fixieren, betrachten wir eine Abbildung /: S1-^1
vom Grade q mit q> 1. Wir setzen Mq gleich dem Abbildungskegel C(f) SiufCS1.
Sind X und 7 punktierte Râume, so schreiben wir wie ûblich X a Y fiir das ,,smash"
Produkt von X und 7, also XaY=XxY/XvY.

Ist hl{ eine Cohomologietheorie, so definiert man eine neue Cohomologietheorie
hl( ; ZJ mittels h\X\ Zq) hi+2(XAMq) fur aile i. Man verifiziert sofort, dass fur
die gewôhnliche Cohomologie folgt

Hn(S°;Zq) fin+2(S° AMq) Hn+2(Mq)={Z" ^ H °
qJ (0 fUr n*0

Daraus ist ersichtlich, dass die Schreibweise Hn( ; Zq) kompatibel ist mit der ublichen
Schreibweise fiir zellulâre Cohomologie mit Koeffizienten Zq.

Es ist ferner ûblich, Cohomologie mit Koeffizienten Q wie folgt zu defînieren:

hn(X; Q) hn(X)®Q. Fur die rationalen Zahlen Q schreiben wir auch Zo.
Wie in der gewôhnlichen Cohomologietheorie gibt es (fur Xe9I) eine exakte

Koeffizientensequenz :

Dabei ist, gemâss unseren Konventionen, hl{X\ Zq) hi + 2(X+ aMJ fur q^O und

h\X\ Z0) hi(X+)®Z0. Fur ungerade q ist hn(X; Zq) ein Z^-Modul. Ist q gerade, so

kann es vorkommen, dass hn(X; Zq) nur ein Z2^-Modul ist, die obige Koeffizientensequenz

also nicht aufspaltet [vgl. 3]. Doch kônnen wir auf jeden Fall schliessen, dass

die Multiplikation mit einer natûrlichen Zahl r, teilerfremd zu q falls q¥"0, einen

Isomorphismus hn(X; Zq)I>hn(X; Zq) induziert.

d) Transformationsgruppen

Es bezeichne n eine endliche Gruppe, die auf einem topologischen Raum X
operiert. Bekanntlich gibt es fur n einen klassifizierenden Raum Bn K(n, 1), der ein

CW-Komplex mit endlichen Skeletten ist. Seine universelle Oberlagerung En ist ein

zusammenziehbarer Raum, auf dem n fixpunktfrei operiert. Wir wollen n auf XxEn
operieren lassen mittels a(x, y) (ax, ay) fur aile aen, xeX und yeEn. Mit Xn be-

zeichnen wir den Raum der Bahnkurven (Orbitraum) XxEJn beziiglich der Opera-
tionen von n. Die Projektion Xx En-*En ist mit dem Operieren von n vertrâglich und

induziert somit eine Abbildung Xn-+Bn zwischen den entsprechenden Orbitrâumen.
Dièse Abbildung ist eine Faserung mit Faser X [vgl. 4, p. 52].

§ 1. Râume mit Operatorengruppen

Operiert die endliche Gruppe n auf dem Raum X, so gibt die Spektralsequenz der

Faserung X-+Xn-*Bn (vgl. § 0, (b)) einen Zusammenhang zwischen der Cohomologie
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von X und der von Xn an. Das folgende Lemma gestattet es dann, von der Cohomo-
logie von Xn auf jene von X/n zu schliessen.

Lemma 1. DieProjektion Xx En-*X induziert eine Abbildung <p\Xn-*Xln zwischen

den Orbitràumen. Sind Xn und Xjn in ?t und ist q 0 oder (q, \n\) 1, so induziert (p

einen Isomorphismus hn(X/n; Zq)^hn(Xn; Zq).

Beweis. Es sei q> die oben beschriebene Abbildung Xn->X/n. Fur yeX/n gilt
(p~1(y)^EJn(y), wobei yeX ein Punkt ist, der ûber yeXjn liegt, und n(y) die Iso-

tropiegruppe von yeX bezeichnet (d.h. n(y)={aen\ay=y}). Wegen EJn(y)^
*K(n(y), 1) ist somit, fur q 0 oder(?, \n\)^hHn{cp~x(yY Zq)^Én(n(y); Z,) 0;
denn die Ordnung von n(y) ist natûrlich ein Teiler der Ordnung von n. Also folgt
aus dem ,,Mapping-Theorem" von Vietoris, dass ç einen Isomorphismus </>*:

Hn(X/n; Zq)^Htt(Xn; Zq) induziert. Im Falle ^ 0 folgt daraus direkt obiges Lemma,
wenn man beachtet, dass es fur eine auf % definierte Cohomologietheorie hn einen

natûrlichen Isomorphismus hn(X; Q)^ 0 Hr(X;hs(S°)®Q) gibt [vgl. 5, p. 397].
r + s — n

Ist q^O.so betrachtet man die durch <p induzierte Abbildung 0 : X* a Mq~+(Xln)+ a Mq.

Die Abbildung 0*:ffn((Xlit)+ AMq)-+Hn(X+ aMq) fâllt offensichtlich mit <p* zu-

sammen, ist also ein Isomorphismus. Da X* a Mq und (X/n)+ AMq in 21 liegen,
kônnen wir schliessen [vgl. 5, p. 376], dass 0 somit fur eine beliebige Cohomologietheorie

hn einen Isomorphismus hn((X/n)+ AMq)-^hn(X^ aMJ induziert. Also ist

hn(X/n;Zq)^hn(Xn;Zq).

Bemerkung. Operiert n fixpunktfrei auf X, so sind Xn und X/n homotopieâquiva-
lent, denn die Abbildung Xn-+X/n ist dann eine Faserung mit zusammenziehbarer
Faser En. Das obige Lemma ist also fur diesen Fall trivial.

Satz 1. Es operiere die endliche Gruppe n auf dem Raum X. Sind X, Xn und X/n
in % so ist fiir <7 0 oder (q, |7i|)=l der unter den Operationen von n invariante Teil
der Cohomologie von X (mit Koeffizienten Zq) isomorph zur Cohomologie des Orbit-

raumesXln: ^^
Beweis. Wir betrachten die Faserungs-Spektralsequenz {E?*n, dr) der Faserung

X-+XK-+BK. Sie konvergiert, da XK in 91 und Bn ein CW-Komplex mit endlichen

Skeletten ist. Da die Multiplikation mit der Gruppenordnung \n\ einen Isomorphismus

hn(X; Zqp^hn(X; Zq) induziert (vgi. § 0, Abschnitt c) folgt

hn(X;Zq)n fur m 0

3 fur m ^ 0

Mithin sind aile Differentiale dr-0 fiir r^l, und es gilt also £J"f"s£«'"- wir er-

halten somit E^n^lf(X; Zq)n^^°hn(Xn; Zq)..
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Also ist, da die Filtrierung von hn(Xn; Zq) vollstândig ist, &°hn(Xn; Zq)^hn(Xn; Zq).
Verwenden wir noch Lemma 1, so folgt hn(X/n; Zq)^hn(Xn; Zq)^hn(X; Zq)n, wobei
die Isomorphismen von den kanonischen Abbildungen (X-+Xn
induziert werden.

§ 2. Triviale Operationen auf den Cohomologiegruppen

Es sei weiterhin X ein Raum mit endlicher Operatorengruppe n. Die Râume X,
Xn und X/n sollen in îl sein. Wir wollen in diesem ganzen Paragraphen voraussetzen,
dass die Abelschen Gruppen hn(X) endlich-erzeugt seien.

Satz 2. Es sei n eine endliche Gruppe von Operatoren auf X und q>\ eine Zahl
mit (q, |7c|)=l. Operiert n trivial auf hn~1(X;Zq) fiir eine bestimmtes neZ, so ist

Tor(hn(X), Zq)^Tor(hn(X/n), Zq).

Beweis. Wir betrachten fiir i=n— 1 und i=n die Koeffizientensequenzen

0-*hi(X)®Zq -> hl(X;Zq) -> Tor(hi+i(X),Zq) ^0
f/t®Zq | /, |Tor(/I + 1,Zq)

0 -> h1 (X/n) ®Zq-+ h^X/n; Zq) -> Tor(hi+l (X/n), Zq) -+ 0

Die vertikalen Homomorphismen seien durch die kanonische
induziert. Dann ist das ganze Diagramm kommutativ wegen der Natûrlichkeit der

Koeffizientensequenzen. Nach Satz 1 ist ft ein Monomorphismus. Es folgt

1) fn®Zq:hn(Xjn)®Zq-^hn(X)®Zq ist ein Monomorphismus.q:h(Xjn)®Zq-^h(X)®Zq
Unsere Voraussetzungen ùber hn~x(X\ Zq) ergeben mit Satz 1 zusammen, dass

/„_! ein Isomorphismus ist. Also folgt

2) Tor(/n, Zq):Tor(hn(Xjn), Zq)-*Tor(hn(X), Zq) ist ein Epimorphismus.

Aus 1) und 2) kann man (fiir endlich-erzeugte Abelsche Gruppen) schliessen, dass

Tor(hn(X/n), Zq)^Tor(hn(X), Zq) ist.

Offensichtlich folgt dies auch schon, wenn man nur voraussetzt, dass die #-primâ-
ren Teile von hn(X) und hn(Xjn) endliche direkte Summanden sind.

Korollar 1. Operiert n trivial auf hn(X) fiir aile n, so ist hn(X)^hn(Xjn) modulo

\n\-Torsion (d.h. hn(X) modulo der Untergruppe der Elemente, welche als Ordnung
einen Teiler einer Potenz von \n\ haben, ist isomorph zur entsprechenden Faktorgruppe
von hn(Xjn)).

Beweis. Nach Satz 2 haben hn(X) und hn(Xjn) die gleiche Torsion modulo
|7i|-Torsion. Dass hn(X) und hn(Xjn) den gleichen Rang haben folgt aus Satz 1, welcher

im Falle trivialer Operationen von n auf hn(X) impliziert hn(X)®Q^hn(Xln)®Q.
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Bemerkung. Dafiir, dass hn(Y) mit Fe9t endlich-erzeugt ist, geniigt die Voraus-

setzung: h*(S0) endlich-erzeugt fur aile feZ.
Wir wollen ein Beispiel einer Anwendung von Koroilar 1 angeben. Hodgkin hat

in [6] unter anderem bewiesen, dass der unitâre K-Ring K*(G) einer kompakten zu-
sammenhângenden Liegruppe torsionsfrei ist, falls die Fundamentalgruppe nl(G)
keine Torsion besitzt. Wir kônnen dies wie folgt verallgemeinern

Korollar 2. Ist G eine zusammenhângende undkompakte Liegruppe und bezeichnet

T die Torsionsuntergruppe der Fundamentalgruppe von G, so hat K*(G) hôchstens

\T\-Torsion.

Beweis. Es sei nl(G) F®T. Zum Normalteiler F von nl(G) gehôrt eine Ober-

lagerung G' von G, auf welcher die Decktransformationengruppe n^nl(G)/F^T
operiert. Nun erfullt aber G' die Voraussetzungen des Satzes von Hodgkin (loc. cit.),
denn nach Konstruktion ist G' eine kompakte zusammenhângende Liegruppe mit
torsionfreier Fundamentalgruppe nl(Gf)^F. Also ist Kn{G') torsionsfrei fur aile neZ.
Da G' eine zusammenhângende Liegruppe ist, sind die Operationen von n auf G' vom
Homotopietyp der Identitât. Folglich operiert n trivial auf Kn(G'), und wir erhalten
Korollar 2 aus Korollar 1 fur hn Kn.

§ 3. p-Gruppen, die auf endlichen CW-Komplexen operieren

Im folgenden bezeichnet n immer eine (endliche) /?-Gruppe, aiso eine Gruppe,
deren Ordnung eine Potenz von/? ist. Um Sâtze ûber/?-Gruppen zu beweisen, ist das

folgende bekannte Lemma ein nûtzliches Hilfsmittel.

Lemma 2. Operiert eine p-Gruppe n auf einer endlichen Menge M, so besteht

zwischen der Anzahl der Elemente von M und der Anzahl der Fixelemente unter n die

folgende Beziehung: \M\ \Mn\ mod./j.
Der Beweis ist évident: Die Menge M—Mn ist Vereinigung von disjunkten

7r-Âquivalenzklassen, wobei die Anzahl der Elemente in einer solchen Âquivalenzklasse
ein Vielfaches von p betrâgt.

Ist q eine ungerade Primzahl oder 0, so ist hn(X; Zq) ein Zq-Vektorraum (vgl. § 0,

Abschnitt c). Ist seine Dimension ùber Zq endlich, so schreiben wir daSùrp^[)(X)9 und

nennen dies die «-te Bettizahl mod.# von X. Fûr^0)(Z) schreiben wir auch pn(X).
Natiirlich hângt p^(X) von der gewâhlten Cohomologietheorie hn ab. Fur die ge-
wôhnliche Cohomologietheorie Hn erhâlt man die Bettizahlen mod. q von X im klas-
sischen Sinn. Im folgenden wollen wir einige Relationen angeben, die unabhângig

von der betrachteten Cohomologietheorie zwischen den Bettizahlen bestehen. Zum
Beispiel sagt Satz 1 aus, dass unter den dort angegebenen Voraussetzungen immer

W*) ist wegen hn(X; Ztf^h\X\n\ Zq).
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Wir werden nun Lemma 2 auf/?-Gruppen anwenden, die auf endlichen Cohomo-
logiegruppen operieren. Dabei wollen wir immer voraussetzen, dass die Râume X,
Xn, und X/n in ?l liegen und somit Satz 1 gilt.

Satz 3. Es operiere die p-Gruppe n auf X. Dann bestehen zwischen den Bettizahlen

(bezilglich einer beliebigen Cohomologietheorie) die folgenden Beziehungen

a) Ist <?#0 und(p, q) 1, so istfiir aile n:p(nq)(X)=p(nq)(X/n) mod.%), wobei 0(q)
den kleinsten Exponenten k>0 mit qk=l mod.p bezeichnet.

b) Sind die Gruppen hn(X) und hn(X/n) endlich-erzeugt fur aile n, so folgt pn(X)

Beweis. Nach Satz 1 ist hn(X; Zq)n^hn(X\n\ Zq) falls q 0 oder (q,p) 1 ist.

Fall ##0. Wir schreiben kurz a und b fur die Dimensionen/^pf) undp^\X/n). Aus
Lemma2 folgt \hn(X; Zq)\=qa=\hn(X; Zq)n\ \hn(Xln; Zq)\ =qb mod.p. Demnach ist
qa~h=\ mod./?, woraus mit der obigen Définition von 9(q) folgt a — b k'6(q).

Fall q 0. Wir wollen diesen Fall auf den vorigen zurûckfûhren. Dies ist môglich,
wenn wir eine Primzahl r finden mit

I) AW^'W und pn(Xln)=pï\Xln)

II) 9(r)=p-l
Dann folgt nàmlich pn(X)=pn(X/n) mod.(^— 1). Nach dem universellen KoefRzien-

tentheorem folgt
hn(X; Zs) s ft"(X) ®ZS® Tor {hn+

x (X), Zs)

fur eine beliebige ungerade Primzahl s. Wâhlt man s teilerfremd zu den Ordnungen
der (endlichen) Torsionsuntergruppen der Gruppen hn(X), hn + 1(X), hn{Xjn) und

hn+l(X/n), so ist die Bedingung I evidenterweise erfùllt.
Es sei nun q* eine natùrliche Zahl mit 0(q*)=p— 1, d.h. eine primitive (p— l)-te

Einheitswurzel mod.p. Dann ist (^*,/?)=l. Nach dem Satz von Dirichlet gibt es

folglich in der Menge F={f\ f=q* + mp, meZ,m>0} unendlich viele Primzahlen.

Aber fur alle/eFgilt trivialerweise/w=(^* + m/?)w (^*)w mod.p, also 0(f) 6(q*).
Wir wâhlen nun aus F eine Primzahl p*9 welche die Ordnungen der Torsionsuntergruppen

von hn(X), hn + 1(X), hn{Xjn) und hn+i(X/n) nicht teilt. Dann hat/?* die von

r geforderten Eigenschaften.

Bemerkung. Ein analoges Résultat erhâlt man fur q 2, wenn man sich auf
Cohomologietheorien beschrânkt, fur welche hn(X; Z2) ein Z2-Modul ist (z.B. unitâre

K-Theorie).

Der Satz 3 gibt keine Auskunft ùber p(np)(X). Wir wollen wenigstens fur die ge-

wôhnliche Cohomologie eine Abschâtzung dieser kritischen Bettizahl angeben.



338 G. MISLIN

Satz 4. Es sei n eine p-Gruppe, die fixpunktfrei aufeinem Raum X operiere. Datin
erfullen die gewohnlichen Bettizahlen moé.p von X und X/n die folgende Ungleichung:

Beweis. Wir zeigen dies vorerst fur den Fall n^Zp. Der allgemeine Fall wird sich
dann mit vollstândiger Induktion ergeben. Es gibt eine exakte Sequenz von 7r-Moduln
()-?/-» Zp[7t]-»Zp->0 wobei / das Augmentationsideal von Zp[tt] bezeichnet. Dièses

Idéal ist nilpotent und es gilt sogar /*//*+1 Zp fur 0<A:</>(/o Zp[>], /p 0), vgl.
[4, p. 39]. Wir haben somit eine Anzahl von Koeffizientensequenzen 0-»/k+1-»/*->
->Zp-»0, zu welchen exakte Cohomologiesequenzen

gehôren. Man liest daraus ab, dass fur die Zp-Dimensionen gilt dim Hn(Xjn; /*)
Hn(Xjn\ Ik+l)+p[p)(Xjn).

Wegen Hn(Xjn; I°) Hn(X/n; Zp[n~])^Hn(X; Zp) folgt

p(np)(X) < dimHn(Xln; I1) + p{np){Xjn) < àimHn{Xjn\ I2)
< dimHn(Xln; F'1) + (p - l)-p

Aber es ist P'1 *Llp~x\P^Zp, woraus schliesslich p^\X)^p-p^\X\n) folgt.
Ist n irgendeine/7-Gruppe, so besitzt sie einen Normalteiler nN vom Index /?, denn

n ist auflôsbar. Man kann also die Abbildung <P:X-+X/n faktorisieren uber X/n^ als

&=:<P2<pl;

X -> XlnN -> Xjn

Ein Induktionsschluss liefert sofort piP\X)^\nN\p(np)(X/nN)^p'\nN\pinp)(Xl7t)
\n\piP\Xln).

§ 4. Einige Anwendungen

Wir wollen einige einfache Korollare angeben, welche aus den Sâtzen der letzten

Paragraphen folgen. Die Râume X, Xn und Xjn sollen wie immer in % liegen.

Korollar 3. Es operiere die p-Gruppe n aufX. Sinddie Gruppen hn{X) und hn {Xjn)
endlich-erzeugt und ist pn(X)<(p— l)fur aile n, so operiert n trivial aufh*(X; Q).

Beweis. Aus Satz 3 folgt pn(X)=pn(Xjn) mod.(p— 1). Anderseits ist allgemein
pn(X)^pn(Xjn), sodass auspn(X)<(p— 1) folgt, dasspn(X)=pn(Xjn) sein muss. Also
ist hn{Xjn\ Q)^hn(X; Qf^hn(X; Q) fur aile n.

Einen analogen Satz erhâlt man, wenn man in Korollar 3 die Bedingung pn{X)<
{p-\) ersetzt durchp^(X)<6(q).

Die nun folgenden Korollare beziehen sich auf die gewôhnliche Cohomologie-
theorie Hn.



Râume mit Operatorengruppen und Cohomologie 339

Korollar 4. Es operiere die p-Gruppe nfixpunktfrei auf X. Ist p(np)(X/n) 0 so ist
auchpinp)(X) 0.

Der Beweis folgt direkt aus Satz 4, welcher aussagt, dass die Ungleichung

Fur die anderen Bettizahlen p(nq\ q teilerfremd zu p, kann keine solche Beziehung
bestehen, wie einfache Gegenbeispiele zeigen.

Korollar 5. Es operiere die p-Gruppe nfixpunktfrei aufX. Ist die Euler-Poincaré-
Charakteristik j((I)#O, so folgt maxpn(X)^(p-\). (Es ist Xe% also Hn(X) end-

n

lich-erzeugt fiir aile n und die Euler-Poincaré-Charakteristik x(X)=Z(—l)nPn(X)
wohldefiniert.)

Beweis. Wâre ma,xpn(X)<(p— 1), so wûrde aus Korollar 3 folgen pn(X)=pn(X/n)
und mithin x(X) x(X/n). Da wir vorausgesetzt haben, dass n fkpunktfrei operiert
gilt bekanntlich x(X) — \n\'x(X/n). Wegen x(X)^0 miïsste somit \n\ 1 sein, was wir
natùrlich ausschliessen.

Man kann aus diesen Korollaren Sâtze uber beliebige Transformationsgruppen
auf X erhalten, wenn man das Operieren ihrer endlichen p-Untergruppen betrachtet.

Zum Schluss sei noch eine Anwendung auf die Gruppentheorie angegeben. Es

bezeichne G eine beliebige (nicht unbedingt endliche) Gruppe und Rp(G) dimZp

(G/[G, G])®Zp den /?-Rang der abelsch-gemachten Gruppe G. Mit Hilfe von Satz 4

kann man eine Abschâtzung fiir den /?-Rang eines abelsch-gemachten Normalteilers

von G gewinnen.

Korollar 6. Es sei H ein Normalteiler der Gruppe G und GjH eine (endliche)

p-Gruppe. Die abelsch-gemachten Gruppen G und H sollen endlich-erzeugt sein. Dann

giltRp(H)^\GIH\Rp(G).
Beweis. Wir wâhlen fur Xden Eilenberg-MacLane CW-Komplex K(H, 1), welcher

K(G9 1 ùberlagert. Decktransformationengruppe dieser Uberlagerung ist die/?-Gruppe

n^G/H. Nach Satz 4 (der auch fur unendliche CW-Komplexe gilt) folgt p[p){X)^
^\G/H\ -p[p) (XIn). Da G/[G, G] endlich-erzeugt ist, gilt H ' (X/n ; Zp) s Hom (G/lG9 G],
ZP)^(G/[G, G])®ZP und somitp[p)(X/n) Rp(G). Analog istpip)(X) Rp(H), womit
das Korollar bewiesen ist.

Ist G eine freie Gruppe, so steht dièses Korollar im Einklang mit dem Satz von
Schreier, welcher besagt, dass (RP(H)-1)= \G/H\ (Rp(G)-l) ist; also gilt RP(H)

\GIH\-Rp(G)-(\G/H\-l)^\GIH\Rp(G).
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