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Zur Eindeutigkeit konformer Abbildungen
von Gebieten unendlichen Zusammenhangs

von W. MEIER-SOLFRIAN in Ziirich.

Einleitung

In der Theorie der konformen Abbildungen betrachtet man verschiedene Klassen
von Normalgebietenl) und fragt nach Existenz und Eindeutigkeit einer 1— 1-kon-
formen Abbildung eines beliebigen Gebietes auf ein Normalgebiet einer Klasse. In
vorliegender Arbeit wenden wir uns der Eindeutigkeitsfrage zu und verweisen fiir die
Existenz auf die Arbeiten von GROTZSCH [4], JENKINS [8], COURANT [3] und STREBEL
[14].

Fiir Kreisgebiete?2) endlichen Zusammenhangs beweist KoeBe [10] Existenz und

Eindeutigkeit mit Hilfe eines iterierenden Verfahrens. Eine von CARLEMANN [2] und
SHIFFMAN [12] erstmals verwendete Beweisfiihrung von Eindeutigkeitssitzen hat sich
als sehr erweiterungsfahig erwiesen. Die Methode ist kurz die folgende:
Seien f; und f, zwei 1 — l-konforme Abbildungen eines Gebietes auf zwei Normal-
gebiete G bzw. H derselben Klasse. Man behauptet: Bei gegebener Normierung von
f, und f, ist h=f,0of " 1.: G—H die Identitit, d.h. g=h—id=0. Mit der Antithese
g #0 wird zufolge der Normierung g auch nicht konstant. Die Berechnung des Argu-
mentenzuwachses von g(z) lings des Randes von G fiihrt zu einem Widerspruch zum
Argumentenprinzip.

GRrOTZSCH [5] erweitert die Methode, indem er kleine Verschiebungen des Bild-
gebietes einfiihrt, und er sowie COURANT [3] beweisen Eindeutigkeitssdtze von Ab-
bildungen auf Normalgebiete endlichen Zusammenhangs mit konvexen Randkurven.
STREBEL [13] beweist mit dieser erweiterten Methode zwei Eindeutigkeitssitze des
Kreisnormierungsproblems fiir Gebiete mit hochstens abzédhlbar vielen Randkompo-
nenten. Beide Sdtze enthalten zusétzliche Voraussetzungen an die durch die konforme
Abbildung induzierte Zuordnung der Randpunkte.

Mit Hilfe derselben Methode beweisen wir unter Verwendung der Untersuchungen
iber die Rédnderzuordnungen bei 1—1-konformen Abbildungen (§2) und zweier
topologischer Hilfssitze (§ 3) zwei Eindeutigkeitssitze (Sdtze 3 und 4), welche die
genannten Eindeutigkeitssdtze in folgendem Sinne erweitern:

1) Eine allgemeine Definition von Normalgebieten gibt CouranT [3].

2) Das sind Gebiete, die von Kreisen und Punkten berandet sind; man spricht dann oft vom sog.
Kreisnormierungsproblem.
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a) Wir betrachten Normalgebiete mit konvexen Randkurven (die auch punkt-
formig sein kdonnen) und lassen auch iiberabzdhlbar viele Randkomponenten zu,
(Voraussetzungen (C) und (D) in § 4).

b) Die Voraussetzungen an die induzierte Zuordnung der Randpunkte sind allge-
meiner, (Eigenschaft (A,) in § 2, Voraussetzung (A) in § 4).

So umfasst das Korollar zu Satz 3 die Aussagen beider Eindeutigkeitssdtze fiir
Kreisgebiete von STREBEL [13]. Der Satz 4 erweitert einen Eindeutigkeitssatz von
CouraNT [3] fiir endlichen Zusammenhang auf den Fall von liberabzidhlbar vielen
Randkomponenten.

In § 1 beweisen wir einen Satz iliber analytische Fortsetzbarkeit, welcher folgenden
Eindeutigkeitssatz als Korollar liefert:

Ein Kreisgebiet mit lauter punktformigen Randkomponenten, welche auf einer
abzdhlbaren Menge von paarweise disjunkten, abgeschlossenen und rektifizierbaren
Jordanbogen liegen, ldsst sich nur durch eine lineare Transformation auf ein anderes
Kreisgebiet konform abbilden.

Bezeichnungen und Begriffe

Die Menge der Randkomponenten eines Gebietes G bezeichnen wir mit I und
deren Elemente mit C. Die Menge I' ist mit der iiblichen metrischen Topologie ver-
sehen (siehe z.B. [13]). Mit I'y =TI bezeichnen wir den perfekten Kern von I'; er ist
definiert als Durchschnitt aller Ableitungen I'* von I'. Der perfekte Kern I', ist dann
und nur dann leer, wenn I’ héchstens abzdhlbar ist. Dann gibt es Ordnungszahlen,
deren zugehorige Ableitungen verschwinden und somit eine kleinste, etwa f§, mit
I'*=0. Zu dem ist B keine Limeszahl (Beweis in [13]), d.h. es gibt eine Zahl ' =1,
deren zugehorige Ableitung aus nur endlich vielen Randkomponenten besteht. Ist I
iiberabzidhlbar, so zerfillt I' in den liberabzdhlbaren perfekten Kern I'j und die
hochstens abzdhlbare Menge I' —I'y. Mit 4 bezeichnen wir die Randkomponenten-

menge eines Gebietes H, mit 4, <4 den perfekten Kern und mit D die Elemente von
Aa.

§ 1. Hebbare Punktmengen

Wir betrachten ein ebenes Gebiet G und eine vollkommen unzusammenhéngende
relativ abgeschlossene Teilmenge E von G. Sei # =% (G—E) die Menge der 1—1-
konformen Abbildungen f von G—E, welche hochstens eine abzdhlbare Teilmenge
von E in nicht-punktformige Randkomponenten des Bildgebietes iiberfiihren.

_E heisse hebbar beziiglich #, wenn sich jedes fe Zin E analytisch fortsetzen ldsst.

SATz 1. Eine vollkommen unzusammenhdngende und relativ abgeschlossene Teil-
menge E von G ist hebbar beziiglich F =% (G—E), wenn sie auf einer abzdhlbaren
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Menge B von paarweise disjunkten, abgeschlossenen und rektifizierbaren Jordanbogen3)
b liegt.

KOROLLAR. Ein Kreisgebiet mit lauter punktformigen Randkomponenten, dessen
Randkomponentenmenge E die im Satz 1 genannte Hebbarkeitsbedingung erfiillt,
ldsst sich nur durch eine lineare Transformation auf ein anderes Kreisgebiet konform
abbilden.

Beweis: 1) Wir zeigen zunéchst, dass E hebbar ist unter der Voraussetzung, dass
E auf einem einzigen abgeschlossenen rektifizierbaren Jordanbogen b in G liegt.

Vom Bildgebiet H kdnnen wir voraussetzen, dass es den Punkt w= oo nicht als
Randpunkt besitzt, denn durch eine Transformation w~1/w—wy mit woe H konnen
wir diese Voraussetzung immer erreichen.

Sei f:G— E— H eine 1 —1-konforme Abbildung aus &% und A4 die hochstens ab-
zdhlbare Teilmenge derjenigen Punkte von E, die durch f in nicht-punktférmige
Randkomponenten von H iibergefiihrt werden. Dann gehen die Punkte der Menge
E— A in punktférmige Randkomponenten von H iiber, weshalb die Abbildung f in
natiirlicher Weise in diese Menge fortgesetzt werden kann. Zudem definieren wir fir
jeden Punkt ae 4 den Bildpunkt f(a) als beliebigen Punkt derjenigen Randkompo-
nente von H, welche dem Punkt a entspricht. Die so definierte Abbildung f ist stetig
in E— A, denn fiir ze E— A ist f(z) eine punktférmige Randkomponente von H, und
daher ldsst sich in jeder Umgebung U von f(z) eine Jordankurve um f(z) legen, die
in H verlduft und deren Urbild eine Umgebung V=G von z umfasst; das Bild von V
liegt somit in U. Die Punkte von A4 sind somit die einzigen Unstetigkeitspunkte von f,
und auf A4 ist f beschrinkt.

Seien ¢ ein abgeschlossener Teilbogen von b und {: I,—c, wobei I,=(0<t<1),
eine Parametrisierung von ¢. Dann ist { in I, von endlicher Variation und {~*(4n¢)
ist hochstens abzihlbar und daher eine Menge der Variation Null beziiglich {(¢).
Somit existiert das Lebesgue—Stieltjes-Integral

[rac=[reayaco. (1.1)

Die Endpunkte {, und {; des abgeschlossenen Teilbogens ¢ von b wéhlen wir derart,
dass sie nicht in E liegen und der orientierte und rektifizierbare Bogen b in diesen
Punkten eine wohlbestimmte Tangente besitzt. Sodann legen wir durch {, und {; die
Kurvennormalen ny bzw. n,. Auf n, bzw. n, wiahlen wir auf derselben Seite von b die
Punkte P, bzw. P;, auf der andern Seite Q, bzw. Q, derart, dass die Strecken Q, P,

3) Nach KerREKJARTO [9, p. 51] ldsst sich durch jede abgeschlossene, vollkommen unzusammen-
hingende und beschrinkte Punktmenge der Ebene eine Jordankurve legen, welche die ganze Punkt-
menge enthélt.
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auf ny und Q, P, auf n, in G verlaufen und ausser {, und {; keine Punkte von b ent-
halten. Jeden der Punkte P,, Q, verbinden wir mit je einem in G — E verlaufenden
Polygon mit den Punkten P, bzw. Q,, welche b nicht schneiden und so nahe an b
verlaufen, dass das Innere des geschlossenen und orientierten Polygons p=
(Co Py Py ¢, Q1 Q0Co) als Teilgebiet von G einfach zusammenhiingend ist. Die Punkte
Py, P, Qy, Q, seien zudem so gewdhlt, dass die Orientierung von p mit der positiven
Orientierung der Ebene iibereinstimmt. Die orientierten Polygone {,P,P,;{; und
{10100, nennen wir p’ bzw. p”, so dass p=p'+p". Das Innere der geschlossenen
Kurve p'—c sei mit B’ und das Innere von p”+c¢ mit B” bezeichnet. Das einfach
zusammenhéngende Gebiet B’ bilden wir 1 — 1-konform auf die Einheitskreisscheibe
K der y=re''-Ebene ab. Der Bogen — ¢ entspreche dabei dem Bogen {e"0<t<1,},

y= re't - Ebene

der Punkt {, gehtin y; =1 und {, in y,=¢'* iiber. In K betrachten wir fiir 0<r<1 die
Kurve §(r) mit dem Anfangspunkt y,=e" und dem Endpunkt y, =1, bestehend aus
der Strecke von y,=e'" nach re'*®, dem Bogen {re''|t,>¢>0} und der Strecke von
y=r nach y,=1. Das Bild von 5(r) unter der Umkehrabbildung ¢:K— B’ ist eine
Kurve d’(r) in B’ mit dem Anfangspunkt {, und dem Endpunkt {,. Auf gleiche Weise
wie d’(r)in B’ erhalten wir fiir dieselbe Zahl r eine Kurve d”(r)in B” mit dem Anfangs-
punkt ¢; und dem Endpunkt {,. Das Innere der geschlossenen Kurve d(r)=d’(r)+
d"(r) heisse B,. Das Gebiet B, = B’ — B,, hat den orientierten Rand p’ —d’(r)=d; und
B,=B"— B, ist berandet durch p”" —d"(r)=d,. Nun gilt d, +d, =p'—d'(r)+p"—d"(r)
=p—d(r). Fiir einen beliebigen Punkt z in B, gilt somit nach Cauchy

2:7i+f(2) = f-@-- _d(= f {(_C)z dt — CfgC) (1.2)

dy +d2 a(r)
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Fiir r—1 strebt d(r) gegen die doppelt durchlaufene Kurve ¢, und wir behaupten, dass

limj € _dg=0 gl (1.3)
r—1

d(r)

Dann ist ndmlich fin die Menge E n ¢ analytisch fortsetzbar, denn fiir /(z) haben wir
die Darstellun
® )

f()_i_n_; E—:‘*dC

deren rechte Seite eine im Innern von p, also auch auf En ¢, analytische Funktion
darstellt, die in B, mit f libereinstimmt.

Um die Behauptung (1.3) zu beweisen, schreiben wir das Integral iiber d(r)=
d'(r)+d"(r) als Summe der Integrale iiber d’(r) und d”(r) und zeigen, dass diese
Integrale fiir r—1 gegen jene iliber ¢ bzw. — ¢ konvergieren.

Die obige 1 — 1-konforme Abbildung ¢:K— B’ ist auf | y|=1 stetig, und ¢(e'’) ist
in (0<t<t,) von endlicher Variation, denn c ist rektifizierbar. Mit (1.1) existiert somit
das Lebesgue-Stieltjes-Integral

to
f (¢(e")

(") — J

Nach einem Satz von F. und M. RIEsz (siehe etwa [6, p. 369]) ist ¢ (e'’) sogar absolut
stetig, und I, ldsst sich als Lebesgue-Integral schreiben:

=1

c*

io= [ u

f (o (e ’)) do(e ) 4
¢ (p (e‘ ) — dt

Fiir r—1 strebt d’(r) gegen ¢ und wir behaupten:

f(C)

(1.4)

r—*l
d (r)

Aus (1.4) folgt dann (1.3) unmittelbar, denn die Konvergenz des Integrals iiber d"(r)
gegen — I, zeigt man wie (1.4).

Zum Beweis von (1.4) betrachten wir eine gegen 1 konvergierende Folge (r,),
wobei 0<r,<1, und setzen: ¢(r,e')=0,(¢) und @(e'*)=¢(t). Die Ableitung von ¢
nach y=re'' bezeichnen wir mit ¢’ (re') und setzen ¢’(r,e')=¢,(t). Unter ¢’(e'")=
@' (t) verstehen wir den Grenzwert von ¢’ (re’") fiir r—1, wo dieser existiert. Zudem

schreiben wir
ff(?j'_«@)._ =F,(t) und ﬂﬂ» =F(t).

(Pn(t)_z (P(l)—Z
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Nun gilt
do(re") it i it
——Zl=r-je' ' (re''),
> @' (re)
und nach [6, p. 369] gilt fast iiberall auf | y| =1
d(p (ei‘) . it rq it
—g = le ¢’ (e').

Die Integrale liber die Teilbogen von d’(r), die den radialen Teilstrecken von &(r)
entsprechen, konvergieren mit r—1 gegen Null, und somit lautet unsere Behauptung:

to to
lim F,,(t)-r,,ei"(p,',(t)dt=fF(t)-e“w'(t) dt. (1.5)
n—ao % 4

Nun ist

to

[ Gueoi - roray -

0
to to

= f(Fnrne“rp;—Fe“co;)dt+f(Fe“w;—Fe“rp')dt <
0 0

to t

< f|F,,rn — Flg)) dt + f IF| o, — ) dt.
0 0

Die Funktion F(t)ist beschrinkt: |F(t)| <M, also

to

to
lel'lrp;—- rp’t'dtsM‘f lo, — @'l dt;
0 0

und dass das letzte Integral mit n— oo gegen Null konvergiert, folgt aus bekannten
Sétzen: nach einem Satz in [6, p. 369] gehort die Funktion ¢’ (re'’) der Klasse H, an,
fiir deren Elemente ein zweiter Satz, [6, p. 355] u.a. die gewiinschte Konvergenz aus-
sagt.

Es bleibt zu zeigen, dass

to

lim | [F,r,— F|-lol|dt=0 gilt. (1.6)
n—ao !

Die Funktion F,—F (und somit auch F,r,—F) strebt mit n—oco fast iiberall auf
[0, 0] gegen Null; die Ausnahmemenge ist die hdchstens abzdhlbare Menge
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@ ! (Anc). Nach einem Satz von D. F. EGorow [11, p. 99] ist die Konvergenz auf
einer abgeschlossenen Menge P vom Masse ¢, —# gleichmissig, wobei >0 beliebig
klein gemacht werden kann. D.h. zu ¢>0 existiert ein n, derart, dass |F,(t) r,— F(t)|
< ¢ fiir alle teP, sobald n>n,. Zudem ist F,r,— F beschriankt:

|F,() r, — F(t) < N flralletund n.

Somit gilt fiir n>n,, wenn Q=|0, t,]—P,

to

f|FnrnnF|-l<p:,t dt = f \Eyr, — Fl-lol] di +
[¢] P

+ le,,r,, — F| |o,| dt < a'f lo,l dt + N-f |, dt . .7
0 P Q

Wir wéhlen nun # so klein, dass [, || dr<¢ wird. Dann ist fiir alle hinreichend
grossen n

fl(p;| dt <& und ebenso f|(p;| dt<f|(P'| di+e=C4e,
Q P P

und daraus folgt (1.6).

Wir haben gezeigt, dass jede Abbildung /:G— FE— H aus & in die Punktmenge
E n ¢ auf einem geeigneten abgeschlossenen Teilbogen ¢ von b analytisch fortsetzbar
ist. Nun konnen wir b bis auf die Endpunkte durch solche Teilbogen ¢ ausschdpfen
und somit f in alle Mengen Enc und schliesslich auch in die isolierten Endpunkte
analytisch fortsetzen. Also ist E hebbar beziiglich # (G — E).

2) Nun liege E auf der genannten Menge B von rektifizierbaren Jordanbogen b.
Um die Hebbarkeit von E zu zeigen, betrachten wir zunéchst eine beliebige kompakte
Teilmenge E, von E. Nun ziehen wir eine in G — E verlaufende Jordankurve y, welche
E, im Innern enthélt. Dann hat y von E einen positiven Abstand g. Seien by, b, ...
jene Bogen aus B, welche Punkte von E, enthalten. Durch Weglassen offener Kurven-
stiicke, die keine Punkte von E enthalten, konnen wir jeden Bogen b; (i=1, 2, ...) in
endlich viele Teilbogen b;, zerlegen, dass die Linge jedes Teilbogens kleiner ist als
min(g/2, 1/i) und jeder Teilbogen wenigstens einen Punkt von E enthilt. Die so
erhaltenen Teilbogen haben keine Punkte mit y gemeinsam, und die im Innern vony
gelegenen Teilbogen bilden eine abzdhlbare Menge B, von abgeschlossenen, paarweise
disjunkten rektifizierbaren Jordanbogen, auf denen die Menge E| liegt. Die Folge der
Langen der Bogen aus B, konvergiert gegen Null. Nun definieren wir in B, die Topo-
logie, welche auf der Menge der Randkomponenten eines Gebietes iiblich ist. (vergl.
[13]). Dann ist B, kompakt, denn jeder Hiufungspunkt z einer Folge (b,) von Bogen
aus B, ist Hiufungspunkt einer Punktfolge aus E,, liegt also in £, und somit auch auf
einem Bogen von B,.
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Wir bilden die Menge B! der Hiaufungselemente von B,, dann die Menge B? der
Hiufungselemente von B!, usw. Derart erhalten wir die Folge

ByoB'>B*5...o5B°>...oB*>---

der Ableitungen der Menge B,; dabei bezeichnet @ den Ordnungstypus der natiir-
lichen Zahlen, und « ist eine beliebige Ordnungszahl. Ist o eine Limeszahl, so ist B*
definiert als (N, <, B?. Der Durchschnitt aller Ableitungen ist eine perfekte Menge und
heisst der perfekte Kern von B,. Dieser ist genau dann leer, wenn B, hochstens ab-
zdhlbar ist. Es gibt also in unserm Fall eine Ordnungszahl o', so dass B* leer ist. Nun
bilden wir die Mengen M,=B,— B* fiir a=1, 2, ..., ®, .... Dann ist B,={J M,. Wir
zeigen durch transfinite Induktion nach a, dass f in die ganze Menge E, analytisch
fortgesetzt werden kann.

Die Kurven von M, =B,— B" sind isoliert und f ldsst sich in die Teilmenge von
E,, die auf M, liegt, analytisch fortsetzen. Dieselbe Eigenschaft habe nun die Teil-
menge von E,, die auf den My mit f<a liegt. Ist « keine Limeszahl, so ist M,=
M,_; U (B*~'—B%). In die Punkte von E, auf M,_, kdnnen wir f analytisch fort-
setzen, d.h. wir kénnen die Bogen von M,_, aus B, entfernen; dann sind aber die
Bogen in B*~! — B* isoliert und f ldsst sich auch in die Punkte darauf analytisch fort-
setzen.

Ist « eine Limeszahl, so gilt

M,=B,—B'=B,— NB'=U B, -B)=U M,
B<a B<a B<a
d.h. f'lasst sich auch in diesem Fall in alle Punkte von E, auf M, analytisch fortsetzen
und somit in die ganze Menge E,.

Da E, eine beliebige kompakte Teilmenge von E war, folgt die Hebbarkeit von E

beziiglich % und Satz 1 ist bewiesen.

§ 2. Zur Rinderzuordnung bei 1 — 1-konformen Abbildungen

Mit s bezeichnen wir im Folgenden die Familie von ebenen Gebieten, deren
Randkomponenten aus stark konvexen Jordankurven und Punkten bestehen und die
den Punkt oo nicht als Randpunkt besitzen.

LEMMA 1. Die Folge der Durchmesser d,=d(C,) einer Folge (C,) von Randkompo-
nenten eines Gebietes Ge H konvergiert gegen Null.

Beweis: G hat h6échstens abzidhlbar viele nicht-punktférmige Randkomponenten.
Sei Cy, C,, ... eine Abzdhlung derselben und (C,,) eine Teilfolge mit d, =d>0 fiir
alle n;. Wir wihlen auf jedem C, zwei Punkte z;, und z, mit |z, —z,|2d. Durch
Auswahl einer geeigneten Teilfolge konnen wir erreichen, dass die Punktfolgen (z;,)
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und (z,) konvergieren. Wir schreiben z'=limz, und z"=limz, und behaupten, dass
z" und z” auf derselben Randkomponenten C liegen. Denn wiirden sie auf verschiede-
nen Komponenten C’ und C” liegen, so gébe es eine in G verlaufende Jordankurve y,
die C’ von C” trennt, und von einem gewissen n;, an wiirden die Punkte z, im Innern
(bzw. Aussern) und die z, im Aussern (bzw. Innern) von y liegen, was nur méglich
wire, wenn y die C,, schneiden wiirde.

Die Randpunkte z’ und z” liegen also auf C und die offene Strecke z'z” im Innern
von C. Falls G im Aussern von C liegt, folgt aus der starken Konvexitit von C, dass
es eine Zahl N gibt, so dass alle Strecken z,, z; mit n;> N die Kurve C schneiden. Das
ist aber ein Widerspruch, denn diese Strecken miissen im Innern der C, liegen.

Liegt G im Innern von C, so wihlen wir auf der Strecke z’'z” einen Gebietspunkt z.
Da die Strecken z,,z, gegen die Strecke z'z” konvergieren, gibt es eine Folge (z, ) mit
z,, auf der Strecke z,z,, die gegen z konvergiert. Da aber die Strecken z, z, im
Aussern von G liegen, folgt der Widerspruch, dass z nicht in G liegt.

SATZ 2. Jeder Randpunkt eines Gebietes Ge H ist erreichbar.

Beweis. Zu einem beliebigen Randpunkt von G, den wir als z=0 annehmen k6énnen,
konstruieren wir einen in G verlaufenden Jordanbogen, der gegen diesen Randpunkt
konvergiert und in diesem Punkt noch stetig ist.

Dazu betrachten wir die Kreisscheibe K,={z||z| <r} fiir eine zundchst noch feste
Zahl r>0. Mit 0K, bezeichnen wir den Rand von K, und mit C die zu den Rand-
komponenten C von G gehérenden Komplementédrkontinuen4). Der Punkt z=0 liege
auf der Komponenten C,. Als Folge von Lemma 1 gibt es hochstens endlich viele von
C, verschiedene Randkomponenten, wir nennen sie C,, ..., C,, welche sowohl den
Kreis |z| =r als auch den Kreis |z| =r/2 treffen.

Sei W das Komplement von |J!-, C; beziiglich der z-Ebene. Dann zerfillt
WK, in gewisse Gebietskomponenten, von denen genau eine, etwa W,, den Punkt
z=0 als Randpunkt besitzt. Fiir eine passende Zahl 0 <¢ <r/2 ist der Durchschnitt der
Kreisscheibe K, mitden C;fiiri=1, ..., nleer, und K, n W, enthilt eine wohlbestimmte
Komponente K,, welche z=0 als Randpunkt hat. Zudem gilt K, W, und somit
K,nG<=W,nG. Von einer Randkomponenten C von G, fiir welche W,—(CnW,)
in wenigstens zwei Komponenten zerféllt, sagen wir, sie zerlege das Gebiet W,. Nach
Konstruktion von W, liegen alle W, zerlegenden Randkomponenten in |z|>r/2.
Daraus folgt, dass jede Randkomponente C von G, welche K, trifft, das Gebiet W,
nicht zerlegt. Daher ist K,n G ganz in einer wohlbestimmten Komponente ¥, von
W,n G enthalten, und V, hat z=0 als Randpunkt, denn z=0 ist Randpunkt von
K,N G, also auch von V,. Zudem hat das Gebiet ¥, Randpunkte auf 0K, NG, denn

4) Das zu einer Randkomponente C gehorige Komplementirkontinuum C ist die Vereinigung

von C mit denjenigen Komponenten seines Komplementes beziiglich der Vollebene, die zu G fremd
sind.
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jede Komponente von W, N G hat diese Eigenschaft; das liegt daran, dass jede Rand-
komponente von G, welche W, zerlegt, den Kreis 0K, treffen muss.

Fiir ry<r gilt V, <V,, und wir kdonnen unsern Jordanbogen folgendermassen
konstruieren: Als Anfangspunkt wahlen wir einen beliebigen Randpunkt z von V,
auf 0K, G und verbinden diese durch einen in V, verlaufenden Jordanbogen mit
einem Punkt z; in V, mit |z,|=r;, der Randpunkt von V, ist. Nun wéihlen wir eine
gegen Null konvergierende Folge r; >r,> -+ und verldngern den Jordanbogen inner-
halb ¥, nach einem Punkt z, in ¥, mit |z,|=r,, der Randpunktist von V,,. Auf diese
Weise fortfahrend erhalten wir den gewiinschten Jordanbogen, und der Satz 2 ist
bewiesen.

Wir betrachten nun zwei Gebiete G und H aus der Klasse 5# und nehmen an, es
gebe eine 1 — 1-konforme Abbildung /: G— H. Den Randkomponenten C von G sind
dadurch umkehrbar eindeutig die Randkomponenten D von H zugeordnet. C und D
seien zwei entsprechende, nicht-punktférmige Randkomponenten von G bzw. H. Sei p
ein gegen den Punkt PeC konvergierender Einschnitt von G. Fiir f(p)=gq sind zwei
Falle moglich: entweder konvergiert g gegen einen einzigen Punkt oder gegen ein zu-
sammenhéingendes Teilkontinuum von D. Sei {p} die Gesamtheit aller gegen P kon-
vergierenden Einschnitte von G. Wir bilden die Vereinigung I, aller Punkte von D,
welche Haufungspunkte der Einschnitte f(p)=g¢ sind, wenn p die Menge {p} durch-
lduft. Ip=f(P) besteht aus einem Punkt oder einem zusammenhingenden Teil-
kontinuum von D.

Fiir die im weiteren untersuchten 1— l-konformen Abbildungen f:G— H wollen
wir iiber die induzierte Zuordnung f der Punkte je zweiter entsprechender, nicht-
punktférmiger Randkomponenten C und D folgende Voraussetzung fordern:

(Ao) Fiir je zwei verschiedene Punkte P, Q von C besteht Ip N Iy aus hichstens zwei

Punkten.
Unter der Voraussetzung (A,) folgen fiir die durch eine orientierungserhaltende 1 —1-
konforme Abbildung f induzierte Zuordnung f der Punkte von C zu denjenigen von
D folgende Eigenschaften:

a) Die Menge M derjenigen Punkte P auf C, fiir welche f (P)=1I, ein eigentliches
Kurvenstiick ist, ist hochstens abzidhlbar.

b) Die Beschrinkung der Zuordnung f auf C— M ist eine orientierungserhaltende
Abbildung von C— M in D.

Wire b) nicht erfiillt, so konnte man mit Hilfe der Erreichbarkeit aller Randpunkte
und einer in G hinreichend nahe an C verlaufenden Jordankurve einen Widerspruch
zur Orientierungserhaltung von f konstruieren.

Die Bedingung (A,) an f'ist 4quivalent zu der entsprechenden Bedingung an f ~:
Seien R ein Punkt von D und {r} die Menge der Einschnitte von H, die gegen R
konvergieren. Jy = C sei die Menge der Haufungspunkte der Kurven f ~*(r) fiir alle r
aus {r}. Dann ist.(A,) dquivalent mit
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(A,) Fiir je zwei verschiedene Punkte R, S von D besteht Jg N Jg aus hochstens zwei
Punkten.

Beweis. Sei (A,) erfiillt, und als Antithese zu (A,) seien R und S zwei verschiedene
Punkte von D derart, dass sich die Intervalle J und Jg auf C iiberlappen. Wir zeigen
zuniichst: die Menge J; N Jg enthilt ein ganzes Intervall J mit f(J)=R.

Dazu sei P ein innerer Punkt von Jg n Jg, der nicht zu der in a) genannten Menge
M gehort, d.h. P hat einen wohlbestimmten Bildpunkt f(P), und die Bilder f(p) der
Einschnitte pe{p} konvergieren alle gegen f(P). Weil Pe Jg, gibt es einen gegen R
konvergierenden Einschnitt r derart, dass f ~*(r) den Punkt P als Hiufungspunkt be-
sitzt.

Konvergiert nun f ~!(r) gegen P, so folgt f(P)=R; gibt es zwei verschiedene
solche Punkte P und P’, so wird das ganze Kurvenstiick J mit den Endpunkten P und
P’ auf R abgebildet.

Andernfalls gibt es einen gegen R konvergierenden Einschnitt r, dessen Urbild
S !(r) ein ganzes Kurvenstick J, von C als Hidufungspunkte besitzt und J, =
Jo N Jg N Jg ist ein nicht-punktformiges Kurvenstiick. Sei P ein innerer Punkt von J,
und nicht im M. Dann gibt es einen gegen P konvergierender Einschnitt p, der f ~*(r)
in einer gegen P konvergenten Punktfolge schneidet und es folgt f (P)=R. Wiederum
wird das ganze Intervall J zwischen zwei solchen Punkten auf R abgebildet.

Man zeigt nun analog, dass ein Intervall J' < Jg n Jg, das mit J ein ganzes Kurven-
stiick gemeinsam hat, auf S abgebildet wird. Fiir einen Punkt Q aus J' nJ, der nicht
in M liegt, also einen wohlbestimmten Bildpunkt f(Q) hat, haben wir den Wider-
spruch f(Q)=R# S=f(Q). Ebenso schliesst man von (A,) auf (A,).

f hat somit die gleichen Eigenschaften wie die durch f ~! induzierte Zuordnung
F

Wir wollen noch zwei fiir (A,) hinreichende Bedingungen (A,) und (A;) angeben.
Seien C und D wiederum zwei entsprechende nicht-punktférmige Randkomponenten
von G bzw. H. Dann haben wir als zwei hinreichende Bedingungen fiir (Ag):

(A,) Auf C oder D liegen jene Punkte diskret, welche Haufungspunkte sind von

andern Randkomponenten von G bzw. H.
(A;) Das Bild f(p) jedes gegen einen Punkt P von C konvergierenden Ein-
schnittes p von G konvergiert gegen einen wohlbestimmten Punkt von D.
Auch die entsprechende Bedingung an f ~! impliziert die Voraussetzung (A,).

§ 3. Zwei topologische Hilfssiitze

In der komplexen Ebene seien zwei Jordankurven ¢ und d gegeben, die sich in
héchstens endlich vielen Punkten schneiden und nirgens beriithren. Letzteres soll
folgendes bedeuten: die Durchschnitte jeder ebenen Umgebung eines gemeinsamen
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Punktes von ¢ und d mit dem Innern bzw. dem Aussern der einen treffen je sowohl
Inneres als auch Ausseres der andern Kurve.

Nun sei f:c—d eine topologische orientierungserhaltende Abbildung mit f(z)#z
fiir alle zec. Durch v(z)=f(z)—z definiert f ein stetiges Vektorfeld v auf c. Sei j die
Drehzahl dieses Vektorfeldes. Dann ist —j-2n=4_argv(z) die Argumentidnderung
des Vektors v(z) bei einmaligem negativem Umlauf von z auf c.

LEMMA 2. Fiir zwei sich nicht beriihrende Jordankurven ¢ und d gilt: Es ist
4. arg (f(z)—2) <0 fiir alle topologischen orientierungserhaltenden Abbildungen f:c—d
ohne Fixpunkte genau dann, wenn c und d hochstens zwei Schnittpunkte haben.

Beweis: Die Kurve ¢ sei parametrisiert durch t~z(¢) mit tel,=(0<¢<1) und
z(0)=2z(1). Diese Parametrisierung soll auf ¢ die positive Orientierung induzieren.
Eine ebenfalls die positive Orientierung induzierende Parametrisierung von d erhalten
wir, wenn wir setzen z'(s)=/(z(s)) mit se ;=(0<s<1). Zudem wihlen wir die Para-
metrisierung von c¢ derart, dass z'(0)=z'(1)=/(z(0)) nicht auf ¢ und z(0)=z(1) im
Innern von d liegt. Letzteres ist deshalb eine erlaubte Annahme, weil in den Fillen, in
denen c und d keine gemeinsamen Punkte haben, offenbar j > 0 ist fiir alle betrachteten
Abbildungen f.

Auf dem abgeschlossenen Dreieck

T={(ts)e, x[[0<t<s<1}

definieren wir auf folgende Weise ein Vektorfeld %):
Jedem Punkt (¢, s) aus T ordnen wir den Vektor w(t, s)=z'(s)—z(t) zu, also den in
die (¢,s)-Ebene verpflanzten Vektor mit dem Anfangspunkt z(¢) und dem Endpunkt

z'(s).

s
A
k
1 >
T Z'(s)

kz/\ h

fCz(tn
1 K

5) Die Beweisidee wurzelt in einem Beweis von H. Hopr [7] fiir den Satz, dass die Drehungszahl
des Tangentenfeldes einer einfachen geschlossenen Kurve gleich + 1 ist.
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Istt=s,s0haben wir w(z,s)=v(t)=f(z(¢))—z(¢). Der Rand von T'seid=h—k, —k,,
wobei h die Strecke ist von (0, 0) nach (1, 1), &k, jene von (0, 1) nach (1, 1) und k, jene
von (0, 0) nach (0, 1). Auf d ist das Vektorfeld w stetig, ebenso im Innern von T bis
auf hdchstens soviele isolierte Singularitidten, wie die Kurven ¢ und d Schnittpunkte
haben; denn ein Schnittpunkt ist durch z(t")=z'(s"), (¢’ #5s’), gekennzeichnet, und der
Punkt (¢, s') liegt nur dann in T, wenn ¢’ <s’. Weil f topologisch ist, hat das Vektor-
feld w in (¢',5") mit ¢t'<s’ eine isolierte Nullstelle. Um jede derartige Singularitit
g=(t',s’) in T legen wir ein hinreichend kleines Quadrat R, mit den Eckpunkten
(t'—e, 5" —¢), (t'+¢& 5 —¢), (' +¢, 5" +¢), (' —¢, s'+¢). Die Drehungszahl des Vektor-
feldes w auf dem Rand OR , heisst der Index j, der Singularitit q.

Nun ist die Drehzahl i(d) des Vektorfeldes w auf dem Rand d von T gleich der
Summe der Indizes j, der isolierten Nullstellen ¢ im Innern von 7, d.h.

id)=YJj,- (3.1
q
Aus d=h—k,; —k, erhalten wir

i(d)=i(h) —i(ky) —i(ks). (3.2

Auf h ist aber t=s, also ist i(h) =j= Drehungszahl des Vektorfeldes v auf c. Auf &, ist
s=1und 0<t<1, daraus folgt
i(ky) = (0, falls z’(0) = 2 (1) im Aussern von ¢ (Fall a) (3.3)
Y1, falls 2’ (0) = 2z’ (1) im Innern von ¢ (Fall 4) '
Analog erhilt man, da z(0)=z(1) nach Voraussetzung im Innern von d liegt, die
Gleichung
i(ky))=1. (3.4
Aus (3.2), (3.3) und (3.4) folgt
: .. 1im Fall a
ihy=j=i(d)+ %2 im Fall 4.
Also ist j>0 genau dann, wenn
) —1imFalla
@)= %-—-2im Fall a 3:3)
erfiillt ist.
Wir wollen nun die j, berechnen. Sei z(¢)=2z'(s") mit ¢’ #s’ein Schnittpunkt von
c und d. Falls t'< §’, so ist g=(¢,s") in T eine isolierte Singularitit des Feldes w.
Schneidet dann die Kurve d die Kurve ¢ in diesem Punkte derart, dass sie aus dem
Innern von ¢ in das Aussere verlduft (in ihrer positiven Orientierung), dann ist
j,=+1. Denn dem hinreichend kleinen Quadrat R, in T mit dem Mittelpunkt g
entspricht das Viereck z(t'—¢), z’(s"+¢), z(¢t' +¢), z'(s'—¢&). Dem positiven Umlauf
um den Rand 0R , entspricht eine Drehung des Vektors w(?, s)=2'(s)—z(t) um genau
2 m,d.h. j, =1, wie behauptet. Im umgekehrten Fall, wenn d die Kurve ¢ von aussen
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nach innen durchstdsst, haben wir einen negativen Schnittpunkt, d.h. fiir g=(¢', 5’)
mit ¢’ <s’ gilt dann j , = —1.

Sei m die Anzahl der positiven Schnittpunkte (mit j,= +1) und » diejenige der
negativen. Dann schreiben sich die Gleichungen (3.1) und (3.5) in der Form

—\lim Fall a
id=)j,=m-—n> 3 . .
(@) ;“ —(2im Fall 4.

(3.6)
Sei N die Anzahl aller Schnittpunkte z(¢")=z'(s"). Darunter sind solche, fiir die ¢’ >s’,
welche somit keine Singularititen des Feldes w(, s) ergeben. Wir nennen sie die
neutralen Schnittpunkte, ihre Anzahl sei r, so dass N=r+m-+n.

Fir N=2 findet man durch Aufzdhlen der sechs Unterfille, dass j>0 fiir alle
betrachteten Abbildungen, und fiir N=4 findet man leicht ein Beispiel, wo j<O0 und
Lemma 2 ist bewiesen. Sobald man aber iiber die Abbildung f:c—d etwas mehr
weiss, ldsst sich die Schnittpunktzahl betrdchtlich erhéhen. Wir benétigen:

LEMMA 3. Seien c und d zwei Jordankurven, die sich nicht beriihren und endlich viele
Schnittpunkte haben, welche im Innern zweier abgeschlossener und getrennter Kurven-
stiicke I, und I, von c liegen; unter den endlich vielen Teilbogen, in welche d durch die
Schnittpunkte zerlegt wird, gebe es genau zwei Bogen d,, d,, von denen jeder je einen
Endpunkt auf I, und I, hat. Die zwei abgeschlossenen Komplementdrbogen von d zu
dy ud, seien dy und d,, dabei schneide d; nur I, und d, nur 1,. Falls fiir eine topologische
und orientierungserhaltende Abbildung f: c—d die Durchschnitte f (I,) nd5 undf (1) nd,
beide leer sind, so gilt A, argv(z)<O0.

Beweis. Wir wihlen die Parametrisierung von ¢ und die Nummerierung der
Schnittpunkte z(t)=z'(s;)=z;, (i=1, ..., k), (t;+#s;) derart, dass z(ty), ..., z(¢,) mit
t<ty<--<tyaufl und z(¢,+y), ..., z(#;) mit ¢, 4, <t,,,<--- <t auf I, liegen. Nach
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Voraussetzung liegt /(I;) auf d nicht zwischen z; und z;, , fir i=1, ..., p— 1. Daraus
folgt, dass eine Beziechung s;>¢; (oder s;<t;) fiir ein einziges ie{l, ..., p} dieselbe
Relation fiir alle i=1, ...,p impliziert. Analoges gilt fiir f(I,) und es folgt: Ist ein
Schnittpunkt neutral (bzw. nicht neutral, d.h. positiv oder negativ), so sind es auch
alle Schnittpunkte, die auf demselben Kurvenstiick I; oder I, liegen. Sind die Schnitt-
punkte auf einem Kurvenstiick neutral und auf dem andern nicht, so sind die auf
letzterem abwechslungsweise positiv und negativ, also

Yj,=—-1 und j>0.
(@)

Gibt es keine neutralen Schnittpunkte, so ist ) j =0, denn die Anzahl der
Schnittpunkte ist gerade. In diesem Fall diirfen die Schnittpunkte sogar beliebig
liegen, unabhéngig von I, und I,.

Lemma 3 ist bewiesen.

§ 4. Die Eindeutigkeitssiitze

Wir werden zwei Eindeutigkeitssidtze iiber je eine 1—1-konforme Abbildung
h:G— H beweisen. Die vorkommenden Voraussetzungen sind folgende:

(A) Die durch # induzierte Zuordnung it der Punkte je zweier entsprechender
nicht-punktférmiger Randkomponenten Cel’ und De4 hat die Eigenschaft
(A,) des § 2.

(B) Die Randkomponenten von G und H sind Punkte oder stark konvexe Jordan-
kurven, und zwei einander entsprechende nicht-punktférmige Randkompo-
nenten Cel’ und De 4 sind homothetisch 6).

(C) Sei I'y die nur aus Punkten bestehende Teilmenge des perfekten Kerns I'y;
dann ist die abgeschlossene Hiille I' —I'y der Menge I' —I', hochstens ab-
zdhlbar.

(D) Die Abbildung A ldsst sich in jede kompakte Teilmenge E von I'y analytisch
fortsetzen.

Erster Eindeutigkeitssatz

Seien G und H Gebiete der z- bzw. w-Ebene, die beide den Punkt co enthalten und
h:G— H eine 1—1-konforme Abbildung. Dann gilt

SATZ 3. h hat die Form h(z)=az+b, a>0, wenn h in einer Umgebung von z= co
folgende Entwicklung hat: h(z)=az+b+c/z+d[z*+ -, a>0, und die Voraussetzungen
(A), (B), (C) und (D) erfiillt sind.

6) Zwei Kurven C und D heissen homothetisch, wenn sie durch eine Homothetie, d.i. eine Ab-
bildung der Form z~az 4 b, a> 0, miteinander verkniipft sind; der Fixpunkt zo = b/(1 — a) heisst
Homothetiezentrum.,
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KOROLLAR. Seien G und H zwei Kreisgebiete. Eine 1— 1-konforme Abbildung

h:G— H ist notwendig eine lineare Transformation, wenn die Voraussetzungen (A), (C)
und (D) erfiillt sind.

BEWEIS. In der genannten Entwicklung k6énnen wir =0 und a=1 setzen, denn
durch die Parallelverschiebung von H um den Vektor — b und die Streckung mit dem
Faktor 1/a werden die Voraussetzungen (A), (B), (C) und (D) nicht beriihrt.

Dann hat die in G regulare Funktion g(z)=h(z)—z in z= oo eine einfache Null-
stelle, und die Behauptung lautet g(z)=0. Dagegen nehmen wir an, dass g(z)#0.
Dann ist wegen g(o0)=0 die Funktion g auch nicht konstant. Nun legen wir die
w-Ebene derart auf die z-Ebene, dass die Koordinatenachsen zusammenfallen und

betrachten zunichst die nach Voraussetzung (C) hochstens abzdhlbare Menge f?ﬁ_
Diese Menge besitzt eine letzte nicht-verschwindende Ableitung I'y, welche aus nur
endlich vielen Randkomponenten besteht. Die ihr entsprechende Menge in 4 sei 4;.

Nun wihlen wir zwei Zahlen R>0 und &¢>0 derart, dass der Kreis |z]| =R alle
Randkomponenten von G in seinem Innern enthélt und die Funktion g(z)+a fiir alle
a mit |a] <e in |z] > R mindestens eine Nullstelle besitzt. Nun kdnnen wir die w-Ebene
um einen Vektor a, (wir wéhlen |a,| <g/2) derart verschieben, dass fiir alle Kompo-
nenten von I'; und deren Bilder in 4, folgende beiden Bedingungen erfiillt sind:

a) Je zwei einander entsprechende Komponenten von I'; und 4, schneiden sich
entweder nicht oder in zwei getrennten Punkten.

b) Im Falle zweier Schnittpunkte ist in diesen die Zuordnung g,(z)=§(z)+a,
ungleich Null; dabei bedeutet g(z)=/(z)—z die induzierte Zuordnung der Rand-
punkte.

Die Moglichkeit von a) folgt aus der Voraussetzung (B), denn je zwei stark kon-
vexe und homothetische Kurven sind entweder identisch oder haben hochstens zwei
gemeinsame Punkte (Beweis siehe [3]); und in beiden Féllen kann man durch eine
geeignete Parallelverschiebung der einen erreichen, dass sie sich entweder nicht oder
in zwei getrennten Punkten schneiden.

Die Moéglichkeit von b) folgt aus den Eigenschaften einer zuldssigen Rénder-
zuordnung: Es gelte ii(z)=z fiir einen Punkt ze C. Liegt dann z in M,?) so nehmen
wir die beliebig kleine Verschiebung von H so vor, dass z nicht mehr auf dem Intervall
h(z) liegt, wohl aber der neue Schnittpunkt der Kurven.

Liegt z in C— M und hat /i(z) nur den Punkt z als Urbild, so grenzen wir auf C
ein beliebig kleines Intervall 7 ab, das z im Innern enthilt, und wéhlen die Ver-
schiebung derart, dass der Schnittpunkt von C und D in J=h(I), aber ausserhalb I
liegt.

Liegt schliesslich z in C— M und wird ein ganzes Intervall  von C auf den Punkt

) Def. von M siehe § 2, Eigenschaft a).
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h(z) abgebildet, so kénnen wir H derart verschieben, dass der Punkt /i(z) nicht mehr
in I liegt, wohl aber der Schnittpunkt von C und D.

In allen Fillen kann man somit die beliebig kleine Verschiebung von H so wihlen,
dass ausser a) auch b) fiir alle endlich vielen CeI', erfiillt ist, und nach allen weiteren
hinreichend kleinen Verschiebungen kein Bildpunkt mit einem Urbildpunkt zu-
sammenfillt.

Weiter behaupten wir: um jede Komponente CeI’; konnen wir eine in G und hin-
reichend nahe an C verlaufende Jordankurve ¢ legen, dass fiir ¢ und 4, (c) die Voraus-
setzungen zu Lemma 3 erfiillt sind. Dabei ist h, (z)=h(z)+a;.

In den Fillen, wo C oder i, (C)= D punktférmig ist oder C und D keine Punkte
gemeinsam haben, ist die Behauptung trivial. Wir nehmen somit an, dass C und
D=h,(C) zwei verschiedene Schnittpunkte z, und z, haben. Nach b) gilt g, (z;)#0
fiir i=0, 1.

Durch einen Querschnitt ¢ von G wollen wir ein Teilgebiet Uy, das z, als Rand-
punkt hat, derart abgrenzen, dass U, und k, (U,) punktfremd sind. Um ¢ zu konstru-
ieren, wahlen wir auf C ein Intervall I, welches z,, aber nicht z; enthidlt und von der
abgeschlossenen Punktmenge J=h, (I) einen positiven Abstand r besitzt. Die End-
punkte von 7 seien z, und z3, beide in C— M. Nun betrachten wir zwei Gebietspunkte
0,, Q5 von G, verbinden Q, mit z, durch einen Einschnitt g, und Q; mit z; durch
einen Einschnitt ¢;. Wir konnen Q, und Q; so nahe an z, bzw. z; wihlen, dass die
Bilder /,(q,) und A,(q,) von g, und g5 einen Abstand >r/2 haben. Die Punkte Q,
und Q; konnen wir mit einem in G und so nahe an C verlaufenden Jordanbogen ¢,
verbinden, dass g; zusammen mit g, und g5 den gewiinschten Querschnitt g bildet.
Denn jeden Punkt P von g; konnen wir so nahe an 7 wéhlen, dass er auf einem Ein-
schnitt p von P nach einem Punkt auf 7 liegt mit der Eigenschaft, dass der Abstand
von p und A, (p) grosser als r/2 ist. Das durch ¢ abgetrennte abgeschlossene Gebiet U,
hat somit mit 4, (U) keine Punkte gemeinsam.

Eine entsprechende Konstruktion fiithren wir im andern Schnittpunkt z; von C
und D durch und erhalten ein Teilgebiet U; mit dem Randpunkt z, und 4, (U,) nU, =9.

Nun ziehen wir eine in G verlaufende Jordankurve ¢ so nahe an C, dass die
Schnittpunkte von ¢ und A, (c) alle in U, L U; liegen. Zudem kdnnen wir ¢ so wihlen,
dass U;nc fiir i=0,1 aus einem einzigen Kurvenstiick I; besteht. Somit haben wir fiir
¢ und h, (c) die Voraussetzungen zu Lemma 3 hergestellt.

Diese Konstruktion fithren wir fiir alle Komponenten von I'y durch und erhalten
ein System von Jordankurven c in G, von denen jede eine Komponente von I'; um-
schliesst, und die wir alle ausserhalb voneinander und in |z| < R wihlen konnen. Das
Gebiet, welches durch Herausschneiden des abgeschlossenen Innern aller Kurven ¢
aus G entsteht, sei G,. Nach Lemma 3 gilt 4, argg, (z) <O fiir alle c. Es gilt aber auch
4.arg(g;(z)+a)<0 fiir alle a mit hinreichend kleinem Betrag. Daher konnen wir
nach dem in [13] ausfithrlich beschriebenen Verfahren in endlich vielen Schritten
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ein Gebiet G, =G und eine Funktion g; konstruieren mit folgenden Eigenschaften:

1) G, ist berandet von endlich vielen Jordankurven ¢ und einer in I —(f_:——ﬁ)c
I'y liegenden kompakten Teilmenge E von I'.

2) g, hat in G, wenigstens eine Nullstelle und

3) auf allen cist 4, argg,(z)<0.

Nach Voraussetzung (D) lasst sich die Beschrankung von 4 auf G, und damit auch
g in E analytisch fortsetzen. g, ist somit holomorph im Gebiet G,, welches von den
endlich vielen Jordankurven ¢ berandet ist. Sie ist aber auch auf dem abgeschlossenen

Gebiet G}, holomorph und fiir jede Randkurve gilt 4, argg, (2)<0. Das ist ein Wider-
spruch zum Argumentenprinzip. Satz 3 ist bewiesen.

Zweiter Eindeutigkeitssatz

Diesmal machen wir im Anschluss an [3], pp. 187ff folgende Voraussetzungen:

In den Randkomponentenmengen I’ und 4 von G bzw. H gibt es je zwei isolierte
Komponenten C;, C, und D,, D,, wobei

1) C;=D; eine im Endlichen verlaufende Jordankurve ist, die G bzw. H im Innern
enthalt,

2) C, und D, homothetisch und sternférmig sind beziiglich des im Innern der
Kurven gelegenen Homothetiezentrums.

Nun sei eine 1 —1-konforme Abbildung h:G— H gegeben, welche C, in D, =C,
und C, in D, iberfiihrt; es gilt der

SATZ 4. Unter den obigen Voraussetzungen ist h die Identitdt, wenn
(i) fiir die von C,, D, und C,, D, verschiedenen Paare entsprechender Randkompo-
nenten (B) gilt,
(i) fiir h die Voraussetzung (A) erfiillt ist und h(z,) =z, fiir einen Punkt z, € C; und
(iii) die Voraussetzungen (C) und (D) erfiillt sind.

Beweis. Wiederum betrachten wir die Funktion g(z)=h(z)—z und behaupten,
dass g=0ist. Wenn wir g # 0 annehmen, so ist g(z) auch nicht konstant. Die induzierte
Zuordnung der Punkte von C, auf D, =C, ist, da diese Kurve in G und H isoliert ist,
eine topologische Abbildung, die wir ebenfalls # nennen. Dann definiert g(z) auf C,
ein Vektorfeld, wobei die Endpunkte der Vektoren wieder auf C; liegen. Hitte g(z)
auf C, keine Nullstelle, so wire die Argumentinderung von g(z) bei einmaligem
positivem Umlauf von z auf C, gleich 2. Wir wissen aber, dass g(z) wenigstens in z,
auf C, eine Nullstelle hat. Da C; isolierte Randkomponente ist, konnen wir z, mit
einem hinreichend kleinen und in G verlaufenden Kreisbogen derart umgehen, dass
darauf
. i-A argg(z)=——~~1-» fdlogg(z)<0 wird .
2 2

i
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Dass auf C; die Nullstellen isoliert sind, iiberlegt man sich folgendermassen:

Das Innere von C, =D, bilden wir durch ¥ 1—1-konform auf die Kreisscheibe
{x:|x| <1} ab und betrachten die 1 —I-konforme Abbildung ¥ =y ohoyy "1 :y(G)—
Y (H). Der Rand [x|=1 ist in beiden Gebieten Y (G) und ¥ (H) isoliert und ¥ lasst
sich auf |x|=1 analytisch fortsetzen, also hat ¥ auf |x| =1 isolierte Nullstellen. Nun
hat aber ¥ (x)— x genau dann eine Nullstelle in x, =y/(z,), wenn g(zo)=h(zo) —2,=0
ist, also sind die Nullstellen von g(z) auf C; isoliert.

Wir konnen daher jede Nullstelle mit einem hinreichend kleinen und in G ver-
laufenden Kreisbogen umgehen und erhalten von jeder Nulistelle einen negativen
Beitrag. Also ist die genannte Argumentidnderung kleiner als 27, und da sie ein ganz-
zahliges Vielfaches von 27 ist, haben wir 4., argg(z) <0 bei positivem Umlauf von z
auf der Kurve C}, welche mit C; zusammenfillt bis auf die Kreisbogen um die Null-
stellen. Dieselbe Argumentenbedingung ist aber auch erfiillt fiir eine in G hinreichend
nahe an C; verlaufende Jordankurve c;.

Die isolierte Randkurve C, und ihr Bild D, sind sternférmig und homothetisch,
sie haben somit entweder keine Schnittpunkte oder sind identisch. Im ersten Fall ist
1/2n A, argg(z)< —1 bei negativem Umlauf von z auf C,; (g(z) bedeutet dabei
wiederum die durch g induzierte topologische Randabbildung).

Ist C,=D,, so gilt dieselbe Relation, falls g(z) keine Nullstellen hat auf C,. All-
fallige Nullstellen konnen wir wieder umgehen mit kleinen Kreisbogen in G, auf denen
die Integration negative Beitrdge liefert. Somit haben wir auf der Kurve C; (=C, bis
auf die Kreisbogen um die Nullstellen)

1
— A argg(z) < —1
2n

bei negativem Umlauf von z auf C;. Dieselbe Beziehung gilt auch fiir eine in G und
hinreichend nahe an C; verlaufende Jordankurve c,, die ¢, nicht treffen soll.

Nun existiert eine Zahl ¢ >0 derart, dass fiir alle a mit |a| < ¢ die obigen Argument-
bedingungen auch fiir die Funktion g(z)+a und die Kurven c,, ¢, noch erfiillt sind,
fiir ¢, bei positivem, fiir ¢, bei negativem Umlauf.

Nun betrachten wir die nach Voraussetzung (C) hochstens abzdhlbare Menge

ﬁ{, (ohne C;, C,) und bilden ihre letzte nicht-verschwindende Ableitung I';, die
nur aus endlich vielen Komponenten besteht. Wie oben fahren wir weiter und stellen
in endlich vielen Schritten folgende Situation her:

Wir haben ein Gebiet G,=G, das berandet ist von endlich vielen Jordankurven
€1, €y, ..., ¢, Und eine Funktion g,(z), die in G, holomorph ist. Zudem gilt

0 fiirc=c, (beipositivem Umlauf)
A.argg,(z) <{—1 firc=c, (beineg. Umlauf)
0 firc=¢ (i=3,...,k)(beineg. Umlauf)
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und somit K
1

I .

i=1

im Widerspruch zur Tatsache, dass die Anzahl der Nullstellen nicht-negativ ist.

Die Voraussetzungen zu Satz 4 lassen sich folgendermassen abdndern: Die Gebiete
G und H liegen im Aussern der in 1) genannten Jordankurve und enthalten beide den
Punkt co. Im tiibrigen sollen die gleichen Voraussetzungen gelten. Die Funktion
g(z)=h(z)—z hat in diesem Fall hochstens zwei Pole: P<2, und bezeichnet N die
Anzahl der Nullstellen, so wird N—P= —2. Die obigen Integrationen miissen nun
alle im negativen Umlaufsinn durchgefiihrt werden. Wir erhalten (1/27) 4., argg,(z)
<—1und (1/2n) Y, 4. argg,(z)< —2. Wiederum folgt g(z) =0.

LITERATUR

[1]1 AHLFORS, L. and BEURLING, A., Conformal invariants and functiontheoretic nullsets, Acta math,
83 (1950), 101-129.

[2] CARLEMANN, T., Sur la représentation conforme des domaines multiplement connexes, C. R. Acad
Sci. Paris. 168 (1919), 843-845.
[3] CouranTt, R., Dirichlet’s principle, conformal mapping and minimal surfaces, Intersci. Publ.,
N.Y. 1950.
[4] GrOT1ZSCH, H., Eine Bemerkung zum Koebeschen Kreisnormierungsprinzip, Ber. Verh. sichs.
Akad. Wiss. Leipzig, math. phys. KI. 87 (1935).
[5]1 GrOT1ZSCH, H., Zur Theorie der konformen Abbildung schlichter Bereiche, Ber. Verh. sichs. Akad.
Wiss. Leipzig, math. phys. Kl. 87 (1935).
[6] GoLusIiN, G. M., Geometrische Funktionentheorie, VEB Deutscher Verlag der Wiss., Berlin
1957).
[7]1 Hopr, H., Uber die Drehung der Tangenten und Sehnen ebener Kurven, Composito Mat. 2 (1935).
[8] JENKINS, J. A., Univalent Functions and Conformal Mapping, Ergebn. d. Mathem. [N.F.] Heft 18,
Springer-Verlag 1958.
[9]1 KEREKJIARTO, B. von, Vorlesungen iiber Topologie 1, Grundlehren Bd. VIII, Springer, Berlin 1923.
[10] KOEBE, P., Abhandlungen zur Theorie der konformen Abbildung, Math. Z. 7 (1920), 235-248.
[11] NATANSON, 1. P., Theorie der Funktionen einer reellen Veriinderlichen, Akademie Verlag, Berlin
1954.
[12] SHIFFMAN, M., Uniqueness theorems for conformal mapping of multiply connected domains, Proc.
Nat. Acad. Sci. USA. 27 (1941).
[13] StRrEBEL, K., Uber das Kreisnormierungsproblem der konformen Abbildung, Ann. Acad. Sci.
Fennicae [Ser. A] 101 (1951), 1-21.
[14] StrEBEL, K., Uber die konforme Abbildung von Gebieten unendlich hohen Zusammenhangs,
Comment. Math. Helv. 27 (1953), 101-127.

Eingegangen den 6. Oktober 1967.



	Zur Eindeutigkeit konformer Abbildungen von Gebieten unendlichen Zusammenhangs.

