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Zur Eindeutigkeit konformer Abbildungen

von Gebieten unendlichen Zusammenhangs

von W. Meier-Solfrian in Zurich.

Einleitung

In der Théorie der konformen Abbildungen betrachtet man verschiedene Klassen

von Normalgebieten1) und fragt nach Existenz und Eindeutigkeit einer 1 —

1-konformen Abbildung eines beliebigen Gebietes auf ein Normalgebiet einef Klasse. In
vorliegender Arbeit wenden wir uns der Eindeutigkeitsfrage zu und verweisen fur die

Existenz auf die Arbeiten von Grôtzsch [4], Jenkins [8], Courant [3] und Strebel
[14].

Fur Kreisgebiete2) endlichen Zusammenhangs beweist Koebe [10] Existenz und

Eindeutigkeit mit Hilfe eines iterierenden Verfahrens. Eine von Carlemann [2] und
Shiffman [12] erstmals verwendete Beweisfûhrung von Eindeutigkeitssâtzen hat sich

als sehr erweiterungsfâhig erwiesen. Die Méthode ist kurz die folgende:
Seien/i und/2 zwei 1 — 1-konforme Abbildungen eines Gebietes auf zwei Normal-
gebiete G bzw. H derselben Klasse. Man bèhauptet: Bei gegebener Normierung von

/i und/2 ist h=f2of~\.: G-*H die Identitât, d.h. £ /*-id 0. Mit der Antithèse

g^O wird zufolge der Normierung g auch nicht konstant. Die Berechnung des Argu-
mentenzuwachses von g(z) lângs des Randes von G fûhrt zu einem Widerspruch zum
Argumentenprinzip.

Grôtzsch [5] erweitert die Méthode, indem er kleine Verschiebungen des Bild-
gebietes einfûhrt, und er sowie Courant [3] beweisen Eindeutigkeitssâtze von
Abbildungen auf Normalgebiete endlichen Zusammenhangs mit konvexen Randkurven.
Strebel [13] beweist mit dieser erweiterten Méthode zwei Eindeutigkeitssâtze des

Kreisnormierungsproblems fur Gebiete mit hôchstens abzâhlbar vielen Randkompo-
nenten. Beide Sàtze enthalten zusâtzliche Voraussetzungen an die durch die konforme

Abbildung induzierte Zuordnung der Randpunkte.
Mit Hilfe derselben Méthode beweisen wir unter Verwendung der Untersuchungen

ûber die Rânderzuordnungen bei 1 — 1-konformen Abbildungen (§2) und zweier

topologischer Hilfssâtze (§ 3) zwei Eindeutigkeitssâtze (Sâtze 3 und 4), welche die

genannten Eindeutigkeitssâtze in folgendem Sinne erweitern :

*) Eine allgemeine Définition von Normalgebieten gibt Courant [3].
2) Das sind Gebiete, die von Kreisen und Punkten berandet sind ; man spricht dann oft vom sog.

Kreisnormierungsproblem.
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a) Wir betrachten Normalgebiete mit konvexen Randkurven (die auch punkt-
fôrmig sein kônnen) und lassen auch ûberabzâhlbar viele Randkomponenten zu,
(Voraussetzungen (C) und (D) in § 4).

b) Die Voraussetzungen an die induzierte Zuordnung der Randpunkte sind allge-
meiner, (Eigenschaft (Ao) in § 2, Voraussetzung (A) in § 4).

So umfasst das Korollar zu Satz 3 die Aussagen beider Eindeutigkeitssâtze fur
Kreisgebiete von Strebel [13]. Der Satz 4 erweitert einen Eindeutigkeitssatz von
Courant [3] fur endlichen Zusammenhang auf den Fall von ûberabzâhlbar vielen

Randkomponenten.
In § 1 beweisen wir einen Satz ûber analytische Fortsetzbarkeit, welcher folgenden

Eindeutigkeitssatz als Korollar liefert:
Ein Kreisgebiet mit lauter punktfôrmigen Randkomponenten, welche auf einer

abzâhlbaren Menge von paarweise disjunkten, abgeschlossenen und rektifizierbaren
Jordanbogen liegen, lâsst sich nur durch eine lineare Transformation auf ein anderes

Kreisgebiet konform abbilden.

Bezeichnungen und Begriffe

Die Menge der Randkomponenten eines Gebietes G bezeichnen wir mit F und
deren Elemente mit C. Die Menge F ist mit der ûblichen metrischen Topologie ver-
sehen (siehe z.B. [13]). Mit FqCzF bezeichnen wir den perfekten Kern von F; er ist
definiert als Durchschnitt aller Ableitungen F* von F. Der perfekte Kern Fo ist dann
und nur dann leer, wenn F hôchstens abzâhlbar ist. Dann gibt es Ordnungszahlen,
deren zugehôrige Ableitungen verschwinden und somit eine kleinste, etwa fi, mit
Ffi 0. Zu dem ist fi keine Limeszahl (Beweis in [13]), d.h. es gibt eine Zahl /?' =/?— 1,

deren zugehôrige Ableitung aus nur endlich vielen Randkomponenten besteht. Ist F
ûberabzâhlbar, so zerfâllt F in den ûberabzâhlbaren perfekten Kern Fo und die
hôchstens abzâhlbare Menge F — Fo. Mit A bezeichnen wir die Randkomponenten-
menge eines Gebietes H, mit AocA den perfekten Kern und mit D die Elemente von
A.

§ 1. Hebbare Punktmengen

Wir betrachten ein ebenes Gebiet G und eine vollkommen unzusammenhângende
relativ abgeschlossene Teilmenge E von G. Sei ^=^{G — E) die Menge der 1 — 1-

konformen Abbildungen / von G — E, welche hôchstens eine abzâhlbare Teilmenge

von E in nicht-punktfôrmige Randkomponenten des Bildgebietes uberfuhren.
E heisse hebbar bezuglich ^', wenn sichjedesfe^in E analytisch fortsetzen lâsst.

Satz 1. Eine vollkommen unzusammenhângende und relativ abgeschlossene

Teilmenge E von G ist hebbar bezuglich !F—ïF(G~Ë), wenn sie auf einer abzâhlbaren
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Menge B vonpaarweise disjunkten, abgeschlossenen undrektifizierbaren Jordanbogen2)
b liegt.

Korollar. Ein Kreisgebiet mit lauter punktfôrmigen Randkomponenten, dessert

Randkomponentenmenge E die im Satz 1 genannte Hebbarkeitsbedingung erfiillt,
lâsst sich nur durch eine lineare Transformation auf ein anderes Kreisgebiet konform
abbilden.

Beweis: 1) Wir zeigen zunâchst, dass E hebbar ist unter der Voraussetzung, dass

E auf einem einzigen abgeschlossenen rektifizierbaren Jordanbogen b in G liegt.
Vom Bildgebiet H kônnen wir voraussetzen, dass es den Punkt w oo nicht als

Randpunkt besitzt, denn durch eine Transformation w~*l/w — w0 mit w0 e H kônnen
wir dièse Voraussetzung immer erreichen.

Sei/: G — E-+H eine 1 — 1-konforme Abbildung aus & und A die hôchstens ab-
zâhlbare Teilmenge derjenigen Punkte von E, die durch / in nicht-punktfôrmige
Randkomponenten von H ûbergefùhrt werden. Dann gehen die Punkte der Menge
E—A in punktfôrmige Randkomponenten von //ûber, weshalb die Abbildung/in
natûrlicher Weise in dièse Menge fortgesetzt werden kann. Zudem definieren wir fur
jeden Punkt aeA den Bildpunkt/(a) als beliebigen Punkt derjenigen Randkompo-
nente von H, welche dem Punkt a entspricht. Die so definierte Abbildung/ist stetig
in E—A, denn fur zeE—A ist/(z) eine punktfôrmige Randkomponente von H, und
daher lâsst sich in jeder Umgebung U von/(z) eine Jordankurve um/(z) legen, die

in H verlâuft und deren Urbild eine Umgebung Va G von z umfasst; das Bild von V

liegt somit in U. Die Punkte von A sind somit die einzigen Unstetigkeitspunkte von/
und auf A ist/beschrânkt.

Seien c ein abgeschlossener Teilbogen von b und Ç: It-+c, wobei It (0<t<\),
eine Parametrisierung von c. Dann ist C in It von endlicher Variation und Ç"1^ n c)

ist hôchstens abzâhlbar und daher eine Menge der Variation Null bezûglich £(f).
Somit existiert das Lebesgue-Stieltjes-Integral

Die Endpunkte Co und Ci des abgeschlossenen Teilbogens c von b wâhlen wir derart,
dass sie nicht in E liegen und der orientierte und rektifizierbare Bogen b in diesen

Punkten eine wohlbestimmte Tangente besitzt. Sodann legen wir durch Co und Ci die

Kurvennormalen n0 bzw. nv Auf n0 bzw. nx wâhlen wir auf derselben Seite von b die

Punkte Po bzw. Pl9 auf der andern Seite Qo bzw. Qt derart, dass die Strecken ôo^o

3) Nach Kerékjart6 [9, p. 51] lâsst sich durch jede abgeschlossene, vollkommen unzusammen-
hângende und beschrànkte Punktmenge der Ebene eine Jordankurve legen, welche die ganze Punkt-
menge enthâlt.
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auf n0 und Qx Px auf nt in G verlaufen und ausser Co und Ci keine Punkte von b ent-
halten. Jeden der Punkte Po, Qo verbinden wir mit je einem in G — E verlaufenden
Polygon mit den Punkten Px bzw. Ql9 welche b nicht schneiden und so nahe an b

verlaufen, dass das Innere des geschlossenen und orientierten Polygons p
(CoPoPiCiôiÔoCo) als Teilgebiet von G einfach zusammenhângend ist. Die Punkte
A)> Pi9 Qo> Q\ seien zudem so gewâhlt, dass die Orientierung von/7 mit der positiven
Orientierung der Ebene ûbereinstimmt. Die orientierten Polygone Co^o^iCi und
C1Ô1Ô0C0 nennen wir p' bzw. p\ so dass p=pr -\-pn. Das Innere der geschlossenen
Kurve p' — c sei mit B' und das Innere von p" + c mit B" bezeichnet. Das einfach
zusammenhângende Gebiet B' bilden wir 1 — 1-konform auf die Einheitskreisscheibe

Kder j> relf-Ebene ab. Der Bogen — c entspreche dabei dem Bogen {eit\0<t<to}9

rejt -Ebene

der Punkt Ci geht in y± 1 und (o in y0 ét0 ûber. In K betrachten wir fur 0 < r < 1 die

Kurve à (r) mit dem Anfangspunkt y0 elto und dem Endpunkt yt 1, bestehend aus

der Strecke von yo eito nach reîto, dem Bogen {reu\to>t>0} und der Strecke von

y — r nach Ji l. Das Bild von ô(r) unter der Umkehrabbildung (p:K-+B' ist eine

Kurve d'{r)in B' mit dem Anfangspunkt (0 und dem Endpunkt Ci- Auf gleiche Weise

wie d' (r) in B' erhalten wir fur dieselbe Zahl r eine Kurve d" (r) in B" mit dem Anfangspunkt

Ci und dem Endpunkt Co- E>as Innere der geschlossenen Kurve d(r) d'(r) +
d"(r) heisse Bo. Das Gebiet B1=B' — B0 hat den orientierten Rand// — d'{r) dx und

B2 B" - i?0 ist berandet durch p" - rf"(r) d2. Nun gilt dt + d2=p'-d' (r) +/?" - d" (r)
=p-d(r). Fur einen beliebigen Punkt z in ^ gilt somit nach Cauchy

(z)
— z

(1.2)

di+d2 d(r)
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Fur r-> 1 strebt d(r) gegen die doppelt durchlaufene Kurve c, und wir behaupten, dass

C O gilt. (1.3)lim I

r-l J

Dann ist nâmhch/in die Menge En c analytisch fortsetzbar, denn fûr/(z) haben wir
die Darstellung

deren rechte Seite eine im ïnnern von p, also auch auf Enc, analytische Funktion
darstellt, die in Bt mit/ûbereinstimmt.

Um die Behauptung (1.3) zu beweisen, schreiben wir das Intégral ûber d(r)
dr{r) + d"{r) als Summe der Intégrale ûber d'{r) und d"(r) und zeigen, dass dièse

Intégrale fur r-*l gegen jene ûber c bzw. — c konvergieren.
Die obige 1 — 1-konforme Abbildung cp.K^B' ist auf |^| 1 stetig, und (p(elt) ist

in(0<7</0) von endlicher Variation, denn c ist rektifizierbar. Mit(l.l)existiertsomit
das Lebesgue-Stieltjes-Integral

„(«•¦)-* v/ H-* c

0 c

Nach einem Satz von F. und M. Riesz (siehe etwa [6, p. 369]) ist cp(elt) sogar absolut
stetig, und Ic lâsst sich als Lebesgue-Integral schreiben :

9(O-s dt
o

Fur r->l strebt d'(r) gegen c und wir behaupten:

i—i J C —
(1.4)

z
d'(r)

'

Aus (1.4) folgt dann (1.3) unmittelbar, denn die Konvergenz des Intégrais ûber d"(r)
gegen — Ic zeigt man wie (1.4).

Zum Beweis von (1.4) betrachten wir eine gegen 1 konvergierende Folge (rn),

wobei 0<rM<l, und setzen: (p(rnelt) (pn(t) und (p(elt) (p(t). Die Ableitung von (p

nach y relt bezeichnen wir mit cp'(relt) und setzen (p'(rnelt) (pfn(t). Unter cpf(eli)

(p'{t) verstehen wir den Grenzwert von cp'(relt) fur r-»l, wo dieser existiert. Zudem
schreiben wir

ti(/).At\\
und
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Nun gilt

und nach [6, p. 369] gilt fast ûberall auf | y\ 1

Die Intégrale ûber die Teilbogen von d'(r), die den radialen Teilstrecken von <5(r)

entsprechen, konvergieren mit r-*l gegen Null, und somit lautet unsere Behauptung:

lim { Fn(tyrne"-<p'n(t)dt= f F{t)-elt-q>'(t) dt. (1.5)

Nun ist

elt cp'n — F elt q>f) dt

'o (o

J {Fnrne"cp'n - Fe"cp'n) dt + J (Fe"<p'n - Fe"<p') d

< \\Fnrn-F\-\q>'n\dt + [ \F\\<p'n-q>'\dt.
J J
o o

Die Funktion F(t) ist beschrânkt: \F(t)\<M, also

j\F\-\<p'm-<p'\-dt£M-j\q>:-<p'\dt;
O 0

und dass das letzte Intégral mit n-*oo gegen Null konvergiert, folgt aus bekannten
Sâtzen: nach einem Satz in [6, p. 369] gehôrt die Funktion q>'{relt) der Klasse H± an,
fur deren Elemente ein zweiter Satz, [6, p. 355] u.a. die gewûnschte Konvergenz aus-
sagt.

Es bleibt zu zeigen, dass

lim (\Fnrn-F\-\<p'n\dt 0 gilt.
H-+O0 J

(1.6)

Die Funktion Fn — F (und somit auch Fnrn — F) strebt mit «->oo fast ûberall auf
[0, ^0] gegen Null; die Ausnahmemenge ist die hôchstens abzâhlbare Menge
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(p'1 (Ane). Nach einem Satz von D. F. Egorow [11,p. 99] ist die Konvergenz auf
einer abgeschlossenen Menge P vom Masse t0 — rj gleichmâssig, wobei rj > 0 beliebig
klein gemacht werden kann. D.h. zu e>0 existiert ein n0 derart, dass \Fn(t)rn — F(t)\
<e fur aile teP, sobald n>n0. Zudem ist Fnrn — Fbeschrânkt:

\Fn (t) rn-F (01 < N fur aile t und n.

Somit gilt fur n>n0, wenn Q [0, to]—P,

- F\-\<p'H\ dt < B-j \cp'n\ dt + N-j \<p'n\ dt. (1.7)

Q P Q

Wir wâhlen nun t\ so klein, dass JQ \<p'\ dt<s wird. Dann ist fur aile hinreichend

grossen n

\cp'n\ dt < e und ebenso \q>'H\ dt < \cp'\ dt + e C + e,

Q P P

und daraus folgt (1.6).
Wir haben gezeigt, dass jede Abbildung/: G — E-+H aus J^ in die Punktmenge

Enc auf einem geeigneten abgeschlossenen Teilbogen c von b analytisch fortsetzbar
ist. Nun kônnen wir b bis auf die Endpunkte durch solche Teilbogen c ausschôpfen
und somit/in aile Mengen Enc und schliesslich auch in die isolierten Endpunkte
analytisch fortsetzen. Also ist E hebbar bezûglich ^(G — E).

2) Nun liège E auf der genannten Menge B von rektifizierbaren Jordanbogen b.

Um die Hebbarkeit von E zu zeigen, betrachten wir zunâchst eine beliebige kompakte
Teilmenge Eo von E. Nun ziehen wir eine in G — E verlaufende Jordankurve y, welche

Eo im Innern enthàlt. Dann hat y von E einen positiven Abstand q. Seien bl9 b2,

jene Bogen aus B, welche Punkte von Eo enthalten. Durch Weglassen offener Kurven-
stucke, die keine Punkte von E enthalten, kônnen wir jeden Bogen bt (/= 1, 2, in
endlich viele Teilbogen bin zerlegen, dass die Lange jedes Teilbogens kleiner ist als

min(^/2, l/i) und jeder Teilbogen wenigstens einen Punkt von E enthâlt. Die so

erhaltenen Teilbogen haben keine Punkte mit y gemeinsam, und die im Innern von y

gelegenen Teilbogen bilden eine abzâhlbare Menge Bo von abgeschlossenen, paarweise

disjunkten rektifizierbaren Jordanbogen, auf denen die Menge Eo liegt. Die Folge der

Lângen der Bogen aus Bo konvergiert gegen Null. Nun definieren wir in Bo die Topo-
logie, welche auf der Menge der Randkomponenten eines Gebietes ûblich ist. (vergl.
[13]). Dann ist Bo kompakt, denn jeder Hâufungspunkt z einer Folge (bn) von Bogen

aus Bo ist Hâufungspunkt einer Punktfolge aus Eo, liegt also in Eo und somit auch auf
einem Bogen von Bo.
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Wir bilden die Menge B1 der Hâufungselemente von 2?0, dann die Menge B2 der
Hâufungselemente von B1, usw. Derart erhalten wir die Folge

Bo => B1 => B2 3 •••=> Bm z> ...i3 B* 3...

der Ableitungen der Menge i?0 ; dabei bezeichnet co den Ordnungstypus der natûr-
lichen Zahlen, und a ist eine beliebige Ordnungszahl. Ist a eine Limeszahl, so ist B01

definiert als P)/?<a &- Der Durchschnitt aller Ableitungen ist eine perfekte Menge und
heisst der perfekte Kern von Bo. Dieser ist genau dann leer, wenn BQ hôchstens ab-
zâhlbar ist. Es gibt also in unserm Fall eine Ordnungszahl a', so dass B*' leer ist. Nun
bilden wir die Mengen Ma B0-B* fur a=l,2, ...,co, Dann ist B0 \J Ma.Wir
zeigen durch transfinite Induktion nach a, dass / in die ganze Menge Eo analytisch
fortgesetzt werden kann.

Die Kurven von Mi B0 — B1 sind isoliert und / lâsst sich in die Teilmenge von
Eo, die auf Mt liegt, analytisch fortsetzen. Dieselbe Eigenschaft habe nun die

Teilmenge von Eo, die auf den Mp mit P<a liegt. Ist a keine Limeszahl, so ist Ma

Mx-i U (B*~i—B<x). In die Punkte von Eo auf Ma_t kônnen wir/analytisch
fortsetzen, d.h. wir kônnen die Bogen von Ma_x aus Bo entfernen; dann sind aber die

Bogen in B*~1—B* isoliert und/lâsst sich auch in die Punkte darauf analytisch
fortsetzen.

Ist a eine Limeszahl, so gilt

d.h./lâsst sich auch in diesem Fall in aile Punkte von Eo auf Ma analytisch fortsetzen
und somit in die ganze Menge Eo.

Da Eo eine beliebige kompakte Teilmenge von E war, folgt die Hebbarkeit von E
bezûglich J5" und Satz 1 ist bewiesen.

§ 2. Zur Rânderzuordnung bei 1 — 1-konformen Abbildungen

Mit ^f bezeichnen wir im Folgenden die Familie von ebenen Gebieten, deren

Randkomponenten aus stark konvexen Jordankurven und Punkten bestehen und die
den Punkt oo nicht als Randpunkt besitzen.

Lemma 1. Die Folge der Durchmesser dn d(Cn) einer Folge (Cn) von Randkomponenten

eines Gebietes GeM* konvergiert gegen Null.

Beweis: G hat hôchstens abzâhlbar viele nicht-punktfôrmige Randkomponenten.
Sei Cl9 C2,... eine Abzâhlung derselben und (Cm) eine Teilfolge mit dni^d>0 fur
aile nt. Wir wâhlen auf jedem Cn. zwei Punkte zn. und z"ni mit \zni-z"n^d. Durch
Auswahl einer geeigneten Teilfolge kônnen wir erreichen, dass die Punktfolgen (z'ni)
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und (z,'/) konvergieren. Wir schreiben z' limz^ und z" limz^i und behaupten, dass

z' und z" auf derselben Randkomponenten Cliegen. Denn wûrden sie auf verschiede-

nen Komponenten C und C" liegen, so gâbe es eine in G verlaufende Jordankurve y,
die C" von C" trennt, und von einem gewissen nio an wûrden die Punkte z'ni im Innern
(bzw. Âussern) und die z"n% im Âussern (bzw. Innern) von y liegen, was nur môglich
wâre, wenn y die CHi schneiden wûrde.

Die Randpunkte z' und z" liegen also auf C und die offene Strecke z' z" im Innern
von C. Falls G im Âussern von C liegt, folgt aus der starken Konvexitât von C, dass

es eine Zahl N gibt, so dass aile Strecken zniz"ni mit nt>N die Kurve C schneiden. Das
ist aber ein Widerspruch, denn dièse Strecken mûssen im Innern der Cni liegen.

Liegt G im Innern von C, so wâhlen wir auf der Strecke z' z" einen Gebietspunkt z.

Da die Strecken z'nz"ni gegen die Strecke z' z" konvergieren, gibt es eine Folge (zn) mit
zn% auf der Strecke z'ntz'ni, die gegen z konvergiert. Da aber die Strecken z'niz'ni im
Âussern von G liegen, folgt der Widerspruch, dass z nicht in G liegt.

Satz 2. Jeder Randpunkt eines Gebietes Ge^f ist erreichbar.

Beweis. Zu einem beliebigen Randpunkt von G, den wir als z 0 annehmen kônnen,
konstruieren wir einen in G verlaufenden Jordanbogen, der gegen diesen Randpunkt
konvergiert und in diesem Punkt noch stetig ist.

Dazu betrachten wir die Kreisscheibe Kr {z\\z\<r} fur eine zunâchst noch feste

Zahl r>0. Mit dKr bezeichnen wir den Rand von Kr und mit C die zu den
Randkomponenten C von G gehôrenden Komplementârkontinuen4). Der Punkt z 0 liège
auf der Komponenten Co. Als Folge von Lemma 1 gibt es hôchstens endlich viele von
Co verschiedene Randkomponenten, wir nennen sie Q, Cn, welche sowohl den

Kreis \z\=r als auch den Kreis \z\=r/2 treffen.
Sei W das Komplement von (J"=o Q bezûglich der z-Ebene. Dann zerfâllt

WnKr in gewisse Gebietskomponenten, von denen genau eine, etwa Wr, den Punkt
z 0 als Randpunkt besitzt. Fur eine passende Zahl 0<g<r/2 ist der Durchschnitt der
Kreisscheibe Ke mit den Ci fur / 1,...,« leer, und KQ n Wr enthàlt eine wohlbestimmte
Komponente KfQ9 welche z 0 als Randpunkt hat. Zudem gilt K'eczWr und somit

K'enGdWrnG. Von einer Randkomponenten C von G, fur welche Wr — (CnWr)
in wenigstens zwei Komponenten zerfâllt, sagen wir, sie zerlege das Gebiet Wr. Nach
Konstruktion von Wr liegen aile Wr zerlegenden Randkomponenten in |z|>r/2.
Daraus folgt, dass jede Randkomponente C von G, welche K'Q trifft, das Gebiet Wr

nicht zerlegt. Daher ist K'enG ganz in einer wohlbestimmten Komponente Vr von
WrnG enthalten, und Vr hat z 0 als Randpunkt, denn z 0 ist Randpunkt von
K'Q n G, also auch von Fr. Zudem hat das Gebiet Vr Randpunkte auf dKr n G, denn

4) Das zu einer Randkomponente C gehôrige Komplementârkontinuum C ist die Vereinigung
von C mit denjenigen Komponenten seines Komplementes bezûglich der Vollebene, die zu G fremd
sind.
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jede Komponente von WrnG hat dièse Eigenschaft; das liegt daran, dass jede Rand-
komponente von G, welche Wr zerlegt, den Kreis dKr treffen muss.

Fur rx<r gilt VricVn und wir kônnen unsern Jordanbogen folgendermassen
konstruieren : Als Anfangspunkt wâhlen wir einen beliebigen Randpunkt z von Vr

auf dKr n G und verbinden dièse durch einen in Vr verlaufenden Jordanbogen mit
einem Punkt zx in Vr mit Iz^—r^ der Randpunkt von Vri ist. Nun wâhlen wir eine

gegen Null konvergierende Folge rt >r2> ••• und verlângern den Jordanbogen inner-
halb Vri nach einem Punkt z2 in Vri mit \z2\ =r2, der Randpunkt ist von Vrr Auf dièse

Weise fortfahrend erhalten wir den gewùnschten Jordanbogen, und der Satz 2 ist
bewiesen.

Wir betrachten nun zwei Gebiete G und H aus der Klasse 3tf und nehmen an, es

gebe eine 1 — 1-konforme Abbildung/: G-*#. Den Randkomponenten C von G sind
dadurch umkehrbar eindeutig die Randkomponenten D von H zugeordnet. C und D
seien zwei entsprechende, nicht-punktfôrmige Randkomponenten von G bzw. H. Sei p
ein gegen den Punkt PeC konvergierender Einschnitt von G. Fur f(p) q sind zwei

Fâlle môglich : entweder konvergiert q gegen einen einzigen Punkt oder gegen ein zu-
sammenhângendes Teilkontinuum von D. Sei [p] die Gesamtheit aller gegen P kon-
vergierenden Einschnitte von G. Wir bilden die Vereinigung IP aller Punkte von /),
welche Hâufungspunkte der Einschnitte f(p) q sind, wenn/? die Menge {p} durch-
lâuft. IP=f(P) besteht aus einem Punkt oder einem zusammenhângenden
Teilkontinuum von D.

Fur die im weiteren untersuchten 1 — 1-konformen Abbildungen/rG-»// wollen
wir ûber die induzierte Zuordnung / der Punkte je zweiter entsprechender, nicht-
punktfôrmiger Randkomponenten C und D folgende Voraussetzung fordern :

(Ao) Fur je zwei verschiedene Punkte P, Q von C besteht Ip^Iq aus hôchstens zwei
Punkten.

Unter der Voraussetzung (Ao) folgen fur die durch eine orientierungserhaltende 1 — 1-

konforme Abbildung/induzierte Zuordnung / der Punkte von C zu denjenigen von
D folgende Eigenschaften :

a) Die Menge M derjenigen Punkte P auf C, fur welche f(P) IP ein eigentliches
Kurvenstûck ist, ist hôchstens abzâhlbar.

b) Die Beschrânkung der Zuordnung /auf C—M ist eine orientierungserhaltende
Abbildung von C—M in D.

Wâre b) nicht erfûllt, so kônnte man mit Hilfe der Erreichbarkeit aller Randpunkte
und einer in G hinreichend nahe an C verlaufenden Jordankurve einen Widerspruch
zur Orientierungserhaltung von/ konstruieren.

Die Bedingung (Ao) an/ist âquivalent zu der entsprechenden Bedingung an/"1 :

Seien jR ein Punkt von D und {r} die Menge der Einschnitte von H, die gegen R

konvergieren. JRcC sei die Menge der Hâufungspunkte der Kurven/"1 (r) fur aile r
aus {r}. Dann ist(A0) âquivalent mit
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(At) Fur je zwei verschiedene Punkte R, S von D besteht JR n Js aus hôchstens zwei
Punkten.

Beweis. Sei (Ao) erfûllt, und als Antithèse zu (A^ seien R und S zwei verschiedene
Punkte von D derart, dass sich die Intervalle JR und Js auf C ûberlappen. Wir zeigen
zunâchst: die Menge JR n Js enthâlt ein ganzes Intervall / mit /(/) R.

Dazu sei P ein innerer Punkt von JR n Js, der nicht zu der in a) genannten Menge
M gehôrt, d.h. P hat einen wohlbestimmten Bildpunkt/(P), und die Bilder/(/?) der

Einschnittepe{p} konvergieren aile gegen/(P). Weil PeJR, gibt es einen gegen R

konvergierenden Einschnitt r derart, dass/ ~* (r) den Punkt P als Hâufungspunkt be-
sitzt.

Konvergiert nun/-1(r) gegen P, so folgt f(P) R; gibt es zwei verschiedene
solche Punkte P und P', so wird das ganze Kurvenstiick «/mit den Endpunkten P und
P' auf R abgebildet.

Andernfalls gibt es einen gegen R konvergierenden Einschnitt r, dessen Urbild
f~l{r) ein ganzes Kurvenstiick Jo von C als Hâufungspunkte besitzt und Jx

JonJRn Js ist ein nicht-punktfôrmiges Kurvenstiick. Sei P ein innerer Punkt von Jx

und nicht im M. Dann gibt es einen gegen P konvergierender Einschnitt/?, der/"1^)
in einer gegen P konvergenten Punktfolge schneidet und es folgt f(P) R. Wiederum
wird das ganze Intervall / zwischen zwei solchen Punkten auf R abgebildet.

Man zeigt nun analog, dass ein Intervall J'czJRn Js, das mit J ein ganzes Kurvenstiick

gemeinsam hat, auf S abgebildet wird. Fur einen Punkt Q aus J'nJ, der nicht
in M liegt, also einen wohlbestimmten Bildpunkt/(0 hat, haben wir den Wider-
sprnch f (Q) R^S=f (Q). Ebenso schliesst man von (AJ auf (Ao).

/ hat somit die gleichen Eigenschaften wie die durch / ~ * induzierte Zuordnung

Wir wollen noch zwei fur (Ao) hinreichende Bedingungen (A2) und (A3) angeben.
Seien C und D wiederum zwei entsprechende nicht-punktfôrmige Randkomponenten
von G bzw. H. Dann haben wir als zwei hinreichende Bedingungen fur (Ao):

(A2) Auf C oder D liegen jene Punkte diskret, welche Hâufungspunkte sind von
andern Randkomponenten von G bzw. H.

(A3) Das Bild f(p) jedes gegen einen Punkt P von C konvergierenden Ein-
schnittes p von G konvergiert gegen einen wohlbestimmten Punkt von D.

Auch die entsprechende Bedingung an/"1 impliziert die Voraussetzung (Ao).

§ 3. Zwei topologische Hilfssâtze

In der komplexen Ebene seien zwei Jordankurven c und d gegeben, die sich in
hôchstens endlich vielen Punkten schneiden und nirgens berûhren. Letzteres soll

folgendes bedeuten : die Durchschnitte jeder ebenen Umgebung eines gemeinsamen
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Punktes von c und d mit dem Innern bzw. dem Âussern der einen treffen je sowohl
Inneres als auch Âusseres der andern Kurve.

Nun sei /:c-*Jeine topologische orientierungserhaltende Abbildung mit f(z)^z
fur aile zec. Durch v(z)=f(z)-z definiert/ein stetiges Vektorfeld v auf c. Sei y die
Drehzahl dièses Vektorfeldes. Dann ist —j-2n Ac argy(z) die Argumentânderung
des Vektors v(z) bei einmaligem negativem Umlauf von z auf c.

Lemma 2. Fur zwei sich nicht beruhrende Jordankurven c und d gilt: Es ist
Ac arg(/(z) —z)<0 fur aile topologischen orientierungserhaltenden Abbildungen f:c-+d
ohne Fixpunkte genau dann, wenn c und d hôchstens zwei Schnittpunkte haben.

Beweis: Die Kurve c sei parametrisiert durch t^>z(t) mit /e/, (0</<l) und

z(0) z(l). Dièse Parametrisierung soll auf c die positive Orientierung induzieren.
Eine ebenfalls die positive Orientierung induzierende Parametrisierung von d erhalten

wir, wenn wir setzen z'(s)=f(z(s)) mit ^e/s (0<^< 1). Zudem wâhlen wir die

Parametrisierung von c derart, dass z'(0)=z'(l)=/(z(0)) nicht auf c und z(O) z(l) im
Innern von d liegt. Letzteres ist deshalb eine erlaubte Annahme, weil in den Fâllen, in
denen c und Jkeine gemeinsamen Punkte haben, offenbary > 0 ist fur aile betrachteten

Abbildungen/.
Auf dem abgeschlossenen Dreieck

T= {(*, s)elt x JJO < t < s < 1}

definieren wir auf folgende Weise ein Vektorfeld 5) :

Jedem Punkt (t, s) aus Tordnen wir den Vektor w(t, s) z'(s) — z(t)zu, also den in
die (f,,s)-Ebene verpflanzten Vektor mit dem Anfangspunkt z(t) und dem Endpunkt

5) Die Beweisidee wurzelt in einem Beweis von H. Hopf [7] fur den Satz, dass die Drehungszahl
des Tangentenfeldes. einer einfachen geschlossenen Kurve gleich ±1 ist.
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Ist t s, so haben wir w(t, s) v(t) =/(z(f))—z(t Der Rand von jfsei d= h — kt — fc2,

wobei /* die Strecke ist von (0, 0) nach (1, 1), kt jene von (0, 1) nach (1, 1) und k2 jene
von (0, 0) nach (0, 1). Auf d ist das Vektorfeld w stetig, ebenso im Innern von T bis

auf hôchstens soviele isolierte Singularitâten, wie die Kurven c und d Schnittpunkte
haben; denn ein Schnittpunkt ist durch z(f')=z'(s'), (t'i^s'), gekennzeichnet, und der
Punkt (/', s') liegt nur dann in T9 wenn t'<s'. Weil/topologisch ist, hat das Vektorfeld

w in (t'9sf) mit t'<s' eine isolierte Nullstelle. Um jede derartige Singularitât
q (t'9s') in T legen wir ein hinreichend kleines Quadrat Rq mit den Eckpunkten

(f'-c, s'-e), (t' + e, s'-e), (/' + c, s' + e)9 (t'-e, s' + s). Die Drehungszahl des Vektorfeldes

w auf dem Rand dRq heisst der Indexy €
der Singularitât q.

Nun ist die Drehzahl i{d) des Vektorfeldes w auf dem Rand d von T gleich der
Summe der Indizesy9 der isolierten Nullstellen q im Innern von T, d.h.

4

Aus d=h — ki — k2 erhalten wir

Auf A ist aber t=s, also ist i{h)=/= Drehungszahl des Vektorfeldes t; auf c. Auf kx ist
5=1 und 0<t< 1, daraus folgt

_
^0, falls z' (0) z' (1) im Àussern von c (Fall a)

1 (kl) ~~
(1, falls z' (0) z' (1) im Innern von c (Fall â)

}

Analog erhâlt man, da z(0)=z(l) nach Voraussetzung im Innern von d liegt, die

Gleichung
i(fc2) l. (3.4)

Aus (3.2), (3.3) und (3.4) folgt

Also isty;>0 genau dann, wenn
(-1-Fall a

(3_5)

erfûllt ist.
Wir wollen nun diey^berechnen. Sei z(//)=^'('y/) mit f'^'ein Schnittpunkt von

c und d. Falls *'< ^', so ist q (t',s') in T eine isolierte Singularitât des Feldes w.

Schneidet dann die Kurve d die Kurve c in diesem Punkte derart, dass sie aus dem

Innern von c in das Âussere verlâuft (in ihrer positiven Orientierung), dann ist

jq= 4-1. Denn dem hinreichend kleinen Quadrat Rq in T mit dem Mittelpunkt q

entspricht das Viereck z{t' — e), z'(s'-fe), z(t' + e), z(s' — s). Dem positiven Umlauf
um den Rand dRq entspricht eine Drehung des Vektors w(t, s)=z'(s)-z(t)um genau
2 7i,d.h. jq= 1, wie behauptet. Im umgekehrten Fall, wenn d die Kurve c von aussen
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nach innen durchstôsst, haben wir einen negativen Schnittpunkt, d.h. fur q (t\ s')
mit tf<s' gilt dannjq= — 1.

Sei m die Anzahl der positiven Schnittpunkte (mitjq= + 1) und n diejenige der
negativen. Dann schreiben sich die Gleichungen (3.1) und (3.5) in der Form

— (l im Fall a

limFall â.
(3.6)

Sei TV die Anzahl aller Schnittpunkte z(t')=z'{sf). Darunter sind solche, fur die tr>sf,
welche somit keine Singularitâten des Feldes w(t9s) ergeben. Wir nennen sie die
neutralen Schnittpunkte, ihre Anzahl sei r, so dass N=r + m + n.

Fur N=2 findet man durch Aufzâhlen der sechs Unterfâlle, dassy>0 fur aile
betrachteten Abbildungen, und fur N=4 findet man leicht ein Beispiel, woy<0 und
Lemma 2 ist bewiesen. Sobald man aber ûber die Abbildung/:c-xi etwas mehr
weiss, lâsst sich die Schnittpunktzahl betrâchtlich erhôhen. Wir benôtigen:

Lemma 3. Seien c und d zwei Jordankurven, die sich nicht beriihren und endlich viele

Schnittpunkte haben, welche im Innern zweier abgeschlossener und getrennter Kurven-
stucke Iy und I2 von c liegen ; unter den endlich vielen Teilbogen, in welche d durch die

Schnittpunkte zerlegt wird, gebe es genau zwei Bogen dlf d2, von denen jeder je einen

Endpunkt auf It und I2 hat. Die zwei abgeschlossenen Komplementârbogen von d zu
dx ud2 seien d3 undd^, dabeischneide d3 nur Ix unddA nur I2. Fallsfur eine topologische
undorientierungserhaltende Abbildungf: c-+ddie Durchschnittef{l^) n d3 undf(I2) nd4
beide leer sind, so gilt Ac argi;(z)<0.

Beweis. Wir wâhlen die Parametrisierung von c und die Nummerierung der

Schnittpunkte z(tî)-z'(si)=z'h(i=l,...,k),(ti¥:si) derart, dass z(r1),..., z(tp) mit

h<h< — <tpauf Ji undz(tp+1),..., z(tk) mit tp+t<tp+2< — <tk auf I2 liegen. Nach



Zur Eindeutigkeit konformer Abbildungen 325

Voraussetzung liegt/^) auf d nicht zwischen z\ und z[+1 fur /= 1,...,p — 1. Daraus
folgt, dass eine Beziehung st>tt (oder st<tt) fur ein einziges ie{l,...,/?} dieselbe

Relation fur aile i=l, ...,/? impliziert. Analoges gilt fûr/(/2) und es folgt: Ist ein

Schnittpunkt neutral (bzw. nicht neutral, d.h. positiv oder negativ), so sind es auch
aile Schnittpunkte, die auf demselben Kurvenstûck Ix oder J2 liegen. Sind die Schnitt-
punkte auf einem Kurvenstûck neutral und auf dem andern nicht, so sind die auf
letzterem abwechslungsweise positiv und negativ, also

£jg>-l und j>0.
(q)

Gibt es keine neutralen Schnittpunkte, so ist Xyg 0, denn die Anzahl der
Schnittpunkte ist gerade. In diesem Fall dûrfen die Schnittpunkte sogar beliebig
liegen, unabhângig von I± und J2.

Lemma 3 ist bewiesen.

§ 4. Die Eindeutigkeitssâtze

Wir werden zwei Eindeutigkeitssâtze ûber je eine 1 — 1-konforme Abbildung
h:G-*H beweisen. Die vorkommenden Voraussetzungen sind folgende:

(A) Die durch h induzierte Zuordnung K der Punkte je zweier entsprechender
nicht-punktfôrmiger Randkomponenten Ce F und De A hat die Eigenschaft
(A0)des§2.

(B) Die Randkomponenten von G und H sind Punkte oder stark konvexe Jordan-
kurven, und zwei einander entsprechende nicht-punktfôrmige Randkomponenten

CeF und De A sind homothetisch6).
(C) Sei F'o die nur aus Punkten bestehende Teilmenge des perfekten Kerns Fo ;

dann ist die abgeschlossene Huile F — Fq der Menge F — F'o hôchstens ab-
zâhlbar.

(D) Die Abbildung h lâsst sich in jede kompakte Teilmenge E von F'o analytisch
fortsetzen.

Erster Eindeutigkeitssatz

Seien G und H Gebiete der z- bzw. w-Ebene, die beide den Punkt oo enthalten und
h:G-+H eine 1 —1-konforme Abbildung. Dann gilt

Satz 3. h hat die Form h(z) az + b, a>09 wenn h in einer Umgebung von z= oo

folgende Entwicklung hat: h(z) az + b + c/z+d/z2 + • • •, a > 0, und die Voraussetzungen

(A), (B), (C) und (D) erfullt sind.

6) Zwei Kurven C und D heissen homothetisch, wenn sie durch eine Homothetie, d.i. eine
Abbildung der Form z^+az + b, a>0, miteinander verkniipft sind; der Fixpunkt zo b/(l —a) heisst
Homothetiezentrum.
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Korollar. Seien G und H zwei Kreisgebiete. Eine 1 — \-konforme Abbildung
h:G^H ist notwendig eine lineare Transformation, wenn die Voraussetzungen (A), (C)
und (D) erfullt sind.

Beweis. In der genannten Entwicklung kônnen wir b 0 und a=\ setzen, denn
durch die Parallelverschiebung von H um den Vektor — b und die Streckung mit dem

Faktor \\a werden die Voraussetzungen (A), (B), (C) und (D) nicht berûhrt.
Dann hat die in G regulâre Funktion g(z) h(z) — z in z oo eine einfache Null-

stelle, und die Behauptung lautet g(z) 0. Dagegen nehmen wir an, dass g(z)=£0.
Dann ist wegen g(oo) 0 die Funktion g auch nicht konstant. Nun legen wir die

w-Ebene derart auf die z-Ebene, dass die Koordinatenachsen zusammenfallen und

betrachten zunâchst die nach Voraussetzung (C) hôchstens abzâhlbare Menge F — F'o.

Dièse Menge besitzt eine letzte nicht-verschwindende Ableitung Fl9 welche aus nur
endlich vielen Randkomponenten besteht. Die ihr entsprechende Menge in A sei A1.

Nun wâhlen wir zwei Zahlen R>0 und e>0 derart, dass der Kreis |z| i? aile

Randkomponenten von G in seinem Innern enthâlt und die Funktion g(z) + a fur aile

a mit \a\ <sin \z\ >R mindestens eine Nullstelle besitzt. Nun kônnen wir die w-Ebene

um einen Vektor a1 (wir wâhlen \at\ <e/2) derart verschieben, dass fur aile Kompo-
nenten von Ft und deren Bilder in At folgende beiden Bedingungen erfûilt sind:

a) Je zwei einander entsprechende Komponenten von I\ und At schneiden sich

entweder nicht oder in zwei getrennten Punkten.

b) Im Falle zweier Schnittpunkte ist in diesen die Zuordnung gi(z) g(z) + a1

ungleich Null; dabei bedeutet g(z) R(z) — z die induzierte Zuordnung der Rand-

punkte.
Die Môglichkeit von a) folgt aus der Voraussetzung (B), denn je zwei stark kon-

vexe und homothetische Kurven sind entweder identisch oder haben hôchstens zwei

gemeinsame Punkte (Beweis siehe [3]); und in beiden Fâllen kann man durch eine

geeignete Parallelverschiebung der einen erreichen, dass sie sich entweder nicht oder
in zwei getrennten Punkten schneiden.

Die Môglichkeit von b) folgt aus den Eigenschaften einer zulâssigen Rânder-

zuordnung: Es gelte /z(z) z fur einen Punkt zeC. Liegt dann z in M,7) so nehmen

wir die beliebig kleine Verschiebung von H so vor, dass z nicht mehr auf dem Intervall
h(z) liegt, wohl aber der neue Schnittpunkt der Kurven.

Liegt z in C—M und hat h(z) nur den Punkt z als Urbild, so grenzen wir auf C
ein beliebig kleines Intervall / ab, das z im Innern enthâlt, und wâhlen die

Verschiebung derart, dass der Schnittpunkt von C und D in J=h(I), aber ausserhalb /
Hegt.

Liegt schliesslich z in C—M und wird ein ganzes Intervall / von C auf den Punkt

7) Def. von M siehe § 2, Eigenschaft a).
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h(z) abgebildet, so kônnen wir i/derart verschieben, dass der Punkt h(z) nicht mehr
in / liegt, wohl aber der Schnittpunkt von C und D.

In allen Fâllen kann man somit die beliebig kleine Verschiebung von H so wâhlen,
dass ausser a) auch b) fur aile endlich vielen Cert erfûllt ist, und nach allen weiteren
hinreichend kleinen Verschiebungen kein Bildpunkt mit einem Urbildpunkt zu-
sammenfâllt.

Weiter behaupten wir: um jede Komponente Cert kônnen wir eine in G und
hinreichend nahe an C verlaufende Jordankurve c legen, dass fur c und hx (c) die Voraus-
setzungen zu Lemma 3 erfûllt sind. Dabei ist h1(z) h(z) + a1.

In den Fâllen, wo C oder hl(C) D punktfôrmig ist oder C und D keine Punkte
gemeinsam haben, ist die Behauptung trivial. Wir nehmen somit an, dass C und
D fil(C) zwei verschiedene Schnittpunkte z0 und zt haben. Nach b) gilt gl(zi)^0
fûr/=O, 1.

Durch einen Querschnitt q von G wollen wir ein Teilgebiet Uo, das z0 als Rand-

punkt hat, derart abgrenzen, dass Ûo und /?1(t70) punktfremd sind. Um q zu konstru-
ieren, wâhlen wir auf C ein Intervall /, welches z0, aber nicht zl enthâlt und von der
abgeschlossenen Punktmenge J=hi(I) einen positiven Abstand r besitzt. Die End-
punkte von /seien z2 und z3, beide in C—M. Nun betrachten wir zwei Gebietspunkte
Ô2> £?3 von G> verbinden Q2 mit z2 durch einen Einschnitt q2 und Q3 mit z3 durch
einen Einschnitt q3. Wir kônnen Q2 und Q3 so nahe an z2 bzw. z3 wâhlen, dass die
Bilder ht (q2) und hx (q3) von q2 und q3 einen Abstand > r/2 haben. Die Punkte Q2

und Q3 kônnen wir mit einem in G und so nahe an C verlaufenden Jordanbogen qx

verbinden, dass qY zusammen mit q2 und q3 den gewûnschten Querschnitt q bildet.
Denn jeden Punkt P von ql kônnen wir so nahe an / wâhlen, dass er auf einem
Einschnitt p von P nach einem Punkt auf / liegt mit der Eigenschaft, dass der Abstand

von/? und ht(p) grôsser als r/2 ist. Das durch q abgetrennte abgeschlossene Gebiet Ûo

hat somit mit /*i(#) keine Punkte gemeinsam.
Eine entsprechende Konstruktion fûhren wir im andern Schnittpunkt zx von C

und D durch und erhaltenein Teilgebiet l^ mit dem Randpunktzx und hx (C^)nÛ1=0.
Nun ziehen wir eine in G verlaufende Jordankurve c so nahe an C, dass die

Schnittpunkte von c und ht (c) aile in Uo u L^ liegen. Zudem kônnen wir c so wâhlen,
dass Ût n c fur i 0,1 aus einem einzigen Kurvenstûck It besteht. Somit haben wir fur
c und hx (c) die Voraussetzungen zu Lemma 3 hergestellt.

Dièse Konstruktion fùhren wir fur aile Komponenten von /\ durch und erhalten
ein System von Jordankurven c in G, von denen jede eine Komponente von F± um-
schliesst, und die wir aile ausserhalb voneinander und in \z\ <R wâhlen kônnen. Das

Gebiet, welches durch Herausschneiden des abgeschlossenen Innern aller Kurven c

aus G entsteht, sei Gv Nach Lemma 3 gilt Ac argg^z^O fiîr aile c. Es gilt aber auch

Ac a,rg(gi(z) + a)<0 fur aile a mit hinreichend kleinem Betrag. Daher kônnen wir
nach dem in [13] ausfûhrlich beschriebenen Verfahren in endlich vielen Schritten
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ein Gebiet GkczG und eine Funktion gk konstruieren mit folgenden Eigenschaften:

1) Gk ist berandet von endlich vielen Jordankurven c und einer in F — (F — Fq)cz
F'o liegenden kompakten Teilmenge E von F.

2) gk hat in Gk wenigstens eine Nullstelle und
3) auf allen c ist Ac arg^&(z)^0.
Nach Voraussetzung (D) lâsst sich die Beschrânkung von h auf Gk und damit auch

gk in E analytisch fortsetzen. gk ist somit holomorph im Gebiet G'k, welches von den
endlich vielen Jordankurven c berandet ist. Sie ist aber auch auf dem abgeschlossenen

Gebiet Gk holomorph und fur jede Randkurve gilt Ac arggk(z)<0. Das ist ein Wider-
spruch zum Argumentenprinzip. Satz 3 ist bewiesen.

Zweiier Eindeutigkeitssatz

Diesmal machen wir im Anschluss an [3], pp. 187fffolgende Voraussetzungen :

In den Randkomponentenmengen F und A von G bzw. H gibt es je zwei isolierte
Komponenten Q, C2 und DUD2, wobei

1) Cl=Dl eine im Endlichen verlaufende Jordankurve ist, die G bzw. H im Innern
enthàlt,

2) C2 und D2 homothetisch und sternfôrmig sind bezûglich des im Innern der
Kurven gelegenen Homothetiezentrums.

Nun sei eine 1 — 1-konforme Abbildung h:G-+H gegeben, welche Cl in D1 Cl
und C2 in D2 ûberfûhrt; es gilt der

Satz 4. Unter den obigen Voraussetzungen ist h die Identitât, wenn

(i) fur die von Clf Dt und C2, D2 verschiedenen Paare entsprechender Randkompo-
nenten (B) gilt,

(ii) fur h die Voraussetzung (A) erfullt ist und h(zl) zx fur einen Punkt zY e C\ und

(iii) die Voraussetzungen (C) und (D) erfullt sind.

Beweis. Wiederum betrachten wir die Funktion g(z) h(z)—z und behaupten,
dass g=0 ist. Wenn wir g # 0 annehmen, so ist g{z) auch nicht konstant. Die induzierte
Zuordnung der Punkte von Q auf Dx Ct ist, da dièse Kurve in G und H isoliert ist,
eine topologische Abbildung, die wir ebenfalls h nennen. Dann definiert g(z) auf Q
ein Vektorfeld, wobei die Endpunkte der Vektoren wieder auf Ct liegen. Hâtte g(z)
auf Ct keine Nullstelle, so wâre die Argumentânderung von g(z) bei einmaligem
positivent Umlauf von z auf Ct gleich 2n. Wir wissen aber, dass g(z) wenigstens in zx

auf Cx eine Nullstelle hat. Da Cx isolierte Randkomponente ist, kônnen wir zx mit
einem hinreichend kleinen und in G verlaufenden Kreisbogen derart umgehen, dass

darauf
1 1 f~-A argg(z) dlogg(z) < 0 wird.

2n 2niJ
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Dass auf Q die Nullstellen isoliert sind, ûberlegt man sich folgendermassen :

Das Innere von Cl Di bilden wir durch \f/ 1-1-konform auf die Kreisscheibe

{x:|x|<l} ab und betrachten die 1 — 1-konforme Abbildung W \l/oho\l/~i:\j/(G)^
ij/ (H). Der Rand |x| 1 ist in beiden Gebieten i/>(G) und \j/(H) isoliert und V lâsst
sich auf |x| 1 analytisch fortsetzen, also hat ¥ auf \x\ 1 isolierte Nullstellen. Nun
hat aber ¥(x) — x genau dann eine Nullstelle in x0 — \j/(z0), wenn g(z0) h(z0) — z0 0

ist, also sind die Nullstellen von g(z) auf Q isoliert.
Wir kônnen daher jede Nullstelle mit einem hinreichend kleinen und in G ver-

laufenden Kreisbogen umgehen und erhalten von jeder Nullstelle einen negativen
Beitrag. Also ist die genannte Argumentânderung kleiner als 2n9 und da sie ein ganz-
zahliges Vielfaches von 2n ist, haben wir Ac*x argg(z)<0 bei positivem Umlauf von z
auf der Kurve C\, welche mit Q zusammenfâllt bis auf die Kreisbogen um die
Nullstellen. Dieselbe Argumentenbedingung ist aber auch erfùllt fur eine in G hinreichend
nahe an C\ verlaufende Jordankurve ct.

Die isolierte Randkurve C2 und ihr Bild D2 sind sternfôrmig und homothetisch,
sie haben somit entweder keine Schnittpunkte oder sind identisch. Im ersten Fall ist
1/27i AC2 argg(z)< — 1 bei negativem Umlauf von z auf C2; (g(z) bedeutet dabei
wiederum die durch g induzierte topologische Randabbildung).

Ist C2 Z>2, so gilt dieselbe Relation, falls g(z) keine Nullstellen hat auf C2. All-
fâllige Nullstellen kônnen wir wieder umgehen mit kleinen Kreisbogen in G, auf denen

die Intégration négative Beitrâge liefert. Somit haben wir auf der Kurve C2(z=C2 bis

auf die Kreisbogen um die Nullstellen)

In

bei negativem Umlauf von z auf C2. Dieselbe Beziehung gilt auch fur eine in G und
hinreichend nahe an C2 verlaufende Jordankurve c2, die q nicht treffen soll.

Nun existiert eine Zahl e > 0 derart, dass fur aile a mit \a\ < e die obigen Argument-
bedingungen auch fur die Funktion g(z) + a und die Kurven cl9 c2 noch erfûllt sind,
fur cx bei positivem, fur c2 bei negativem Umlauf.

Nun betrachten wir die nach Voraussetzung (C) hôchstens abzâhlbare Menge

r~rf0 (ohne Cl9 C2) und bilden ihre letzte nicht-verschwindende Ableitung Fl9 die

nur aus endlich vielen Komponenten besteht. Wie oben fahren wir weiter und stellen

in endlich vielen Schritten folgende Situation her:
Wir haben ein Gebiet GrczG, das berandet ist von endlich vielen Jordankurven

cl9 c2,..., ck und eine Funktion gr(z), die in Gr holomorph ist. Zudem gilt

Ac arg gr(z)<
0 fur c ct (bei positivem Umlauf)

— 1 fiir c c2 (bei neg. Umlauf)
0 fur c ct (i 3,..., k) (bei neg. Umlauf)
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und somit k

-Y
1=1

îm Widerspruch zur Tatsache, dass die Anzahl der Nullstellen mcht-negativ ist.
Die Voraussetzungen zu Satz 4 lassen sich folgendermassen abândern: Die Gebiete

G und H liegen im Âussern der in 1) genannten Jordankurve und enthalten beide den

Punkt oo. Im ûbrigen sollen die gleichen Voraussetzungen gelten. Die Funktion
g(z) h(z) — z hat in diesem Fall hôchstens zwei Pôle: P<2, und bezeichnet N die
Anzahl der Nullstellen, so wird N—P^. — 2. Die obigen Integrationen mûssen nun
aile im negativen Umlaufsinn durchgefûhrt werden. Wir erhalten (\/2n) ACi arggr(z)
< - 1 und (l/2n) £(c) Ac arggr(z)< -2. Wiederum folgt g(z) 0.
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