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Différentiabilité de la composition et complétitude
de certains espaces fonctionnels

par WILLI BUCHER 1)

Introduction

Dans [4], une théorie de différentiation a été développée pour la catégorie A* des
espaces vectoriels pseudo-topologiques dits «equable and admissible» qui contient
les espaces vectoriels localement convexes séparés. Le présent travail examine a peu
pres le méme probléme dans la catégorie R des espaces vectoriels dits raffinés. R n’est
pas une sous-catégorie de A*. A* n’est pas non plus une sous-catégorie de ‘R. En
particulier un espace vectoriel localement convexe séparé en général n’est pas raffiné
sauf s’il est normable. Les objets de A* entrent quand méme dans nos considérations
car on peut raffiner les structures des objets de A, c. 4. d. on a un foncteur * de A*
dans R. Si un objet E de A* est topologique, I’objet correspondent E* dans R en
général ne ’est pas, tandis que si E est complet, il en est de méme de E ~.

La catégorie P, des espaces vectoriels pseudo-topologiques localement bornés
ayant comme morphismes les applications de classe C, définies dans [4] (une con-
dition qui, en général, est plus forte que la continuité) est examinée dans le deuxiéme
paragraphe. L’espace vectoriel €y (E,; E,) des morphismes f: E,»E, de B, sera
muni d’une pseudo-topologie telle qu’on obtienne de nouveau un objet de By et telle
qu’on ait un homéomorphisme linéaire entre €, (E; X E,; E;) et €o(E; €o(E,; E3)).

Les objets de la catégorie €, sont les espaces vectoriels raffinés et les morphismes
les applications k-fois différentiables telles que la k-iéme dérivée soit de classe C,.
De nouveau €, (E,; E,) sera un objet de R.

Si E; et E, sont de dimension finie, alors %,(E;; E,) contient exactement les
applications k-fois continuement différentiables. Or, la pseudo-topologie définie la-
dessus est strictement plus fine que la topologie de la convergence compacte, malgré
que les suites (au sens usuel) qui convergent sont les mémes par rapport aux deux
structures (cf. (2.31)).

Pour des espaces raffinés E,, E,, E; la composition ¢:%,(E;; E;) X €4, (Es;
E;)>%,(E,.; E;) est un morphisme de la catégorie €,. En particulier, la loi de
composition de la catégorie €, peut donc &tre considérée comme morphisme de cette
catégorie.

1) Ce travail a été partiellement subventionné par le Fonds National Suisse pour la Recherche
scientifique.
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Pour une certaine classe d’espaces vectoriels raffinés, la complétitude de E,
entraine celle de € (E, ; E,). Surtout en cherchant des structures vérifiant un résultat
de ce genre nous sommes tombés sur les espaces vectoriels raffinés.

Les résultats trouvés dans [4] pour la catégorie A* sont tous valables dans la
catégorie ‘R, et quelques-uns sont améliorés.

Les résultats de [4] qui sont applicables dans la catégorie R n’ont pas été redé-
montrés. La connaissance de [4] est nécessaire pour une étude approfondie du
présent travail. Pour une premicre lecture il suffit d’étre familier avec la notion de
filtre et de pseudo-topologie.

Jexprime & M. A. FROLICHER ma trés vive reconnaissance pour l’aide et I’en-
couragement qu’il m’a apportés.
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§ 1. Quelques catégories d’espaces vectoriels pseudo-topologiques

1.1 Espaces vectoriels raffinés

Soit E un espace vectoriel pseudo-topologique?), et soient Z', % des filtres sur E.
Nous utilisons les notations suivantes:

Ev¥. =Z%Zn% (borne supérieure de Z et %)

X<LY: <Z>U (X est plus fin que %)

Z|E: Zconvergeverszérodans E par rapporta la pseudo-topologie donnée. (En
bref: & converge dans E)3)

g*: le filtre engendré par les enveloppes convexes équilibrées X * des XeZ'.

E,<E,:. <FE, et E, sont les mémes espaces vectoriels, et Z | E, entraine Z | E,
(E, est plus fin que E,).

E°: L’espace vectoriel localement convexe le plus fin de ceux qui sont moins
fins que E (D’aprés (2.7.8)%) ona: ZE° < X <U*, o0 U=\ %).
Z\E
ZE le filtre engendré par les adhérences X par rapport @ E° des Xe % .5)
V: le filtre sur R engendré par les intervalles fermés I;=[ -9, §], out 6> 0.

(1.1) DEFINITION. Un espace vectoriel raffiné E est un espace vectoriel pseudo-
topologique vérifiant:

(R,) E° est séparé.

(R,) Z|E=%" |E.

(R;) Z|E=Z*|E.

(R, Z|E= il existe BeZ tel que V-B| E (ou VB est le filtre engendré par les

I;- B, I;eV).

SiV-B| E, ondira que Best borné dans E. Un espace vectoriel pseudo-topologique
vérifiant (R,) est dit localement borné. Ces deux notions ont le sens habituel, si E est
un espace vectoriel topologique.

(1.2) REMARQUES

() (Ry) a (R;) sont les conditions (7.1.1) pour un espace vectoriel admissible.
Pour cela nous n’avons qu’a montrer que (7.1.1) entraine (R;). Soit & | E et consi-
dérons le filtre ¥ =(Z v(—%))". Ona I, Z<¥ | E (voir p. 137 de [4]). De plus on
obtient (I, - &)*=(I,- )", car I’enveloppe convexe d’un sous-ensemble équilibré est
convexe et équilibrée (Voir p. 177 de [6]). Donc Z* < (I, ¥)*=(I, ¥)" <¥ " =% | E.

(2) Les espaces vectoriels pseudo-topologiques vérifiant (R;) sont «quasi-topo-
logiques localement convexes» au sens de A. BASTIANI (cf. déf. 1.2 de [1]). De plus

2) Voir [3] ou [4].

8) On évite ainsi un symbole spécial pour la pseudo-topologie.

4) Les références contenant trois numéros séparés par deux points se rapportent toujours a [4].
5) Si différentes structures sur E sont considérées, on va préciser de quelle adhérence il s’agit.




260 WILLI BUCHER

la condition «(R)» de A. BAsTIANI (mé€me référence) est plus faible que (Rj).
(3) H. R. FiscHER [3] définit les «bornés de E» par rapport & E°. Notre définition
est équivalente a celle de A. BAsTIANI (définition 1.9 de [1]).

1.2 Une méthode générale de raffinement de structures

A chaque espace vectoriel pseudo-topologique E on peut associer un espace
vectoriel localement borné E* (E-croix) de la maniére suivante:

(1.3) (@) E et E™ sont les mémes espaces vectoriels.

(b) FIE :«= (1) Z|E

(2) il existe BeZ tel que V-B|E.

Aveccettedéfinition E * vérifie les axiomesd un espace vectoriel pseudo-topologique.
Cela résulte du fait que le systéme ¢ des bornés de E satisfait les conditions suivantes:

(1.4) (a) {x}eg pour tout xeE.

(b) Si Ac=B et Beg, alors Aeg.

(c) Si Aeg et Beg, alors A Beg et A+ Beg.

(d) Si Beg, alors I,-B (I'enveloppe équilibrée de B)eg et 6-Beg pour tout eR.

(a) et (b) sont triviales. Pour (c) on n’utilise que V(4UB)=V-4UV-B et que
V(A+B)<V-A+V-B. Enfin I;:V=V et V-6<V pour tout 6eR, d’oit (d). Plus
généralement n’importe quel systéme ¢ de sous-ensembles d’un espace vectoriel
pseudo-topologique E ayant les propriétés (1.4), permet d’associer a E un espace
vectoriel E, comme suit:

(1.5) (a) E et E, sont les mémes espaces vectoriels.

(b) Z|E,< (1) Z|E

2) Znoe#0.

Par construction on a toujours

E,<E, donc la structure donnée de E est remplacée par une qui est plus fine.

Si g est le systéme des bornés de E, nous notons E ™ au lieu de E,. * peut étre
considéré comme foncteur (voir 1.4).

Certains espaces vectoriels pseudo-topologiques définis a ['aide d’une limite
inductive peuvent aussi étre définis a I’aide d’une collection de sous-ensembles ¢ avec
les propriétés (1.4). Nous donnons sans démonstration ’exemple suivant. Soit
L,(E; F) I’espace vectoriel pseudo-topologique défini dans [5], et L¥(E; F) comme
dans [4]. Soit g={H<L(E; F): il existe 0€Q tel que HcL,(E; F)}. Alors on a
Lo(E; F)=(L*(E; ),

1.3 Construction d’espaces raffinés a partir d’un espace admissible

(1.6) DErNITION. Un systéme raffinant ¢ d’'un espace vectoriel admissible E est
une collection de sous-ensembles de E vérifiant (1.4) et:
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(e) Tout élément de ¢ est borné dans E.
(f) Si B est un élément de o, il en est de méme de B" (I’enveloppe convexe de B)
et de B (I'adhérence de B par rapport a E°).

(1.7) PROPOSITION. Soit E un espace vectoriel admissible (c.d.d. un espace vectoriel
pseudo-topologique vérifiant (Ry) a (R3) de (1.1)), et soit ¢ un systéme raffinant de E.
Alors E, défini par (1.5) est un espace vectoriel raffiné, et les bornés de E, sont exactement
les éléments de o.

Démonstration. On vérifie facilement que E, est un espace vectoriel pseudo-
topologique. On a E,<E, d’ou (E,)°<E°. Donc si E° est séparé, alors a fortiori
(E,)° Iest. Soit maintenant 4 < E, 4 I'adhérence par rapport 3 E° et 4° I'adhérence
par rapport & (E,)°. On a A°c 4, car la topologie de (E,)° est plus fine que celle de
E°. Donc pour n’importe quel filtre sur E on obtient ' ¢<Z .Soit Z' | E,et Be Z N g.
Alors BeZ ™ n g, d’ot Z~ | E,, donc £ ¢ E. De plus B*=(I;*B)"eZ*nyg, d’ou
Z* | E. Pour montrer (R,), il suffit de prouver la deuxiéme affirmation de (1.7).

Soit Beg. Alors I, BeV:-Bng,d’ouV-B| E, d’aprés (e). Inversement,siV:B| E,,
il existe 6>0 tel que I;BeV-Bng. On a 6-(I,*B)=1;-B, d’ou I, - Beg d’apres (d).
Donc Beg car B< I, - B.

(1.8) ProrosITION. Si E est un espace vectoriel admissible, alors E ™ est raffiné.
D’aprés (1.7) nous avons @ montrer que les bornés de E forment un systéme
raffinant de E. (1.4) a été démontré dans (1.3).

Pour tout B<E, 5eR on a §-B*=(6-B)*, car xe B* < x=) A, x;, ol x;€B,
n i=1

Y |41<1, 4,eR (Voir p. 177 de [6]).
i=1

Donc

Acli A=>A*c (I, A)*=> ;A" =6(1,-A*) =5-A* < 6(I,- A)* =
=(0-1;-A)" = (I~ 4)*

pour tout JeR, d’olt V- A* (V- A4)*.

Soit maintenant B=A*. B est de nouveau équilibré et convexe (voir p. 178 (5) de
[6]), donc en particulier I, - B= B. De la continuité de ’application x4 x de E° dans
E° (cf. (2.9.1)) on déduit:

6-B<6-B. Donc I,-B=6+(1,-B)=6-Bc6-B=6-(I,-B)=15-B, d’o0 V-B<V"B.
Le reste est facile a vérifier.

1.4 La catégorie R des espaces vectoriels raffinés et les foncteurs °, *et ™

Sauf mention expresse du contraire, les morphismes seront toujours les applica-
tions linéaires et continues. Nous désignons par
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(1.9) B: la catégorie des espaces vectoriels pseudo-topologiques,
A : la catégorie des espaces vectoriels admissibles,
R: la catégorie des espaces vectoriels raffinés.
A tout objet E de P on peutassocier E°, E* ) ou E *. Alors en définissant £ °=/* =
¢ ™ =¢ pour les morphismes de ‘B, on obtient des foncteurs. Ils sont idempotents,
donc surjectifs. Pour des détails voir (2.7.8), (2.6.2), (2.9.1) et

(1.10) LeMME. Soient E,, E, des objets de B. Si ¢: E,— E, est linéaire et continue,
il en est de méme de {.:E"—E," .
Soit Z | E™. Alors & | E,, d’ou £(%)| E,. Soit maintenant BeZ borné dans E,.
.Alors V-B| E;, d’ou £(V-B)=V:£/(B)| E,. Donc ¢£(B) est borné dans E,.
En considérant I'image de P par ces foncteurs, on obtient donc:

(1.11) PropoSITION

B est la catégorie de tous les espaces vectoriels localement convexes (non néces-
sairement séparés),

PB* est la catégorie de tous les espaces vectoriels dits «equable»?), et

B> est la catégorie de tous les espaces vectoriels pseudo-topologiques localement
bornés.

(1.12) PROPOSITION

R=W =P A

R=WUn P~ selon (1.1) et (1.10).

A* =R a été démontré dans (1.8).

De plusona ReWA et R* =R, d’ott RcW™.

Le foncteur * défini dans (2.6.2) remplace la structure pseudo-topologique d’un
espace vectoriel par une qui est plus fine. De méme pour le foncteur *. Or, on n’a ni
PF<P* ni P* = P*. Si E est un espace vectoriel localement convexe non normable,
alors E=E* (cf. (2.5.2)), mais E*#E.) Pour montrer qu’en général on n’a pas
PB* = P, nous considérons I’exemple suivant: Soit R, ’espace vectoriel R muni de la
pseudo-topologie définie par: Z |R,: <> Il existe 6>0 tel que I;€Z. On constate
aisément que R, est un objet de P . Au lieu de montrer directement que R, n’est
pas un objet de P*, nous utilisons:

(1.13) PROPOSITION. Si E, est un objet de P, E, et E; des objets de PB° alors
en général la continuité d’une application bilinéaire b: E, x E,— E5 a I’origine n’entraine
pas la continuité globale.

Démonstration. Nous choisissons £, =R,, E, = E;=R (avec la topologie naturelle),
et pour b la multiplication ordinaire. Soit Z | R,. Alors V- Z | R, d’ou b:R; xR—>R

8) E*# (E-diése) est introduit dans (2.6.2).
7) E est «equable»: < E = E* (voir [4]).
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est continue au point (0, 0). Or, b n’est pas continue au point (0, 1), car [I;]| Ry,
[1]-1|R, mais [I;]-[1]=[1;] ne converge pas vers 0 dans R!

(1.14) CoROLLAIRE. R, n’est pas un objet de P*.
Si R, était un objet de PB* alors 5: R, x R—R serait continue partout d’aprés
(2.8.10).

(1.15) REMARQUE Soit =V {Z:Z | R, xR}. Alors les filtres %, =x+% défi-
nissent une pseudo-topologie sur R x R (« Hauptideal-Limitierung» de H. R. FISCHER
[3] p. 273). Nous affirmons que les %, ne sont pas les filtres des voisinages de x par
rapport a une topologie (donc en particulier que Satz 6 de [3] p. 294 est faux).

Soit U= \J (I;x1,;5). Alors Ue#, car UeZ xV pour tout Z | R,. Supposons

=1
que U soit un voisinage de zéro par rapport a une topologie. Alors il existe Ve#
tel que Ue#, pour tout xe V, c.a.d. pour tout xe V il existe V,e% tel que x+ V, < U.
Soit x,>0 tel que x"=(0, x,)e V (x, existe car Ve[0]x V). Rx {0}V, car
V€[ 1I;] % [0] pour tout 6 >0. Donc Rx {x,}=x’+ ¥V, = U ce qui donne une contra-
diction.

Pour obtenir les théorémes des chapitres 3 et 4, nous supposerons toujours que
les espaces vectoriels E,, E, soient des objets de la catégorie R=WUn P *. Pour les
résultats correspondants obtenus dans [4], nous avons supposés que E;, E, ... soient
des objets de AN P*. On n’a pas Un P* =W~ P*, car un espace vectoriel localement
convexe en général n’est pas localement borné. Or, on n’a pas non plus R A N P*:

(1.16) PROPOSITION. En général un espace raffiné n’est pas un objet de P*.

(1.17) LEMME. Soit E un objet de P*. Alors X | E* « il existe B< E tel que
Z<V-|B.

Soit & | E*. Alors il existe % tel que <% =V -%. E étant un objet de 2, il
existe Be% telque V- B} E. Ona trivialement% < [B],d’ouV-#<V-B,donc <V'B.
Inversement V-(V-B)=V-B. D’oli, si Z<V-Bet V-B|E, on obtient Z | E*.

Soit E={xeR": il existe m>0 tel que |x(n)|<m pour tout neN} muni de la
topologie localement convexe définie par le filtre ¥~ des voisinages de zéro engendré
par la base {V; ,}ien,s>00 OU Vi .= {x€E:|x(i)|<e pour 1<i<k}.

Soit 6>0 et B;={xeE:|x(k)| < pour tout keN. On vérifie facilement que

o={AcE: iliexiste d >0 tel que 4 = B}

est un systéme raffinant de E. Alors E, est un objet de R d’aprés (1.7). D’aprés le

lemme précédent et (1.7) on a: & [(E,) <1l {existe 6>0 tel que £<V-B;. Or,

V-B; = V- B, pour tout >0, d’ou (E,)* est topologique (cf. (2.4.4.)).
Considérons la suite {x,},.n définie par

si n#m

0
x,,(m)—l si n=m.
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Alors pour le filtre Z engendré par X, = {x,,n>k}, keNon a: B,eZ, et X | E, d’ou
Z | E,. Or, & ne converge pas dans (E,)* car B} ¢Z. Donc E,#(E,)".
c.q.f.d.
(1.18) LEMME. Le foncteur composé °* est idempotent.
Soit E un objet de P. Alors E°* < E°,donc E°*°<(E°)°=E°,d’o0 E°*°* < E°*.
Inversement E°* < E°™°, d’ou E°* =(E°™)* <E°™°”".

(1.19) LeMME. Si E est raffiné, il en est de méme de E*.

E* est admissible d’aprés (7.2.3). Si & | E*, alors il existe un borné B de E tel que
X<V B, donc I;-BeZ. Or, tout borné de E est aussi un borné de E* car V:-B=
=V(V:-B). E* est donc localement borné.

(1.20) ProPOSITION. Le diagramme ci-dessous jouit des propriétés suivantes:
(a) Toutes les inclusions (marquées par =) sont strictes.
(b) Tous les foncteurs indiqués sont surjectifs.

B W
VX%% - /

— QIH‘B 9{‘}0“130
gBox = SBX m

R P*

(a) Nous choisissons les exemples suivants: E; =C,(R; R) (Espace vectoriel des
fonctions continues de R dans R muni de la topologie de la convergence compacte).

E,=L(E,;R) (Espace des applications linéaires ¢: E;—R muni de la pseudo-
topologie: £ | E,: <> V-Z | E, entraine £ (%) R). R; comme dans (1.13).

E>*est un objet de R n P* d’aprés (7.4.6), (1.8) et (1.19). D’aprés (6.2.2) I’évalua-
tion e: L(E,; R)x E;—R est continue. On a E,;*x E;<E, xE;, d’ot e: E;*x E;-»R
est aussi continue. E, n’étant pas normable, on déduit du corollaire 3 de H. H.
KELLER (p. 268 de [5]) que E, et E,* ne sont pas topologiques, d’ol les inclusions
RAP°cRAP, AN P A, P =P, A~ P = P et P° <= P* sont strictes. 11 est bien
connu que E; est localement convexe mais n’est pas localement borné, donc les inclu-
sions RN P°<=Un P°, P~ =P et R=Usontstrictes. De plus ’exemple (1.16) montre
qu’il en est de méme de R PF <R, P A A=A, P*<=P. Soit R, I'espace vectoriel R
muni de la topologie grossiére. Nous affirmons que (R,)°=R,. En effet, soit Ue % =
V Z. Alors UeZ pour tout & | R,. Donc Ue [x] pour tout xeR (car I,,e[x] pour

Z Ry
tout x#0!), d’olt xeU pour tout xeR. Cet exemple montre que R P* et A= P*
sont strictes. R, est un objet de P*, d’ott P* N A = P* est stricte. Enfin R, est un objet
de P, mais on a (R))°* =R, #R,, d’out P =P°~ et P°* <P sont strictes.

(b) Pour tout foncteur indiqué dans le diagramme on a une inclusion dans le sens
inverse, d’ou ces foncteurs sont bien surjectifs (cf. (1.18), (1.19), (1.12) et (7.2.3)).
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(1.21)  COROLLAIRE. P n A=W AN P°=A°, R P =R, R=A" et AUnP°* =
— QIO X .

Les objets de B°* jouent un réle important pour certaines questions de compléti-
tude (voir § 2).

1.5 Résultats divers

(1.22) DErINITION. Un espace vectoriel pseudo-topologique E est dit complet, si
Z —Z | E entraine l’existence d’'un xeE tel que £ —x | E.

(1.23) PROPOSITION. Si E est un espace vectoriel pseudo-topologique complet et o
un systéme de sous-ensembles de E vérifiant (1.4), alors E, défini dans (1.5) est complet.

Soit Z —Z | E,. Alors Z —% | E. Doncil existexe Etel que Z —x | E.(£ —Z ) ng #
#0, d’ou il existe BeZ tel que B— Beg. Soit aeB. Alors B—x=(B—a)+(a—x) <
c (B—B)+(a—x), d’oit B—xe(Z —x)ng, donc Z—x|E,.

(1.24) PROPOSITION. Soit E un espace vectoriel, E;, E,, ..., E, des objets de P*,
etfi:E-FE;, i=1, ..., ndesapplications linéaires. Alors £ muni de la pseudo-topologie
la moins fine sur E qui rend continue les f; est un objet de B*.

On a par définition: ' | E < f;(Z) | E; pour 1 <i<n. Soit B;e Z tel que V-£;(B;) | E;
pour 1 <i<n. Alors () B;=Be%Z,et V-B| E, d’ou E est localement borné.

i=1

(1.25) COROLLAIRE. Si E, E,, ..., E, sont des objets de B*, alors E; x -+ XE,
est un objet de P .

(1.26) COROLLAIRE. Si E, est un objet de B™, E, un sous-escape de E, muni de
la pseudo-topologie induite par I'inclusion dans E,, alors E, est un objet de PB*.

§ 2. Homéomorphismes canoniques dans la catégorie 3,

(2.1) DEFINITION. Les objets de la catégorie B, sont les objets de P, c.a.d. les
espaces vectoriels pseudo-topologiques localement bornés. Les morphismes 8) sont les
applications de classe C, définies dans (2.8.4).

(2.2) PROPOSITION. f: E; — E, est un morphisme de 8, <> Pour tout borné B de E;
et tout filtre Z | E; ona V-f(B)| E, et Af (B, )| E,.?)

(2.3) LEMME. Si E est un objet de B, alors V-Z | E <> il existe un borné B dans E
tel que Z < [B] (c.a.d. BeZ).

8) Dans ce paragraphe, nous entendons par morphisme toujours un morphisme de Po*.

%) Af(a, x) = f(a + x) — f(a).
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Si V- | E, alors il existe 6>0, AeZ tel que I;- A4 soit borné dans E. 1/6(I;- A)=
= I, Ao A, d’olt A est borné dans E (voir (1.3)). Or, AeZ est équivalent 3 ' < [A4].
Inversement, si & <[B] et B est borné, alors V- Z<V-[B]| E. La proposition en
résulte.

2.1 L’objet €, (E,; E,)

L’espace vectoriel des morphismes f: E, — E, (cf. (2.8.4)) sera muni d’une pseudo-
topologie telle qu’on obtienne de nouveau un objet de P, qui sera dénoté par
€o(E;; E;). En général €,(E,; E,) sera donc différent de Cy(E,; E,) (défini dans
(2.8.4) et (6.1.3)) quant a la structure.

(2.4) DErFNITION. Un sous-ensemble H de €, (E;; E,) est dit de classe C, si
(1) V'B|E,=V-H(B)|E,
(2) V'B|E,,Z|E,=>A H(B,%)|E,.

(2.5) PROPOSITION. La collection ¢ des sous-ensembles de classe C, de Cy(E,;
E,) vérifie (1.4). Si de plus E, est raffiné, alors g est un systéme raffinant de
Co(Ey; Ey).

(a) SifeCy(E,; E,), alors { f }ep par définition. Les autres propriétés on vérifie
en se basant sur les relations suivantes, qui sont valables pour tout 4 < E,, tout filtre
Z de E; et tout Hc Cy(E; E,):

(b) Si H,<H,, alors H;(A)cH,(A) et 4 H (4, Z)<4 H,(A4, %).

(c) (HiuH,)(A)cH (A)u H,(A) et A(H;u H,) (A4, £)<A4 H{(4, %) v
A4 Hy(A, ). De méme on a: (Hy+ H,)(A)cH,;(A)+ H,(A4) et A(H,+H,) (4, %)<
AH{(A, %)+ 4 Hy(A, ¥), car 4 est linéaire.

(d) 46-H=0-4Hetdl,-H=I1,"4 H.

(e) H*(A)=(H(A))*et A H*(4, %)<(4 H (A4, %))*

(f) D’aprés (7.4.3) on a H (A)cH (A).

Mais I’application f+ f(x) de Co(E,; E,) dans E, étant continue pour tout
xeEj, il en est de méme de f+— 4 f(a, x) pour tout a et x dans E;, donc les arguments
donnés dans (7.4.3) montrent aussi que 4 H (4, Z)<(4 H(4, %))".

(2.6) DEFINITION. € (Ey; E;): = Cy(Ey; E,),. On a donc explicitement:

(2.7) FLCo(E,; Ey) <
(1) V-B\E,=%(B)|E,
(2) Il existe He# tel que H est de classe C,,.

(2.8) PROPOSITION. € (E;; E,) est un objet de P*. Si de plus E, est un objet de
R, il en est de méme de €,(E,; E,).
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Suit de (2.5), (1.5), (1.7) et du fait que les éléments de g sont bornés dans
Co(Ey; Ey).

(2.9) ProrosiTION. Si E|, E, sont des objets de B et f . E,—E, est de classe C,,
(voir (2.8.4)), alors f :E{* — E} est un morphisme de P .

Soit V-BlE[". Alors V-B| E,, donc V-f(B)| E,. Or, E, et E, ont les mémes
bornés (cf. dém. de (1.7)), donc V-f(B)| E; .

Soit Z|E| . Alorsilexiste XeZ tel que V- X | E,. Ona Af(B, X)<=f(B+X)—f(B),
donc 4f(B, X) est borné dans E,. On en déduit que 4f(B, Z)| E; .

Si B, est la catégorie dont les objets sont ceux de P et dont les morphismes sont
les applications de classe C,, on a de nouveau un foncteur

“:PBo—> Po endéfinissant  f = f

pour les morphismes (cf. 1.9).

2.2 Le morphisme c:€y(E;; E;)X €o(E,; E3)>%€o(Ey; E3)

(2.10) LeMME. Si Hic¥,(E,; E,) et H,c€y(E,; E;) sont de classe C,, il en est
de méme de H,o Hy €y (E,; E,).

Soit V- A, Z | E,. Alors V+(H, o H,) (4)=V - H, (H,(A4)) | Es. De légalité A(f,of;)
(a, x)=A4f1,(f(a), 4 f1(a, x)) on déduit19):

A(HyoH,) (A, %)< 4 H,(H,(4), 4H,(4, %)) | E,.
(2.11) CoROLLAIRE. Sif,€¥,(E,; E,) et f,€€o(E,; E3), alors f5of,€€o(Ey; E3).
(2.12) THEOREME. Soit c la loi de composition de la catégorie P ™. Alors
c:6o(E; E;) x €o(Ey; E;) > €o(E,; E3)

est un morphisme.

Soit V-(H;x H1Y), FxG|€o(E,; E;)x €o(E,; E3). Alors V-c(H, x Hy)=
=V (H,oHy)| €,(E; E;) ce qui suit facilement de (2.10) et (2.6).

Soit V- A | E;. Alors(4c(H, x H,, # x 9)) (A)<4H,(H,(A), ¥ (4))+ 9 (H,(A4) +
+F (A)) | E;, car F(A) | E, et contient un élément borné.

L’inégalité résulte de (11.1.5) et (1.5.2). De plus nous pouvons choisir un élément
Fx Ge# x 9 tel que F et G soit de classe C,,.

Alors 4 c(H; x H,, FxG) est de classe C,, car c’est un sous-ensemble de
(Hy+G)o(Hy+F)—H,o H, qui est de classe C, d’aprés (2.10) et (2.6). On a donc
Ac(HyxH,, Fx%)]|€o(E,; E;).

10) Les conclusions de ce genre se basent toujours sur (1.5.2).
11) Comme dans (1.7) on constate aisément que les bornés de %o (E1; E2) sont exactement les
sous-ensembles de classe Co.
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2.3 Les morphismes f +— f* et g > g,

Soit & une catégorie ayant comme objets des ensembles munis d’une structure 12)
et comme morphismes des applications. Soit ¢ la catégorie ayant les mémes objets
et comme morphismes toutes les applications. Supposons que dans K on ait:

1. une loi qui associe a tout couple d’objet E,, E, un nouvel objet (que nous
dénotons par €(E;, E,)) tel que I'’ensemble sous-jacents contienne exactement les
morphismes f : E; > E, de K,

2. une loi qui associe & tout couple d’objets un nouvel objet (dénoté par E; x E,)
tel que ’ensemble sous-jacent soit le produit cartésien des ensembles sous-jacent de
E, et E, et tel que pour n’importe quel objet E une application f : E-E; x E, soit
un morphisme de K si et seulement si w,ofet n,of le sont, ot m;: E; X E, 5 E;, i=1,
2, sont les projections.13)

3. Les applications constantes sont des morphismes de f.

(2.13) PROPOSITION. Supposons que les applications
c:¢(E,, E,) x ¢(E,, E;)> ¥ (E,, E3)
définie par c(f, g)=g-f,
a:b(E,E,\) x €(E,E,) > ¥(E,E, XE,)
définie par u(f, §)=Lf; g1, oit [, £1(x)=(f(x), g(x)), et

V:Ez“"g(Ep E2)a ou ')’(Y):‘yo

est 'application constante x — y, soient des morphismes de K.
Alors I'équation €(f, g). ¢ =go@of définit une application

€:%(E;, E,) x €(E,, E,) > € (% (E,, E,), € (Es, E,))

qui est un morphisme de K. De plus cette affirmation est équivalente a la suivante: les
applications ci-dessous sont des morphismes de K :

f*:(g(El’E4)—’(g(E3’E4)s Ol:l f*(ll/)=‘1/°fa
g+:C(E, E;) > €(E,Ey), o gu(p)=go00,
c:€¢(Es, E\)— %(%(El, E,), € (E;, E4))

12) La structure peut consister en plusieurs structures, p.e. une structure topologique et une
structure de groupe. Quant A la notion de structure voir N. BourBaki: Théorie des ensembles,
R.§8.

13) On notera que le triple (E1 X Eaz, @1, n2) est un produit de E; et Eq. En particulier m et 72
sont des morphismes de K.
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définie par ¢, (f)=f*, et
c: €(Ey; Ey)— (g((g(Eh E,), € (E,, E4))

définie par c,(g)=gx-
Ona

f*=co[f°id], g« = co[id, g°],
donc on a bien

C(f.g) = f*og*e%)(%(Ev E,), ¢ (Es, E4))

De plus

€, = Cyotoly,id’]
et

¢, = cyoao[id®, y],
d’ou

€ =colciomy, Ch0m,)
est un morphisme de K.
Pour finir on utilise:

f*:'%(ld’f), g*=%(gsld)a
¢, =%o[id°%id] et ¢, =%[id,id"]

ou il est évident de quelles identités et projections il s’agit.

(2.14) ExXemPLE. ] =P, et € =%, définis dans la section 2.1 vérifient les hypo-
theéses de la proposition précédente.

On utilise (2.12) pour c et (6.4.13) pour a. Finalement y est linéaire, donc d’apres
(2.8.7) il suffit de montrer que y est continue au point 0e E,. Soit donc % | E,, %,
V-A|E;.On a y(%)-A=% | E,. De plus pour tout Be# tel que V-B| E,, y(B) est
de classe C,, d’ou le résultat.

En particulier € définie pour les objets dans la condition 1, et pour les morphismes
dans (2.13) peut donc étre considéré comme foncteur: K x R > K.

2.4 L’homéomorphisme ¥ : €o(E, x E;; E3)> 6o (E,; 6 (E,, E3))

(2.15) PROPOSITION. Soit ] une catégorie vérifiant les conditions 1. et 2. de 2.3,
et supposons que c et o définis dans (2.13) soient des morphismes de K.

(I) Soit xeE,, ge€(E, x E,, E;). Alors l'application (¥Yg) (x): E;— E; définie par
(Yg) (x):y=g(x, ) est un morphisme de K si et seulement si les applications constantes
sont des morphismes de K. De plus I’équation ci-dessus définit un morphisme ¥ :
C(E, x E,, E3)>€(E,, €(E,, E3)) si et seulement si y (voir (2.13)) est un morphisme.

(IT) Soit fe€(E,, €(E,, E;)). Alors I'application @ f:E, x E;—E; définie par
(Df)(x,y)=f(x)'y est un morphisme si et seulement si l'application d’évaluation
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e:€(E,, E;)x E,—E, 'est. Si de plus les applications constantes sont des morphismes,
alors il en est de méme de

@:%(EI, %(EZ’ E3))—) %(El X Ez, E3)-

(III) En particulier, ¥ est un isomorphisme de la catégorie si et seulement si e et y
sont des morphismes.

Démonstration. On a (¥ g) (x)=g.[x°, idg,].
Inversément n, € € (E, x E,, E;), d’ou (¥ r,) (x)=x° est un morphisme.
Soit y un morphisme de K. Alors K vérifie les hypothéses de (2.13), donc

¥Yg=gyoao[y,id’]
est bien un élément de

¢(E,, €(E;, E;)), et ¥ =(ao[y,id°])*oc,

est un morphisme. Inversément, s’il en est ainsi, alors y=¥n,.

Analoguement on a @ f=eo[ fon,, m,] et ®=eyoca0[n], n5], OV ex=c,[id, e°]
et n} =co[n3, id]. e=®(id), ou id est I'identité sur €(E,, E;).

Finalement il est bien connu que @, ¥ et ¥, ® sont des identités.

(2.16) LeMME. L’application d’évaluation
e:6,(E\; E;) xE, > E,

est un morphisme de P, .
On vérifie facilement que I’application vy: € (E,; E,)— E, définie par vy (f)=1(0)
est un morphisme de P, . Doncil en est de méme de e=vgoc [yon,, n,] d’aprés (2.14).

(2.17) THEOREME. L’application linéaire
q’: %O(El X Ez; E3) i 4 %O(El . %O(EZ; E3))

définie par (¥ g) (x)-y=g(x, y) est un homéomorphisme.
Découle de (2.16), (2.15) et (2.14).

2.5 Sous-espaces de €,(E,; E,)

Nous désignons par Z(E,, E,; E;) 'objet de P, dont les éléments sont les
morphismes bilinéaires et dont la structure est induite par ’inclusion dans
€o(Ey x E;; E;)(cf. 1.26). De méme par £ ,(E, ; E,)I’objet ayant comme éléments les
morphismes p-lin€aires de E; X --- x E; dans E,. Pour p=1, l'objet est dénoté par
ZL(E,; E,).

On a donc explicitement :
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(2.18) F|L(E,; E,) <

(1) V-ALE, = F(A)\E,

(2) Nexiste HeZ tel que H(Z)| E, pour tout £ | E,.

En effet, si Hc £ (E,; E,), alors A H(A, X)=H (%) et V-H (4A)=H (V- A).

(2.19) REMARQUE. SiE, est unobjet de P~ et de B*, alors L (E,; E,)=L* (E,; E,),
ou L(E,; E,) est muni de la structure définie dans [4). En particulier on retrouve sur
Z(E,; E,) la topologie induite par la norme ||| = sup || £(x)|l, si E, et E, sont normés.

xff <1
En vue de (6.1.10) nous n’avons qu’a démontrer la premiére affirmation, car si
E,, E, sont normés, on a:

L*(E;; E;) = L(E; E,).
Par construction Z(E;; E,)<L(E,; E,).
De plus, Z(E;; E,) étant un objet de ™, on a:
n?(El; E2)= gx (El; E2) S Lx (EI;EZ)'

Soit # | L*(Ey; E;), V-A| E,. Alors # (A)| E,, car L*(E,; E,)<L(E,; E,). Soit
He# tel que V-H| L(E,; E,), et soit Z | E, tel que Z=V-% (E, est supposé étre
un objet de PB*). Alors H(Z)=H (V- Z)=V H(Z)| E,, car Z posséde un élément
borné de E,. Donc:

L*(E\; E}))< Z(E; E,).

(2.20) REMARQUE. Uneapplication bilinéaire b: E; x E,— E,qui est continue partout
n’est pas nécessairement un élément de £ (E,, E,; E;).
On définit sur I’espace vectoriel R la pseudo-topologie suivante:

(2.21) & |R,:<>1l existe x4, x5, ..., Xx,€R (neN arbitraire) tels que
n
<LV (x,+V)19
i=1

On vérifie facilement que R, est un objet de P ~. En particulier la multiplication
b:R xR,—R, est continue partout.
De (2.8.8) et (2.3) on déduit:
(2.22) beZ(E,,E,; E;)«>(V(A xB),Z x¥ |E, xE,
entraine  b(4, %), b(Z, B) | E,).

On a [1]|R,, V- |R, mais b([I,] x [1])=[1,] ne converge pas dans R,.

(2.23) REMARQUE. Soit £ un objet de UA°, c.a.d. une space vectoriel localement
convexe. Alors en prenant (2.18) comme définition15) et en utilisant les arguments de

* 14) Exemple communiqué par S. COURANT, Berne.
15) En effet, la définition n’était donnée que pour des objets de P*.
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(2.19), on trouve Z(R; E)=L"(R; E). D’autre part on a L(R; E)~ E d’aprés (6.4.1),
donc Z(R; E)= E™. On voit donc que dans un certain sens les objets de P qui ne
sont pas localement bornés, ne sont pas «compatibles» avec notre théorie.

(2.24) LeMME. Soit E, un sous-espace de E, muni de la pseudo-topologie induite
par Uinclusion i : E,— E,, et soit f : E,— E, une application. Alors

fe€o(E,; E2)¢>i°f€(go(E1; E;).

La démonstration se base sur (2.3.4) et (2.11). On en déduit facilement les corol-
laires suivants de (2.17):

(2.25) CoROLLAIRE. L’application linéaire
¥Y:Z(E,,E,; E;)—> Z(E; Z(E,; Ej))
définie par (Pu) (x,): x,=u(x,, x,) est un homéomorphisme.
(2.26) CoROLLAIRE. L’application linéaire

T:gp-f'q(El; Ez)—} ’?p(El; gq(El; E2))
défini par
(Pu) (X145 X35 000y Xp) (V15 vves Vo) = U Xy, s Xpy Vi uns V)

est un homéomorphisme.
Comme conséquence de (2.12) on a:

(2.27) CoROLLAIRE. L’application bilinéaire
b: Z,(Ey; Ey) x L(Ey; E3) > L ,(Ey; E3)

définie par b(u, v)= vou est un morphisme.
De (2.14) on obtient (¢ ™! =a(m; 4, 7,4)!):

(2.28) CoOROLLAIRE. L’application linéaire
a:L,(E; E,) x £,(E;E;)) > Z,(E; E; x Ey)
définie par a(u, v)*(xy,..., x,)=(u(xy, ..., X,), v(Xy,..., X,)) est un homéomorphisme.
(2.29) PROPOSITION. Soit E un objet de B vérifiant:
F|E=I,-7|E.

Alors I'application v,: £ (R; E)— E définie par v,({)=¢(1) est un homéomorphisme
(voir aussi (2.23)!).

'V[11lR, donc F | Z(R; E)entraine ¥ (1) | E, d’ou v, est continue. Soit
u: E-»%(R; E) définie par (u(x)) (A)=4-x, et soit ' | E, V-4 | R. Alors il existe 6>0
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tel que AcI;. Ona (u(%)) (I)=I,F=5(I,-Z)| E d’aprés ’'hypothése. Soit BeZ
borné. Alors (u(B))(V)=V-BlE, d’ot u(Z)|Z(R; E). 1l est bien connu que
u~1=v,, d’ou le résultat.

(2.30) REMARQUE, La condition supplémentaire de (2.29) n’est pas vérifiée par
tous les objets de P, comme I'’exemple R, défini dans (2.21) le montre. Par contre
elle est vérifiée par les objets de R, car I, - Z < Z*.

(2.31) REMARQUE. Si E, est topologique, alors les suites normales convergentes
sont les mémes pour Cy(E;;E,) et €4(E,; E,).

On a Cy(E;E,)=%,(Ey; E,), donc chaque suite convergente a droite converge
aussi 4 gauche. Soit maintenant H={f,},.n une suite convergente vers zéro a gauche.
Pour qu’elle converge a droite il suffit de vérifier que H est de classe C,. Soit Z le
filtre des voisinages de zéro dans E,, V-4, Z | E,, BeZ v [0] borné, Ue#, U borné.
Alors il existe nyeN tel que f,(4+ B)c U pour tout n>n,, d’ou Af,(4, B)cU—-U
pour tout n=>n,. De plus il existe B'eZ tel que Af,(A4, B)c U pour n<n,, donc
AH(A,BnB)cU-U,dou A H(A, )| E,. De pluson a V-H(A)<V-U|E,.

2.6 Complétitude de € ((E,; E,)

(2.32) PROPOSITION. Si E, est un objet séparé et complet de B°*, alors € o(E; E,)
est complet. De méme € o(E; € o(Ey; Ey)), L,(Ey; E,) et €o(E; L,(Ey; E,)).

Soit F —F | €o(E;; E,). Pour tout xeE; on a: (F —F) (x)=F (x)—F (x) | E,.
E, étant complet, il existe y.€E, tel que F(x)—y,| E,. E, étant séparé16), y  est
unique. Dénotons par fI’application x — y,. Alors

(a) (F—f)(x)| E, pour tout xeE;.

Soit ¥~ le filtre des voisinages de OeE;, V-A | E,. Alors (¥ —F)(A)<?" car
E,<E;S.

Soit Ve?". Il existe F,eZ tel que (F,—F;)(4)=V. Soit acA. Alors il existe
F,e % tel que (F,—f) (@) V.

Soit peF; et YyeF, N F,. Alors (p—f) (@) =(p—¥) @+ —f)(@eV+V, dou
(f—Fy)(4) <=V, donc

(b) (f-F)(D<V +¥ | ES.

Soit H— He# — % de classe C,. Alors

(c) H est de classe C, car si he H, on a

H=(H—-h)+h<(H—-H)+h.

Soit V- A | E;. 1l existe I;eV tel que I;- H(A)< V. Soit ae 4, Uc V tel que U est

16) Voir (3.1.4) ou [3].
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équilibré. Alorsil existe F'e & telque (f—F') (a)=(1/8)- U, d’ou I;-(f— F')<= V. Pour
F=Hn F’ on obtient donc:

Lf(a)ely:(f—F)(a)+ I;;H(A) <V + V.

d’ou on déduit que V-f(4)<? +% | E;. Analoguement on montre que 4 | E, en-
traine Af (A, &)} E;, en se basant sur ’égalité

Af (a,%) = A(f — ) (@, %) + A y(a, ).

On a E;=E, et E;*=E,, donc d’aprés (2.9) fe€(E,; E,). 1l suit que (f—H)
(A)e(f—F) (A) est borné, donc d’aprés (b) (f—F)(A)|E;* =E,, d’ou €y(E,, E,)
est complet. De méme € (E; €,(E,; E,)), car cet objet est linéairement homéo-
morphe & €,(Ex E,; E,). Soit manitenant # —% | ¥ (E,; E,). Alors i (F —-F )=
i(F)—i(F)|Co(E,; E,). Wlexiste feGo(E;; E,) tel que i (F)—f|l€o(E;; E,). Soit
G=i(F).0Ona(9—f)(x+y)=9%(x+y)—f(x+y)| E,. De méme 4 (x)—f(x)| E, et
G-I E, dob
GX)+90) - () +f()IE,.

Or, 9(x+y)<Y(x)+%(y), car Z(E,; E;)e¥, donc, E, étant séparé, on obtient
f(x+y)=f(x)+f(»). De maniére analogue on obtient f (Ax)=Af(x). On a donc:

G—f=i(F)—i(f)=i(F = )| 6(E,; Ey),

donc F — f| #(E; E,).

Soit F—F |Co(E; L (E,; E,)). Alors io(F —F)|Co(E; €o(E,; Ey)), ol i:
F(E; E))>Fo(E;; E,) est Iinclusion. On a iy(F —F)=i,(F)—i(F) donc il
existe f€€o(E; €o(E;; E,)) tel que i,(F)—f converge. Soit ¥=i,(F).

Alors 9(x)—f(x)| €o(Ey; E,), et L(E;; E,)eZ(x) pour tout xe E. Donc par
les mémes arguments comme avant, f(x)e#(E;; E,) pour tout xeE, d’ou
fe€o(E; £ (Es; Ey)). On a donc 9(x)—f(x)=9(x)—i(f(x))=ix(F —f) d’ou
F —fl€o (E; Z(E,; Ey)).

Par récurrence on trouve le résultat général.

(2.33) REMARQUE. Nous ne savons pas si ’énoncé du théoréme 1.3 chap. II de
[1] est vrai, étant donné que la démonstration se base sur 1’égalité (F —F) (%)=
=F (¥)—F (%) qui en général n’est qu’une inégalité pourvu que F et & soient des
filtres.

§ 3. Calcul différentiel dans les objets de R

Nous examinons dans ce paragraphe les applications différentiables au sens de [4]
dans le cas ou les espaces vectoriels pseudo-topologiques sont raffinés (voir 1.1), c.a.d.
des objets de R.
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3.1 Différentiabilité

Soient E;, E,, ... toujours des objets de R. Soit r: E;— E, une application. Nous
désignons par @ r:R x E;— E, 'application définie par

r(Ax)
B O6r(A,x)=1 1
0 pour A=0

pour A#0

D’aprés (3.2.2) et (2.3) on a:

(3.2) Une application f:E;—~E, est différentiable au point aeE,, s’il existe
(e (E,; E,) tel que r:E,;—E, définie par r (x)=f(a+x)—f(a)—£(x) vérifie:
(3.3) Pour tout borné Bde E; on a:

Or(V,B)|E,.1)

La différentiabilité d’une application en un point est une condition locale d’aprés
(3.4.1). Il suffit donc que f soit définie sur un ouvert contenant a pour que f’(a) soit
unique. De plus, il suffit de considérer les bornés B contenus dans un voisinage de
zéro, car les voisinages de zéro sont absorbants, et @ r(V,5-B)=4-0 r(V, B) pour
tout 6 #0.

(3.4) A est ouvert dans E|, si Aex+% pour tout xed, ou %= \ X (cf. 3.4
de [4]). ik

Ayant gardé la définition de différentiabilité introduite dans [4], nous pouvons
appliquer tous les résultats obtenus la. Or, nous changeons la notion de «dérivée
d’ordre supérieur», car I’espace vectoriel Z(E;; E,) est muni d’une autre structure
(voir (6.1.4)). De plus dans la définition suivante nous renongons a la condition que
E, et E, soient des objets de P* (cf. (9.1.2)).

(3.5) DEtrinNiTION. Une application f:E,—E, est (n+ 1)-fois différentiable au
point acE,, s’il existe un ouvert 4 de E, contenant le point a, tel que fM:4-2,
(E,; E,) existe et est différentiable au point @, ou f P*V(x)e . (E;; E,) est I'élément
correspondant a f?' (x)e £ (E,; £ ,(Ey; E;)) en vertu de (2.26).

(3.6) DEFINITION. Soit 4 un ouvert de E;. Alors f:4—E, est dit n-fois conti-
nuement différentiable dans A, si f est n-fois différentiable dans chaque point de 4
et fM: 4%, (E,; E,) est continue. f est dit indéfiniment différentiable dans 4, si
cette condition est vérifiée pour tout neN.

17) Nous désignons ¢ par f’(a) ou D f(a), et r par f*(a) ou R f(a).
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3.2 Inégalité fondamentale et applications

L’inégalité figurant dans le lemme suivant (inégalité analogue a (5.3.4)) est utilisée
pour la plupart des démonstrations dans la suite. En effet, les conditions (R,) a (R;)
d’un espace vectoriel raffiné (cf. (1.1)) ont été imposées a cause de cette inégalité.

(3.7) LEMME. Soit A un ouvert de E, contenant l'origine, & un filtre sur E,, ¥ un
filtre sur R tels que Ac¥"[0,1]-Z, F unfiltre sur K (A; E,)={ feE}": f est différen-
tiable dans A et £ (0)=0}. Alors @ F (¥, X)<(F' (V' [0, 1] X)-Z)* ™, o1 O et *~ sont
définis dans (3.1) et 1.1.

Pour la démonstration voir (5.3.4).

(3.8) PRoOPOSITION. Soit AcE, ouvert. f:A—E, est continuement différentiable
dans A si et seulement si: Pour tout ac A et tout he E, il existe un élément ¢,(h)eE,
tel que:

(1) lim * =% V= ¢,(h)

A=0

(2) h> £,(h) est un élément de L (E,; E,).
(3) x>/, est continue dans A.
(=) Onao6Of*(@)(V,[h])|E, pour tout ac 4, heE;, d’ou

i S @A) = f@ =@ ah_

f(a+ih)—f(a)
A

i-0 A ,
donc,(h)=f"(a) h,ouf ' (a)e L (E,; E,)etf :A»>ZL(E; E,) est continue par
définition.

(<) SoitaeA, heE, et 6>0 tel que a+A-he A pour tout |[1|<d. Alors Papplication
@a,ny: ] —90, [ > E, définie par ¢, ,,(4)=f(a+Ah) est différentiable car

@+ A) = o,
fim P@m @+ 4) = @) _

A—0 A
. fa+ah+Ah)—f(a+ah
}11“3 ( N )=£’(a+a,,))(h)

pour tout ae |9, d [ (cf. (4.3.3)).
On a donc @, 1) (®)' 1 =2¢(44 41 (h) pour tout ae]—4, d[.

Soit fio,n (@)=f(a+a-h)—f(a)—£,(x k). Alors fi, s () 1=C(4s g1y (B)—2,(h),
car Z, est continue, donc différentiable d’aprés (4.2.1). Soit maintenant U un voisinage
€équilibré de Oe E; tel que a+ Uc 4, et soit Bc U borné. Alors f,, gy €st un sous-en-
semble de N (]—6, 6[, E,) (voir (3.6)), et ]—6,6[eV [1]=V[0, 1]-[1], donc

0 fia. 5 (V: [11) < (fo, 5 (V- (1) [1])*” < ((a4v-5— ¢2)'B)* | E;,
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car E, est raffiné et x — ¢/, est continue. Or

@f(a’B)(V, [1])=@fx(V,B), Oil f’(a)={a.
[ est donc continuement différentiable dans A.

(3.9) REMARQUE. La proposition précédente est aussi valable, si E;, E, sont des
objets de U et si on suppose la continuité par rapport & L(E;; E,) défini dans [4].

(3.10) PRrOPOSITION. Soit A< E, ouvert, et f:A—E, continuement différentiable.
Alors f: A— E, vérifie la condition suivante:
Pour tout acA et Z,% | E, il existe XeZ tel que

Af(a+ X,%)|E,.
D’aprés ’hypothése on a:

Af'(a+Z,%)| £ (E; E,),
car
Af' (a+Z,9)<Af (@, X +%)—Af"(a, %)

on en déduit qu'ilexiste X, €% tel que 4 f'(a+X,,¥*) ¥* | E,, car Af'(a+ %, ¥)
contient un élément de classe C,. De méme il existe X,eZ tel que f'(a+ X;) est de
classe C,, car f'(a+Z)<Af'(a, )+ f ' (a). Soit X;eZ tel que A€ [a]+ [X;]+%*,
et soit X=X, nX,nX;. Alors A f(a+ X, %)<f'(a+X) ¥ +f"(a+X) ¥ |E,, car
(f®)) (y)=4f'(b, y), donc en appliquant (3.7) pour ¥ =[1], on obtient

f a+X)¥<(Af (a+ X, [1]-[0, 1]-@*) &*)*~ =
= (Af'(a + X, @*)-@*)*" lE,.

(3.11) CoROLLAIRE. Si f:A—E, est continuement différentiable, alors f:A—E,
est continue.

(3.12) CoROLLAIRE. Si E, est normé, AcE, ouvert et f:A—E, continuement
différentiable, alors f: A— E, est localement uniformément continu.
Par récurrence on obtient:

(3.13) PROPOSITION. Si f:A—E, est n-fois continuement différentiable, alors
f®: A2, (E,; E,) est continue pour 0<k<n.

Etant donné que la structure sur Z(E;; E,) et plus fine que celle considérée dans
[4] (cf. (6.1.4)), nous avons immédiatement le résultat analogue de (8.2.1):

(3.14) TuforREME. Soit AcE, X E, ouvert, (a,,a,)€A, f:A—E; partiellement
différentiable au point (a,, a,), et D, f: A—>L (E,; E;) continus en ce point. Alors f est
différentiable au point (ay, a,), et

f'(ay, az)(ty, 1) = Dy f (ay, az) t, + Dy f (ay, az)ty.
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Nous démontrons en détail le résultat correspondant a (9.1.3):

(3.15) PROPOSITION. Si Ac E, est un ouvert et si [:A—E, est deux fois différen-
tiable au point ac A, alors " (a) est symétrique, c.a.d. f"(a)(s, t)=f"(a):(t, s) pour
tout s, tekE,.

Soit £eI=[0, 1], et

B = 33 (@ + e85 4 400) = f a + 89) = () (@) )&
pour A#0, et go(£)=0. Alors!8)
g =(©(") (@)U Es+0)s—(0() (@) ¢ s)s,
d’ot par hypothése gy (I)| E,. De méme pour
h; (&) =%(f (@+Aét+As)—f(a+2&E0)—((f) (a)s)¢t
on obtient hy(I) | E,.

Alors f;(0)=0, donc en utilisant (3.7):

(D < (fv(D)*™ < (gv (D) — hy(D)*™ L E,.
D) =LY (@)-1)s = ((f) (a)5)-t]

ce qui achéve la démonstration.

Or

3.3 Dérivée d’ordre supérieure d’une application composée

(3.16) LemME. Soit A< E, ouvert.

Sif: A—E, est p-fois différentiable et f P : A—> L ,(E, ; E,) q-fois différentiable, alors
f:A—E, est (p+q)-fois différentiable, et inversement.

Méme démonstration que pour (9.2.3), en utilisant (2.26).

(3.17) LeMME. Tout ue #(Ey, E,; E,) est indéfiniment différentiable.
D’aprés (4.2.3) u est différentiable, et

u'(ay, az) (x4, x;) = u(ay, x;) + u(xy, a,).

Soient u,e L (E;; £ (E,; E3)) et u,eZ(E,; £(E;; E;)) les applications qui corres-
pondent & u d’aprés (2.25). Alors u' =m3ou; 0Tty + 7} oté, 0T, €st la composée d’appli-

18) g2 (Q): = (g2 (&) (D).
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cations linéaires et continues, donc indéfiniment différentiable. Le résultat découle
maintenant du lemme précédent.

(3.18) LEMME. Si A< E est ouvert, et si f;: A— E; est p-fois différentiable au point
acA, alors il en est de méme de | f1,f,]:A>E, X E,.
On utilise (2.14) et (9.2.5).

(3.19) THEOREME. Soient f:A,—~E, et g:A,— E; p-fois différentiables au point
acA, resp. f(a)eA,, Ay, A, ouverts, f(A;)c A,. Alors g-f: A, — E; est p-fois différen-
tiable au point a, et

(8-f) (a) = g'(f (@)= f'(a).

Pour p=1 c’est (3.3.1). Supposons (3.19) pour p, et soient f et g (p+ 1)-fois différen-
tiables aux points correspondants. On a(gof) =bo[f',g of ], ou b:Z(E; E,) %
=2 (E,; E;)»%(E,; E;) estde classe C, donc p-fois différentiable d’aprés (3.17) et
(2.27). Donc (gof) est p-fois différentiable d’aprés I’hypothése de récurrence et (3.18),
d’ou en vertu de (3.16) gof est (p+ 1)-fois différentiable au point a.

§ 4. La catégorie ¢,

(4.1) DEFINITION. Les objets de la catégorie €, sont les objets de R, c.a.d. les
espaces vectoriels raffinés (cf. 1.1). f: E,—E, est un morphisme de la catégorie ¢,,
sifest k-fois différentiable dans E, et si f M e ¥y (E;; L (Ey; E,)) (cf. § 2). Pour k=0
nous posons f P =fet L, (E,; E,)=E,.

4.1 L’objet €,(E,; E,),0<k<w

Sauf mention expresse du contraire, E, E,, E, sont supposés étre des objets de ‘R
dans la suite. L’espace vectoriel € (E;; E,) est formé des morphismes f: E;—E, de
C,. Pour que %,(E,; E,) soit un objet de R, il suffit de définir:

4.2) FlC(E;Ey): < F"W| € (E,, £,(Ey; Ey)) pour 0<n<k.
En effet, la pseudo-topologie de %, (E,; E,) est induite par les applications liné-
aires f — ™, 0<n<k. Ces applications sont bien définies car on a:

(4.3) PROPOSITION. Si fe%,(E; E;), alors f"e€,(Ey; L, (Ey; E;)) pour
0<n<k.

Soit k=1. Alors f'e®€o(E,; L (E; E;)). On a Af(a, x)=f"(a) x+f *(a) x,
d’ou 4 f(A,Z)<f'(A)Z+f*(4)¥.DoncsiV-A, X | E,, alors f'(A)- X | E, d’aprés
(2.16) et (2.22). Le reste se démontre comme dans (10.1.3).

En utilisant (1.24), (2.8) et (7.3.1) on obtient donc:

(4.4) PROPOSITION. €, (E,; E,) est un objet de ‘R.
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De (4.3) on déduit:
(4.5) CoROLLAIRE. Chaque morphisme de €, , , est un morphisme de .

(4.6) PROPOSITION. Soit f: E,— E, p-fois différentiable. Alors on a:
fP est un morphisme de € <>

[ est un morphisme de &
On a

(f )P b (Evs Ly(Er; £4(Ers E)) e [P PeCo(Er; £ypuq(Ey; Ey))
d’apres (2.26). Le reste suit de (3.16) et (4.3).

ptaq

4.2 L’objet € (E,; E,)

f:E - FE, estdit un morphisme de €, sife ﬂ €«(E;; E;). On obtient de nouveau
un objet de R en définissant:

(4.7) F|CL(E; Ey): <>

(a) F|€.(E;; E,)pour 0<k<oo

(b) 1l existe He# tel que V- H vérifie (a).

Soit E I’espace vectoriel admissible défini par la condition (a) (cf. (7.3.2)). Alors
€ (Ey; E;)=E ™.19) D’aprés (1.8) on obtient donc:

(4.8) ProrosiTiON. € (E,; E,) est un objet de ‘R.

4.3 Morphismes élémentaires de €,

(4.9) ProvposITION. Tout /e ¥(E,; E,) est un morphisme de €, et ¢'(x)=¢ pour
tout xeE,.

(4.10) PROPOSITION. Soit xeE,, et x°: E,—E, I'application constante y+— x. Alors
x° est un morphisme de . Il en est de méme de y: E,—%,(E,; E,) défini par y(x)=
=x°, pour 0< k< o0.

y étant linéaire, il suffit de montrer la continuité. Pour k=0 voir (2.13). On a
(y(Z))™ =[0] pour tout n=>1, d’ott le résultat.

(4.11) ProvrosITION. Tout ue £ (E,, E,; E;) est un morphisme de €.
D’apres (3.17) u est indéfiniment différentiable, et ' est linéaire et continue, d’ou
le résultat en utilisant (4.6).

(4.12) REMARQUE. Si E; =R", alors toute application f:E;—E, qui est k-fois
continuement différentiable dans E,, est un morphisme de C,.

19) En effet, il s’agit de la limite projective dans P*.
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Il suffit de montrer qu’une application continue f:R™— E, est un morphisme de
Co. Soit V-4 | R™. Alors A4 est compact.

Soit % le filtre des voisinages de 0eR™, xed. Alors V- f(x+%)<V-Af (x, %)+
+V:f(x)| E, par la continuité de f. Choisissons pour tout xe 4 un voisinage ouvert

Uye tel que V-f(x+U,)| E,. ll existe x,x,,..., x, tels que A< |J (x;+ Uy,).
Donc =1

Ve f(4)<V-f (Ql(x,. ; Uxi)) - S/l(V-f(xi +U)LE,.

Analoguement on déduit de I'inégalité 4 f (x+ U, %)< A f(x,%+U)— A f(x, %) que

4.4 La loi de composition de §,

(4.13) LEMME. L'inclusion €, ,(E,; E,)= %, (E,; E,) (cf. (4.5)) est continue.20)
Suit immédiatement des définitions (4.2) et (4.7).

(4.14) LeMME. Soit & un filtre sur €, ,((E,; E,).
Alors on a:

F | Co(E\; E;) et
f’l%k(Eﬁg(El;Ez))-m)

Pour la démonstration on utilise (2.26) et (4.13).

F | Crr1(Ey; E2)©{

(4.15) CoROLLAIRE. L’application linéaire
D:% 1y (E; Ey)— %k(El; ZL(Ey; Ez))
définie par Df =f' est continu.

(4.16) LeMME. Si V-H, |6 (E,; E,) et V-H, | 6 (E,; E), alors
V(H;oHy)| € (Ey; Es).

Pour k=0 voir (2.10), (2.6) et (1.7).

Supposons (4.13) pour k, et soient H;, H, bornés dans €, .((E;; E,) resp. €y+1
(Ey; E3). Ona (HyoH,) =bo[H{, HyoHy ], 00 b: Z(E,; E,)x L(E,; E;)>%(Ey; E;)
est un morphisme de €, d’aprés (2.27) et (4.11). V-H{=(V-H,)' | €+(E,; L (E,; E,))
d’apres (4.14). V-H, | %, (E,; E,) d’apreés (4.13). Supposant le lemme pour k< co, on
obtient: VH, | €, ,,(E; E,),VH, | € +1(E,; E3)=V[H{,H,cH]< [VH{,VH, - H,]
VCW(E; Z(Ey; Ey) x Z(E,; Ey)).

20) Si rien n’est précisé sur n et p, on admet 0 < n < o, 0 < p < . La démonstration pour
k = o ou p = o en général va de soi.

21) Pour étre exact, il faudrait écrire i (#) | %o (E1; E2) ou i: €x+1 (Er; E2) — €o (E1; E2) est
I’inclusion.
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Appliquant le méme argument a b et [ H{, H,-H, ], on obtient:

V(H,oHy) | € (Ey; L (E;; E3)). Le reste découle maintenant de (4.14) et (4.13).
(4.17) CoROLLAIRE. Si fe ¥, (E,; E,), ge€,(E,; E;), alors g-fe € (E;; Es).
On a donc bien la composition naturelle dans la catégorie C,.

4.5 La composition comme morphisme de €,
(4.18) PROPOSITION. Soit € #(E; E,). Alors I'application linéaire

v (E; E\)> % (E; E,)
est continue.

Pour k=0 c’est une conséquence de (2.14). Supposons (4.18) pour k<0, et soit
FlC+1(E; Ey). Alors £x(F) |6, (E; E,) d’apres (2.14) et (4.13). De (2.14) et (2.24)
on déduit que /*: Z(E; E,)—» ¥ (E; E,) est continue. De plus #'|%,(E; E,) d’aprés
(4.14), donc utilisant ’hypothése de récurrence: (£*)x(F')|%6,(E; Z(E; E,)). Or,
(£%)%(F")=(¢*(F)), donc £*(F)| €, 1 (E, E,) d’aprés (4.14). Pour k=oc0 on utilise
encore (4.16).

(4.19) CoOROLLAIRE. Si /:E,—>FE, est un homéomorphisme linéaire, il en est de
méme de ¢ . € (E; E\)>%(E; E,).

(4.20) PROPOSITION. a: G (E; E\)X €, (E; E;)> € (E; E; x E;) (¢f- (2.13)) est un
homéomorphisme linéaire.

Soit Fx% | € (E; E)xE, (E; E,). On a [FW, M| € (E; Z.(E; E)) %
x L, (E; E,)) pour 0<n<k (resp. <oo) d’aprés (2.14) et (4.2). D’aprés (2.28) on a:

ZL.(E; E))xZ,(E; E,) est linéairement homéomorphe a & ,(E; E, x E,), d’ou
[#, 9] ™| €(E; Z,.(E; E, X E,)) d’aprés le lemme précédent. Inversement on a

oc—l(f) =(niof,My0f) = (nlﬂ(f), 752*(f)) = [ny,, 1] (f).
Donc a™'=a(=n,,, 7,,) est bien continue d’aprés ce qui précéde et (4.18).

(4.21) PropoSITION. Soit ue#(E,, E,; E;). Alors I'application bilinéaire
U:6,(E; E\)x €, (E; E;))> € (E; E;) définie par ii( f, 8)=uo[ f, g] est un morphisme
de .

Il suffit de montrer que u est un morphisme de €, d’aprés (4.11). La démonstration

est analogue a celle de (11.1.1). On utilise (4.20), (4.17), (4.11), (4.13), (2.25), (2.27),
(4.14) et (4.18). Pour k= o0 on applique (4.16).

(4.22) ProrosITION. L’application de composition
c: 6 (Eq; E;) x €, (Ey; E3) > € (E,; Ej)

deﬁm:e par c(f, g)=gof est un morphisme de €.
Pour k=0 voir (2.12). Supposons (4.22) pour k<oo, et soient V-(H, x H,),
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Fy X F | Cri1(Ey; Ey) x €y (Eys Es). Alors F =Ac(Hy x Hy, F{ x F ;)| € (Ey; Es)
d’apres (2.12) et (4.15). De I'inégalité (cf. (11.1.17))
F'=(dc(Hy x Hy, F, x F,)) <b(Hj, Ac(H, x Hy, F, x F4)) +
+b(F1, (Hy + F3) o (Hy + 7))
ainsi que de (2.27), (4.21), (4.14), (4.16) et de ’hypothése de récurrence on obtient

F' | Cw(Ey; L(Ey; Ey)), dou F | €, (Ey; E;) d’aprés (4.14). Le cas k=00 en
résulte (on applique (4.16)).

(4.23) LeMME. Soit ge%,, (E,; E5). Alors g.:€(E;; E,))—>%(E,; E;) est

différentiable, et (g+)' () 9 =e-[(&)«(f), @].
Soient f, pe € (E,; E,), et considérons I’application r, définie par:

re(@)=go(f + @) —gof —eolg'of, @]

ou e: Z(E,; E;)x E,— E; est I’évaluation (cf. 2.16).
Nous affirmons:

(4.24) Pour tout ge¥,,(E,; E;) on a:
V.Hl%’k(El; Ez):-:’ @l'g(v, H)l%k(El; E3).

Soit £=0. On a a démontrer:

(@) VALE=0Or,(V,H) A|E,

(b) Il existe Ge® r,(V, H) tel que G est de classe C,,.

En utilisant (3.7) on obtient comme dans la démonstration de (11.2.1):

Or(V,H) A< (4g'(f (4), V-H(A))-H(A))*” | E;.

Nous affirmons que G=0 r,(I;, H) est de classe C,,.
En effet (3.7) donne

Or,(I;, H)-A<(4g (f (A), I, H(A))-H(A)*".

A droite on a un sous-ensemble borné de E,, car g’ est un morphisme de €, et E,
est raffiné, donc V(@ r,(I;, H)) (A)| E;. Soit Z | E;. 1l reste & montrer que

(4.25) 4(Or, (I, H)) (4, Z) | E, .
On a I’égalité suivante:
(4.26) A(Or, (4, ¢))(a,x)=0(4(g" o f)(a,x)) (4 ¢(a + x)) +
+0 (48 (f (@) (4 (9(a), 4¢(a, x))), ou

W {A (8" of)(a,x))(0)=0 et
(4@ of) (@, x)) (»)=4g (f(a) +y,4f(a,x)) — A(g' - f) (a, x).
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De méme:

@) {(A g (f(a))(0,0)=0 et
(A (f @) x,p)(&n)=4g (f(@)+x,y)E+4g (f(a), x +y)n.
Soit
Yy =A@ o)A L) (I, H(A+ X)) H(A+ Z)
et
Yy = (4g™ (f (A)Y (1, H(4) x I AH (A, )-(H(A) x 4H (4, Z)).
De (3.7) on déduit:
O o f)(A X)) (I, HA+X)<¥]™ et
O(4g* (f () (I, HA) x AH(A, X)) < 3~

Les identités de (1) et (2) nous conduisent aux inégalités suivantes:

Y, <(Bg(fA+LHA+Z),Af (A4, X)) —A(g o)A X)) HA+Z) et
Y,<Ag' (f(A)+ 1, H(A),,AH (A, X)) H(A) +
+d4g (f(A), I,-H(A)+1,-AH(A, X)) AH(A, %).

Utilisant que g’, f sont des morphismes de €, et H de classe C,, on constate
aisément que ¥, %, | E;. Avec (4.26) on obtient: 4(O r,(I,H)) (4,Z)<¥:™ +
¥~ | E,, E; étant raffiné (cf. (1.1)). Donc (4.24) est démontré pour k =0. Supposons
(4.24) pour k< 0, et soit ge €, ,(E,; E5), V- H| €, .,(E;; E,). D’apres la démon-
stration pour k=0 et (4.13) on a:

Or,(V,H)| %, (E; Ej).
Utilisant P’identité:

3) (O1,(4 @) =b(f', Orey(4 @)+ b(¢", 4(2)s(f, 2 0))

qui est vérifiée en détail avant (11.2.5), et appliquant ’hypothése de récurrence, (4.22),
(4.21), et (4.19), on obtient

(@7 (V. H)) L €, (Ey; £ (Ey; Es)),
donc O r,(V,H)| €, ,(E,; E;) d’aprés (4.14). Soit k=0, V-H|¥ (E,; E,),
8e¥ o(Ez; Es).
Alors d’apres (4.24) et (4.13) on obtient @ r (V,H)| €, (E,; E3) pour 0<k < 0.
Il reste & montrer que V-Or,(I,H)|€,(E,; E;) pour 0<k<co. Pour k=0 c’est

démontré sous (a) et (b). Pour la démonstration par récurrence on utilise I’égalité (3).
Or, (4.24) démontre (4.23), car

preclg’of, 0]l =2(g'-f, )
est continue d’aprés (2.16) et (4.21).
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(4.27) THEOREME. L’application de composition
¢: €y (Ey; Ez) X €y p(Ey; E;)—> % (Ey; Ey)

est un morphisme de €, pour 0<p < o0, 0<k < 0.
Pour p=0 voir (4.22). Supposons (4.28) pour p < o0, et considérons:

¢:Cr(Ey; Ex) X €y pr1(Egs E3) > € (Ey; Es).

Nous affirmons que ¢ est un morphisme de €, .

(1) cest dans €, d’aprés (4.22) et (4.13). D c(f, g) - p=es[(g)x(f), ] d’aprés le
lemme (4.23). f*:%,:,(E,; E3)>€,(E,; E;) est linéaire et continue, car
f*=co[f°, id], donc on a:

Dyc(f,g)=f*on; et Dyc=nloc;, ol

€, = Cxotoly,id’], ¢y = co[id, c°].

c est dans &, d’aprés I’hypothése de récurrence, donc ¢, est dans €, d’apres (4.10),
(4.20) et (4.17). En particulier D,c est continue. De (3.14) on obtient donc I’existence
de ¢':

(f.e)(p,v)=eé(g-f,0)+yof,

car €, (E,; E;) estraffiné d’apres (4.4). Soit (&), défini par (&), (x):¢=¢&(x, ). Alors
(&), est linéaire et continu d’aprés (2.25), (2.16) et (4.21). On a donc:

C, =HT0(€)1oCo(id X D)+ ﬂ;oclonl

ol a droite ¢: €, (Ey; E;)X G s p(Ey; L(Ey; E3))> b (Ey; L (Ey; Ej)) est dans €,
d’aprés ’hypothése de récurrence. Nous venons de voir qu’il en est de méme de c¢,.
Les autres applications figurant dans I’expression pour ¢’ sont toutes linéaires et
continues. Donc ¢’ est dans €. Le théoréme est maintenant une conséquence de (4.6).

(4.28) COROLLAIRE. ¢:€ (E,; E;)X € (E,; E3)> % (E;; E;) est un morphisme
de €.

En effet, ¢’ existe d’aprés (4.23), (3.14), (4.8) et les mémes arguments qu’avant.
¢ est un morphisme de €, d’aprés (4.22). La démonstration par récurrence est
I’habituelle, se basant sur I’expression de ¢'.

4.6 L’homéomorphisme ¥ . € (E,; € (E,; E3))—> € (Ey X E,; E3)

(4.29) LEeMME. L’évaluation e: € (E;; E,)x E,— E, est un morphisme de Q,.
Exactement méme démonstration que dans (2.16), utilisant (4.28), (4.20) et (4.10).

(4.30) LeMME. Sige®, . ,(E,; E3), alorsgy: €, (Ey; E;)»> %, (Ey; E;) estdans €.
gx=Co[id, g°], d’ou le résultat en vertu de (4.27), (4.10) et (4.20).
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(4.31) LemME. L’application linéaire
€y %k+p(E2; E;) - (gp(%k (Ey; Ey); € (Ey; Es))

définie par c, (g) =g est continue.
En effet c,=cyoa0[id°, y] est dans €,d’aprés (4.27), (4.10), (4.20), (4.11) et

(4.30), ou

V:Crsp(Ezs E3) > (gp((gk(El; E;); €x+p(Ez; Es)),

id°: €yyp(Ey; E3) > €,(6(Ey; Ey); € (Ey; Ey)),
et

ce‘é’p(%k(El; E,;) X €x+p(Ey; Ej); € (Ey; Es))s

donc

cs: €, (G (Ey; Ep); Gu(Eys Ep) X Gry p(Ezs Es)) > €,(6(Ey; Ey); €i(Ey; Ey))
est dans €,
(4.32) LeMME. Soit fe¥,(E,; E,). Alors I'application linéaire f*.€,(E,; E;)—

— € (Ey; E5) est continue.
Onaf*=c.[f°id], ou

[f°,id]€€o (G (E2; E3); Gu(Ey; E;) x €4 (Es; Es))
d’aprés (4.10) et (4.20), d’ou le résultat avec (4.22).

(4.33) THEOREME. L’application linéaire
®: 6 (Ey; € (Ez; E3)) - G (E, X E;; Ey)

définie par (D f) (x, y)=/f(x)-y est continue.

Onadf=eo[forn,, n,], doll @[ est bien un élément de €, (E,xE,; E,;)
d’aprés (4.20) et (4.29). D=e .00 [ny, n5] est donc le composé de morphismes de
€, d’aprés (4.29), (4.30), (4.32), (4.10) et (4.20).

(4.34) THEOREME. L’application linéaire
V: €+ p(Ey X Ep; E3) > € (Eys %,(E,; Es))

définie par (¥ g) (x):y=g(x,y) est continue.
On a (¥ g) (x)=g.[x°,id], donc on a bien (¥ g) (x)e ¥ ,(E,; E;) d’apres (4.10),
(4.20), (4.13) et (4.17). Montrons que ¥Yg=gyoao[7,id°] est un élément de
€ (Ey; €,(E;; E3)). On a:
) [y,id°]:E; » € ,(E;; E,) x €,(E;; E,)
et
. 0:€,(Ey; Ey) X €,(Ep; Ey)) > €, (Ey; Eq X E))
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sont des morphismes de ¢, d’apres (4.10) et (4.20). Il en est de méme de g, : % ,(E,;
E, x E;)—»% ,(E,; E;) d’apres (4.30). Du reste ¥ =(oto[,id°])*oc,, ol ao[y,id"]€ ¥,
(Ey; €,(Ey; E{xE,)), donc (ao[y,id°])*: € (€,(Ey; E;xE,);6,(E,; E3))—
€ (Ey, €,(E,; E;)) est continue d’aprés (4.32), et

€2: €1 p(Ey X Ep; E3) > (gk((gp(Ez; E, x E,); €,(E,; E;))
est continue d’aprés (4.31).

(4.35) THEOREME. L’application linéaire
V:€w(Ey X Ey; E3) > € (Ey; € (Ey; E3))

définie par (¥ g) (x)'y=g(x, y) est un homéomorphisme.

Pour la démonstration on se base ou bien sur (4.34) et (4.33) ou bien sur (2.15) en
appliquant (4.28), (4.20) et (4.10).

De nouveau ¥, peut étre considéré comme foncteur de deux variables (cf. 2.14).

4.7 Complétitude de € ,(E; E,)

(4.36) ProrosiTION. Si E,=E;™ et E, est complet, alors €, (E; E,) est complet.

Pour k=0 c’est déja démontré dans (2.32). Supposons la proposition pour k < oo,
et soit F —F | €, ,1(E,; E,). D’aprés (4.13) on a F —F | €, (E,; E,), et en vertu de
I’hypothése de récurrence, il existe fe €, (E,; E,) tel que # —f| €(E,; E,), donc en
particulier F® —f® | € (E,; L (E,; E,)). D’autre part F*+*D_F &+ | ¢ (E,;
ZLy+1(Ey; Er)).

D’aprés (2.32) ilexiste g€ € o (E, ;- Ly +1(Ey; Ey)) telque F D — g | € (Ey; Lras
(Ey; Ey)), donc FW' —g| € (E,; L(E ;L (Ey; E,))) selon (4.19) et (2.26), ol
g="Y4(2).

Soit FW=us, fM=h, Z(E;E,)=E;, ackE,, et r,, ¢, définies par r,(x)=
Y(a+x)—y(a)—g(a) x et 9,(x)=¢(a+x)—g¢(a). Alors
(1) ry(x)=(h,—,) (x)+r,(x). Nous affirmons

(437) V-A|E=0r,V,A)|E; ce qui achévera la démonstration car alors
h'(a)=g(a) pour tout acE,;, donc f**V =g
Si ¢, ¥ sont différentiables au point a, alors

(00 = ¥a) (%) = (0" — ¥') (a + x).
((Pa - l/’a) (0) =0

Ona

donc en vertu de (3.7):
2) O(H,—#,)(V, A)S((H#' —H")(a+V-A) A)* | E; puisque H#' —H"| €, x
X (E ;&L (E,; E;)), et puisque E; est raffiné.
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Soit % le filtre des voisinages de zéro dans E;, Ue%. Alors il existe VeV, He ¥
tels que ©(H,—H,)(V,A)< U.

Soient eV, xe A. Alors il existe YyeH tel que @ (h,—y,) (4, x)eU, d’ou
O(h,—o¢,) (A, x)=0(h,—y,) (A4, x)+OW,—¢,) (4,x)eU+ U pour tout peH, A€V,
x€eA,c.a.d.

3) 6h,—#,)(V, A<SU+U|E].

De (1) a (3) on déduit:

Ory(V, A) < @(Hy— H#,)(V, 4) + O (h, — ) (V, A) | E3,

donc h: E;— Ej est différentiable au point a au sens de (3.2.2), car g(a)e L (E,; E,)
entraine §(a) e Z(E,; E3)etenvertude (1.9). Donc appliquant (5.3.5) et observant que

R©=0 et r(0)=g(a+x) -g)
on obtient
Or,(V,4)<(4g(a, V-A) A)° | E,

puisque ge€o(E,;-Z(E,; E;)) et %°<%* pour tout filtre sur E;, ce qui achéve la
démonstration de (4.36).
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