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An Approximate Reciprocity Formula
for Some Exponential Sums

by K. CHANDRASEKHARAN and RAGHAVAN NARASIMHAN

§ 1. The Dedekind zeta-function {k(s, €) of an ideal class € in a quadratic field
K=Q(,/d) can be represented by the Dirichlet series Y a,m~* in the half-plane
Res> 1, where a,, is the number of non-zero integral ideals of class € with norm m.
In a recent paper [4] we showed that

Y amexpRrimx)=0(T), as T- o, (L.1)

m<T
for any irrational x, and used this fact to prove that { (}+it, €) vanishes for an
infinity of real values of ¢. This result goes through also for zeta-functions with
grossencharacters associated with quadratic fields.
We shall here prove the following

THEOREM 1. If A=|d|''?, and 0<x <], we have

€y

Z anexprimx/i) =~ Z a, exp(—2mnim/ix) + O(X"? logX), (1.2)
x
m<X m<Xx2

providedthat X x*>1]/A>0. Here ¢, =1, or i, according as the field K is real or imaginary.
If0<Xx*<1/A, then

Cs

Y a,(exp2nimx/i)= (exp(2rix X/2)— 1)+ 0(X'?), (1.3)

m<X TilX
where c, is a constant which depends on the field. (If k denotes the residue of {x(s, €)
at s=1, then c,=x 41, or kA/2n, according as K is real or imaginary). The error-terms
in (1.2) and (1.3) are uniform with respect to x.
From this we deduce the following

COROLLARY. If x is rational, and x=1/(kd), where k is an integer, then

Y apexprimx)=c, X +0(X"*logX), as X - o0, (1.4)

m<X

where ¢, is a constant which depends on k and the field.

When a,,=d(m), the number of divisors of m, formulas of the type (1.2) and (1.3)
were first given by J. R. WILTON [6], who used them to study the order of magnitude
of sums of the type

Y d(m)cos(2nmx),

m<X

for x belonging tb various classes of numbers. Such a study was originated by HARDY
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and LitTLEwoOD, and later carried on by a number of authors. References to the
literature can be found in WILTON’s paper [6].

The proof of Theorem 1 requires, among other things, properties of convergence
of a class of infinite series of Bessel functions with coefficients a,,. The study of such
series when a,,=d(m), or r(m) (the number of representations of m as a sum of two
squares), originated with VoroNoI, HARDY, and LANDAU [5]. In two of our earlier
papers [1, 2] we gave a general method for attacking the convergence problem for a
wide class of such series. While the proof of Theorem 1 can be effected without using
the sharpest known results on such series, it seems possible, by using them, to obtain
a general summation formula for a,,. This is given in Theorem 2, § 5, and includes the

VORONOI-HARDY-LANDAU formula when K= Q(\/t 4). Our proof goes through also
in the case d=1 of equation (2.1), when { is the square of Riemann’s zeta-function,
so that Voronoi’s summation formula for the divisor function is also included.

We are indebted to Professor C. L. SIEGEL for critically reading a first version of
this paper and making several helpful comments. He pointed out to us that in the case
of an imaginary quadratic field, the constant ¢, =i, and that an additional term
f(0)/w appears in (5.6). He has given an alternative method for sharpening the Co-
rollary to Theorem 1, which we quote, with his permission, in § 6.

§ 2. We shall first prove Theorem 1 for a real quadratic field K=Q(./d), d>0.
In that case, we have

a0

{k(s, @) = Z %zCK(S’ (E), Res>1,

m=1

where € is the ideal class conjugate to €, and the following functional equation holds:

(\/d) r2(3> Lk (s, €) = <\/~d>l srz( )Cx(l—s ¢).

This is of the form
(;) b (s) = I (1 ) (1-5s), @.1)

where
apn, mm
be)= ) T =" A=l 2.2)
m=1 "
Let
1 7
AQ = anx_ ng’
w(x) Fo+1) (x = 1)
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for x>0, 0 >0, the dash denoting that the last term has to be multiplied by 4, if =0
and x=pu,. By the standard convention that an empty sum is zero, A%(x)=0 for
0<x<py,, 0=0.

According to a previous result of ours [2, p. 116], equation (2.1) implies the
existence of an identity, the precise form of which is given by the following

LEMMA 1. Egquation (2.1) implies the identity

= x (1+e)/2 s )
Al(x) — P,(x)=—2"¢ Zl am(——) Fioo{40x )"}, (2.3)
where x>0, F,(x)=Y,(x)+(—1)""1(2/n) K,(x), Y, and K, being the well-known Bessel
Sfunctions, o is an integer, such that ¢>0, 0>28—3, where f=1+¢>1, and

P(0)= j I(s) p(s)x**"ds

F(s+r+1)

,
€-

where €, is a curve which encloses all the singularities of the integrand. The series in (2.3)

converges uniformly in any interval of the positive real axis in which the function on the

left is continuous. If ¢=0, it converges boundedly in any interval 0 <x; <x<Xx, < 0.

This lemma is a consequence of Theorem 7.1(c) of [2], since the condition given

there, namely

1/2—
sip | T anul P =o(1),
0<h<1l n2<pu,<(n+h)?

as n— oo, is fulfilled, because of the known estimate [2, p. 128]

Y anp=xx+0(x""), (2.4)
m<x
where « is the residue of (¢ (s, €) at its only pole s=1, and of the fact that f=1+¢> 1.
The method of proof is that of equiconvergent trigonometric integrals used by us in
[1]. The assumption that g is an integer is not necessary; but our applications do not
require more.
In the case of a real quadratic field, it is known that

n>1 being the fundamental unit in K, while
n  logn
Pi(x)=—(k(—1,6C)— + —x7.
\/E T
Thus, if we take ¢=0, and write ny for x, we get

[ o]

A(y) = Z a, = Py(ny)— Zfi'—;'—zym F,[4n(A,9)"*], (2.5)

Amsy m=1
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where now
/lm='g,).:\/d,Po(ny):2logr,°y=c‘y, say. (2.6)
we define for y>0, 0>0,

A%(y) = A5(y) = F(E{-F—lj Z am(y — A",

If we set
L(y)=—y"""2F, (4ny'?), 2.7)
then we can rewrite (2.5) as

a, m
A(y)=cy+ Z TIO(me), lm.:i

m=1

(2.8)

Because of Lemma 1, with ¢=0, the infinite series on the right-hand side of (2.8)
converges boundedly for 0 <a <y<a' < co. But this result is #of necessary for the proof
of Theorem 1.

The case g=1 of Lemma 1 gives

1 an,
AG)=ter+ o E (), 29)
m=1 "
since d
Ec[x"/2 F,{4n(A,x)""*}] =2n 42 x""V2F,_ [4n(A.x)""?]
=—2nAN1,_, (),
or

d_i[,v,lumx)] =21y Ly (A ), (2.10)

and the series in (2.9) is uniformly convergent for y > 0. This result is much easier to
establish than the convergence of the series in (2.8).
If f is a function which is twice continuously differentiable in [0, 00), then by

Abel’s Lemma on partial summation, we have
X

> anf (i) = A0S0 - [ 405 @ dr.

m=<

Ay
where /' is the derivative of f. If we integrate by parts, once more, we have
X

3 auf(a) = A0 - 4 Q0F () + [ 41057 O .

Ams<X
0
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If we choose f(t)=exp(2rixt), x>0, and use (2.9) and (2.4) we get

Z anf () = ¢ XF(X) = L X2F' (X) + j Ve (1) di + 0(X'?)
£ U a,
-8 e

X *)

1 a

— Y 2L (A0 f" (1) dt,
0 m=1

the series occurring in the last integral being uniformly convergent. The error-term
O(X*/?) comes from formula (2.4). Hence

Z Apf (Am) = c‘[f(t) dt + 0(X'?)

1 \ a, .

+5= ) | | LA Sf () dt = L (A, X)f'(X) |,

2n A
m=1 0

and the last term equals

0 X

51; Zg {[11 (mt)f' O] — J Q@7 A) o (G ' (£) dt — I, (A X) f’ (X)}.

m 0

The first term in the curly brackets vanishes at t=0 because of (2.9). Taking
f(t)=exp(2mixt) we get the formula

X
Y amexp(Zniimx)=cjexp(Znixt)dt+0(X”3)+ Y Aptm,  (2.11)
lmS m=1
* 0
where
X
o §
r,,,=—-ff{lf Io (A, f) exp(2mixf)dt. 2.12)

m
0

We shall prove Theorem 1 by estimating the sum ) j_; @, 7y, in (2.11) by means
of the following lemma due to J. R. WiLTON [6].
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LEMMA 2 (WILTON). Let

b'e
d
J, = f [t exp@rixdt, 10)=" [, 2.13)
0
and
N = X x2.
Let
R,=J,— ‘exp—(2milx), if i, <A <N, 2.14)
X
where ¢ is defined as in (1.2), and
1
R,=J,— T I(A,X)expRrixX), if A,>N>c >0. (2.14)

m

Then we have the estimates:
X
&2>, il 4, <(l—¢)N, O<e<l1; (2.15

m

R,=0(x""?) 14 N"14 4 0(

R,=0(x""?N"2IN=2,1"Y, if ¢;N<i,<cesN, ¢;>0, A,#N; (2.16)

1 R
Rm=0(>, if N—cyf/ Nx<l,<N+cs/Nx, cy,e5>0; (2.17)
X

R,=0(x""2N"*2.%%, if i,>(1+eN>N. (2.18)
The O’s are uniform in x, for 0<x< A, for any constant A, ¢ being fixed.

An integration by parts applied to (2.12) yields the relation

1
rm=Jm———i~lo(/1mX)exp(2nixX), (2.19)

m

where J,, is defined as in (2.13). Therefore, by (2.14),
r =R, if 4,>N>c >0, (2.20)
and, by (2.19) and (2.14), we have

1
,.mzEiexp_(2ni/1m/x)+Rm——ll—IO(,lmX)exp(ZnixX), if 4, <4,<N. (2.21)
X

m

Combining (2.20) and (2.21) we get

e 0] (e o]

Z amrmzf_{ Zamexp__(znum/x)_ Xgl"IO(AmX)exp(znixX)+Z am R, .
x

m
m=1 im<N Am<N m=1

(2.22)
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It is known that I,(t)=O(t'/*), as t> o0 [2, p. 96], so that

am . am
Z TIO(AmX)exp@mxX):O(X”‘* Z Eﬁ)=0(x”2), (2.23)

m
Am<N Am<N

because of (2.4).
In order to estimate the sum Y »_ ; a,, R,,, we split it up into three parts. If 0 <e<1,
we write

ao
2 amBn= Y 4 ) +
m=1 Aim<(1—¢)N (1-e)N<Aim<(1+g)N im=2(1+e) N

=Y+, +Ys,  say. (2.24)
If we use (2.15) in ) ;, we get

Am +—1/a -1
} Z <c- il/zX X
1 m
Am<(1—g) Xx2
<c (XxPPrXMVixl<ce- X2, (2.25)

(N.B. Here, as elsewhere, ¢ is a constant with possibly different values at different
occurrences).
If we use (2.18) in ) 5, we get

IYsl<c: Y apdn 't (XxP)Px12

Am>Xx2

_<_ c e (XxZ)—1/4+3/4x~1/2 <c- X1/2. (2.26)

Finally we consider ) ,. Here we have, by (2.17),

| y a,,,R,,,Igc-1 Y am—-:f;[c\/lc\qu+0(N”3)]

N-vNx<im<N++VNx XN-VNx<Am<N+vNx

=0(X'"))+o0(x'"Px" 1) =0x"%, (.27

if Nx>¢>0, and 0<x<A. If Nx is so small that A \/N;«}, then the sum on the
right-hand side reduces to a single term q,,, and the estimate is

o(iv;) =0(Xx'?),

since N>1/A>0. On the other hand, we have, because of (2.16),

Qm
- N

) aRise XN,

A

—_ — m
N+vNxgin<(1+e) N N+VNx<im<(1+&) N
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Now

(1+&) N
a dA(t
C m =:0 fm£) ,
Aw— N t— N
N+VNx<Adn<(1+e)N N++Nx
and, by (2.4), A(t)=xkt+ E(t), where E(t)=0(t'/?). Thus
D) a,R,| = 0(X"*log X), (2.28)
N++vVNx<Am<(1+e) N
and similarly
1 Y “a,R,| =0(X"*logX). (2.29)

(1—e) N<Am<N-VNx

Hence (2.27), (2.28), and (2.29) together give

1Y, =0(X"*log X). (2.30)
On combining (2.24), (2.25), (2.26), and (2.30), we get

Y a,R,=0(X""logX). (2.31)
m=1

If we use this, together with (2.23), in (2.22), then we get

> c
Y ulm= ;AZNamexp(—— 21idn/x) + 0(X*log X). (2.32)
Further X
Jexp(Znixt)dt sE=O(X”2), (2.33)
X
0

since, by hypothesis, N=Xx?>>1/1>0.
Formula (2.11), combined with (2.32) and (2.33), gives (1.2) in the case of a real
quadratic field, provided that N>1/A.
If N<1/4, then (2.20) gives

® w
Z AmTm = Z amRm’
m=1 m=1

in which case we can use (2.18), so that

a0 a0
2\3/4
c(Xx a
0 R, | < KXV an <cX¥x<eX'4,
m 1/2 5/4

X A

m=1 m=1

since Xx*= N<c. Hence, by formula (2.11),

c
Y a,exp(2mil,x) = (exp(2mixX)—1)+ 0(X'?),
mix

Am<X
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uniformly for 0 <x <4, which proves (1.3) in the case of a real quadratic field, and
thereby completes the proof of Theorem 1 in that case. We note thatthe term O(X'/?)
comes from (2.4).

§ 3. The proof of Theorem 1 for an imaginary quadratic field K= Q(\/ —_a;), d>0,
is similar. Here we have a functional equation with a simple gamma factor, namely

(;‘:)sr(S) (k(s, €)= (\2/:)1_}(1 — ) te(l =, €),

which takes the form

Ir's)e(s)=T(l-s)e(-ys), (3.1)
where w
a,, 2mmn
@(s) = s lm =, A=/d.
4 A
m=1

We define A%(x) as before. As in Lemma 1, equation (3.1) again implies the existence
of an identity with the Bessel function J,(x) — not to be confused with the integral
J, in Lemma 2 - in place of the special function F,(x):

© x \(1+0)/2
A5() - () =0 3 a, (,1) T lr(x 2, (G2)
where A,=m/A, 0=>2p—3, f=1+¢e>1. The series converges absolutely for 9>1.
Further, it converges boundedly in any interval of the real axis when ¢=0, and uni-
formly whenever the function on the left-hand side is continuous [1, Th. III]. The
asymptotic behaviour of J,(x) is similar to that of Y,(x): J,(x)=0(x"1/?), as x—o0.
The analogue of (2.4) is true; there is an additive constant which is absorbed by the
term O(x'/?). The proof of Lemma 2 goes through with these changes; in fact, it
becomes simpler than WILTON’s original proof. In (2.14) we now have ¢, =i, instead of
¢, =1. Estimate (2.15) holds without the error-term O(x/42). The rest of the proof of
(1.2) proceeds on the same lines as before, and we omit details.
If we take x=1/k A, where k is an integer, in (1.2), we get

}:amexp(Znim/k/lz)=El Z anexp(—2nimk)+ 0(X'"?log X)
m<X xm_<_Xx2
= Z a,, + 0(X'"*logX)
x"lSXx""
==ckX+0(X1/210gX),ck=%,

which is the Corollary to Theorem 1.
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§ 4. The estimate in (1.1) for irrational x was based on purely arithmetical con-
siderations [4], though the proof that {x(3+it) vanishes for an infinity of values of ¢
made use of the functional equation satisfied by {x(s). The proof of the reciprocity
formula, and of the estimate in (1.4) for rational x, was based on the functional equa-
tion for {(s), and the consequent existence of an arithmetical identity like (2.8). This
fact enables us to extend the formula to zeta-functions with Grdssencharacters
{(s, A). The functional equation in that case, the analogue of identity (2.8), namely

[« 2]

AW = RE = ) (),

m=1
and of the estimate (2.4), were considered by us in [2, p. 128]. The properties of
Ia(x) are known [3, p. 33], and enable us to uphold the validity of Wilton’s lemma.
Thus Theorem 1 is valid for zeta-functions with Grossencharacters associated with
quadratic fields.

§ 5. We shall now make use of the relatively difficult case ¢=0 of Lemma 1 to
obtain an exact summation formula instead of the asymptotic formula in (2.11).

Let a,, A,, and A%(x) be defined as hitherto, and f a function which is twice con-
tinuously differentiable in [0, c0). By Abel’s lemma on partial summation, we have, if
O<a<iy,

Am=<

%, an (i) = AR () = [ 4@ (Ot (5.1)

If we first confine ourselves to the case of a real quadratic field, then because of the
case ¢=0 of Lemma 1, we have

jA(t)f’(t) dt=Jctf’(t)dt+ Z %jlo(lmt)f'(t)dt. (5.2)

The first term on the right-hand side is continuous in 0<a<1; so is the second, for
by partial integration, we have

i j:jclo(zmt)f'(t) dt =[i 2—%'";3-111 G t)f’(t)]:

m=1 =1
oo

_ Z . J‘Il(lmt)f”(t) dt.  (5.3)

2mA2

m=1
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Lemma 1, with g=1, shows that this is also continuous in 0 <« < 1. Hence from (5.1)
we obtain

Z anf () = A (X)) = j A (1) di

Am<x
[ o}

= cxf(x) —J{ctf’(t) dt + Z %’—:[Io(lmx)f(x)

m=1
x

- JIO At)f' (D) dt] (5.4)

An integration by parts gives

X

Y afln)=c [10dt+ 3 an[102050)dr, (5.5)

Am<x
0

where
10) = 1 IO == 25(Yolan /) = 2Kol4n ),

and c=k./d, where « is the residue of {x(s, €) at s=1.
In the case of an imaginary quadratic field K= Q(\/ —d), d>0, the term Q,(x)
in (3.2) gives

X 1 x
= 0 ’ == 5 = —
0o(x) = [x(0, §) + - ==+
where w is the number of roots of unity in K, so that (5.5) becomes
fo)_, <
Y apnf () + = f@dt+ > a, | I(A,0)f(t)dt, (5.6)
Am<x m=1
0 0

where ¢'=(x \/ d/2w), where & is the residue of {k(s, €) at s=1.
If we make the convention that 1,=0, and @, =0, or 1/w, according as the field K
is real or imaginary, we obtain the following

THEOREM 2. If f has a continuous second derivative in [0, ), then for any X>0,

we have X

X
5 anfUn)=c [F@dt+ 3 an [ 1Gu0f @) dr, 5
Am<X p m=1 0

where the star * indicates the convention regarding a,, and c=x A, or k A/2x, according
as K is real or imaginary, x being the residue of {x(s, €) at s=1, and A=|d|'/?,
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Wecantakef(t)=exp(2nixt), x>0,and obtain an exact formulain place of (2.11).
The case d=+1 goes back to VOroNoI; the case d= —4 is Satz 559 in [5]. The
condition that f'be twice continuously differentiable in [0, c0) is not fulfilled if we take
f(t)=exp(2mnit'’? x). Toaccommodate this case, whichis of interestin several applica-
tions, we shall formulate more general assumptions on f near the origin.

We remark, first of all, that if 0 <a<b, and f'has a continuous derivative in (0, o0),
then
b

<,12<,,a'"f()"")=cff(t) dt + Zl an | 1(A4,0)f(¢)dt. (5.8)

In order to be able to replace a by 0, we now assume that f is twice continuously
differentiable in (0, c0), and satisfies, near the origin, the condition

1

ft”lf”(t)!dt<oo, (5.9)
0

for some p<1. We then have
1

t”lf'(t)]-—c3St”flf”(u)dusfu”lf”(u)ldu

t
1

5fu”|f”(u)|du<oo,

0

where c; is a constant, so that ¢£'(£)—0, as 10, and [ot]f"(t)|td <oo. We again have

(5.1) and (5.2). The first term on the right-hand side of (5.2) tends to {§ cz f'(¢) dt,
as o—0, since

f[ctf’(t)|dt<oo,
0

because of assumption (5.9), while the second term, by partial integration, leads to
(5.3), namely

X

[mi 5%3, Il(lmt)f’(t):lx— y f I, (A, 0)f" () dt. (5.10)

2
o m=1 27[/{,"
o

Because of identity (2.9), we have

[ o}

Ay B
Z sl L (A1) = 0(1), (5.11)

m=1
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as t—0. Hence, if we let a—0, the first term in (5.10) gives just

a,, ,
) 5o 1 (),
m=1

because of assumption (5.9). To consider the second term in (5.10), we take the series

a,, ,
Zz“&“ﬁj‘l I (A1) - f7 (1) | dt,
0

!]l (fq'mt)l

tp

and define

e, = sup
0<t<1

(5.12)

where p<1, given as in (5.9). If 4,,<1, then, since I, ()= 0(t*'?), as t—0, we have

P L (Ant) | = O(A 0277 = 0(4]),
while, if 4,,¢>1, then, since I, (¢)=0(t3/*), as t— o0, we have

P () | = 024 11477 = 0(A2/* 4+ A),

since 0<¢<1. Hence
e, =0(A),

where g=max(%, p)<1. Thus, by assumption (5.9), we have

[+ o} [+ 8}

m=1 m=1

Hence the series

am "
X ‘miffl (Am ) f" (t) dt
m=1 a

is uniformly convergent in 0<a <1, and we have

1
a,, " apyé,,
Z“z—éﬁflll(lmt)f (t)ldt<‘32 52 < ©.
0

(5.13)

a a
ki —— s | i) f" (1) dt = mo | L ()7 (2) dt :
mZ“f 1 (S0 ngj (S () dr - (5.14)
m=1 [ 4 m=1 0

Thus in (5.10), and so also in (5.2), we can pass to the limit as a—0. The rest of the
argument is the same as in the case where f has a continuous second derivative in

[0, c0). Thus we obtain
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THEOREM 3. If f has a continuous second derivative in (0, c0), and satisfies the

condition
1

[rr@ia<e,

0

for some p <1, then formula (5.7) is valid.

§ 6. Professor SIEGEL’s treatment of the Corollary to Theorem 1, referred to in
§ 1, runs as follows.

“I start from the Gaussian sum

kd./d
G = exp(2ri(ap®> +b + cq)/dk) = ’
p,qéoddk) P( (ap pa a)/dk) {ikd\/d,

where b2 —4 ac= +d>0 in the first case, and b>—4 ac=—d <0, a>0, in the second
case. In the second case the expression

5 o= > exp2mi(ap*+ bpq + cq?)/dk

ap2+bpgqt+cqg?<X

has to be evaluated. The area of the ellipse ap?+bpq+cq?<X is 2 nX/\/d, and
therefore the number of lattice points with any given residue classes of p and ¢
modulo dk is (dk)™? 2 n X/ /d+ O(X'/?). Hence

Zm X
Jd
2ni

=" X+0(X"%.
kd &)

S = (dk) ™2 G+ 0(x'?),

In the first case the ellipse is replaced by a sector of a hyperbola. It is clear how to
improve the error-term O(X'/?). The same idea goes through if the ratio 1/dk is re-
placed by any rational number. The result is a little more general than in your text,

since d need not be the discriminant of a quadratic number field ; even a square number
is allowed.”
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