Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1968)

Artikel: Cohomologie des algegres commutatives topologiques.
Autor: André, Michel

DOl: https://doi.org/10.5169/seals-32921

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-32921
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

235

Cohomologie des algébres commutatives topologiques

MICHEL ANDRE

Introduction

Ce travail est consacré a la définition et a 1’étude de groupes de cohomologie
H;(A, B, W) ou B est une A-algébre commutative topologique et W un B-module.
En particulier il est intéressant d’étudier d’une maniere approfondie le premier groupe
de cohomologie puisque sa nullité est équivalente a la lissité formelle de I’algébre
topologique en question. A la base de I’étude de ces groupes de cohomologie «topo-
logique » se trouve évidemment la théorie des groupes de cohomologie «discréte »
(et d’homologie), comme elle est développée dans le fascicule [An]: on en rappelle les
points essentiels au cours du premier paragraphe.

Comme dans le cas discret, on commence par établir d’'une part deux suites exactes
longues (Propositions 2.1 et 2.2)

---—> H/"(A, B, W) > H/ (A, B, W)— H/' (A, B, W) > ---
..o H"(B, C, W) > H"(A, C, W)= H"(4, B, W)—---

d’autre part un théoreme de décomposition (Théoreme 3.2)
H'(A,B® 4C, W)= H'(A, B, W)® H[ (A4, C, W)

avec des conditions faisant intervenir des Tor. La démonstration de ce théoreme est
longue. Mais une fois ce cap franchi, on établit divers résultats sans trop de difficultés.

Dans une premiére étape, on met en relation les propriétés de lissité formelle de la
A-algébre topologique B et de la A'-algébre topologique B® 4A’. On établit deux
résultats (Propositions 4.2 et 4.3); ils sont connus mais sous des hypothéses plus fortes.
Dans une deuxiéme étape, on démontre que les groupes de cohomologie «topo-
logique » et les groupes de cohomologie «discreéte» sont isomorphes dans le cas
d’une algébre noethérienne préadmissible (Théoréme 5.3). Par conséquent dans ce
cas il est possible de caractériser les algébres formellement lisses & 1’aide du premier
groupe d’homologie (Corollaire 5.4).

Dans une derniére étape, on met en relation le premier groupe d’homologie
(étroitement lié a la notion de lissité formelle) et le deuxiéme groupe d’homologie
(étroitement lié 4 la notion de régularité). En fait on établit (Théoréeme 6.7) un
isomorphisme Hy(k, A, K)® x L= H(A® k"', L, L)

ol A est algebre locale sur le corps k de caractéristique p>0 et ou K et L sont les corps
résiduels des anneaux locaux A et A®,k!?. De cet isomorphisme découlent en
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particulier deux résultats intéressants. D’une part on obtient une nouvelle démonstra-
tion du fait qu’une algébre locale noethérienne sur un corps est formellement lisse
pour sa topologie préadique si et seulement si elle est géométriquement réguliére
(Corollaire 6.8). D’autre part on obtient une généralisation du critére de séparabilité
de MacLane (Théoréme 6.4). Pour une extension de corps, on calcule ’espace vec-
toriel H; (k, K, K) au moyen du noyau de ’homomorphisme canonique de K®  k*/?
dans un corps algébriquement clos contenant K.

I. Homologie des algébres commutatives discrétes

Avant de passer a I’étude homologique des algébres commutatives topologiques
rappelons les points essentiels de la théorie de ’homologie des algébres commutatives
discrétes. Pour les définitions, pour les démonstrations et pour des résultats plus
complets, je renvoie au fascicule [An]. Tous les anneaux ont des unités.

On part d’un triple (4, B, W) ou A4 est un anneau commutatif, B une A4-algébre
commutative et W un B-module. On lui associe des groupes d’homologie H, (A4, B, W)
pour n=0, 1, 2,.... La construction se fait au moyen d’un complexe inspiré de la
théorie de ’homologie singuliére, voir [An] p. 61-63. Les foncteurs H, covariant en
A, en Beten Wjouissent en particulier des propriétés suivantes. Nous les retrouverons
dans le cas topologique.

En premier lieu, on rencontre deux longues suites exactes, comme il se doit pour
une théorie d’homologie.

PROPOSITION. 1.1. Soient une A-algébre B et une suite exacte de B-modules:
0O-W ->W->W 0.
1l existe alors une suite exacte longue:
> H,(A, B, W)—> H,(A, B, W)- H,(A, B, W) > H,_ (A, B, W) —>---.
Voir [An] Proposition 15.2.

PROPOSITION 1.2. Soient une A-algébre B, une B-algébre C et un C-module W. Il
existe alors une suite exacte longue:

--— H,(A, B, W)-» H,(4,C,W)->H,(B,C, W)->H,_,(A, B, W)>---.
Voir [An] Proposition 18.2.

En second lieu, on rencontre une formule de décomposition pour le produit
tensoriel.

PROPOSITION .1.3. Soient deux A-algébres B et C et un B® 4C-module W. Si l'on a
Torf(B,C)=0 pour i=1,2,..
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alors ’homomorphisme naturel

Hy(A, B, W)@ H, (A, C, W)— H, (4, B® ,C, W)

est un isomorphisme.

Voir [An] Proposition 19.3.

Comme nous le savons, nous retrouverons ces trois résultats dans le cas topo-
logique. En ce qui concerne les deux premiers, le passage du cas discret au cas topo-
logique est immédiat. Il n’en est pas ainsi du troisiéme, il nous faudra remonter a la
démonstration. C’est d’ailleurs le seul point essentiel ou il est nécessaire d’utiliser a
nouveau la définition explicite des groupes d’homologie.

L’intérét des groupes d’homologie est dii en particulier aux résultats suivants
concernant les basses dimensions.

PROPOSITION 1.4. Soient une A-algébre B et un B-module W. Alors le groupe
Hy(A, B, W) est isomorphe au groupe des A-différentielles de B dans W.
Voir [An] Proposition 25.1.

PROPOSITION 1.5. Soient un corps K et un sous-corps k. Alors le groupe H,(k, K, K)
est nul si 'extension est séparable.

Voir [An] Proposition 22.2.

La réciproque de cette proposition est un résultat bien connu: voir [Gr] Théoréme
19.6.1. Nous la retrouverons d’ailleurs sous la forme d’un isomorphisme généralisant
le critére de séparabilité de MacLane.

PROPOSITION 1.6. Soient un corps K et un sous-corps k. Alors le groupe H, (k, K, K)
est nul.

Voir [An] Proposition 22.2.

Remarquons que ce résultat est équivalent & I’existence d’une base de transcen-
dance séparante pour une extension séparable de type fini.

PROPOSITION 1.7. Soit un anneau local noethérien A de corps résiduel L. Alors le
groupe H,(A, L, L) est nul si et seulement si I'anneau A est régulier.

Voir [An] Propositions 27.1 et 27.2.

Ce résultat découle du fait que H, (4, L, L) est isomorphe au quotient Tor3 (L, L)/
Tor{ (L, L)-Tor{ (L, L).

Bien entendu, on a de méme des groupes de cohomologie H"(A4, B, W) pour
n=0,1, 2,.... Les foncteurs A" sont covariants en W et contravariants en A et en B.
On a alors sept propositions duales des précédentes. Ceci n’est pas surprenant puisque

les groupes d’homologie et de cohomologie sont liés les uns aux autres par une suite
spectrale.

PROPOSITION 1.8. Soient une A-algébre B et un B-module W. Il existe alors une suite
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spectrale
Exty(H, (A, B, B), W)= H"(A, B, W).

p

Voir [An] Proposition 16.1.
Nous sommes préts maintenant a passer au cas topologique.

I1I. Définition et suites exactes

Considérons deux anneaux commutatifs 4 et B munis de topologies linéaires,
un homomorphisme continu de 4 dans B et un B-module W discret annulé par un
idéal ouvert de B. Dorénavant on parlera plus simplement de I’anneau topologique 4,
de la 4-algébre topologique B et du B-module W, les conditions supplémentaires étant
sous-entendues. Considérons maintenant les paires du type suivant: (4,, B,) ou 4,
est un idéal ouvert de 4 et B, un idéal ouvert de B avec 4, B< B, et B,- W=0. Puis
on ordonne I’ensemble de ces paires:

(A B,) >(Ap, Bg) désque A,> Az et B,> B,.
On obtient ainsi un ensemble filtrant et on pose
H'(A, B, W)= lign H"(A/A,, B|B,, W).
Remarquons que dans la définition de ces groupes de cohomologie on peut
remplacer ’ensemble filtrant utilis€ par n’importe lequel de ses sous-ensembles cofi-
naux. Il est alors clair que H; (4, B, W) est un foncteur covariant en W, contravariant

en A4 et en B et que les deux résultats suivants découlent immédiatement des résultats
correspondants du cas discret.

PROPOSITION 2.1. Soient une A-algébre topologique B et une suite exacte courte de
B-modules: 0o W o W W' —0.
Il existe alors une suite exacte longue:
... H'(A, B, W)—> H'(A, B, W)— H'(A, B, W) > H" ' (A4, B, W) >---.

Démonstration. Appliquer la proposition 1.1 et le fait que le foncteur lim en
—
question est exact.

PROPOSITION 2.2. Soient une A-algébre topologique B, une B-algébre topologique C
et un C-module W. 1l existe alors une suite exacte longue:

i I{tn(Bs Cs W)—)I{tn(Aa C: W)_) Ht”(Aa Bs W)_’ th+1(Ba Ca W)") .

Démonstration. Appliquer la proposition 1.2 et le fait que le foncteur 1i_r+n en
question est exact.
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Le troisiéme résultat, correspondant a la proposition 1.3, apparait au cours du
troisieme paragraphe.

Le premier groupe de cohomologie H; (4, B, W) est bien connu et est dénoté par
Exalcotop, (B, W) dans [Gr] par exemple. Ainsi la suite exacte de la proposition 2.2
prolonge une suite exacte plus courte bien connue (voir [Gr] Corollaire 20.3.7). En
outre le foncteur H;' (4, B,-) est nul si et seulement si la A-algébre B est formellement
lisse (voir [Gr] Définition 19.3.1 et Proposition 19.4.4).

Dans le cas général, il est difficile de comparer H;' (4, B, W) avec H" (A, B, W) ou
A et B sont débarrassés de leurs topologies. Pour le moment contentons-nous du
résultat suivant en basses dimensions. Il sera généralisé dans le cas noethérien au
cours du cinquieme paragraphe. Notons la convention suivante pour un anneau
topologique 4: pour indiquer qu’il s’agit de I’anneau muni de sa topologie, on écrit
A, et pour indiquer qu’il s’agit de I’anneau débarrassé de sa topologie, c’est-a-dire
muni de la topologie discréte, on écrit A4,.

LeMME 2.3. Soient un anneau topologique A et un A-module W. Supposons la topo-
logie de A préadmissible. Alors les groupes de cohomologie

H? (A4 A, W) et H'(Ay A, W)
sont nuls.
Démonstration. 11 faut donc démontrer:

lim Der (4, A/I", W) =0 = lim Hom , (I"/ I*", W)

pour » assez grand et tendant vers I'infini, 7 étant un idéal de définition de la topologie
de A: voir [An] Proposition 25.1. La premiére limite est nulle car Der (4, 4/I", W)est
nul. La deuxiéme limite est nulle car ’homomorphisme canonique de I?"/I4" dans
I"/I*" est nul.

COROLLAIRE 2.4. Soient une A-algébre topologique B et un B-module W. Supposons
la topologie de A préadmissible. Alors les homomorphismes canoniques en basses
dimensions sont respectivement

H?(A,, B, W)— H? (A4, B, W)  un isomorphisme
H'(A,, B, W)— H; (A4, B, W)  un isomorphisme
H?(A,, B, W)— H?(Ay, B, W)  un monomorphisme .
Démonstration. Appliquer le lemme 2.3 et la proposition 2.2 pour le triple suivant

A;— A, — B.

ITI. Produit tensoriel

Soient B et C deux A-algebres topologiques. Considérons le produit tensoriel
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B® , C muni de la topologie suivante: les idéaux
Im(B;®,C)+Im(B®,C,)

ou By est un idéal ouvert de B et C, un idéal ouvert de C, forment un systéme fon-
damental de voisinages de 0. On a alors

B®,C/Im(B;®,C)+Im(B®,C,)=B/B,®,C/C,
Ceci étant, nous allons voir sous quelle condition on a un isomorphisme
H'(A,B®,C, W)~ H'(A, B, W)® H/' (4, C, W)

(voir la proposition 1.3 pour le cas discret). Commengons par un lemme (voir [An]
Proposition 17.1 pour le cas discret).

LeMME 3.1. Soient une A-algébre topologique B et un B-module W. Soient encore
(A,...) un systéme fondamental d’idéaux ouverts de A et (B,...) un systéme fondamental
d’idéauxouverts de Bavec A,* B B, et B,- W=0. Soient enfinpour chaque paire (A,, B,)
une A|A algébre simpliciale libre X avec une augmentation ¢,: X°— B|B, et pour
chaque paire de paires (A,, B,)>(Ay, Bs) un homomorphisme x53:X;— X} de A|Ag
algébres simpliciales augmentées, tout cela satisfaisant a la condition de naturalité:
X}goXp,=Xu. Ceci étant, les X7 ont en particulier une structure de groupe abélien
simplicial et on suppose ce qui suit de leur homologie absolue. D’une part I'augmenta-
tion g, identifie Hy(X}) @ B/B, et Hy(x3;) & I'’homomorphisme canonique de BB, sur
B|B,. D’autre part pour tout a il existe un f plus petit tel que H,,(x};) soit nul pour tout
m>0. Alors sous ces conditions pour tout n=0, le n-iéme groupe de cohomologie
H? (A, B, W) est isomorphe au n-iéme groupe d’homologie du complexe suivant:

= lim Der(A/4,, X2 ™', W)— lim Der (4/A,, X5, W)—>+

la différentielle étant obtenue par somme alternée des différents homomorphismesde face.
Démonstration. Utilisons la notation de [An] Paragraphe 15 et considérons le
complexe double suivant:
lim I1 Der (4/A,, 4;,A]A,, W).
T Aip AjAg—dig A/Ax— X3
Pour la définition des deux différentielles, voir [An] Proposition 4.1. Nous allons voir
que les deux suites spectrales correspondant & ce complexe double sont dégénérées et
donnent les isomorphismes souhaités.
Dans la premiére suite spectrale (d’abord la différentielle concernant p, puis celle
concernant g, pour obtenir le terme E,) le groupe Ef? est isomorphe au groupe
li_I_PH” (A4/A4,, X2, W). Mais X7 est une A/A,-algébre libre, par conséquent E{'? est

nul si p n’est I;as nul et E%° est isomorphe lgn Der(A4/A4,, X2, W) selon [An]
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Corollaire 16.3. Ainsi la suite spectrale en question est dégénérée et fait intervenir le
groupe suivant en dimension n:H,(lim Der (4/4,, X5, W)).
....+

Passons maintenant a la deuxiéme suite spectrale. Nous allons rencontrer des
groupes de cohomologie singuliere notés H:‘ing et des groupes d’homotopie notés n*.
Nous utiliserons le théoréme de Moore: les groupes d’homotopie et les groupes
d’homologie absolue d’un groupe abélien simplicial sont isomorphes. Pour calculer

le terme E; de la suite spectrale en question, on peut écrire le complexe double sous
la forme suivante:

lim I [T WwWx-xw
= Aip AJAx>Aig AJAx XEx.xXT | |
] | ip fois
ig fois

Par conséquent le terme E}'? est isomorphe au groupe suivant:

lim I1 HE o (XS X X XS, WX x W
T Aip A/Ag—-Aig Al Ay | ] l |

io fois ip Tois

Mais par hypotheése pour tout «, il existe un f plus petit tel que H,, (x;",,) soit nul pour
tout m>0, autrement dit tel que x,,(x};) soit nul pour tout m>0 et tout O-simplexe
de base. En conséquence, la restriction de x;",; a chacune des composantes connexes
de X7 est homotope & 0. Il en est donc de méme de tout produit x, x -+ x xj,. Par
suite on a

H:ing(x:ﬂ Xeee X x:ﬁ, W x.x W)=O si q >0.
Ainsi E”9 est nul si g n’est pas nul et E2° est isomorphe a

lim Wx--xW
m I1 I1
ip A/Ag—--Aig A|[Ay B/BgX--xB[By
S ip fois
io fois
c’est-a-dire a
lim H Der (4/A,, A,.p AlA, Ww).

™ Aip A]Ag—-dig A| A~ B/By

Par conséquent la suite spectrale en question est dégénérée et fait intervenir le groupe
H; (A, B, W) en dimension n.

En résumé nous avons démontré que le complexe total associé au complexe double
décrit au début de la démonstration a I’homologie suivante en dimension »:

H{'(A, B, W)= H,(lim Der (4/A,, X5, w)).

Le lemme est donc démontré. On peut le démontrer sous une hypothése plus faible
(B dépendant non seulement de a mais encore de m) en utilisant le théoréme de
Hurewicz dans le cas relatif. Mais nous en savons bien assez pour démontrer le
résultat qui nous intéresse.

Quand on désire appliquer le lemme ci-dessus, il est parfois facile de trouver de
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«bons» x; mais plus difficile de les relier par de «bons» xj;. On sent le besoin
d’avoir dans une certaine mesure une construction fonctorielle. On peut utiliser
dans ce sens la construction pas a pas décrite dans [An] Paragraphe 6 et dans [An]
Démonstration de la proposition 17.2. Résumons-en les points essentiels.

On part avec un anneau discret X et une X-algebre discréte Y et on va construire
une X-algébre simpliciale libre au-dessus de Y: on note par el : Y,— Y, _, les différentes
faces et par £J: Y,— Y_, =Y I’augmentation. La construction se fait pas i pas pour
n=0,1,2,.... Au pas n on connait déja Y, Y,,..., Y,_, et les homomorphismes les
reliant les uns aux autres et on construit Y, et les homomorphismes le reliant aux
précédents. A chaque pas un choix est a effectuer. D’une maniére précise au pas » on
doit choisir une X-algebre libre Q,, un X-homomorphisme w,: 2,—Y,_, et une base
de Q,, le tout satisfaisant a la condition suivante: w, envoie les générateurs de Q, dans
I'idéal Kerey_, n---nKerelZ}. Alors au moyen de g, @, ..., ®, on construit Y, et
les homomorphismes le concernant.

Cette construction pas a pas jouit des deux propriétés suivantes.

A) Si les images par w, des générateurs de Q, engendrent I'idéal Kere?_, n---n
KerellZ 1, alors le groupe d’homologie absolue H,_, (Y,) est nul.

B) Si deux X-algebres simpliciales Y, et Yy au-dessus de Y’ et de Y” peuvent étre
obtenues par la construction pas a pas, alors la X-algébre simpliciale Y, =Y, ® Y,
au-dessus de Y=Y '® Y” peut €tre obtenue par la construction pas a pas.(Autrement
dit le produit tensoriel de deux constructions pas a pas est une construction pas a pas;
on a en particulier ,=w,Qw,.)

Remarquons finalement que le choix des w, dans la construction pas a pas peut
étre fait de manitre canonique en prenant comme ensemble de générateurs de Q,
I’ensemble des éléments de Kere?_, n---n Kere"~1. On peut alors utiliser la propriété
A. On dénote par S, (X, Y) I’algébre simpliciale obtenue par ce choix canonique de
tous les w,.

Venons-en maintenant au théoreme de décomposition qui est le sujet de ce
paragraphe.

THEOREME 3.2. Soient deux A-algébres topologiques B et C et un B®Q 4, C-module W.
Soient (A,...), (B,...) et (C,...) des systémes fondamentaux d’idéaux ouverts de A, de
B et de C respectivement avec A,"B<B, et A,-C<C,. Supposons en outre que pour
tout i avec 0 <i< N et pour tout a, il existe un 8 plus petit que o tel que I’homomorphisme

suivant soit nul:
Tor/4*(B/B,, C/C,4) - Torf4=(B/B,, C|C,).

Alors sous ces conditions, I’homomorphisme canonique
 H/(A,B®,C,W)- H/(A, B, W)® H/(4, C, W)

est un isomorphisme pour j=0, 1,2,..., N et un monomorphisme pour j=N+1.
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Démonstration. Nous allons utiliser 1a construction pas a pas décrite ci-dessus et
cela de la maniere suivante. Soit N>0. 4 deux X-algébres Y’ et Y” on va faire cor-
respondre de maniére fonctorielle une X-algébre simpliciale libre S} (X, Y’, Y”) au-
dessus de Y'®, Y". C’est I’algébre simpliciale obtenue au moyen de la construction
pas a pas en choisissant les homomorphismes w, de la maniére suivante: pour
n=0,1,..., N+1, on prend w,=w,@w, ou les w, et w, sont canoniques et pour
n=N+2, N+3,..., on prend w, canonique. Autrement dit on procéde comme suit.
On considere I’algeébre simpliciale S, (X, Y’) au-dessus de Y’ et I’algébre simpliciale
Sy (X, Y") au-dessus de Y”. On en prend le produit tensoriel qui est une algébre sim-
pliciale au-dessus de Y'®yY”". Comme on le sait (propriété B) cette algébre sim-
pliciale est obtenue par la construction pas & pas. On garde alors seulement les pas
0,1,..., N, N+1 de cette construction (autrement dit on garde les simplexes jusqu’a
la dimension N+ 1 incluse). Puis on termine cette construction partielle de maniére
canonique. Vu le caractere fonctoriel de cette derniere opération, on peut construire
un homomorphisme naturel d’algébres simpliciales augmentées:

WiSe(X, Y)®x Sk (X, YY) SH(X, Y, Y")

qui est un isomorphisme en dimension 0, 1,..., N, N+ 1. Les groupes d’homologie
absolue de Sy (X, Y’, Y”) sont les suivants:

H,(SY(X,Y',Y")=TorJ(Y',Y") si 0<n<N
=0 si N<n.

Dans le premier cas on peut remplacer le but de v"par la source de vet c’est alors
immédiat car S, (X, Y) est une résolution libre du X-module Y en vertu de la pro-
priété A. Dans le deuxiéme cas on applique la propriété 4 directement.

Ceci étant, voici la démonstration du théoreme. On applique le lemme 3.1 & la
A-algébre topologique B® ,C en prenant

XY = Sy (A/A,, B/B,, C|C,).

Vu les hypothéses du théoréme il est immédiat de vérifier les conditions du lemme. Du
lemme découle donc le fait que le groupe

H'(4,B®,C, W)
est isomorphe au n-iéme groupe d’homologie du complexe suivant:
lim Der (4/4,, S¥(A/A,, B/B,, C/C,), W).

Considérons d’autre part le complexe suivant:
lgn Der(A/A,, Sy (A/A, BIB,) ® 414, 5« (A/A, C[C,), W)

lim Der (4/ Ay, Sx (4], BIB,), W)® lim Der (4/A,, S (4/4, C/C,), W).
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En vertu de [An] Proposition 17.1, son n-iéme groupe d’homologie est isomorphe au
groupe H/(A, B, W)@ H'(A, C, W).

Utilisons maintenant ’homomorphisme v pour chacun des «. Il nous fait passer du
premier complexe au deuxieme complexe et par suite de ’homologie du premier a
I’homologie du deuxiéme. Ce dernier homomorphisme est un isomorphisme en
dimensions 0, 1,..., N et un monomorphisme en dimension N+1 car vV est un
isomorphisme en dimensions 0, 1, ..., N, N4 1. Compte tenu des deux isomorphismes
établis ci-dessus, nous avons donc bien établi les assertions du théoréme.

Par des manipulations purement formelles, on peut déduire divers corollaires de
ce théoréme; retenons le suivant.

COROLLAIRE 3.3. Soient deux A-algébres topologiques D et B, une B-algébre topo-
logique C et un D® , C-module W.Soient (A,...), (B,...), (C,...) et (D,...) des systémes
fondamentaux d’idéaux ouverts de A, de B, de C et de D avec A,-D<=D,, A,-B<B, et
B, C<=C,. Supposons en outre que pour tout i avec 0<i< N et pour tout a, il existe un
P plus petit que o tel que les homomorphismes suivants soient nuls:

Tor{/4*(D/Dy, B|Bg) - Tor{""**(D|D,, B|B,)
Tor{*#(D/D,, C/C4) - Tor{4=(D/D,, C/C,).
Alors sous ces conditions, I’homomorphisme canonique
H'(D®,B,D®,C, W)— H (B, C, W)

est un isomorphisme pour j=0,1,2,..., N et un monomorphisme pour j=N+1. En
particulier on a, sans condition, un monomorphisme

H'(D®,B,D®,C, W) H! (B, C, W).

Démonstration. Voir [An] Proposition 19.6.

IV. Algébres formellement lisses

Nous allons voir de quelle maniere le corollaire 3.3 s’applique a I’étude des
algébres formellement lisses. En fait nous allons démontrer deux résultats connus
([Gr] Corollaire 19.4.6 et Proposition 19.4.7) sous des hypotheses moins fortes.
Rappelons qu’une A-algébre topologique B est formellement lisse si et seulement si
pour tout B-module W le groupe H; (4, B, W) est nul.

Commengons par un lemme. Puisque le groupe H;* (4, B, W) dépend de W d’une
maniére fonctorielle et puisqu’il existe un homomorphisme canonique de ’anneau B
dans I’anneau des endomorphismes du B-module W, le groupe H;* (4, B, W) peut
€tre muni d’une structure naturelle de B-module.
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LEMME 4.1. Soient deux A-algébres topologiques B et A’ et un B-module W. Sup-
posons d’une part le A-module A’ plat et d’autre part I'une des conditions suivantes
satisfaite:

i) le A-module A’ est projectif de type fini

ii) l'anneau A est noethérien et la A-algébre B est de type fini.

Alors I’'homomorphisme canonique

H*(A,B,W)®,A - H*(4,B,W® ,A')
est un isomorphisme.
Démonstration. Vu le bon comportement du produit tensoriel par rapport aux
limites inductives,il suffit de démontrer que les homomorphismes canoniques

H*(A/A,, B/|B,, W)®4A' - H*(A|A,, B|B,, W® 4, A’)

sont des isomorphismes. Choisissons maintenant une 4/A ,résolution simpliciale de
B/B,: voir [An] Proposition 17.2. Notons-la Y. et utilisons-la pour calculer les
groupes de cohomologie en question: voir [An] Proposition 17.1. Le A-module 4’
est plat, par conséquent nous en avons terminé si nous démontrons que les homo-
morphismes canoniques

Der(A/A,, Y., W)® 4A' - Der(A4/A,, Y),, W® ,A)

sont des isomorphismes. Faisons la démonstration en dimension # et appelons E un
ensemble d’éléments de Y, formant une base de cette algebre libre. Il nous faut donc
démontrer que ’homomorphisme canonique

(W)@ > T(WE.4)

est un isomorphisme. Cela a lieu par exemple si le 4-module A’ est projectif de type
fini ou si ’ensemble E est fini. Le premier cas du lemme est donc démontré. Pour
démontrer le deuxiéme, il faut encore remarquer que la résolution simpliciale Y, peut
étre choisie de type fini en toutes les dimensions. En effet 'anneau 4/A4, est alors
noethérien et la 4/A,-algébre B/B, est alors de type fini et on peut appliquer [An]
Proposition 17.2.

PROPOSITION 4.2. Soient une A-algébre topologique B et une A-algébre topologique
A’ munie de la topologie déduite de celle de A. Supposons d’une part le A-module A’
fidélement plat et d’autre part I'une des conditions suivantes satisfaite:

i) le A-module A’ est projectif de type fini

ii) l'anneau A est noethérien et la A-algébre B est de type fini.

Alors B® 4A' est une A'-algébre formellement lisse si et seulement si B est une
A-algeébre formellement lisse.

Démonstration. D’apreés le corollaire 3.3, pour tout B® 4A4'-module W, on a un

monomorphisme H'(A',BQ,A', W)- H! (A, B, W).
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Par conséquent si B est formellement lisse, B® , A’ est formellement lisse.

Inversément supposons maintenant la A4’-algébre B® , A’ formellement lisse; il
nous faut démontrer que le groupe H; (4, B, W) est nul pour tout B-module W.
Commengons par appliquer le corollaire 3.3 en remplagant (4, B, C, D) par
(Ag4, A,, B, A}). Puisque les anneaux A, et A; sont discrets et que le A-module 4’ est
plat, les conditions du corollaire sont satisfaites pour tout N. Par conséquent on a
un isomorphisme

IIt* (At ®Aa A;’ B ®Aa A:i’ W) - Ht* (At’ B’ W)’

D’autre part la topologie de A’ est déduite de celle de 4. Par conséquent on peut
remplacer + ® ,,4; par + ® 4, A4;. Ainsi on a un isomorphisme

H*(A,BR, A ,W)— H*(A, B,W).

Prenons W= W® ,A’ et appliquons le lemme 4.1 qui nous permet d’écrire le but de
cet isomorphisme sous une autre forme. Nous avons donc établi I’existence d’un
isomorphisme

H*(A,B, A, W®,A)->H*(4,B, W)®,A4 .

Puisque B® , A’ est formellement lisse, la source est nulle en dimension 1. Le but est
donc nul en dimension 1. Mais A’ est fidélement plat, par conséquent le groupe
H} (A, B, W) lui-méme est nul, ce qu’il fallait démontrer.

PROPOSITION 4.3. Soient A un anneau topologique préadmissible, I un idéal de défini-
tion de A et B une A-algébre topologique. Soient (A,...) et (B,...) des systémes fon-
damentaux d’idéaux ouverts de A et de B respectivement avec A, B< B,. Supposons
en outre que pour tout «, il existe un f plus petit que o tel que I’homomorphisme suivant
soit nul

Tor{/*#(B/Bg, A/I) - Tor{'*=(B|B,, A/I)

(par exemple si B est un A-module formellement projectif). Alors B/IB est une A|I-
algebre formellement lisse si et seulement si B est une A-algébre formellement lisse.

Démonstration. D’aprés le corollaire 3.3, pour tout B/IB-module W, on a un
monomorphisme

H}(A/I B/IB, W) H}! (A, B, W).

Par conséquent si B est formellement lisse, B/I B est formellement lisse.

Inversément supposons maintenant la A/I-algébre B/IB formellement lisse; il nous
faut démontrer que le groupe H, (4, B, W) est nul pour tout B-module W. Comme il
est toujours sous-entendu, W est annulé par un B, donc en particulier par un I”. On
fait la démonstration par induction sur n. Pour n=1, on a d’apres le corollaire 3.3:

H'!(A, B, W)~ H} (A/I, B/IB, W)= 0,
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Le passage de n—1 & n est immédiat puisque ’on a une suite exacte:
H'(A, B, IW)— H} (A, B, W) H/} (A4, B, W/IW).

La proposition est donc démontrée.

Le premier groupe de cohomologie est étroitement lié a la notion de lissité for-
melle. En fait on «mesure» de combien une algébre n’est pas formellement lisse a
’aide d’un certain premier groupe de cohomologie. Le deuxiéme groupe de cohomo-
logie est étroitement lié a 1a notion de régularité. En fait on «mesure» de combien
un anneau n’est pas régulier a ’aide d’un certain deuxi¢éme groupe de cohomologie.
En outre ces deux notions (lissité formelle et régularité) sont aussi étroitement liées,
voir [Gr] Théoréme 22.5.8 par exemple. Ces relations sont a peu prés du type suivant:
une certaine algebre est formellement lisse si et seulement si un certain anneau est
régulier. Il semble donc souhaitable de les faire découler de relations plus fortes du
type suivant: un certain premier groupe de cohomologie est isomorphe a un certain
deuxiéme groupe de cohomologie. Voici un résultat dans cette direction.

PROPOSITION 4.4. Soient B une A-algébre topologique préadmissible et J un idéal de
définition de B. Supposons la A-algébre topologique B|J formellement lisse. Alors pour
tout B[J-module W on a un isomorphisme naturel:

H!(A, B, W)=~ H?(B, B/J, W).

En particulier la A-algébre B est formellement lisse si et seulement si le foncteur
H? (B, B|J,") est nul.

Démonstration. Le cas particulier de la proposition découle immédiatement du cas
général si ’on tient compte de la remarque suivante. Le groupe H; (4, B, W) est nul
pour tout B-module W s’il I’est pour tout B-module W annulé par J: voir la démons-
tration de la proposition 4.3.

Pour la démonstration du cas général, on utilise le triple suivant (4, B, B/J)et la
suite exacte lui correspondant

H'(A, B/J, W)— H! (A, B, W) > H? (B, B|J, W)— H}? (A, B|J, W)— H? (A, B, W).

Le premier terme est nul, il suffit donc de démontrer que le dernier homomorphisme
est un monomorphisme. Ce sera chose faite si I’on vérifie que pour tout k> 1 I’homo-
morphisme canonique

H2(A, B|J, W)— H? (A, B|J*, W)

est un monomorphisme. C’est le cas car H} est contravariant par rapport a la deux-
iéme variable et car le 4-homomorphisme B/J*—B/J a un relévement puisque la
A-algebre B/J est formellement lisse. La proposition est donc démontrée.

Nous étudierons d’une maniére plus approfondie les relations entre premiers et
deuxiémes groupes de cohomologie au cours du sixi¢me paragraphe. Cela se fera sous
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des hypotheses supplémentaires: 4 sera un corps et B un anneau local noethérien,
mais sans hypothése concernant la A-algébre B/J. Vu la proposition 1.7, il est tout a
fait naturel de se restreindre au cas noethérien. D’ailleurs nous allons voir que dans

ce cas on peut remplacer les groupes de cohomologie «topologique» par les groupes
de cohomologie «discréte».

V. Cas noethérien

Nous allons continuer I’étude entreprise précédemment (lemme 2.3 et corollaire
2.4) concernant les relations existant entre les cohomologies «topologique» et
«discrete».

LEMME 5.1. Soient un anneau noethérien A et un idéal I. Soient encore deux entiers
i>0 et k>0. Alors il existe un entier [> k tel que ’homomorphisme canonique

Torf(A/I', A|I') - Torf (A/I¥, A|I*)
soit nul.
Démonstration. Dans le cas i=1, il s’agit de ’homomorphisme canonique de
I'/I*! dans I*/I** qui est nul si I>2k.

Dans le cas i>1, posons j=i—1. Il revient alors au méme de démontrer que
I’homomorphisme canonique

Torf(I', A/ 1)) - Tor{(I* A/I¥)

est nul pour un certain /. On peut évidemment remplacer 4/I' par A/I*. 1l suffit donc
de démontrer que pour j>0 et k>0, il existe /> k tel que ’homomorphisme canonique

Torf'(I', A/ 1) - Tor{ (I, A/1%)
soit nul.

Soit M, une résolution libre de type fini (en chaque dimension) du A-module
A/I*. Une telle résolution existe puisque A est noethérien. Puis on munit I'® ,M; de
la filtration canonique:

Fn(II®A M;) = In(ll®A M))

pour n=0, 1, .... On désigne encore par F, la filtration induite par la filtration définie
ci-dessus sur les sous-modules de I'®Q ;M ; et sur leurs quotients. Puisque M; est de
type fini, toutes ces filtrations sont g-bonnes en vertu du théoreme d’Artin-Rees: voir
[Se] p. I1 9. En particulier Tor}‘ (I', A/I*) est muni d’une filtration g-bonne. Mais ce
module est annulé par I*. Par conséquent

F,(Tor}(I', A/I)) =0 pour n grand.

D’autre part’homomorphisme canonique envoie F,(I'® , M) dans F, ., (I*® 4 M,).
Par suite ’homomorphisme canonique envoie F,(Tor{ (I', 4/I*)) dans F,. -, (Tor}
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(I*, A/I*)). En prenant n nul et / assez grand (en fonction de j et de k) on voit donc que
I’homomorphisme canonique envoie Torf (I, 4/I*) dans 0. Le lemme est ainsi
démontré.

COROLLAIRE 5.2. Soient un anneau noethérien A et un idéal I. Munissons A de la
topologie discréte: A, et de la topologie I-préadique: A,. Alors les groupes de cohomologie
H}(Ay, A,y W) sont tous nuls.

Démonstration. Nous allons utiliser les trois isomorphismes canoniques:
_)
A SA®4,A,— A,

En vertu du lemme précédent les conditions du théoréme 3.2 sont satisfaites pour le
produit tensoriel 4,® 4,4, avec N infini. Par suite ’homomorphisme canonique

HY(Ay, A, ® 4, A W) > HY (A4, A, W)@ H (Asy A, W)
est un isomorphisme. Autrement dit, ’lhomomorphisme diagonal
HY (A4 A W)= HY (Ayy A, W)@ HY (A, A, W)

est un isomorphisme. Par conséquent le groupe H; (4, 4,, W) est nul. Remarquons
que I'idée d’utiliser un produit tensoriel pour démontrer la nullité de certains groupes
de cohomologie n’est pas nouvelle: voir [An] Lemmes 20.1 et 22.1.

THEOREME 5.3. Soient une A-algébre topologique B et un B-module W. Supposons
les anneaux topologiques A et B noethériens et préadmissibles. Alors I’homomorphisme
canonique

H*(A, B, W)— H* (A, B, W)

est un isomorphisme.
Démonstration. Immédiate a I'aide du corollaire 5.2 et de la proposition 2.2
appliquée aux triples (4,, 4,, B,) et (4,, By, B,).

COROLLAIRE 5.4. Soit une A-algébre topologique B. Supposons les anneaux topo-
logiques A et B noethériens et préadmissibles. Soit J un idéal de définition de B. Alors la
A-algébre topologique B est formellement lisse si et seulement si d’une part le B[J-
module Hy (A, B, B|J) est projectif et d’autre part le B/J-module H, (A, B, B|J) est nul.

Démonstration. En vertu du théoréme précédent on peut oublier les topologies de
A et de Bet affirmer que I’on a la lissité formelle si et seulement si H' (4, B, W) est nul
pour tout B-module W annulé par un idéal I". On sait que cette condition est satisfaite
si et seulement si H' (4, B, W)est nul pour tout B/J-module W. On a évidemment une
suite spectrale

Ext},;(H,(A, B, B|J), W)= H"(A, B, W)

p

(remplacer les B-modules par des B/J-modules dans la démonstration de la proposi-
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tion 1.8). En particulier pour tout B/J-module W on a une suite exacte:

0 — Extg,; (Ho (4, B, B|J), W)— H' (A, B, W) -

Hom (H, (4, B, B|J), W)— Ext},,(H, (A, B, B|J), W).
Si Hy (4, B, B/J) est projectif et H, (4, B, B/J) nul, il est bien clair que H' (4, B, W)
est nul pour tout B/J-module W. Inversément si cette condition est satisfaite, le terme
Ext! est nul pour tout B/J-module W, par conséquent le B/J-module H, (A, B, B|J)
est projectif. Mais alors le terme Ext? et par suite le terme Hom sont nuls pour tout
B/J-module W, par exemple H;(A, B, B/J) lui-méme. Ainsi le B/J-module
H, (A, B, B/J) est nul. La démonstration est donc achevée.

Notons encore le résultat suivant qui compléte un résultat connu concernant la
complétion: voir [An] Proposition 21.1.

COROLLAIRE 5.5. Soit une A-algébre topologique B. Supposons les anneaux topo-
logiques A et B noethériens et préadmissibles. Soient A et B les complétés séparés de
A et de B. Soit en outre un B-module W. Alors I’homomorphisme canonique

H,(A, B, W)- H,(4, B, W)

est un isomorphisme.

Précisons ce qui suit. Puisqu’il s’agit d’homologie les quatre anneaux de ’homo-
morphisme canonique sont considérés comme étant discrets. En outre W est supposé
étre un B-module, pour ’'anneau topologique B. Autrement dit si J est un idéal de
définition de B, alors W est un B/J"-module pour un certain #.

Démonstration. On a donc quatre anneaux noethériens et préadmissibles. On
peut appliquer deux fois le théoréme 5.3:

H*(A, B, W)~ H*(4, B, W)
H*(A, B, W)~ H*(4, B, w).
Mais de la définition méme des groupes H;* découle immédiatement ce qui suit:
H*(A, B, W)= H* (4, B, w).
Par conséquent ’homomorphisme canonique
H*(4, B, W) H*(4, B, W)

est toujours un isomorphisme.
Utilisons maintenant la suite spectrale rencontrée au cours de la démonstration du
corollaire 5.4. Elle nous dit en particulier que I’homomorphisme canonique

Homy,;(Hy (4, B, B|J), W)- Homg,, (H, (4, B, B|J), W)

est un isomorphisme pour tout B/J-module injectif W. Par conséquent I’homomor-

phisme canonique H,(A, B, B/J)— H,(4, B, B/J)
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est lui-méme un isomorphisme. Par un argument standard on démontre alors le

corollaire pour tout B/J-module. On passe au cas général par induction au moyen de
la proposition 1.1.

V1. Algébres sur un corps

Continuons I’étude des relations entre les premiers et les deuxi€émes groupes de
cohomologie, comme nous y invite 1a proposition 4.4. Vu les résultats du paragraphe
précédent, il semble normal de remplacer les groupes de cohomologie par des groupes
d’homologie.

Commengons par le cas simple des corps. Considérons un corps K et un sous-corps
k. Nous savons que H, (k, K, K) est toujours nul (Proposition 1.6) et que H, (k, K, K)
est nul si ’extension est séparable (Proposition 1.5). Nous allons établir un isomor-
phisme entre H, (k, K, K) et un deuxiéme groupe d’homologie aisément calculable.

LEMME 6.1. Soient k un corps de caractéristiqgue p >0 et K un surcorps de k''?. Alors
I’homomorphisme canonique

H,(k, K,K)- H,(k'?, K, K)
est nul.

Démonstration. Soit P le corps premier de k. De la proposition 1.2 découle alors le
diagramme suivant avec deux suites exactes:

H,(P, K, K)— H,(k, K, K) — H, (P, k, K)
! ! !
H,(P, K, K)— H, (k'?, K, K)— H, (P, k''?, K).
Puisque H, (P, K, K) est nul, il suffit de démontrer que I’homomorphisme canonique

Hy (P, k, K) - Hy (P, k', K)

est nul. Cela est bien clair en vertu des égalités suivantes pour les différentielles
absolues de k!/?: si x est un élément de k, alors

dx = d(x''?)P = px?~""d(x''") = 0.
Rappelons le résultat suivant.

LEMME 6.2. Soient k un corps de caractéristique p>0 et k' un sous-corps de k''?.
Soit A une k-algébre qui soit un anneau local d’idéal maximal 1. Alors le produit
tensoriel A® k' est un anneau local. L’idéal maximal est formé des éléments du
produit tensoriel dont une puissance appartient & l'image de I® k'

Nous établirons des isomorphismes entre premiers et deuxiémes groupes d’homo-
logie au moyen du résultat suivant.
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LEMME 6.3. Soient X un corps, C une X-algébre, Y un surcorps de X et Z une
C®x Y-algébre qui soit un corps. Alors I’homomorphisme canonique

H,(C,Z,Z)-» H,(C®xY,Z,2Z)

est un monomorphisme. En outre il existe un monomorphisme naturel
H,(C®xY,Z,Z)-> H,(X,C, Z)

qui est un isomorphisme si I’homomorphisme canonique

H(X,Z,Z)->H(Y,Z,2Z)
est nul.
Démonstration. De la proposition 1.2 découle le diagramme suivant avec deux
suites exactes:

H,(X, Z, Z)— H,(C, Z, Z)——— H, (X, C, Z) —— H, (X, Z, Z)

| la B Iy
H,(Y,Z,Z) > H,(C®x Y, Z, Z)>H,(Y,CQy Y, Z) 5 H,(Y, Z, Z).

Nous en savons ce qui suit:

a) Hy(X,Z,Z)estnul  (Proposition 1.6)

b) H,(Y,Z,Z)est nul  (Proposition 1.6)

¢) P est un isomorphisme ([An] Proposition 19.6).
D’apres a) et ¢) ’lhomomorphisme &0 est un monomorphisme, donc a est un mono-
morphisme. D’aprés b), ’homomorphisme ¢ est un monomorphisme. D’apres c), le
monomorphisme ' ¢ est bien défini. Si y est nul, 6.8 est nul, donc & est nul et ¢ est
unisomorphisme. Le monomorphisme 8~ *c¢est alors un isomorphisme. Le lemme est
ainsi démontré.

THEOREME 6.4. Soient un corps K et un sous-corps k de caractéristique p>0. Con-
sidérons le produit tensoriel KQ k'/? =B et I'idéal maximal J des éléments nilpotents
de B. Alors les espaces vectoriels sur B|J

Hl (ka K’ K) ®KB/'] et HZ(Ba B/Js B/J)

sont isomorphes de maniére naturelle. Le deuxiéme espace vectoriel se calcule de la
maniére suivante: on considere le complexe suivant de B-modules

J®pJ > ®p]>J

ou x®y est envoyé sur xy par n et sur xQ®y—yQ@x par t et on forme le B-module
Kern/Im 1 annulé par J.

L’idéal J est le noyau de ’homomorphisme du produit tensoriel K® k'/? dans
une extension de K algébriquement close. Par conséquent J mesure de combien les
extensions K et k!/? de k ne sont pas linéairement disjointes. D’autre part, comme le
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démontre le théoréme, ’espace vectoriel H, (k, K, K) est nul si et seulement si ’exten-
sion K de k est séparable. Par conséquent cet espace vectoriel mesure de combien
I’extension n’est pas séparable. Le théoréme met en relation ces deux mesures. On a
donc obtenu une généralisation du critere de séparabilité de MacLane.

Démonstration. On applique le lemme 6.3 en remplagant (X, C, Y, Z) par
(k, K, k7, B|J). On vérifie que la condition de ce lemme est satisfaite en appliquant
le lemme 6.1 en remplagant (k, K) par (k, B/J). Alors I'isomorphisme du lemme 6.3
est I’'isomorphisme du théoré¢me.

La deuxiéme partie du théoréme est un cas particulier de [An] Proposition 26.2.

Dans le méme ordre d’idée on a I’égalité de Cartier: voir [Gr] Théoreme 21.7.1.

PROPOSITION 6.5. Soit K une extension de type fini de k. Alors I'espace vectoriel
H;(k, K, K) est de rang fini, i=0, 1. En outre on a I’égalité

rgx Hy (k, K, K) — 1gx H, (k, K, K) = deg tr, K .

Démonstration. A I'aide des propositions 1.2 et 1.6 on se raméne au cas d’une
extension monogene d’un des trois types suivants:

a) transcendante pure

b) algébrique séparable

¢) radicielle

On peut alors calculer explicitement ([An] Propositions 20.3 et 25.1). On trouve
alors pour I’égalité: (1,0, 1), (0,0,0) et (1,1, 0).

Approfondissons maintenant I’étude des relations entre les premiers et les deu-
xiémes groupes d’homologie. Le théoreme 6.4 nous montre ce & quoi nous pouvons
nous attendre. Nous traiterons maintenant le cas d’une algebre sur un corps, locale et
noethérienne si I’on veut exploiter I'isomorphisme qui sera établi. Rappelons deux
faits. Considérons d’une part un corps k et une k-algébre 4 noethérienne qui soit un
anneau local d’idéal maximal 1. Alors H, (k, A, A/I) est nul si et seulement si la k-
algébre A munie de la topologie I-préadique est formellement lisse: voir le corollaire
5.4. Considérons d’autre part un anneau B noethérien local d’idéal maximal J. Alors
H, (B, B/J, B|J)est nulsi et seulement si ’anneau Best régulier: voir la proposition 1.7.

Rappelons encore un résultat bien connu: voir [Gr] Corollaire 19.6.5.

PROPOSITION 6.6. Soit une extension finie k' d’un corps k. Soit aussi une k-algébre A
qui soit un anneau local noethérien d’idéal maximal I et qui soit formellement lisse une
fois munie de la topologie I-préadique. Alors 'anneau semi-local AQ k' est régulier.

Démonstration. Appelons M, les idéaux maximaux du produit tensoriel A® k'
et K; les corps résiduels A®  k'/M; avec i=1, 2, ..., n. Ce produit tensoriel est une
A-algébre de type fini, par conséquent il s’agit d’un anneau noethérien. Cet anneau
semi-local est régulier si ’on démontre que chacun des anneaux locaux (4A® k'),
est régulier. Appliquons le lemme 6.3 en remplagant (X, C, Y, Z) par (k, 4, k', K,).
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On a donc un monomorphisme
H,(A ®.k', K;, K;) —» H, (k, 4, K}).
Mais le but de ce monomorphisme est isomorphe a
H,(k, A, AI)® 4, K;=0.
Par suite la source de ce monomorphisme est un espace vectoriel nul. Il est d’ailleurs
isomorphe a Hy (A ®, K )as K K)

d’aprés [An] Proposition 20.3. Mais la nullité de ce dernier espace vectoriel entraine
la régularité de I’anneau local (A® k")y,, ce qu’il fallait démontrer.

Il existe une réciproque de la proposition précédente: voir [Gr] Théoreme 22.5.8.
Nous allons la déduire comme corollaire d’un isomorphisme généralisant celui du
théoréme 6.4.

THEOREME 6.7. Soient un corps k de caractéristique p >0 et une k-algébre A qui soit
un anneau local de corps résiduel K. Considérons 'anneau local AQ k' et son corps
résiduel L. Alors les espaces vectoriels sur L

H (k, A, K)®xL et H,(A®.k'" L, L)

sont isomorphes. Si en outre k' désigne un corps compris entre k et k''/? et L' le corps
résiduel de I'anneau local AQ k', I’homomorphisme canonique

Hy(A®k',L,L)® L-> H,(A®, k" L, L)
est un monomorphisme. De plus on a I’égalité suivante:
\UIm[H,(A®,k',L,L)® L] = H,(A®.k'”, L, L)

ot k' parcourt I'ensemble filtrant des extensions k' de k finies et contenues dans k*'®.
Démonstration. On démontre la premiére partie du théoréme 6.7 comme la
premiére partie du théoréme 6.4, en appliquant la deuxi¢éme partie du lemme 6.3 ol
(k, A, k*'?, L) remplace (X, C, Y, Z).
On démontre la deuxiéme partie du théoréme en appliquant la premiére partie du
lemme 6.3 ou (k', A®.k’,k'P, L) remplace (X,C,Y,Z). L’homomorphisme

canonique H2 (A ®kk’, L, L)"") Hz (A ®kk1/17, L, L)

est donc un monomorphisme. Mais H;(L', L, L) est nul pour i=2, 3: voir [An]
Proposition 22.2. On applique la proposition 1.2 en remplagant (4, B, C) par
(A®ik’, L', L) qui démontre alors que ’homomorphisme canonique

H,(A®K', L, L)®y L-H(A®k', L, L)

est un isomorphisme.
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Pour démontrer la troisitme partie du théoréme il faut et il suffit de vérifier
I’égalité suivante:

UIm[H,(A®.k', L, L)] = H,(A ®,k'", L, L).
Celle-1a découle de [An] Proposition 18.4 en vertu de I’égalité suivante:

U4 ®k) =A@,k

ol I’on identifie A® k' & son image dans A® k7.
Le théoréme étant démontré, il est immédiat d’en déduire la réciproque de la
proposition 6.6: voir [Gr] Théoréme 22.5.8.

COROLLAIRE 6.8. Soient un corps k de caractéristique p >0 et une k-algébre A locale
noethérienne. Si pour toute extension finie k' de k telle que k'P ck 'anneau A® k' est
régulier, alors la k-algébre A est formellement lisse pour sa topologie préadique.

Démonstration. Pour tout k', ’anneau local A® k" est régulier, donc ’espace
vectoriel H,(A® k', L', L") est nul. D’aprés le théoréme 6.7 l’espace vectoriel
H, (k, A, K) est par suite nul, donc la k-algébre A est formellement lisse.

Ajouté en mars 1968:

J’aimerais mentionner les deux travaux suivants:

S. LICHTENBAUM — M. SCHLESSINGER, The Cotangent Complex of a Morphism,
Trans. A.M.S. 128 (1967), 41-70.

M. ANDRE, On the Vanishing of the Second Homology Group of a Commutative
Algebra, Reports of the Midwest Category Seminar 11, Springer Lecture Notes (1968).

Dans le premier, les groupes d’homologie H;(A, B, W) pour i =0, 1, 2 sont définis
autrement et on y démontre également le corollaire 6.8. ci-dessus. Dans le deuxi¢me,
on voit apparaitre une condition nécessaire et suffisante pour que H?Z(4, A/I,.) soit
identiquement nul.
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