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Différentiabilité de la composition et complétitude
de certains espaces fonctionnels

par Willi Bûcher x)

Introduction

Dans [4], une théorie de différentiation a été développée pour la catégorie 51* des

espaces vectoriels pseudo-topologiques dits «equable and admissible» qui contient
les espaces vectoriels localement convexes séparés. Le présent travail examine à peu
près le même problème dans la catégorie 5R des espaces vectoriels dits raffinés. 91 n'est

pas une sous-catégorie de 51*. 51* n'est pas non plus une sous-catégorie de 9î. En

particulier un espace vectoriel localement convexe séparé en général n'est pas raffiné
sauf s'il est normable. Les objets de 51* entrent quand même dans nos considérations

car on peut raffiner les structures des objets de 51*, c. à. d. on a un foncteur x de 51*

dans 5R. Si un objet E de 51* est topologique, l'objet correspondent E x dans 9Î en

général ne l'est pas, tandis que si E est complet, il en est de même de Ex.
La catégorie ^Sq des espaces vectoriels pseudo-topologiques localement bornés

ayant comme morphismes les applications de classe Co définies dans [4] (une
condition qui, en général, est plus forte que la continuité) est examinée dans le deuxième

paragraphe. L'espace vectoriel (£0(El;E2) des morphismes/: E1-+E2 de ^}q sera
muni d'une pseudo-topologie telle qu'on obtienne de nouveau un objet de ^$o et telle

qu'on ait un homéomorphisme linéaire entre ^0(^i x E2 l E3) et ^oC^i 1 <%o(E2 \ ^3))-
Les objets de la catégorie (Ek sont les espaces vectoriels raffinés et les morphismes

les applications A>fois différentiables telles que la A>ième dérivée soit de classe Co.
De nouveau ^k{Ex ; E2) sera un objet de 9t.

Si Et et E2 sont de dimension finie, alors <£k(Ei;E2) contient exactement les

applications A>fois continuement différentiables. Or, la pseudo-topologie définie là-
dessus est strictement plus fine que la topologie de la convergence compacte, malgré

que les suites (au sens usuel) qui convergent sont les mêmes par rapport aux deux

structures (cf. (2.31)).
Pour des espaces raffinés El9E2,E3 la composition c:*£k(El; E2)x<tfk+p(E2;

E3)-^e^k(El.;E3) est un morphisme de la catégorie (£p. En particulier, la loi de

composition de la catégorie G^ peut donc être considérée comme morphisme de cette

catégorie.

*) Ce travail a été partiellement subventionné par le Fonds National Suisse pour la Recherche
scientifique.
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Pour une certaine classe d'espaces vectoriels raffinés, la complétitude de E2
entraîne celle de ^?fc(£'1 ; E2). Surtout en cherchant des structures vérifiant un résultat
de ce genre nous sommes tombés sur les espaces vectoriels raffinés.

Les résultats trouvés dans [4] pour la catégorie 91* sont tous valables dans la
catégorie 9t, et quelques-uns sont améliorés.

Les résultats de [4] qui sont applicables dans la catégorie 5R n'ont pas été

redémontrés. La connaissance de [4] est nécessaire pour une étude approfondie du
présent travail. Pour une première lecture il suffit d'être familier avec la notion de

filtre et de pseudo-topologie.
J'exprime à M. A. Frôlicher ma très vive reconnaissance pour l'aide et

l'encouragement qu'il m'a apportés.
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§ 1. Quelques catégories d'espaces vectoriels pseudo-topologiques

1.1 Espaces vectoriels raffinés

Soit E un espace vectoriel pseudo-topologique2), et soient X, $/ des filtres sur E.
Nous utilisons les notations suivantes :

X v <8f : X n W (borne supérieure de X et <&)

X^<W: oXz^<W{X est plus fin que 3Q

X\E\ ^converge vers zéro dans Epar rapport à la pseudo-topologie donnée. (En
bref: X converge dans E)d)

X*: le filtre engendré par les enveloppes convexes équilibrées X* des XeX.
Et^E2: oEt et E2 sont les mêmes espaces vectoriels, et X[Et entraîne X[E2

(Et est plus fin que E2).
E°: L'espace vectoriel localement convexe le plus fin de ceux qui sont moins

fins que E (D'après (2.7.8)4) ona: fiF<s>f^t*,oùf= V X).

X" : le filtre engendré par les adhérences Xpar rapport à E° des XeX.6)
V: le filtre sur R engendré par les intervalles fermés Iô= [ — <5, <5], où ô>0.

(1.1) Définition. Un espace vectoriel raffiné E est un espace vectoriel pseudo-

topologique vérifiant:
(Ri) E° est séparé.

(R2)
(R3)
(R4) X[E=> il existe Be% tel que V- B\E (oùV-B est le filtre engendré par les

h'B,Iôe\).
Si V • B[ Ey on dira que B est borné dans E. Un espace vectoriel pseudo-topologique

vérifiant (R4) est dit localement borné. Ces deux notions ont le sens habituel, si E est

un espace vectoriel topologique.

(1.2) Remarques
(1) (Rt) à (R3) sont les conditions (7.1.1) pour un espace vectoriel admissible.

Pour cela nous n'avons qu'à montrer que (7.1.1) entraîne (R3). Soit X\E et
considérons le filtre ^ (^Tv(-^))A. On a ViF^i^voir p. 137 de [4]). De plus on
obtient (I1-X)* (Il-X)A, car l'enveloppe convexe d'un sous-ensemble équilibré est

convexe et équilibrée (Voir p. 177 de [6]). Donc<r*<(J1-^)* (J1-^)A <^A =<&\E.
(2) Les espaces vectoriels pseudo-topologiques vérifiant (Rj) sont «quasi-topo-

logiques localement convexes» au sens de A. Bastiani (cf. déf. 1.2 de [1]). De plus

2) Voir [3] ou [4].
3) On évite ainsi un symbole spécial pour la pseudo-topologie.
4) Les références contenant trois numéros séparés par deux points se rapportent toujours à [4].
5) Si différentes structures sur E sont considérées, on va préciser de quelle adhérence il s'agit.
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la condition «(R)» de A. Bastiani (même référence) est plus faible que (R3).
(3) H. R. Fischer [3] définit les «bornés de E» par rapport à E°. Notre définition

est équivalente à celle de A. Bastiani (définition 1.9 de [1]).

1.2 Une méthode générale de raffinement de structures

A chaque espace vectoriel pseudo-topologique E on peut associer un espace
vectoriel localement borné E x (Is-croix) de la manière suivante :

(1.3) (a) E et E* sont les mêmes espaces vectoriels.

(b) &lEx:o(l) %\E
(2) il existe Be% tel que V£|£.

Aveccette définition E * vérifie les axiomesd'un espacevectoriel pseudo-topologique.
Cela résulte du fait que le système q des bornés de E satisfait les conditions suivantes :

(1.4) (a) {x}eq pour tout xeE.
(b) Si AcB et Beq, alors Aeq.
(c) Si Aeq et Beq, alors A uBeq et A + Beq.
(d) Si Beq, alors ^B (l'enveloppe équilibrée de B)eq et ô-Beq pour tout <5eR.

(a) et (b) sont triviales. Pour (c) on n'utilise que Y(AvB) \-AvY-B et que

\(A +B)^\A + VB. Enfin VV V et V <5<V pour tout <5eR, d'où (d). Plus

généralement n'importe quel système q de sous-ensembles d'un espace vectoriel
pseudo-topologique E ayant les propriétés (1.4), permet d'associer à E un espace
vectoriel EQ comme suit:

(1.5) (a) E et EQ sont les mêmes espaces vectoriels.

(b) &lEQ:o(l)
(2)

Par construction on a toujours
EQ^E, donc la structure donnée de E est remplacée par une qui est plus fine.
Si q est le système des bornés de E, nous notons E x au lieu de EQ.

x peut être
considéré comme foncteur (voir 1.4).

Certains espaces vectoriels pseudo-topologiques définis à l'aide d'une limite
inductive peuvent aussi être définis à l'aide d'une collection de sous-ensembles q avec
les propriétés (1.4). Nous donnons sans démonstration l'exemple suivant. Soit

LA(E;F) l'espace vectoriel pseudo-topologique défini dans [5], et JJ(E\ F) comme
dans [4]. Soit q={HczL(E; F): il existe geQ tel que H<^La(E;F)}. Alors on a

LA(E;F) (L*(E;F))Q.

1.3 Construction d'espaces raffinés à partir d'un espace admissible

(1.6) Définition. Un système raffinant q d'un espace vectoriel admissible E est

une collection de sous-ensembles de E vérifiant (1.4) et:
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(e) Tout élément de q est borné dans E.

(f) Si B est un élément de q, il en est de même de BA (Venveloppe convexe de B)
et de B [Vadhérence de B par rapport à E°).

(1.7) Proposition. Soit E un espace vectoriel admissible (c.à.d. un espace vectoriel

pseudo-topologique vérifiant (Rt) à (R3) de (1.1)), et soit q un système raffinant de E.
Alors EQ définipar (1.5) est un espace vectoriel raffiné, et les bornés de EQ sont exactement
les éléments de q.

Démonstration. On vérifie facilement que EQ est un espace vectoriel pseudo-
topologique. On a Ee^E, d'où (Ee)°^:Eo. Donc si E° est séparé, alors a fortiori
(Ee)° l'est. Soit maintenant AcE, Â l'adhérence par rapport à E° et ÂQ l'adhérence

par rapport à (EQ)°. On a Âea Â, car la topologie de (Ee)° est plus fine que celle de

E°. Donc pour n'importe quel filtre sur E on obtient 3C~ Q ^&~. Soit 3C\ EQetBe&n q.
Alors Be%~ n q, d'où %~ \Eq, donc ^~Q[E. De plus B* (Ii-B)AeX*nQ, d'où
S£*[E. Pour montrer (R4), il suffit de prouver la deuxième affirmation de (1.7).

Soit Beq. Alors It BeVBn q, d'où V*B[Ee d'après (e). Inversement, si y-B\EQ9
il existe £>0 tel que IyBeYBng. On a (5-(/1-^) /3-5, d'où I^Beq d'après (d).
Donc Be g car

(1.8) Proposition. SÏ E est un espace vectoriel admissible, alors Ex est raffiné.
D'après (1.7) nous avons à montrer que les bornés de E forment un système

raffinant de E. (1.4) a été démontré dans (1.3).
n

Pour tout BcE, ôeR on a Ô-B* (Ô'B)*, car xeB*ox=Y. K*i> oùx.eB,
n i=l
X |AJ<l,AteR(Voirp. 177 de [6]).
i= i

Donc

A c It A => A* cz (/t • A)* => Iô-A* ô(It -A*) à-A* c ôfa -A)*

(6-h-A)* {U-A)*

pour tout <5eR, d'où V-y4*<(V-^)*.
Soit maintenant B=A*. B est de nouveau équilibré et convexe (voir p. 178 (5) de

[6]), donc en particulier IlB=B.Dç la continuité de l'application x\-±ô • x de E° dans

E° (cf. (2.9.1)) on déduit:
ô'EcS^B. Donc Iô'B ô'(I1'B) ô'Bczô:B=ô-(Ii'B)=l^B, d'où Y-E^Y-B.

Le reste est facile à vérifier.

1.4 La catégorie 5R des espaces vectoriels raffinés et les foncteurs °, *et x

Sauf mention expresse du contraire, les morphismes seront toujours les applications

linéaires et continues. Nous désignons par
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(1.9) ty: la catégorie des espaces vectoriels pseudo-topologiques,
21 : la catégorie des espaces vectoriels admissibles,
5R : la catégorie des espaces vectoriels raffinés.

A tout objet E de ^ on peut associer E °, E* 6)' ou E *. Alors en définissant <f ° é*

/x —£ pour les morphismes de ty, on obtient des foncteurs. Ils sont idempotents,
donc surjectifs. Pour des détails voir (2.7.8), (2.6.2), (2.9.1) et

(1.10) Lemme. Soient Eu E2 des objets de ^3. Si {\El-^E2 est linéaire et continue,

il en est de même de £ : Ef -? E2.
Soit %\E*. Alors &[El9 d'où i(3t)\tE1. Soit maintenant BedC borné dans^.

Alors \BIEU d'où SÇV-B) V-t(B)lE2. Donc /(£) est borné dans E2.
En considérant l'image de S$ par ces foncteurs, on obtient donc :

(1.11) Proposition
^3° est la catégorie de tous les espaces vectoriels localement convexes (non néces¬

sairement séparés),
Sfi* est la catégorie de tous les espaces vectoriels dits «equable»1), et
*J3

x est la catégorie de tous les espaces vectoriels pseudo-topologiques localement
bornés.

(1.12) Proposition

x selon (1.1) et (1.10).
2tx c5R a été démontré dans (1.8).
De plus on a 9îc:3t et 5RX =% d'où ftc^T.
Le foncteur # défini dans (2.6.2) remplace la structure pseudo-topologique d'un

espace vectoriel par une qui est plus fine. De même pour le foncteur x. Or, on n'a ni
^J* cz ^Jx ni ^3 x c= ^J*. Si E est un espace vectoriel localement convexe non normable,
alors E=E* (cf. (2.5.2)), mais EX^E.) Pour montrer qu'en général on n'a pas
^3x c ^J3*, nous considérons l'exemple suivant: Soit Rj l'espace vectoriel R muni de la

pseudo-topologie définie par: ^jR^oIl existe ô>0 tel que Iôe&. On constate
aisément que Rt est un objet de ^8 x. Au lieu de montrer directement que Rt n'est

pas un objet de ^3#, nous utilisons :

(1.13) Proposition. Si Ei est un objet de tyx, E2 et E3 des objets de ^3° alors

en général la continuité d'une application bilinéaire b:EixE2-+E3à l'origine n'entraîne

pas la continuité globale.
Démonstration. Nous choisissons Et RuE2 E3 R (avec la topologie naturelle),

et pour b la multiplication ordinaire. Soit ^[R^ Alors V-^J,R, d'où ii

6) E* CE-dièse) est introduit dans (2.6.2).
7) E est «equable»: oE E* (voir [4]).
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est continue au point (0, 0). Or, b n'est pas continue au point (0, 1), car [/i]|Ri,
[1] — 1 J,R, mais [fi]*[l] [/i] ne converge pas vers 0 dans R!

(1.14) Corollaire. Ri n'est pas un objet de S$*.

Si Ri était un objet de ty* alors b: RjxR-^R serait continue partout d'après
(2.8.10).

(1.15) Remarque Soit W= V {^:^1Ri xR}. Alors les filtres <%x x+W
définissent une pseudo-topologie sur R x R («Hauptideal-Limitierung» de H. R. Fischer
[3] p. 273). Nous affirmons que les ÛUX ne sont pas les filtres des voisinages de x par
rapport à une topologie (donc en particulier que Satz 6 de [3] p. 294 est faux).

Soit U= IJ (Iôxllfô). Alors Ue%y car [/efxV pour tout %\,RV Supposons

que U soit un voisinage de zéro par rapport à une topologie. Alors il existe VeW
tel que Ue°ilx pour tout xeF,c.à.d. pour tout xe V il existe Vxe^l tel que x+Vxa U.

Soit x2 > 0 tel que x' (0, x2)e V (x2 existe car Ve [0] x V). R x {0} c Vx>, car
Vx' g [/5] x [0] pour tout 6 > 0. Donc R x {x2 } <= x' 4- Vx> a U ce qui donne une
contradiction.

Pour obtenir les théorèmes des chapitres 3 et 4, nous supposerons toujours que
les espaces vectoriels Eu E2 soient des objets de la catégorie 5R 2In ^3X. Pour les

résultats correspondants obtenus dans [4], nous avons supposés que EUE2 soient
des objets de % n ^J3#. On n'a pas 31 n s$* c % n tyx, car un espace vectoriel localement

convexe en général n'est pas localement borné. Or, on n'a pas non plus 5Rc:?[n ^3*:

(1.16) Proposition. En général un espace raffiné n'est pas un objet de ty*.

(1.17) Lemme. Soit E un objet de 0>*. Alors &IE* o il existe B a E tel que

Soit &IE*. Alors il existe 9 tel que ,r<^ V-^. E étant un objet de ^x, il
existe tfe^telque V-J?i£. On a trivialement^ \B\ d'où V-^<V-5,donc^<V-5.
Inversement V(V-B) YB. D'où, si &^VB et YBIE, on obtient %[E\

Soit E={xeRN: il existe ra>0 tel que |x(«)|<m pour tout «eN} muni de la

topologie localement convexe définie par le filtre ^ des voisinages de zéro engendré

par la base {Vkfe}keNfe>09 où VkiË= {xeE:\x(i)\^e pour KK&}.
Soit <5>0 et Bô={xeE:\x(k)\^ô pour tout keN. On vérifie facilement que

q {^ cz jE1 : il existe <5 > 0 tel que ^4 c Bô}

est un système raffinant de E. Alors 2?fl est un objet de 91 d'après (1.7). D'après le

lemme précédent et (1.7) on a: SCl(E$ <> H [existe <5>0 tel que «T^V-^. Or,
V ^ V-£i pour tout <5>0, d'où (EQf est topologique (cf. (2.4.4.)).

Considérons la suite {xn}neN définie par
ffO si n

[1 si n
x

fO si n t£ m
n(m)<

[1 si n m
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Alors pour le filtre X engendré par Xk= {xn, n^k}, keN on a: B1eX, et X [E, d'où
X[EQ. Or, X ne converge pas dans (EQ)\ car B\ $X. Donc EQï(EQ)$.

c.q.f.d.
(1.18) Lemme. Le fondeur composé ox est idempotent.
Soit Eun objet de g*. Alors £ox<£°, donc £oxo<(£o)° £o, d'où £oxox<£°\

Inversement £ox <£oxo, d'où £ox =(£ox)x <£oXoX.

(1.19) Lemme. Si E est raffiné, il en est de même de E9.

E* est admissible d'après (7.2.3). Si X[E*9 alors il existe un borné B de E tel que

X^V-B, donc I^BeX. Or, tout borné de E est aussi un borné de E*, car V-2f=
V(V-2J). E* est donc localement borné.

(1.20) Proposition. Le diagramme ci-dessous jouit des propriétés suivantes:

(a) Toutes les inclusions (marquées par =>) sont strictes.

(b) Tous les foncteurs indiqués sont surjectifs.

(a) Nous choisissons les exemples suivants: £'1 C0(R; R) (Espace vectoriel des

fonctions continues de R dans R muni de la topologie de la convergence compacte).
E2 L(Ei ; R) (Espace des applications linéaires «f: i^-^R muni de la pseudo-

topologie: &\,E2;oY'X\,Ei entraîne J^(«^)|R). Rx comme dans (1.13).

El * est un objet de 5Rn <$* d'après (7.4.6), (1.8) et (1.19). D'après (6.2.2) l'évaluation

e:L(Et ; R)x£\->R est continue. On a £2X* x Ex^E2 x Eu d'où e:E2X* x J^-^R
est aussi continue. Et n'étant pas normable, on déduit du corollaire 3 de H. H.
Keller (p. 268 de [5]) que E2 et E2X* ne sont pas topologiques, d'où les inclusions

connu que Et est localement convexe mais n'est pas localement borné, donc les inclusions

9Î n ^3° c $[ n ^}°, *P x c $ et 5R <z 91 sont strictes. De plus l'exemple (1.16) montre

qu'il en est de même de 5Rn S$*œ% ^nîle21, ^cz^. Soit Ro l'espace vectoriel R
muni de la topologie grossière. Nous affirmons que (R1)° R0. En effet, soit Ue^

V X. Alors t/e^pourtout^jRi. Donc t/e[x] pourtoutxeR (car/jx|e[x] pour

tout x^O!), d'où xeU pour tout xeR. Cet exemple montre que 9îc^x et 21c:^3*

sont strictes. Ro est un objet de ty*, d'où ^3*n2Ic:^8* est stricte. Enfin Rt est un objet
de $x, mais on a (R0°x =RO^R!, d'où $x c^pox et ^ox c^p sont strictes.

(b) Pour tout foncteur indiqué dans le diagramme on a une inclusion dans le sens

inverse, d'où ces foncteurs sont bien surjectifs (cf. (1.18), (1.19), (1.12) et (7.2.3)).
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(1.21) Corollaire. ^n« ^
Les objets de ^3OX jouent un rôle important pour certaines questions de compléti-

tude (voir § 2).

1.5 Résultats divers

(1.22) Définition. Un espace vectoriel pseudo-topologique E est dit complet, si
3C — 2£\E entraîne l'existence d'un xeE tel que 2E — x\E.

(1.23) Proposition. Si E est un espace vectoriel pseudo-topologique complet et q
un système de sous-ensembles de E vérifiant (1.4), alors EQ défini dans (1.5) est complet.

Soit%-&IEQ. Alors,f-^|£. Doncil existe xe£ tel que^-xj.E.^-^) ne #
5*0, d'où il existe Be& tel que B-Bgq. Soit aeB. Alors B-x (B-a) + (a~x) a
<= (B-B) + (a-x), d'où B-xe(&-x)ng, donc %-x\Er

(1.24) Proposition. Soit E un espace vectoriel, El9 E2, En des objets de ^x,
etft:E-+El9 /=1, «des applications linéaires. Alors E muni de la pseudo-topologie
la moins fine sur E qui rend continue les/, est un objet de ^îx.

On a par définition : %\ Eojl{^)ïEi Pour Uï<«. Soit £, e# tel que V •

pour l</</7. Alors f] Bt Be&, et V-^{i^, d'où E est localement borné.

(1.25) Corollaire. Si ^1s E2,..., En sont des objets de ^x, alors Et x ••• xEn
est un objet de ^ x.

(1.26) Corollaire. Si Ex est un objet de tyx, E2 un sous-escape de Ex muni de

la pseudo-topologie induite par Vinclusion dans Elt alors E2 est un objet de ty*.

§ 2. Homéomorphismes canoniques dans la catégorie ^}q

(2.1) Définition. Les objets de la catégorie ^3q sont les objets de ^3X, c.à.d. les

espaces vectoriels pseudo-topologiques localement bornés. Les morphismes8) sont les

applications de classe Co définies dans (2.8.4).

(2.2) Proposition./: Ex-*E2 est un morphisme de ^o ^ Pour tout borné B de Ex

et tout filtre X\E^ on a \-f{B)[E2 et Af(B,

(2.3) Lemme. Si E est un objet de ^ x, alors Y-&lEoil existe un borné B dans E
tel que %^ [B] (c.à.d.

8) Dans ce paragraphe, nous entendons par morphisme toujours un morphisme de
«0
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Si Y-&IE, alors il existe <5>0, Ae& tel que IÔA soit borné dans E. l/ô(Iô'A)=
IiAzïA, d'où A est borné dans E (voir (1.3)). Or, Az% est équivalent à ^< [A].

Inversement, si ^^[B] et B est borné, alors V-^<V- [i?]iii. La proposition en
résulte.

2.1 L'objet <eo(Ex\E2)

L'espace vectoriel des morphismes/:^-^^ (cf. (2.8.4)) sera muni d'une pseudo-
topologie telle qu'on obtienne de nouveau un objet de ^3q qui sera dénoté par
<£0(Ei;E2). En général t&0(El;E2) sera donc différent de C0(Ei;E2) (défini dans

(2.8.4) et (6.1.3)) quant à la structure.

(2.4) Définition. Un sous-ensemble H de ^0(^i 1 E2) est dit de classe Co, si

(1)
(2)

(2.5) Proposition. La collection g des sous-ensembles de classe Co de C0(El;
E2) vérifie (1.4). Si de plus E2 est raffiné, alors g est un système raffinant de

C0(Ei;E2),
(a) Si feC0(E1 ; E2), alors {/}e# par définition. Les autres propriétés on vérifie

en se basant sur les relations suivantes, qui sont valables pour tout AczEl9 tout filtre
SC de Ex et tout /fezC0(E1 ; E2):

(b) Si Ht czH2, alors Ht (A)c H2(A) ctAH^A.^^A H2(A, &).
(c) (Ht uH2)(^cflj^uHa^) et ^(Hj uH2) {A, %)^A H^A, X)v

AH2(A,^). De même on a: (H1-i-H2)(A)czHl(A) + H2(A) et
J ^(^4, ^)+J /f2(^, «^X car A est linéaire.

(d) AÔ-H=ÔAHetAIl-H=I1AH.
(e) AT* (^)c(^(^))* et A H*(A, 3T)^(A H(A9X))*
(f) D'après (7.4.3) on sl B(A)czH{A).
Mais l'application f*->f(x) de Cq^;^) dans E2 étant continue pour tout

xeEi9 il en est de même de/h-> Af(a, x) pour tout a et jc dans i^, donc les arguments
donnés dans (7.4.3) montrent aussi que A R{A9 &)^(A H (A,

(2.6) Définition. <^0{E1 ;E2): C0(Ei; E2)Q. On a donc explicitement:

(2.7)
(1) Y
(2) II existe ife#" tel que H est de classe Co.

(2.8) Proposition. (^Q{Ei ; ^2) ^^ w« 0*/^ rfe ^3x. Si c/e plus E2 est un objet de

% il en est de même de ^0(^i l ^2)-
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Suit de (2.5), (1.5), (1.7) et du fait que les éléments de q sont bornés dans

C0(El;E2).

(2.9) Proposition. Si Eu E2 sont des objets de ty etf :El->E2 est de classe Co

(voir (2.8.4)), alorsf :Ei -? E2 est un morphisme de ^$ox.

Soit V-BIE?. Alors YB[E^ donc Y-f(B)lE2. Or, E2 et E2 ont les mêmes
bornés (cf. dém. de (1.7)), donc Y-f{B)[E2.

Soit %\E\. Alors il existe Xe%te\ que Y-X\EX. On a Af(B, X)cf(B+X)-f(B\
donc Af(B, X) est borné dans E2. On en déduit que Af(B, 3T)IE2.

Si *J}0 est la catégorie dont les objets sont ceux de ^5 et dont les morphismes sont
les applications de classe Co, on a de nouveau un foncteur

X

>% -> $o en définissant / x /
pour les morphismes (cf. 1.9).

2.2 Le morphisme c:^0(El ; E2) x V0(E2; £3)->*o(^i ; E3)

(2.10) Lemme. Si Ht a <g0 (Ei ; E2) et H2 c ^0 (E2 ; E3) sont de classe Co, il en est
de même de H2oHlcz<^0(E1 ; E3).

Soit \-A9 %\EY. Alors V-(//2o//1)(v4) V-//2(H1(^))|jE'3. De l'égalité A(f1ofl)
(a, x) Af2(f1(a)9Af1(a9 x)) on déduit^:

(2.11) Corollaire. Sif^^E^ E2) etf2etf0(E2; E3), alorsf2of1eV0(E1;E3).

(2.12) Théorème. Soit c la loi de composition de la catégorie ^3X. Alors

c:^0(Et; E2) x Vo(E2; E3)^V0{E^ E3)

est un morphisme.
Soit V-^xif^i), &rx&l<V0(E1;E2)xV0(E2;E3). Alors Y-c(HlxH2)

V-(iï2oJïOiîfo^; E3) ce qui suit facilement de (2.10) et (2.6).
Soit Y-AlEt. Alors(Jc(H! xH2, ^x <$)) (A)^AH2(H1(A), ^(A^+^iH^A) +

+ &r(A))lE3, car ^r(A)[El et contient un élément borné.

L'inégalité résulte de (11.1.5) et (1.5.2). De plus nous pouvons choisir un élément
Fx Ge& x & tel que F et G soit de classe Co.

Alors A c(HtxH2,FxG) est de classe Co, car c'est un sous-ensemble de

(H2 + G)o(H1+F)-H2oHl qui est de classe Co d'après (2.10) et (2.6). On a donc

10) Les conclusions de ce genre se basent toujours sur (1.5.2).
n) Comme dans (1.7) on constate aisément que les bornés de ^o (£i; £2) sont exactement les

sous-ensembles de classe Co.
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2.3 Les morphismesf h-* /* et g h-> g*

Soit il une catégorie ayant comme objets des ensembles munis d'une structure12)
et comme morphismes des applications. Soit (£ la catégorie ayant les mêmes objets
et comme morphismes toutes les applications. Supposons que dans Si on ait :

1. une loi qui associe à tout couple d'objet El9 E2 un nouvel objet (que nous
dénotons par ^{Eu E2)) tel que l'ensemble sous-jacents contienne exactement les

morphismes/-.i^-»E2 de Si,

2. une loi qui associe à tout couple d'objets un nouvel objet (dénoté par Ex x E2)

tel que l'ensemble sous-jacent soit le produit cartésien des ensembles sous-jacent de

Ex et E2 et tel que pour n'importe quel objet Zsune application f :E-+E1 xE2 soit

un morphisme de R si et seulement si 7^0/et 7r2o/le sont, où ni:El x E2 ->Et, /= 1,

2, sont les projections.13)
3. Les applications constantes sont des morphismes de Si.

(2.13) Proposition. Supposons que les applications

c

définie par c(f, g)=gof,

x V(E9E2)->V(E, Ex x E2)

définie par cc(f, g)= [/, g], où [/, g] (*) (/(*), g(x)), et

où

est l'application constante jckj, soient des morphismes de Si.

Alors l'équation ^(f,g)> <p g o(pof définit une application

l9 E2)9 V(EZ9 £4

qui est un morphisme de 51. De plus cette affirmation est équivalente à la suivante: les

applications ci-dessous sont des morphismes de & :

,E4), où f*($) *of,
,E4), où g* (<p) g «, <p,

^ EA), V{E3, £4))

12) La structure peut consister en plusieurs structures, p.e. une structure topologique et une
structure de groupe. Quant à la notion de structure voir N. Bourbaki: Théorie des ensembles,

13) On notera que le triple (Ei x 2Ï2, m, ^2) est un produit de E\ et E2. En particulier m et n%

sont des morphismes de 51.
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définie par ct (/)=/*, et

i9 E2), V(El9 E4))

définie par
On a

donc on a

De plus

et

d'où

Cl{g) g*-

bien

n

*f n Y f° \Ac o LJ ici

Ci — Ç

c2 c*c

^ C o [C

*

^^(Ej,

o<xo[y,i<

,ao[id°,

1 o TCi? C2

o[ld

E2),

i°]

y],

o7r2]

E4))

est un morphisme de Si.

Pour finir on utilise:

ct ^o[id°,id] et c2 <€o[id, id°]

où il est évident de quelles identités et projections il s'agit.

(2.14) Exemple. 51=^0 et ^ ^0 définis dans la section 2.1 vérifient les
hypothèses de la proposition précédente.

On utilise (2.12) pour c et (6.4.13) pour a. Finalement y est linéaire, donc d'après
(2.8.7) il suffit de montrer que y est continue au point 0sE2. Soit donc &IE29&'9
V-AlEt. On a y((W)'A (&lE2. De plus pour tout BeW tel que Y-BIE29 y(B) est

de classe Co, d'où le résultat.
En particulier ^ définie pour les objets dans la condition 1, et pour les morphismes

dans (2.13) peut donc être considéré comme foncteur: Six Si ->$t.

2.4 Lhoméomorphisme V : V0(Et x E2; £3)->#o(£i î ^o(E29 E3))

(2.15) Proposition. Soit Si une catégorie vérifiant les conditions 1. ef 2. </e 2.3,
e/ supposons que c et a définis dans (2.13) soient des morphismes de Si.

(I) Soit xeEl9 gG^{ExxE2, E3). Alors l'application (Wg)(x):E2->E3 définie par
(Wg) (x)-y=g(x, y) est un morphisme de Si si et seulement si les applications constantes

sont des morphismes de Si. De plus l'équation ci-dessus définit un morphisme W :

^(Et x E2, E3)^^(EU V(E29 E3)) si et seulement si y (voir (2.13)) est un morphisme.

(II) Soit fe^(Eu^(E29E3)). Alors l'application ^f:E1xE2-^E3 définie par
{®f){x>y)=f(x)'y est un morphisme si et seulement si l'application d'évaluation



270 WILLI BUCHER

2> E3) xE2-*E3 l'est. Si de plus les applications constantes sont des morphismes,
alors il en est de même de

0:V(EuV(E29Ez))^V(E1 x£2,£3).

(III) En particulier, *P est un isomorphisme de la catégorie si et seulement si e et y

sont des morphismes.

Démonstration. On a (¥g) (x)=go [jc°, id£j.
Inversement n1e<£(El x E2, 2^), d'où (Vnt) (x) x° est un morphisme.
Soit y un morphisme de 51. Alors R vérifie les hypothèses de (2.13), donc

yg g*oao[?,id°]
est bien un élément de

£3)), et W (ao[y, id°])*oc2

est un morphisme. Inversement, s'il en est ainsi, alors y^^n^
Analoguement on a ^/=eo[/o7cl5 tt2] et 4> e*oao[n*, 7t2], où ^ co[id, e°~]

et n* Co[n°u id]. ^ ^(id), où id est l'identité sur &(E2i E3).
Finalement il est bien connu que 4>o W et Wo$ sont des identités.

(2.16) Lemme. L'application d'évaluation

e:V0(E1;E2)xE1->E2

est un morphisme de ^3q

On vérifie facilement que l'application vo:<é'(El ; E2)-+E2 définie par t>0(/)=/(0)
est un morphisme de ^3q • Donc il en est de même de e v0 o c [y o n2, n{\ d'après (2.14).

(2.17) Théorème. L'application linéaire

définie par (*Fg)(x)-y=g(x9y) est un homéomorphisme.
Découle de (2.16), (2.15) et (2.14).

2.5 Sous-espaces de <&0(El ; E2)

Nous désignons par J%f(El9E2;E3) l'objet de ^$0 dont les éléments sont les

morphismes bilinéaires et dont la structure est induite par l'inclusion dans

^0 {Ei x E2 ; E3) (cf. 1.26). De même par ^p{Ei ; E2) l'objet ayant comme éléments les

morphismes p-linéaires de Elx~xE1 dans E2. Pour p=l, l'objet est dénoté par
'(EX;E1\
On a donc explicitement:
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(2.18)
(1) \
(2) II existe He& tel que H(%)jE2 pour tout
En effet, si Hczg>(Ei;E2), alors A H (A, 3?) H(%') et VH(A) H (V-A).

(2.19) Remarque. SiEi est un objet dety*et de ty*, alors &\EX ;E2) L* (Ex ; E2),
où L(Et ; E2) est muni de la structure définie dans [4]. En particulier on retrouve sur
3?(Et; E2) la topologie induitepar la norme ||/||= sup || ^ (x)\\, si Et et E2 sont normes.

En vue de (6.1.10) nous n'avons qu'à démontrer la première affirmation, car si

Eu E2 sont normes, on a:

Par construction &(Et ; E2)<L(El ; E2).
De plus, &{EX; E2) étant un objet de ty*, on a:

(Ei;E2) ^ Lx (Et;E2).

Soit J2r|Lx (Ex; £"2), V-^ |£t. Alors #"(^)i£"2, car Lx (Et ; ^^L^ ; £2). Soit
tel que V-if|L(£1; £2), et soit XIEX tel que X \-£ (Et est supposé être

un objet de <$*). Alors //(#)== #(V-#) V-#(#)i£2, car ^ possède un élément
borné de ist. Donc:

(2.20) Remarque. Uneapplication bilinéaire b:EixE2-^E3 qui estcontinue partout
n'est pas nécessairement un élément de •^(E1, E2; E3).

On définit sur l'espace vectoriel R la pseudo-topologie suivante:

(2.21) ^|R2:<*>I1 existe xu x2,..., xneR («eN arbitraire) tels que

V

On vérifie facilement que R2 est un objet de ^ x. En particulier la multiplication
Z?:RxR2-»R2 est continue partout.

De (2.8.8) et (2.3) on déduit:

(2.22) be&(El9E2;E3)o(V(A x5),f x(W[El x E2

entraîne b (A, <&), b {%, B) l E3).

On a [l]iR2, V-JilR, mais 6([/i]x [1])= C^i3 ne converge pas dans R2.

(2.23) Remarque. Soit E un objet de 31°, c.à.d. une space vectoriel localement

convexe. Alors en prenant (2.18) comme définition15) et en utilisant les arguments de

14) Exemple communiqué par S. Courant, Berne.
15) En effet, la définition n'était donnée que pour des objets de
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(2.19), on trouve ^(R; E) LX (R; E). D'autre part on a L(R; E)*Ed'après (6.4.1),
donc <£?(R; E)&E*. On voit donc que dans un certain sens les objets de ^3 qui ne
sont pas localement bornés, ne sont pas «compatibles» avec notre théorie.

(2.24) Lemme. Soit E2 un sous-espace de E3 muni de la pseudo-topologie induite

par Vinclusion i:E2-+E3, et soitf:El-+E2 une application. Alors

La démonstration se base sur (2.3.4) et (2.11). On en déduit facilement les corollaires

suivants de (2.17):

(2.25) Corollaire. L'application linéaire

définie par (Wu) (xl)'X2 u(xî9 x2) est un homéomorphisme.

(2.26) Corollaire. Lapplication linéaire

V:&p+q(E1;E2)^&p(E1;&q(El;E2))
défini par

(Wu) (xl9 x2,..., xp)-(yu yq) u(xu xp9 yu ...,yq)

est un homéomorphisme.
Comme conséquence de (2.12) on a:

(2.27) Corollaire. Uapplication bilinéaire

définie par b(u, v)= VoU est un morphisme.
De (2.14) on obtient (a~1=a(7rl!|e, n2*)\):

(2.28) Corollaire. L'application linéaire

a:J?p(E;E1)xJ?p(E;E2)-*£>p(E;El x E2)

définie par a(u, v) • (xt,..., xp) (w (xt,..., xp), v(xl9...9 xp) est un homéomorphisme.

(2.29) Proposition. Soit E un objet de ^3X vérifiant:

Alors l'application vt :J?(R;E)-+E définie par vi(£) £(l) est un homéomorphisme

(voir aussi (2.23)
V [1]|R, donc «^"^(R; ^entraîne &(\)\E, d'où vt est continue. Soit

u:E-+&(R; E) définie par (u(x)) (A)=A-x, et soit &IE9 V-^|R. Alors il existe ô>0
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tel que Aalô. On a {u(&)) (/5)=/5-^ ^(r1-^)l£l d'après l'hypothèse. Soit
borné. Alors (u(B))(Y) V'BlE, d'où u(&)l&(R;E). Il est bien connu que
u~i v1, d'où le résultat.

(2.30) Remarque, La condition supplémentaire de (2.29) n'est pas vérifiée par
tous les objets de ^3X, comme l'exemple R2 défini dans (2.21) le montre. Par contre
elle est vérifiée par les objets de 9Î, car I

(2.31) Remarque. Si E2 est topologique, alors les suites normales convergentes
sont les mêmes pour Co (Et ; E2) et ^0 (El ; E2).

On a C0(E1;E2)'^<^0(E1; E2), donc chaque suite convergente à droite converge
aussi à gauche. Soit maintenant H={fn}neN une suite convergente vers zéro à gauche.
Pour qu'elle converge à droite il suffit de vérifier que H est de classe Co. Soit W le

filtre des voisinages de zéro dans E2, Y-A, &[EU Be$C v [0] borné, Ueffl, U borné.
Alors il existe noeN tel quefn(A + B)cz U pour tout n^n0, d'où Afn(A, B)cU—U
pour tout n^n0. De plus il existe B'e& tel que Afn(A, B')a U pour n<n0, donc

AH(A,B'nB)c:U-U, d'où A H (A, %)\E2. Déplus on aV-H(A)^\UlE2.

2.6 Complétitude de <£0(El ; E2)

(2.32) Proposition. Si E2 est un objet séparé et complet de $°x, alors ^0 (Et ; E2)
est complet. De même &0(E; ^^E^E^y £Pp{E^E^) et ^0(E;J^p(E1;E2)).

Soit Jfr-^ri<^0(E1;E2). Pour tout xeEi on a: (&'-^)(x)=&r(x)-^(x)lE2.
E2 étant complet, il existe yxeE2 tel que tF(x)—yx\E2. E2 étant séparé16), yx est

unique. Dénotons par/l'application ^h yx. Alors
(a) {^-f) {x)[E2 pour tout xeEx.
Soit T le filtre des voisinages de 0eE29\'AiEx. Alors (&-&)(A)*^r car

Soit Ve-y. Il existe F^e^ tel que (F1-F1)(J4)c V. Soit aeA. Alors il existe

^ tel que (F2 -f) (a) c F.

Soit (pe^ et ^eF1nF2. Alors (p-/)(aMç>-^)(fl) + (^-/)(a)eF+F, d'où

(b) {f-
Soit H-He^-^ de classe Co. Alors
(c) ^f est de classe Co, car si heH, on a

iï (H - ft) + h c (if - H) + h.

Soit Vv41^. Il existe Iôe\ tel que Iô • AT(^)c K. Soit ae^, 17c F tel que £/ est

16) Voir (3.1.4) ou [3].



274 WILLI BUCHER

équilibré. Alors il existe F' eJ5" tel que (f-Ff) (a)c(l/^)- U, d'où Iô-(f-F')c: V. Pour
F=HnF' on obtient donc:

h S (a) <= /,•(/ - F) (a) + lô-H(A)czV + V.

d'où on déduit que \•f(A)^ir+1TIE%. Analoguement on montre que 9C\EX
entraîne Af(A, ^)[E2, en se basant sur l'égalité

Af(a, x) A(f- t)(a9 x) + A yt(a, x).

On a E?=Et et E2X =E29 donc d'après (2.9) fe<e0(Ei'9E2). Il suit que (/-#)
04)e(/-#") (A) est borné, donc d'après (b) (/-^) (^H^* =£2, d'où ^0(£i> E2)
est complet. De même ^o(E; (^0(Ei; E2)% car cet objet est linéairement homéo-

morphe à ^0(ExEt; E2). Soit manitenant Sr-&l&(Ex\ E2). Alors i (#"-#")
Wi ^ ^2). Il existe /e*0(£i ; ^2) tel que 1 (J^)-/l*0(£i ; ^2). Soit

On a (^-/)(x+j)=^(x+ j)-/(x+j)i£2. De même ^(jc)-/W4^2 et

Or, ^(x+j)^^(x) + f(j), car g?(Ei;E2)e&9 donc, £2 étant séparé, on obtient

f(x+y)=f(x)+f(y). De manière analogue on obtient/(Ax) A/(x). On a donc:

donc ^-flSefa; E2).
Soit J^-^l^o^;^^;^)). Alors /o^-J5")!^^; V0(Et; E2)\ où i:

^(^j^-^^o^;^) est l'inclusion. On a /* (^- .F) /*(^)-!*(.?") donc il
existe feV0(E; VofàiEJ) tel que U(^)-f converge. Soit 0 /*(#").

Alors ^(x)-/(x)|^o(^i; ^2), etJ^7^; E2)e@(x) pour tout xe£ Donc par
les mêmes arguments comme avant, f(x)eJ?(E1;E2) pour tout xeE, d'où

E2)). On a donc ^{x)-f(x) ^(x)-i(f{x)) i^-f) d'où

Par récurrence on trouve le résultat général.

(2.33) Remarque. Nous ne savons pas si l'énoncé du théorème 1.3 chap. II de

[1] est vrai, étant donné que la démonstration se base sur l'égalité (t^r—&r)(%')
^"(^)—«^(^)qui en général n'est qu'une inégalité pourvu que & et 3C soient des

filtres.

§ 3. Calcul différentiel dans les objets de 9?

Nous examinons dans ce paragraphe les applications différentiables au sens de [4]
dans le cas où les espaces vectoriels pseudo-topologiques sont raffinés (voir 1.1), c.à.d.
des objets de 9t.
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3.1 Différentiabilité

Soient Eu E2i... toujours des objets de 9î. Soit r\E1-^E2 une application. Nous
désignons par 0r:RxEx-+E2 l'application définie par

(3.1) Or(A,x)
rUx)
-—- pour A # 0

A,

0 pour 1 0

D'après (3.2.2) et (2.3) on a:

(3.2) Une application f:Ex-*E2 est différentiable au point aeEu s'il existe

fsSe{Eï\ E2) tel que r:Ex-+E2 définie par r (x)=f(a +x)-f(a)-f(x) vérifie:
(3.3) Pour tout borné B de Ex on a:

©r(V,B)|E2.")

La différentiabilité d'une application en un point est une condition locale d'après
(3.4.1). Il suffit donc que/soit définie sur un ouvert contenant a pour que/'(tf) soit
unique. De plus, il suffit de considérer les bornés B contenus dans un voisinage de

zéro, car les voisinages de zéro sont absorbants, et 0 r (V, ô-B) ô- 0 r (V, B) pour
tout 5

(3.4) A est ouvert dans El9 si Aex + <% pour tout xeA, où <%= V X (cf. 3.4
de [4]). ^iEl

Ayant gardé la définition de différentiabilité introduite dans [4], nous pouvons
appliquer tous les résultats obtenus là. Or, nous changeons la notion de «dérivée
d'ordre supérieur», car l'espace vectoriel ^f(E1; E2) est muni d'une autre structure
(voir (6.1.4)). De plus dans la définition suivante nous renonçons à la condition que
Ex et E2 soient des objets de ^ (cf. (9.1.2)).

(3.5) Définition. Une application f\Ex-*E2 est (n+l)-fois différentiable au
point aeEu s'il existe un ouvert A de Ex contenant le point a> tel que/(n):^4->J5fn

(Ex; £2)existe et est différentiable au point a, onfip+1)(x)e^p+x(Ex;E2)tstVé\ément
correspondant kfip)'(x)e&(Ex ; &P(EX ; E2)) en vertu de (2.26).

(3.6) Définition. Soit A un ouvert de Ex. Alors f :A-*E2 est dit «-fois conti-
nuement différentiable dans A, si/est «-fois différentiable dans chaque point de A
Qtf^n):A'^^n(Ex;E2) est continue. / est dit indéfiniment différentiable dans A, si

cette condition est vérifiée pour tout «eN.

17) Nous désignons £ par f'(a) ou Df(à), et r par /x (a) ou Rf(a).



276 WILLI BUCHER

3.2 Inégalité fondamentale et applications

L'inégalité figurant dans le lemme suivant (inégalité analogue à (5.3.4)) est utilisée

pour la plupart des démonstrations dans la suite. En effet, les conditions (Rj à (R3)
d'un espace vectoriel raffiné (cf. (1.1)) ont été imposées à cause de cette inégalité.

(3.7) Lemme. Soit A un ouvert de Et contenant l'origine, 2£ un filtre sur El,ir un

filtre sur R tels queAei^lO, \\%t& un filtre sur R (A; E2)= {feEE2l:fest différen-
tiable dans A et/(O) O}. Alors S &(r9 %)^(&'(r [0, 1] #)•#•)*-, où&et*~ sont
définis dans (3.1) ef 1.1.

Pour la démonstration voir (5.3.4).

(3.8) Proposition. Soit AczE1 ouvert. f:A-+E2 est continuement différentiable
dans A si et seulement si: Pour tout aeA et tout heEx il existe un élément £a{h)eE2
tel que:

À->0 *>

(2) h h-> Sa(ti) est un élément de JSf (£t ; E2).

(3) x i-> £x est continue dans A.
(=>) On a 0fx (a) (V, \K\)IE2 pour tout aeA, heEu d'où

*
0 9

donc <?a(h)=f'(a)'h9 oùff(a)e^(E1 ; E2) etf'\A-+&{E1 ; E2) est continue par
définition.

(<=) Soit aeA, heEt et <5>0 tel que a + À-heA pour tout |A|<<5. Alors l'application
(p(û>ft):] —<5, ô\_-*E2 définie par (P(a,h)(ty=J (a + Ah) est différentiable car

hm
à->o

A-0

pour tout ae]-ô, ô [ (cf. (4.3.3)).
On a donc <p(a>/l) (a)-l=/(a+aft) (A) pour tout ae]-<5, 5[.

Soit /(«f*)(a)=/(fl + a-A)-/(fl)-^(a-A). Alors /(^} (a)-l=/(a+a fc)(A)-^(A),
car /fl est continue, donc différentiable d'après (4.2.1). Soit maintenant U un voisinage
équilibré de 0eEl tel que # + UczA, et soit j?cz £/ borné. Alors/(fl> B) est un sous-ensemble

de NQ-Ô,Ô[,E2) (voir (3.6)), et ]-5,5[eV[l] V[0, 1]-[1], donc

b)(V, [1]) < (/(;,b)(
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car E2 est raffiné et x h-> tx est continue. Or

®/(a.B)(V, [1]) É>/x (V, B), où f'(a) £a.

/est donc continuement différentiable dans A.

(3.9) Remarque. La proposition précédente est aussi valable, si Eu E2 sont des

objets de 21 et si on suppose la continuité par rapport à L(EX; E2) défini dans [4].

(3.10) Proposition. Soit Ac:E1 ouvert, et f:A-+E2 continuement différentiable.
Alors f:A->E2 vérifie la condition suivante:

Pour tout aeA et X^\E^ il existe Xe& tel que

D'après l'hypothèse on a:

car

on en déduit qu'il existe X^eX tel que Af'{a + Xl9<&*y<8f*lE29 car Af'{a + X9 <&)

contient un élément de classe Co. De même il existe X2e^ tel que/'(a + X2) est de

classe Co, carf'(a + 3r)^Af'(a9 &)+f'(a). Soit X3e& tel que ^e[a]+[X3] +^*,
et soit X=XxnX2nX3. Alors Af(a + X, ^)</'(a+ X)-^+/x (a + xy&lE29 car

(f * (/>))'&)=*A f'(b9y)9 donc en appliquant (3.7) pour ^=[1], on obtient

/x (a + xy<&

(3.11) Corollaire. Si f:A-*E2 est continuement différentiable, alors f:A->E2
est continue.

(3.12) Corollaire. Si Ex est norme, AaEi ouvert et f:A-*E2 continuement

différentiable, alors f:A-+E2 est localement uniformément continu.
Par récurrence on obtient:

(3.13) Proposition. Si f:A-+E2 est n-fois continuement différentiable, alors

fik):A-+&k{E1\E2) est continue pour O^k^n.
Etant donné que la structure sur &{EX ; E2) et plus fine que celle considérée dans

[4] (cf. (6.1.4)), nous avons immédiatement le résultat analogue de (8.2.1):

(3.14) Théorème. Soit AaE1xE2 ouvert, (al,a2)eA,f:A-^E3 partiellement
différentiable au point (al9 a2), et D2f:A-*J£?(E2; E3) continus en ce point. Alors f est

différentiable au point (al9 a2), et

f'(ai9 a2)(tu t2) D2f(al9 a2)-t2 + DJ(au a2ytx.
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Nous démontrons en détail le résultat correspondant à (9.1.3):

(3.15) Proposition. Si AczEj^ est un ouvert et si f:A^E2 est deux fois différen-
tiable au point aeA, alors f" (a) est symétrique, c.à.d. f"(a)-(s, t)=f"(a)-(t9 s) pour
tout s, teEx.

Soit£eJ=[0, 1], et

gA(« ~(/(a + A^-5 4-A.0-/(a + A^-5))-((/T(a).0^-5

pour A 7*0, et go(£) 0. Alors18)

gÀ(0 (6>(/T (a)-(A, «s + 0)-*

d'où par hypothèse gy(I)lE2. De même pour

on obtient hv (/) | £"2.

Soitfx(0=Agx(0,0-àhx(0,Ç).
Alors/A(0)=0, donc en utilisant (3.7):

Or

ce qui achève la démonstration.

3.3 Dérivée d'ordre supérieure d'une application composée

(3.16) Lemme. Soit AaE1 ouvert.

Sif:A-+E2 estp-foisdifférentiableetfip)\A-+&p{E1 ; E2)q-foisdifférentiable, alors

f:A-+E2 est (p + q)-fois différentiable, et inversement.

Même démonstration que pour (9.2.3), en utilisant (2.26).

(3.17) Lemme. Tout ue&(Eu E2 ; E3) est indéfiniment différentiable.
D'après (4.2.3) u est différentiable, et

u'(al9 a2) (xl9 x2) u(au x2) + u(xu a2).

Soient ule^(E1 ; &(E2; E3)) et u2e^{E2\Se{El; E3)) les applications qui
correspondent à u d'après (2.25). Alors u' n*oulon1 + n*ou2on2 est la composée d'appli-

g-a
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cations linéaires et continues, donc indéfiniment différentiable. Le résultat découle
maintenant du lemme précédent.

(3.18) Lemme. Si A c E est ouvert, et sift:A->Ei est p-fois différentiable au point
aeA, alors il en est de même de \_f\,fî\'-A-*Ev x E2.

On utilise (2.14) et (9.2.5).

(3.19) Théorème. Soient f:Ai-+E2 et g:A2-+E3p-fois différentiables au point
aeAt resp.f(a)eA2, Au A2 ouvertsff(A1)czA2. Alors gof:A1-^E3 est p-fois différentiable

au point a, et

Pour/? 1 c'est (3.3.1). Supposons (3.19) pour/?, et soient/et g (/?+l)-fois différentiables

aux points correspondants. On a(go/)' ^o[/',g'o/], où b:^?(E1; E2)x
=^(E2 ; E3)-^^?(El ; £3) est de classe Co, donc /7-fois différentiable d'après (3.17) et
(2.27). Donc (go/)' est/?-fois différentiable d'après l'hypothèse de récurrence et (3.18),
d'où en vertu de (3.16) go/est (/?-f l)-fois différentiable au point a.

§ 4. La catégorie (£fc

(4.1) Définition. Les objets de la catégorie &k sont les objets de 91, c.à.d. les

espaces vectoriels raffinés (cf. 1.1). f:El-^E2 est un morphisme de la catégorie Gfc,

si/est A:-fois différentiable dans Ei et si/(k)e^0(^i ; -^*(^i ; ^2)) (cf. § 2). Pour k 0

nous posons/(0)=/et Sfo(Et ; E2) E2.

4.1 L'objet VkiEii E2),0^k<oo

Sauf mention expresse du contraire, E, Ei, E2 sont supposés être des objets de 5R

dans la suite. L'espace vectoriel (^k(E1; E2) est formé des morphismes/:£'1->£'2 de

(£*. Pour que <£k(Ei ; E2) soit un objet de % il suffit de définir:

(4.2) &rlVk(E1;E2): o^n)i^0(Eu J?n(Ei; E2)) pour O^n^k.
En effet, la pseudo-topologie de (^'k(El; E2) est induite par les applications

linéaires/ *-» f(n\ O^n^k. Ces applications sont bien définies car on a:

(4.3) Proposition. Si feVk(E1;E2), alors /(n)e^0(£'1;^n(£'1; £2)) pour

Soit k=l. Alors f'eVoiEil&tfilEi))- On a Af(a> x)=f (a)-x+fx (a)-x,
d'où A f(A,&)^f (A)-iï-i-f x (A)&. Donc si Y-A, X[EU alors/' (Ayx\,E2 d'après
(2.16) et (2.22). Le reste se démontre comme dans (10.1.3).

En utilisant (1.24), (2.8) et (7.3.1) on obtient donc:

(4.4) Proposition. ^k{Ex ; E2) est un objet de 9t.
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De (4.3) on déduit:

(4.5) Corollaire. Chaque morphisme de &k+p est un morphisme de G*.

(4.6) Proposition. Soitf:E1-+E2 p-fois différentiabîe. Alors on a:
/(p) est un morphisme de (£q o
f est un morphisme de Gp+r
On a

d'après (2.26). Le reste suit de (3.16) et (4.3).

4.2 L'objet VJEX;E2)
00

f:E1-±E2 est dit un morphisme de (E^, si/e P) ^k(Ex ; E2). On obtient de nouveau
un objet de 9î en définissant: k= 1

(4.7)
(a) ^l<£k(E1; E2) pour 0^k<ao
(b) II existe He& tel que V • H vérifie (a).
Soit E l'espace vectoriel admissible défini par la condition (a) (cf. (7.3.2)). Alors

&o0(E1;E2) Ex.19) D'après (1.8) on obtient donc:

(4.8) Proposition. <£o[)(E1 ; E2) est un objet de 9î.

4.3 Morphismes élémentaires de d^

(4.9) Proposition. Tout £e£?{Ex ; E2) est un morphisme de G^, et <f'(x) *f pour
tout xeE1.

(4.10) Proposition. Soit xeE2, et x°:El-+E2 l'application constante y t-+x. Alors
x° est un morphisme de G^. // en est de même de y:E2-^<^>k(E1 ; E2) défini par y(x)

y étant linéaire, il suffit de montrer la continuité. Pour k 0 voir (2.13). On a
/I)= [0] pour tout «^ 1, d'où le résultat.

(4.11) Proposition. Tout ue&(Eu E2 ; E3) est un morphisme de G^.
D'après (3.17) u est indéfiniment différentiable, et ur est linéaire et continue, d'où

le résultat en utilisant (4.6).

(4.12) Remarque. Si Ei Rm, alors toute application f:Ei^E2 qui est A>fois

continuement différentiable dans El9 est un morphisme de Gfc.

19) En effet, il s'agit de la limite projective dans



Différentiabihté de la composition de certains espaces fonctionnels 281

II suffit de montrer qu'une application continue f:Rm-+E2 est un morphisme de
(£0. Soit V-^|Rm. Alors Â est compact.

Soit <% le filtre des voisinages de OeRm, xeÂ. Alors V-/(x+ #)<V-Af(x,<%) +
+ \-f(x)lE2 par la continuité de/. Choisissons pour tout xeA un voisinage ouvert

n

UxeW tel que Y-f(x+Ux)lE2. Il existe xux2,..., xn tels que Ac (J (Xl+Ux).
Donc l=1

V-/ (Û (x, + l/,,)) V (V-/(x, + t/J) j£2\ i / 1

Analoguement on déduit de l'inégalité Af(x + ^,^)^A f(x,W+ <ît)-Af(x9 <&) que
Af(A,W)lE2.

4.4 La loi de composition de &k

(4.13) Lemme. L'inclusion <^k^.p{E1\ E2)cVk(El; E2)(cf. (4.5)) est continue.20)
Suit immédiatement des définitions (4.2) et (4.7).

(4.14) Lemme. Soit & un filtre sur ^k + 1(E1; E2).
Alors on a:

(&IVO(E1;E2) et

Pour la démonstration on utilise (2.26) et (4.13).

(4.15) Corollaire. L'application linéaire

définie par Df=f est continu.

(4.16) Lemme. Si V • Hx | <$k(Et ; E2) et V • H21 <£k(E2 ; E3), alors

Pour k 0 voir (2.10), (2.6) et (1.7).
Supposons (4.13) pour k, et soient Hl9 H2 bornés dans &k+1(E1; E2) resp. ^fe + 1

(E2;E3). On a (H^Hjabo[Hru H^HX\ où b:S?(El;E2)x&(E2;E3)-*&(E1;E3)
est un morphisme de G^ d'après(2.27)et(4.11). V-H( (Y'Hiy l^^E^Se{E^ E2))
d'après (4.14). \'Hti ^k{Ex ; E2) d'après (4.13). Supposant le lemme pour k< œ, on

20) Si rien n'est précisé sur n et /?, on admet 0=^«^ oo,0^/?< oo. La démonstration pour
k oo ou p oo en général va de soi.

21) Pour être exact, il faudrait écrire i (&) \ Vo (Eu Ez) ou i: Vk+1 (Eu E2) -> ^o (E±; E2) est
l'inclusion.
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Appliquant le même argument à b et [H'u H2'o#i]> on obtient:

Y^oHjl^k(Ei;^(E1; E3)). Le reste découle maintenant de (4.14) et (4.13).
(4.17) Corollaire. Sifs(€k{E1 ; E2), g€<£k{E2; E3), alors go/etf^ ; E3).
On a donc bien la composition naturelle dans la catégorie (£*.

4.5 La composition comme morphisme de (£fc

(4.18) Proposition. Soit £e£?{Ex ; £2). Alors Vapplication linéaire

est continue.

Pour k 0 c'est une conséquence de (2.14). Supposons (4.18) pour k<oo, et soit

<^l&k+i(El Ei)- Alors /*(jT)i^0(£; E2) d'après (2.14) et (4.13). De (2.14) et (2.24)
on déduit que/*: Se{E\ E1)~>^(E; E2) est continue. De plus ^fl^k(E; Ey) d'après
(4.14), donc utilisant l'hypothèse de récurrence: {^*)*(^f)V^k{E\ &(&', Ez))- Or,
(/*)*(Jr/) (/*(Jr))/, donc <?*(&r)l(gk+l(E, E2) d'après (4.14). Pour k co on utilise
encore (4.16).

(4.19) Corollaire. Si J':El-+E2 est un homéomorphisme linéaire, il en est de

même de t+:<Kk{E\ EÙ-+Vk{E\ E2).

(4.20) Proposition. *:<Vk(E; Ex) x Vk(E; E2)->r€k{E\Ei x E2) {cf. (2.13)) est un

homéomorphisme linéaire.
Soit J^x^l^k(E; El)xVk (E; E2). On a [jF(n), ^(n)]|^0(^; &n{E\ Ei)*

xSen{E\ E2)) pour O^n^k (resp. <00) d'après (2.14) et (4.2). D'après (2.28) on a:

yn(E; E^)x££n(E\ E2) est linéairement homéomorphe à &n(E\ Ex xE2), d'où
[J*; &](H>l<g0(E;&H(E;E1 x E2)) d'après le lemme précédent. Inversement on a

a"'(/) fa o/, n2of) (nu(f), n2.(f)) [nu, tt2J (/).
Donc cc~1 a(nu, tc2J est bien continue d'après ce qui précède et (4.18).

(4.21) Proposition. Soit ue^(EuE2; 2T3). Alors l'application bilinéaire

û:^k(E; E^)x^k{E\ E2)-^^k(E; E3) définie par û(f, g) w0 [/, g] est un morphisme

Il suffit de montrer que u est un morphisme de Go d'après (4.11). La démonstration
est analogue à celle de (11.1.1). On utilise (4.20), (4.17), (4.11), (4.13), (2.25), (2.27),
(4.14) et (4.18). Pour k 00 on applique (4.16).

(4.22) Proposition. L'application de composition

c:Vk(E1;E2)xVk(E2;E3)-+Vk(Ei;E3)

définie par c(f9 g)=gofest un morphisme de (£0-

Pour k=0 voir (2.12). Supposons (4.22) pour k<co, et soient V-^xJ^),
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d'après (2.12) et (4.15). De l'inégalité (cf. (11.1.17))

&' (A <:(#! x H2, &j x JT2))' < b{H'u A c^ x H2, &x x &'2

ainsi que de (2.27), (4.21), (4.14), (4.16) et de l'hypothèse de récurrence on obtient
&'l<gk{Ex\&{Ei\Eà\ d'où ^\^k^{Ex\E3) d'après (4.14). Le cas fc=oo en
résulte (on applique (4.16)).

(4.23) Lemme. Soit getfk+1(E2; E3). Alors g^k{Ex\ E2)-+Vk(E1; E3) est

différentiable, et(gj(f)'<p eo[(g%(f), <p].

Soient/, (pe^k{Ex\ E2)9 et considérons l'application rg définie par:

rg((p) go(f + (p)-gof -eo[g'o/,(p]
où e: &{E2; E3) x E2^E3 est l'évaluation (cf. 2.16).

Nous affirmons:

(4.24) Pour tout geVk + i(E2; E3) on a:

Soit A: 0. On a à démontrer:
(a) \AlE,=>0rg{\,HyAlE3
(b) II existe GeQ rg(V, H) tel que G est de classe Co.
En utilisant (3.7) on obtient comme dans la démonstration de (11.2.1):

0rg(V, H)-A < (Ag'ifiA), \ - H (A))-H {A)f ~ j£3.

Nous affirmons que G <9 rg{IuH) est de classe Co.
En effet (3.7) donne

0rg(Il9 H)-A a {Ag'{f(A\ Iy'H(A)yH(A))*-

A droite on a un sous-ensemble borné de E2, car g' est un morphisme de G0 et E2

est raffiné, donc V-(<9 rg(/l5 H)) (A)[E3. Soit ^j^. Il reste à montrer que

(4.25) A(0rt(IuH))(A,£)lEz.
On a l'égalité suivante :

(4.26) A (0 rg (A, q>)) (a, x) 0 (A (g x
o /) (a, x)) • (A, (a + x)) +

+ 0 (A g
x (/ (a))) • (A, (ç> (a), Aq>(a, x))), où

M(gxo/)(a,x))(0) 0 et
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De même :

>) 0 et

\(Agx (f(a)))' (x, y)(Ç9 rj) Ag'(f(a) + x, y).Ç + A g' (/ (a), x -

Soit
<&x (A (gx o/) (A9 %))' (h'H (A + ar))-//(A + X)

et

De (3.7) on déduit:

0(A (gx o/) (A, X)y(lu H(A + X)) < <" et

0 (J gx (/ (A)))-(I19 H (A) xAH(A, X)) < <&\~

Les identités de (1) et (2) nous conduisent aux inégalités suivantes:

^i ^ (^ g'(/ 04) + /i -H(A + «•), ^1 / 04, #)) - /d (g; o/) (A9 X))-H{A 4- ^) et

^2 < Jg'(f (^i) + A H(i4), A Jfl(i4, X))'H(A) +

Utilisant que g', / sont des morphismes de Go et H de classe Co, on constate
aisément que ^u^2iE2. Avec (4.26) on obtient: A(0 rg(Il9H)) (A,X)^&Î~ +
%f%~ IE39 E3 étant raffiné (cf. (1.1)). Donc (4.24) est démontré pour k 0. Supposons
(4.24) pour k<oo, et soit ge(£k+2(E2; E3), V-/ri«'k + 1(£1; E2). D'après la
démonstration pour k 0 et (4.13) on a:

Utilisant l'identité :

(3) (0rg& <p))' B(f'90rW)(X, 9)) + b(<p\ A(g%(f,

qui est vérifiée en détail avant (11.2.5), et appliquant l'hypothèse de récurrence, (4.22),
(4.21), et (4.19), on obtient

donc 0rg(Y9H)l<Vk+1(E1;E3) d'après (4.14). Soit k=oo, y-Hl(gjEl\E1)9

Alors d'après (4.24) et (4.13) on obtient 0 rg(\,H)l%k{Eù E2) pour 0<A;<oo.
Il reste à montrer que V^r^I^H)^^; E3) pour 0<À:<oo. Pour k 0 c'est
démontré sous (a) et (b). Pour la démonstration par récurrence on utilise l'égalité (3).

Or, (4.24) démontre (4.23), car

<ph-+eo[g'o/,<p] ë(g'of,(p)

est continue d'après (2.16) et (4.21).
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(4.27) Théorème. L'application de composition

est un morphisme de (£p pour 0^p< oo, 0^/c< oo.

Pour p 0 voir (4.22). Supposons (4.28) pour/?<oo, et considérons:

Nous affirmons que c est un morphisme de £p + i.
(1) c est dans Go d'après (4.22) et (4.13). Dt c(f, g)'(p eo t(g%(f), <p] d'après le

lemme (4.23). f*:<£k+p(E2; E3)-^<^k(El; E3) est linéaire et continue, car

/* Co[/°, id], donc on a:

D2c(f>g) f* °ni et D2c n*ocl9 où

cx c* o a o [y, id°], c^Co [id, c°]

c est dans (£p d'après l'hypothèse de récurrence, donc cx est dans &p d'après (4.10),
(4.20) et (4.17). En particulier D2c est continue. De (3.14) on obtient donc l'existence
dec':

car (^k(El; E3) est raffiné d'après (4.4). Soit (ë)t défini par (ë)i(x)'(p ë(x,cp). Alors
(ë)l est linéaire et continu d'après (2.25), (2.16) et (4.21). On a donc:

C 71* o(ë)l oCo(id X D) + 71* oCl o7ïl

où à droite c:Vk(El;E2)xtfk+p(E2;J?(E2;E3))^k(El;J?(E2;E3)) est dans Œp

d'après l'hypothèse de récurrence. Nous venons de voir qu'il en est de même de c±.

Les autres applications figurant dans l'expression pour c' sont toutes linéaires et
continues. Donc c' est dans (£p. Le théorème est maintenant une conséquence de (4.6).

(4.28) Corollaire. c:&o0(El ; E2)x <€J^E2\ E3)-^^O0(El; E3) est un morphisme

En effet, c' existe d'après (4.23), (3.14), (4.8) et les mêmes arguments qu'avant.
c est un morphisme de (£0 d'après (4.22). La démonstration par récurrence est

l'habituelle, se basant sur l'expression de c'.

4.6 Uhoméomorphisme V : «^ (^ ; <€J]E2 ; £3))->^oo (^i x E2 ; J?3)

(4.29) Lemme. L'évaluation c^^E^; £2)x E1-^E2 est un morphisme de (£fc.

Exactement même démonstration que dans (2.16), utilisant (4.28), (4.20) et (4.10).

(4.30) Lemme. SigeVk+p(E2 ; E3), alors g* : Vk(Ex ; E^^^E, ; E3) est dans <£,.

g*-co [id, g°], d'où le résultat en vertu de (4.27), (4.10) et (4.20).
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(4.31) Lemme. L'application linéaire

c2:Vk+p(E2; E3)^Vp(Vk(Ei; E^V^Er, E3))

définie par c2 (g)=g* est continue.

2 c5ltOao[ido,7]estdans £od'après (4.27), (4.10), (4.20), (4.11) et

(4.30), où

y:Vk+p(E2; E3)-> Vp(Vk(Ei; E2); Vk + P(E2; E3)),

ido:^+p(E2;£3)-^^p(^(E1;£2);^(£1;E2)),
et

cGfp(fk(£i;£2) x Vk+p(E2;E3); Vk(Et; E3)),
donc

c,: *,(*»(£, ; E2); *»(£, ; E2) x <f4+JF(E2; £3)) - «"„(*»(£, ; £2); *»(£, ; £3))

est dans (£0.

(4.32) Lemme. Soit fe^k{Ex ; E2). Alors l'application linéaire f* :^k(£2 ; £3)->
-> ^k(^i ; £3) est continue.

Ona/* co[/°,id], où

Vk(E2; £3); Vk(El;E2) x <^(£2; JE3))

d'après (4.10) et (4.20), d'où le résultat avec (4.22).

(4.33) Théorème. L'application linéaire

^:Vk(E1'9Vk(E2;E3))^Vh(E1 x E2; E3)

définie par (#/) (x, j)=/(^)*>; est continue.

On a 4>/=eo[/o7u1, tt2], d'où 4>/ est bien un élément de <&k(ElxE2; E3)

d'après (4.20) et (4.29). # e*oao[74, ^2] est donc le composé de morphismes de

<E0 d'après (4.29), (4.30), (4.32), (4.10) et (4.20).

(4.34) Théorème. L'application linéaire

définie par (W g) (x)-y=g(x,y) est continue.

On a (y g) (x)=go [jc°, id], donc on a bien (9g) (x)etfp(E2; E3) d'après (4.10),

(4.20), (4.13) et (4.17). Montrons que !Fg=g*oao[}>,ido] est un élément de

WîWi«3)).Ona:
[y, id0]:^ -, *p(E2; E2) x <^,(£2; E2)

et

a-.^EaîEOx^EaîE^-^V^îE! x E2)
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sont des morphismes de (Efc d'après (4.10) et (4.20). Il en est de même de g*:(£p(E2;
EixE2)-*Vp(E2;E3) d'après (4.30). Du reste ¥ (ao[y,ié°~])*oc2, où ao[y,ido]e^k
(£,; Vp(E2; E±xE2))9 donc (ao[y,ido])*: Vk(Vp(E2; E1xE2);Vp(E2; E3))-+
Vk{Eu Vp(E2;E3)) est continue d'après (4.32), et

c2^k + P(El xE2;E3)-+Vk(Vp(E2;E1 x E2); Vp(E2; J53))

est continue d'après (4.31).

(4.35) Théorème. L'application linéaire

définie par (*Fg) (x)-y—g(x, y) est un homéomorphisme.
Pour la démonstration on se base ou bien sur (4.34) et (4.33) ou bien sur (2.15) en

appliquant (4.28), (4.20) et (4.10).
De nouveau %'^ peut être considéré comme foncteur de deux variables (cf. 2.14).

4.7 Complétitude de ^k(Et ; E2)

(4.36) Proposition. Si E2 E2X et E2 est complet, alors ^k{E^ ; E2) est complet.
Pour k 0 c'est déjà démontré dans (2.32). Supposons la proposition pour k< oo,

et soit Jr-#"|^+1(£1; £2). D'après (4.13) on a •F-^Jr#k(£1; E2\ et en vertu de

l'hypothèse de récurrence, il existe/e#k(2st; E2) tel que ^—fl^ki^il Ei)> donc en

particulier ^ik)-fik)i^^{Ex\Sek{Ex\ E2)). D'autre part

D'après (2.32) ilexistege^^;^^^; E2)) telque^(fc+1) ~
{Ei;E2))9 donc ^'-glVoiE^&iE^^iE,))) selon (4.19) et (2.26), où

^T, /(k) /?, &k(Ei;E2) E3, aeEu et r^ cpa définies par >>(*)

-|(a)-xet <pfl(x) (p(a + x)-<p(a). Alors
(1) rh(x) (ha-(pa)(x) + r(p(x). Nous affirmons

(4.37) \'AIE1=>0 rh(y9À)[E3 ce qui achèvera la démonstration car alors

h'(a)=g(a) pour tout aeEu doncfik+l)=g.
Si (p9 if/ sont différentiables au point a, alors

On a

donc en vertu de (3.7):
(2) 0(œa-3fa)(V, A)<((JT'-Jt")(a+V• A)• A)*|£3 puisque Jf"-je'iVox

x {Ex ;&(Ei ; E3)), et puisque ^3 est raffiné.
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Soit ^ le filtre des voisinages de zéro dans £3, Ue<%. Alors il existe FeV, HeJiï
tels que 0{Ha-Ha){V,A)cz U.

Soient XeV, xeA. Alors il existe il/eH tel que 0(ha-\l/a)(À,x)eU, d'où
0(ha-<P.) 0U) «(*.-ik) &x)+ O(il/a-(pa) (À,x)eU+U pour tout <peH, XeV,
xeA, c.à.d.

(3) ©(*a-^fl)(
De (1) à (3) on déduit:

<9 r,(V, A) < © (Jfa - Jfa) (V, ,4) + 0 (hfl -
donc h: E^El est différentiable au point a au sens de (3.2.2), car g(a)eJ?(E1; E3)
entraîne g(a) e£P(Ex ; El) et en vertu de (1.9). Donc appliquant (5.3.5) et observant que

rh(0) 0 et r;(0) £(a + x)-g(ci)
on obtient

puisque ge<(f0(E1;Sf(E1; E3)) et (&°^(W¥ pour tout filtre sur £3, ce qui achève la
démonstration de (4.36).
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