
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1968)

Artikel: Cohomologie des algègres commutatives topologiques.

Autor: André, Michel

DOI: https://doi.org/10.5169/seals-32921

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-32921
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


235

Cohomologie des algèbres commutatives topologiques

Michel André

Introduction

Ce travail est consacré à la définition et à l'étude de groupes de cohomologie
H"(A, B, W) où B est une ^-algèbre commutative topologique et W un i?-module.
En particulier il est intéressant d'étudier d'une manière approfondie le premier groupe
de cohomologie puisque sa nullité est équivalente à la lissité formelle de l'algèbre
topologique en question. A la base de l'étude de ces groupes de cohomologie
«topologique» se trouve évidemment la théorie des groupes de cohomologie «discrète»
(et d'homologie), comme elle est développée dans le fascicule [An] : on en rappelle les

points essentiels au cours du premier paragraphe.
Comme dans le cas discret, on commence par établir d'une part deux suites exactes

longues (Propositions 2.1 et 2.2)

•• -+Htn(A, jB, W')-+Htn(A,B9 W)-+H?(A,B, W")-*--
--+Htn(B,C, W)->Htn(A,C, W)->H?(A,B,W)->'-

d'autre part un théorème de décomposition (Théorème 3.2)

Htn(A, B®AC, W)^Htn(A, B, W)®H?(A, C, W)

avec des conditions faisant intervenir des Tor. La démonstration de ce théorème est

longue. Mais une fois ce cap franchi, on établit divers résultats sans trop de difficultés.
Dans une première étape, on met en relation les propriétés de lissité formelle de la

v4-algèbre topologique B et de la A '-algèbre topologique B®AA'. On établit deux
résultats (Propositions 4.2 et 4.3) ; ils sont connus mais sous des hypothèses plus fortes.
Dans une deuxième étape, on démontre que les groupes de cohomologie
«topologique» et les groupes de cohomologie «discrète» sont isomorphes dans le cas

d'une algèbre noethérienne préadmissible (Théorème 5.3). Par conséquent dans ce

cas il est possible de caractériser les algèbres formellement lisses à l'aide du premier

groupe d'homologie (Corollaire 5.4).
Dans une dernière étape, on met en relation le premier groupe d'homologie

(étroitement lié à la notion de lissité formelle) et le deuxième groupe d'homologie
(étroitement lié à la notion de régularité). En fait on établit (Théorème 6.7) un
isomorphisme ^où A est algèbre locale sur le corps k de caractéristique p > 0 et où K et L sont les corps
résiduels des anneaux locaux A et A®kkllp. De cet isomorphisme découlent en
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particulier deux résultats intéressants. D'une part on obtient une nouvelle démonstration

du fait qu'une algèbre locale noethérienne sur un corps est formellement lisse

pour sa topologie préadique si et seulement si elle est géométriquement régulière
(Corollaire 6.8). D'autre part on obtient une généralisation du critère de séparabilité
de MacLane (Théorème 6.4). Pour une extension de corps, on calcule l'espace
vectoriel H1 (k, K, K) au moyen du noyau de l'homomorphisme canonique de K®kkî/P
dans un corps algébriquement clos contenant K.

I. Homologie des algèbres commutatives discrètes

Avant de passer à l'étude homologique des algèbres commutatives topologiques
rappelons les points essentiels de la théorie de Fhomologie des algèbres commutatives
discrètes. Pour les définitions, pour les démonstrations et pour des résultats plus
complets, je renvoie au fascicule [An]. Tous les anneaux ont des unités.

On part d'un triple (À, B, W) où A est un anneau commutatif, B une ^4-algèbre
commutative et W un ^-module. On lui associe des groupes d'homologie Hn {A, B, W)

pour « 0, 1, 2,.... La construction se fait au moyen d'un complexe inspiré de la

théorie de Fhomologie singulière, voir [An] p. 61-63. Les foncteurs Hn covariant en

A, en B et en ^jouissent en particulier des propriétés suivantes. Nous les retrouverons
dans le cas topologique.

En premier lieu, on rencontre deux longues suites exactes, comme il se doit pour
une théorie d'homologie.

Proposition 1.1. Soient une A-algèbre B et une suite exacte de B-modules:

0->*T-- W-+W-+0.

// existe alors une suite exacte longue:

Voir [An] Proposition 15.2.

Proposition 1.2. Soient une A-algèbre B, une B-algèbre C et un C-module W. Il
existe alors une suite exacte longue:

—+Hn(A9B9 W)->HH(A9 C, W)->Hn(B, C, W)-+HH-t(A9B9 W)-*-.
Voir [An] Proposition 18.2.

En second lieu, on rencontre une formule de décomposition pour le produit
tensoriel.

Proposition .1.3. Soient deux A-algèbres B et C et un B®AC-module W. Si Von a

Torf(B, C) 0 pour i l,2,...
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alors Vhomomorphisme naturel

C9 W)

est un isomorphisme.
Voir [An] Proposition 19.3.

Comme nous le savons, nous retrouverons ces trois résultats dans le cas
topologique. En ce qui concerne les deux premiers, le passage du cas discret au cas
topologique est immédiat. Il n'en est pas ainsi du troisième, il nous faudra remonter à la
démonstration. C'est d'ailleurs le seul point essentiel où il est nécessaire d'utiliser à

nouveau la définition explicite des groupes d'homologie.
L'intérêt des groupes d'homologie est dû en particulier aux résultats suivants

concernant les basses dimensions.

Proposition 1.4. Soient une A-algèbre B et un B-module W. Alors le groupe
H0(A, B, W) est isomorphe au groupe des A-différentielles de B dans W.

Voir [An] Proposition 25.1.

Proposition 1.5. Soient un corps Ket un sous-corps k. Alors le groupe H±(k, K, K)
est nul si l'extension est séparable.

Voir [An] Proposition 22.2.

La réciproque de cette proposition est un résultat bien connu : voir [Gr] Théorème
19.6.1. Nous la retrouverons d'ailleurs sous la forme d'un isomorphisme généralisant
le critère de séparabilité de MacLane.

Proposition 1.6. Soient un corps K et un sous-corps k. Alors le groupe H2(k, K, K)
est nul.

Voir [An] Proposition 22.2.

Remarquons que ce résultat est équivalent à l'existence d'une base de transcendance

séparante pour une extension séparable de type fini.

Proposition 1.7. Soit un anneau local noethérien A de corps résiduel L. Alors le

groupe H2(A, L, L) est nul si et seulement si l'anneau A est régulier.
Voir [An] Propositions 27.1 et 27.2.

Ce résultat découle du fait que H2 (A, L, L) est isomorphe au quotient Tor^ (L, L)j
Tor?(L,L)-Tor?(L,L).

Bien entendu, on a de même des groupes de cohomologie Hn(A,B, W) pour
n 0, 1,2,.... Les foncteurs Hn sont covariants en W et contravariants en A et en B.
On a alors sept propositions duales des précédentes. Ceci n'est pas surprenant puisque
les groupes d'homologie et de cohomologie sont liés les uns aux autres par une suite

spectrale.

Proposition 1.8. Soient une A-algèbre B et un B-module W. Il existe alors une suite
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spectrale

Extg(Hq(A, B, B), W)=>Hn(A, B, W).
p

Voir [An] Proposition 16.1.

Nous sommes prêts maintenant à passer au cas topologique.

II. Définition et suites exactes

Considérons deux anneaux commutatifs A et B munis de topologies linéaires,
un homomorphisme continu de A dans B et un ^-module W discret annulé par un
idéal ouvert de B. Dorénavant on parlera plus simplement de l'anneau topologique A,
de la ,4-algèbre topologique B et du i?-module W, les conditions supplémentaires étant
sous-entendues. Considérons maintenant les paires du type suivant: (Aa, Ba) où Aa
est un idéal ouvert de A et Ba un idéal ouvert de B avec Aa- BcBa et Ba- W=0. Puis

on ordonne l'ensemble de ces paires :

(Aa9 Ba) > (A,, Bp) dès que Aa=> Afi et B^B^.
On obtient ainsi un ensemble filtrant et on pose

Htn(A, B, W) limHn(AIAa, B/Ba, W).

Remarquons que dans la définition de ces groupes de cohomologie on peut
remplacer l'ensemble filtrant utilisé par n'importe lequel de ses sous-ensembles cofi-

naux. Il est alors clair que H" {A, B, W) est un foncteur covariant en W, contravariant
en A et en B et que les deux résultats suivants découlent immédiatement des résultats

correspondants du cas discret.

Proposition 2.1. Soient une A-algèbre topologique B et une suite exacte courte de

B-modules:
0^W'_+W_>W'>_+0.

Il existe alors une suite exacte longue:

Démonstration. Appliquer la proposition 1.1 et le fait que le foncteur lim en

question est exact.

Proposition 2.2. Soient une A-algèbre topologique B, une B-algèbre topologique C

et un C-module W. Il existe alors une suite exacte longue:

'-+Htn(B9C, W)-+Htn(A,C, W)-+Htn(A,B, W)-+ H?+i(B, C, W)-+- •.

Démonstration. Appliquer la proposition 1.2 et le fait que le foncteur lim en

question est exact.



Cohomologie des algèbres commutatives topologiques 239

«

Le troisième résultat, correspondant à la proposition 1.3, apparaît au cours du
troisième paragraphe.

Le premier groupe de cohomologie H} (A, B, W) est bien connu et est dénoté par
ExalcotopA (B, W) dans [Gr] par exemple. Ainsi la suite exacte de la proposition 2.2

prolonge une suite exacte plus courte bien connue (voir [Gr] Corollaire 20.3.7). En
outre le foncteur H? {A, B,-) est nul si et seulement si la ^-algèbre B est formellement
lisse (voir [Gr] Définition 19.3.1 et Proposition 19.4.4).

Dans le cas général, il est difficile de comparer H" (A, B, W) avec Hn(A, B, W) où
A et B sont débarrassés de leurs topologies. Pour le moment contentons-nous du
résultat suivant en basses dimensions. Il sera généralisé dans le cas noethérien au
cours du cinquième paragraphe. Notons la convention suivante pour un anneau
topologique A : pour indiquer qu'il s'agit de l'anneau muni de sa topologie, on écrit
At et pour indiquer qu'il s'agit de l'anneau débarrassé de sa topologie, c'est-à-dire
muni de la topologie discrète, on écrit Ad.

Lemme 2.3. Soient un anneau topologique A et un A-module W. Supposons la topologie

de A préadmissible. Alors les groupes de cohomologie

Ht°(Ad,At,W) et Htl(Ad,At9W)
sont nuls.

Démonstration. Il faut donc démontrer:

lim Der (A, A\ f, W) 0 lim Hom^f/J2", W)

pour n assez grand et tendant vers l'infini, /étant un idéal de définition de la topologie
de A : voir [An] Proposition 25.1. La première limite est nulle car Der (A, A/F, W) est

nul. La deuxième limite est nulle car l'homomorphisme canonique de /2w//4" dans

F/I2n est nul.

Corollaire 2.4. Soient une A-algèbre topologique B et un B-module W. Supposons
la topologie de A préadmissible. Alors les homomorphismes canoniques en basses

dimensions sont respectivement

Ht° (At9 B, W) -» Ht° (Ad9 J5, W) un isomorphisme

H,1 (At, B, W) -> El (Ad9 B9 W) un isomorphisme

Ht2 (Ati B, W) -> Ht2 (Ad, B, W) un monomorphisme.

Démonstration. Appliquer le lemme 2.3 et la proposition 2.2 pour le triple suivant

Ad-+At-*B.

in. Produit tensoriel

Soient B et C deux ^4-algèbres topologiques. Considérons le produit tensoriel
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B®AC muni de la topologie suivante: les idéaux

où Bfi est un idéal ouvert de B et Cy un idéal ouvert de C, forment un système
fondamental de voisinages de 0. On a alors

B ®A C/Im (Bfi ®A C) + Im (B ®A Cy) B/Bfi ®A C\Cy.

Ceci étant, nous allons voir sous quelle condition on a un isomorphisme

Htn(A, B ®A C, W) s H?(A, B, W)® Htn(A, C, W)

(voir la proposition 1.3 pour le cas discret). Commençons par un lemme (voir [An]
Proposition 17.1 pour le cas discret).

Lemme 3.1. Soient une A-algèbre topologique B et un B-module W. Soient encore

(Aa...) un systèmefondamental d'idéaux ouverts de A et (Ba. ..)un système fondamental
d'idéaux ouverts de B avec Aa-BczBaetBa- J¥= 0. Soient enfinpour chaque paire (Aa, Ba)

une AjAa-algèbre simpliciale libre X* avec une augmentation ea: X^-^BjBa et pour
chaque paire de paires (Aa, Ba)>(Afi, Bp) un homomorphisme x*p:X*-+X* de A/Ap-
algèbres simpliciales augmentées, tout cela satisfaisant à la condition de naturalité:
x*pox%y x*y. Ceci étant, les X* ont en particulier une structure de groupe abélien

simplicial et on suppose ce qui suit de leur homologie absolue. D'une part l'augmentation

ea identifie Ho (X*) à BjBa et Ho (x*p) à l'homomorphisme canonique de BjBp sur
BjBa. D'autre part pour tout a il existe un fi plus petit tel que Hm(x*p) soit nulpour tout
m>0. Alors sous ces conditions pour tout n^O, le n-ième groupe de cohomologie
H" (A, B, W) est isomorphe au n-ième groupe d'homologie du complexe suivant:

la différentielle étant obtenue par somme alternée des différents homomorphismesdeface.
Démonstration. Utilisons la notation de [An] Paragraphe 15 et considérons le

complexe double suivant:

lim n Ber(AIAa9AipA/Aa,W).
"* Aip AIA<x-+-~ÂiQAIA*-+xl

Pour la définition des deux différentielles, voir [An] Proposition 4.1. Nous allons voir
que les deux suites spectrales correspondant à ce complexe double sont dégénérées et

donnent les isomorphismes souhaités.

Dans la première suite spectrale (d'abord la différentielle concernant p, puis celle

concernant q, pour obtenir le terme E2) le groupe Efp est isomorphe au groupe
UmHp(AIAa, X% W). Mais X\ est une ^4/y4a-algèbre libre, par conséquent Efp est

nul si p n'est pas nul et Ef° est isomorphe à HmDer(v4/^4a, X^, W) selon [An]
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Corollaire 16.3. Ainsi la suite spectrale en question est dégénérée et fait intervenir le

groupe suivant en dimension n:Hn(\im Dct(A/Aa, X*, W)).

Passons maintenant à la deuxième suite spectrale. Nous allons rencontrer des

groupes de cohomologie singulière notés H*ng et des groupes d'homotopie notés n*.
Nous utiliserons le théorème de Moore: les groupes d'homotopie et les groupes
d'homologie absolue d'un groupe abélien simplicial sont isomorphes. Pour calculer
le terme El de la suite spectrale en question, on peut écrire le complexe double sous
la forme suivante:

hm fi Ff Wx—xW
- l ** | I

Par conséquent le terme Ep{q est isomorphe au groupe suivant:

lim fi Knt{X* x - x X*9 Wx-xW
Al0A/Aac | | | |

io fois ip fois

Mais par hypothèse pour tout a, il existe un fi plus petit tel que Hm (x*fi) soit nul pour
tout m>0, autrement dit tel que nm(x*p) soit nul pour tout m>0 et tout O-simplexe
de base. En conséquence, la restriction de x*p à chacune des composantes connexes
de X* est homotope à 0. Il en est donc de même de tout produit x*p x ••• x x*p. Par
suite on a

H!ing(x%X"'Xx^9Wx"'XW)^0 si q>0.
Ainsi E{'q est nul si q n'est pas nul et E{* ° est isomorphe à

lim fi f] Wx—xW
~~* AipA(Aa-+ AtQAIA B/B B/B |j| j

ip fois
io fois

c'est-à-dire à

hm n Det(AIAa9AlpAIAu9W).
-* AipA/Aa-* Al0AIA^BIBu

Par conséquent la suite spectrale en question est dégénérée et fait intervenir le groupe
H? (A, B, W) en dimension n.

En résumé nous avons démontré que le complexe total associé au complexe double
décrit au début de la démonstration a l'homologie suivante en dimension n :

H?(A9 B, W) s HB(lim Der(^/Aa, X*9 W)).

Le lemme est donc démontré. On peut le démontrer sous une hypothèse plus faible
(P dépendant non seulement de a mais encore de m) en utilisant le théorème de

Hurewicz dans le cas relatif. Mais nous en savons bien assez pour démontrer le

résultat qui nous intéresse.

Quand on désire appliquer le lemme ci-dessus, il est parfois facile de trouver de
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«bons» x* mais plus difficile de les relier par de «bons» x*p. On sent le besoin
d'avoir dans une certaine mesure une construction fonctorielle. On peut utiliser
dans ce sens la construction pas à pas décrite dans [An] Paragraphe 6 et dans [An]
Démonstration de la proposition 17.2. Résumons-en les points essentiels.

On part avec un anneau discret X et une X-algèbre discrète Y et on va construire
une X-algèbre simpliciale libre au-dessus de Y: on note par ej, : Yn-+ Yn_x les différentes
faces et par 8%: Yo-> Y_t Y l'augmentation. La construction se fait pas à pas pour
« 0, 1, 2,.... Au pas n on connaît déjà Yo, Yl5..., Y,,-! et les homomorphismes les

reliant les uns aux autres et on construit Yn et les homomorphismes le reliant aux
précédents. A chaque pas un choix est à effectuer. D'une manière précise au pas n on
doit choisir une X-algèbre libre Qn, un Z-homomorphisme con: Qn-* Yn_x et une base

de Qn, le tout satisfaisant à la condition suivante : con envoie les générateurs de Qn dans

l'idéal Kerfi^rv-'nKereJJl}. Alors au moyen de a>0, col9...y con on construit Yn et
les homomorphismes le concernant.

Cette construction pas à pas jouit des deux propriétés suivantes.

A) Si les images par œn des générateurs de Qn engendrent l'idéal KereJJ_ 1n-'-n
KereJJI J, alors le groupe d'homologie absolue Hn-.x (Y*) est nul.

B) Si deux X-algèbres simpliciales Y* et Y* au-dessus de Y' et de Y" peuvent être
obtenues par la construction pas à pas, alors la X-algèbre simpliciale Y*= Y*®x Y*
au-dessus de Y= Y'®x Y" peut être obtenue par la construction pas à pas.(Autrement
dit le produit tensoriel de deux constructions pas à pas est une construction pas à pas ;

on a en particulier (on w'n®oy"n.)

Remarquons finalement que le choix des con dans la construction pas à pas peut
être fait de manière canonique en prenant comme ensemble de générateurs de Qn

l'ensemble des éléments de Kere°_ x rv-n Ker^I}. On peut alors utiliser la propriété
A. On dénote par S#(X9 Y) l'algèbre simpliciale obtenue par ce choix canonique de

tous les con.

Venons-en maintenant au théorème de décomposition qui est le sujet de ce

paragraphe.

Théorème 3.2. Soient deux A-algèbres topologiques B et C et un B®A C-module W.

Soient {Aa...\ (Ba...) et (Ca...) des systèmes fondamentaux d'idéaux ouverts de A, de

B et de C respectivement avec Aa'BczBa et Aa-CczCa. Supposons en outre que pour
tout i avec 0<i^N et pour tout a, il existe un fipluspetit que a tel que Vhomomorphisme
suivant soit nul:

Torf/AP (B/Bp, C/C,) -> Toi?"-(B/B«, C/Ca).

Alors sous ces conditions, Vhomomorphisme canonique

H{{A, B ®A C, W)-*Hf{A9 B, W)® HtJ(A, C, W)

est un isomorphismepour j=0, 1, 2,..., N et un monomorphismepourj=N+l.
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Démonstration. Nous allons utiliser la construction pas à pas décrite ci-dessus et
cela de la manière suivante. Soit A/>0. A deux X-algèbres Y' et Y" on va faire
correspondre de manière fonctorielle une Z-algèbre simpliciale libre S*(X, Y', Y") au-
dessus de Y'®x Y". C'est l'algèbre simpliciale obtenue au moyen de la construction

pas à pas en choisissant les homomorphismes œn de la manière suivante: pour
w 0, 1,..., JV+1, on prend (on (orn®co'lt où les co'n et w"n sont canoniques et pour
n N+2, iV+3,..., on prend œn canonique. Autrement dit on procède comme suit.
On considère l'algèbre simpliciale S* (X, Y') au-dessus de Y' et l'algèbre simpliciale
S* (X9 Y") au-dessus de Y". On en prend le produit tensoriel qui est une algèbre
simpliciale au-dessus de Y'®xYn. Comme on le sait (propriété B) cette algèbre
simpliciale est obtenue par la construction pas à pas. On garde alors seulement les pas
0, 1,..., N, JV+1 de cette construction (autrement dit on garde les simplexes jusqu'à
la dimension N+1 incluse). Puis on termine cette construction partielle de manière

canonique. Vu le caractère fonctoriel de cette dernière opération, on peut construire
un homomorphisme naturel d'algèbres simpliciales augmentées:

^is+ix, y')®xs*(x, yh)-+s%(x9 r, y")

qui est un isomorphisme en dimension 0, 1,..., N, N+l. Les groupes d'homologie
absolue de S*(X, Y', Y") sont les suivants:

#„(££(*, y, Y")) Tor*(Y', Y") si 0 < n < N
0 si N < n.

Dans le premier cas on peut remplacer le but de vNpar la source de vNet c'est alors
immédiat car S* (X, Y) est une résolution libre du Z-module Y en vertu de la
propriété A. Dans le deuxième cas on applique la propriété A directement.

Ceci étant, voici la démonstration du théorème. On applique le lemme 3.1 à la
yl-algèbre topologique B®AC en prenant

Vu les hypothèses du théorème il est immédiat de vérifier les conditions du lemme. Du
lemme découle donc le fait que le groupe

Htn(A,B®AC,W)

est isomorphe au «-ième groupe d'homologie du complexe suivant:

lim Der(^Ma, Sl(A/Aa, B/Ba9 C/Cal W).

Considérons d'autre part le complexe suivant:

lim Dct(AIAa, S*(AIAa, BIBa)®A}ActS*(AIAa, qCa)9 W)*

lim Der(A/Aa, S*{AjAa9 B/B,), W)®\im Der(^l/^a, S*(A/A., C/Ca), W).
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En vertu de [An] Proposition 17.1, son w-ième groupe d'homologie est isomorphe au

gFOUpe
H? (A, B, W)® H?(A, C, W).

Utilisons maintenant l'homomorphisme vN pour chacun des a. Il nous fait passer du

premier complexe au deuxième complexe et par suite de l'homologie du premier à

Thomologie du deuxième. Ce dernier homomorphisme est un isomorphisme en

dimensions 0, 1,..., N et un monomorphisme en dimension N+l car vN est un
isomorphisme en dimensions 0, 1,..., N, N+ 1. Compte tenu des deux isomorphismes
établis ci-dessus, nous avons donc bien établi les assertions du théorème.

Par des manipulations purement formelles, on peut déduire divers corollaires de

ce théorème ; retenons le suivant.

Corollaire 3.3. Soient deux A-algèbres topologiques D et B, une B-algèbre topo-
logique C et un D®A C-module W. Soient {A^ (Ba...), (Ca...) et (Da...) des systèmes

fondamentaux d'idéaux ouverts de A, de B, de C et de D avec Aa'DczDa9 AaBczBaet
Ba'Cc Ca. Supposons en outre que pour tout i avec 0<i^N et pour tout a, il existe un

P plus petit que a tel que les homomorphismes suivants soient nuls:

p, B/Bp) -> TorfM« (D/Z)a, B/Ba)

CICp)^TortIA*(DIDa, C/C,).

Alors sous ces conditions, Vhomomorphisme canonique

HtJ(D ®AB, D ®AC, W)->Htj(B, C, W)

est un isomorphisme pour j 0, 1,2,..., N et un monomorphisme pour j=N+\. En

particulier on a, sans condition, un monomorphisme

Hti(D®AB,D®AC, W)-+Htl(B9 C, W).

Démonstration. Voir [An] Proposition 19.6.

IV. Algèbres formellement lisses

Nous allons voir de quelle manière le corollaire 3.3 s'applique à l'étude des

algèbres formellement lisses. En fait nous allons démontrer deux résultats connus
([Gr] Corollaire 19.4.6 et Proposition 19.4.7) sous des hypothèses moins fortes.

Rappelons qu'une ^4-algèbre topologique B est formellement lisse si et seulement si

pour tout l?-module W le groupe H} (A9 B, W) est nul.

Commençons par un lemme. Puisque le groupe H* (A, B, W) dépend de W d'une
manière fonctorielle et puisqu'il existe un homomorphisme canonique de l'anneau B
dans l'anneau des endomorphismes du 5-module W, le groupe H* (A, B, W) peut
être muni d'une structure naturelle de 2?-module.
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Lemme 4.1. Soient deux A-algèbres topologiques B et A' et un B-module W.

Supposons d'une part le A-module A' plat et d'autre part l'une des conditions suivantes

satisfaite:
i) le A-module A' est projectif de type fini
ii) l'anneau A est noethérien et la A-algèbre B est de type fini.
Alors l'homomorphisme canonique

Ht*(A,B, W)®AA'->H?(A,B, W®AA')
est un isomorphisme.

Démonstration. Vu le bon comportement du produit tensoriel par rapport aux
limites inductives,il suffit de démontrer que les homomorphismes canoniques

a, W®AA')

sont des isomorphismes. Choisissons maintenant une ^4/v4a-résolution simpliciale de

BjBa: voir [An] Proposition 17.2. Notons-la Y* et utilisons-la pour calculer les

groupes de cohomologie en question: voir [An] Proposition 17.1. Le ^4-module A'
est plat, par conséquent nous en avons terminé si nous démontrons que les

homomorphismes canoniques

Der(v4Ma, Y*, W)®AA' -* Der(v4/Aa, Y*, W®AA')

sont des isomorphismes. Faisons la démonstration en dimension n et appelons E un
ensemble d'éléments de Y" formant une base de cette algèbre libre. Il nous faut donc
démontrer que l'homomorphisme canonique

est un isomorphisme. Cela a lieu par exemple si le ^4-module A' est projectif de type
fini ou si l'ensemble E est fini. Le premier cas du lemme est donc démontré. Pour
démontrer le deuxième, il faut encore remarquer que la résolution simpliciale Y* peut
être choisie de type fini en toutes les dimensions. En effet l'anneau A/Aa est alors
noethérien et la ^4/^a-algèbre B/Ba est alors de type fini et on peut appliquer [An]
Proposition 17.2.

Proposition 4.2. Soient une A-algèbre topologique B et une A-algèbre topologique
A' munie de la topologie déduite de celle de A. Supposons d'une part le A-module A'
fidèlement plat et d'autre part l'une des conditions suivantes satisfaite:

i) le A-module Ar est projectif de type fini
ii) Vanneau A est noethérien et la A-algèbre B est de type fini.
Alors B®AA' est une A'-algèbre formellement lisse si et seulement si B est une

A-algèbre formellement lisse.

Démonstration. D'après le corollaire 3.3, pour tout B®AA'-moâv\e W, on a un

monomorphisme ^ (^ R ^^^^ (^ B w)
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Par conséquent si B est formellement lisse, B®AA' est formellement lisse.

Inversement supposons maintenant la ^'-algèbre B®AA' formellement lisse; il
nous faut démontrer que le groupe H] {A, B, W) est nul pour tout jB-module W.

Commençons par appliquer le corollaire 3.3 en remplaçant (A, B, C, D) par
(Ad9 At9 B, Ad). Puisque les anneaux Ad et Ad sont discrets et que le >4-module A' est

plat, les conditions du corollaire sont satisfaites pour tout N. Par conséquent on a

un isomorphisme

H* (4 ®Ad A'i9 B ®Ad Ad9 W)- Ht* (At9 B, W).

D'autre part la topologie de A1 est déduite de celle de A. Par conséquent on peut
remplacer • ®AdA'd par • ®AtA't. Ainsi on a un isomorphisme

H*(A\ B®AA'9W)-+ Ht*(A, B, W).

Prenons ffî= W®AA' et appliquons le lemme 4.1 qui nous permet d'écrire le but de

cet isomorphisme sous une autre forme. Nous avons donc établi l'existence d'un
isomorphisme

H*{A\B®AAf9 W®AA')-+Ht*(A9B, W)®AA'.

Puisque B®AA' est formellement lisse, la source est nulle en dimension 1. Le but est

donc nul en dimension 1. Mais A' est fidèlement plat, par conséquent le groupe
Hj (A9 B, W) lui-même est nul, ce qu'il fallait démontrer.

Proposition 4.3. Soient A un anneau topologique préadmissible, I un idéal de définition

de A et B une A-algèbre topologique. Soient (Aa...) et (Ba...) des systèmes
fondamentaux d'idéaux ouverts de A et de B respectivement avec AaBczB(X. Supposons

en outre que pour tout a, il existe un fi plus petit que oc tel que l'homomorphisme suivant
soit nul

TorfIA*(B/Bp, Ail) -* TorfM*(B/Ba, A\î)

(par exemple si B est un A-module formellement projectif). Alors BjIB est une Ail-
algèbre formellement lisse si et seulement si B est une A-algèbre formellement lisse.

Démonstration. D'après le corollaire 3.3, pour tout 2?//#-module W, on a un
monomorphisme

H* {AIh B/IB, W)->HÏ {A, B9 W).

Par conséquent si B est formellement lisse, B/IB est formellement lisse.

Inversement supposons maintenant la yi//-algèbre B/IBformellement lisse; il nous
faut démontrer que le groupe H] (A, B, W) est nul pour tout i?-module W. Comme il
est toujours sous-entendu, W est annulé par un Ba donc en particulier par un In. On
fait la démonstration par induction sur n. Pour «= 1, on a d'après le corollaire 3.3:

Hl {A, B9 W)s Htl {AIh B/IB, W)*0.
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Le passage de w— 1 à « est immédiat puisque l'on a une suite exacte:

El (A, B, IW)^Htl (A, B, W)-> Htl (A, B, WjIW).

La proposition est donc démontrée.
Le premier groupe de cohomologie est étroitement lié à la notion de lissité

formelle. En fait on «mesure» de combien une algèbre n'est pas formellement lisse à

l'aide d'un certain premier groupe de cohomologie. Le deuxième groupe de cohomologie

est étroitement lié à la notion de régularité. En fait on «mesure» de combien

un anneau n'est pas régulier à l'aide d'un certain deuxième groupe de cohomologie.
En outre ces deux notions (lissité formelle et régularité) sont aussi étroitement liées,
voir [Gr] Théorème 22.5.8 par exemple. Ces relations sont à peu près du type suivant:
une certaine algèbre est formellement lisse si et seulement si un certain anneau est

régulier. Il semble donc souhaitable de les faire découler de relations plus fortes du

type suivant : un certain premier groupe de cohomologie est isomorphe à un certain
deuxième groupe de cohomologie. Voici un résultat dans cette direction.

Proposition 4.4. Soient B une A-algèbre topologique préadmissible et J un idéal de

définition de B, Supposons la A-algèbre topologique BjJformellement lisse. Alors pour
tout BjJ-module W on a un isomorphisme naturel:

Htl (A, B, W) ^ H2 (B, BjJ, W).

En particulier la A-algèbre B est formellement lisse si et seulement si le foncteur
Hf(B,B/J9')estnul.

Démonstration. Le cas particulier de la proposition découle immédiatement du cas

général si l'on tient compte de la remarque suivante. Le groupe H] {A, B, W) est nul

pour tout ^-module W s'il l'est pour tout i?-module W annulé par /: voir la démonstration

de la proposition 4.3.

Pour la démonstration du cas général, on utilise le triple suivant {A, B, B/J) et la
suite exacte lui correspondant

H}(A, B/J, W)-^Hti(A9 B, W)^H2(B9 B/J, W)^H2(A9 B/J, W)->Ht2(A, B, W).

Le premier terme est nul, il suffit donc de démontrer que le dernier homomorphisme
est un monomorphisme. Ce sera chose faite si l'on vérifie que pour tout k^ 1 l'homo-
morphisme canonique

H2(A9 BIJ, W)-> H2 (A, B/J\ W)

est un monomorphisme. C'est le cas car H2 est contravariant par rapport à la deuxième

variable et car le .4-homomorphisme B\Jk-+B\J a un relèvement puisque la

^-algèbre BjJ est formellement lisse. La proposition est donc démontrée.

Nous étudierons d'une manière plus approfondie les relations entre premiers et

deuxièmes groupes de cohomologie au cours du sixième paragraphe. Cela se fera sous
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des hypothèses supplémentaires: A sera un corps et B un anneau local noethérien,
mais sans hypothèse concernant la ^-algèbre B/J. Vu la proposition 1.7, il est tout à

fait naturel de se restreindre au cas noethérien. D'ailleurs nous allons voir que dans

ce cas on peut remplacer les groupes de cohomologie «topologique» par les groupes
de cohomologie «discrète».

V. Cas noethérien

Nous allons continuer l'étude entreprise précédemment (lemme 2.3 et corollaire
2.4) concernant les relations existant entre les cohomologies «topologique» et
«discrète».

Lemme 5.1. Soient un anneau noethérien A et un idéal I. Soient encore deux entiers

i>0 et k>0. Alors il existe un entier l>k tel que Vhomomorphisme canonique

Torf(All\ AIIl)-+Tovf(All\ Ajlk)
soit nul.

Démonstration. Dans le cas i=l, il s'agit de l'homomorphisme canonique de

ïl\ï11 dans Ikjl2k qui est nul sil^2k.
Dans le cas />1, posons j=i—\. Il revient alors au même de démontrer que

l'homomorphisme canonique

est nul pour un certain /. On peut évidemment remplacer A/Il par A/Ik. Il suffit donc
de démontrer que pourj> 0 et k > 0, il existe /> k tel que l'homomorphisme canonique

Torf(l\A/Ik)->Torf(l\Allk)
soit nul.

Soit M* une résolution libre de type fini (en chaque dimension) du yl-module
Ajlh. Une telle résolution existe puisque A est noethérien. Puis on munit Il®AMj de

la filtration canonique :

pour 7î 0, 1,.... On désigne encore par F% la filtration induite par la filtration définie
ci-dessus sur les sous-modules de Il®AMj et sur leurs quotients. Puisque Mj est de

type fini, toutes ces filtrations sont g-bonnes en vertu du théorème d'Artin-Rees : voir
[Se] p. II 9. En particulier Torf(I\ Ajlk) est muni d'une filtration #-bonne. Mais ce

module est annulé par Ik. Par conséquent

Fn(Toxf(l\AIIk)) 0 pour n grand.

D'autre part l'homomorphisme canonique envoie Fn(Il®AMj) dans Fn+l-k(Ik®AMj).
Par suite l'homomorphisme canonique envoie Fn(Torf(Il,A/Ik)) dans Fn+I_fc(Tor^
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(/k, Ajlk)). En prenant n nul et / assez grand (en fonction dey et de k) on voit donc que
l'homomorphisme canonique envoie Torj(l\ A/Ik) dans 0. Le lemme est ainsi
démontré.

Corollaire 5.2. Soient un anneau noethérien A et un idéal I. Munissons A de la
topologie discrète: Ad et de la topologie I-préadique: At. Alors les groupes de cohomologie
H"(Ad, At9 W) sont tous nuls.

Démonstration. Nous allons utiliser les trois isomorphismes canoniques:

En vertu du lemme précédent les conditions du théorème 3.2 sont satisfaites pour le

produit tensoriel At®AdAt avec N infini. Par suite l'homomorphisme canonique

H?(Ad9 At ®AdAt, W)->Ht*(Ad9 At9 W)® H*(Ad9 At9 W)

est un isomorphisme. Autrement dit, l'homomorphisme diagonal

Ht*(Ad9 At9 W)^H?(Ad9 At9 W)® Ht*(Ad9 At9 W)

est un isomorphisme. Par conséquent le groupe H?(Ad, At9 W) est nul. Remarquons
que l'idée d'utiliser un produit tensoriel pour démontrer la nullité de certains groupes
de cohomologie n'est pas nouvelle : voir [An] Lemmes 20.1 et 22.1.

Théorème 5.3. Soient une A-algèbre topologique B et un B-module W. Supposons
les anneaux topologiques A et B noethériens et préadmissibles. Alors Vhomomorphisme
canonique

H*(A9B9 W)->H*(A9B9 W)

est un isomorphisme.
Démonstration. Immédiate à l'aide du corollaire 5.2 et de la proposition 2.2

appliquée aux triples (Ad9 At9 Bt) et (Ad9 Bd9 Bt).

Corollaire 5.4. Soit une A-algèbre topologique B. Supposons les anneaux
topologiques A et B noethériens et préadmissibles. Soit J un idéal de définition de B. Alors la
A-algèbre topologique B est formellement lisse si et seulement si d'une part le B/J-
module H0(A9 B, BjJ) est projectifet d'autre part le B\J-module Hl {A, B, BjJ) est nul.

Démonstration. En vertu du théorème précédent on peut oublier les topologies de

A et de B et affirmer que l'on a la lissité formelle si et seulement si H1 {A, B, W) est nul
pour tout i?-module W annulé par un idéal /". On sait que cette condition est satisfaite
si et seulement si H1 (A, B, W) est nul pour tout ^//-module W. On a évidemment une
suite spectrale

ExtpBIJ(Hq(A9 B, B/J% W)^Hn(A, B, W)
p

(remplacer les i?-modules par des ^//-modules dans la démonstration de la proposi-
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tion 1.8). En particulier pour tout B/Z-module W on a une suite exacte:

0->Ext*;J(Ho(A9 B, BJJ)9 W)-*!!1 (A9 B, W)->

HomiH^A, B, B/J), W)-> Ext2B/J(H0(A, B, B/J), W).

Si Ho (A, B, BjJ) est projectif et Ht (A, B, BjJ) nul, il est bien clair que H1 (A, B, W)
est nul pour tout B//-module W. Inversement si cette condition est satisfaite, le terme
Ext1 est nul pour tout B//-module W9 par conséquent le B//-module H0(A, B, BjJ)
est projectif. Mais alors le terme Ext2 et par suite le terme Hom sont nuls pour tout
^//-module W9 par exemple Ht (A, B, B/J) lui-même. Ainsi le B//-module
Hl {A, B, BjJ) est nul. La démonstration est donc achevée.

Notons encore le résultat suivant qui complète un résultat connu concernant la

complétion: voir [An] Proposition 21.1.

Corollaire 5.5. Soit une A-algèbre topologique B. Supposons les anneaux topo-
logiques A et B noethériens et préadmissibles. Soient Â et B les complétés séparés de

A et de B. Soit en outre un Ê-module W. Alors Vhomomorphisme canonique

est un isomorphisme.
Précisons ce qui suit. Puisqu'il s'agit d'homologie les quatre anneaux de l'homo-

morphisme canonique sont considérés comme étant discrets. En outre W est supposé
être un jS-module, pour l'anneau topologique Ê. Autrement dit si / est un idéal de

définition de B9 alors W est un i?//w-module pour un certain n.

Démonstration. On a donc quatre anneaux noethériens et préadmissibles. On

peut appliquer deux fois le théorème 5.3:

Ht*(A9B9W)*H*(A9B9 W)

Ht*(Â9Ê9W)*H*(Â9Ê9W).

Mais de la définition même des groupes H? découle immédiatement ce qui suit:

Ht*(A9B9 W)^Ht*(Â9Ê9 W).

Par conséquent l'homomorphisme canonique

H*(Â,Ê,W)^H*(A,B,W)
est toujours un isomorphisme.

Utilisons maintenant la suite spectrale rencontrée au cours de la démonstration du
corollaire 5.4. Elle nous dit en particulier que l'homomorphisme canonique

nomB/J(H*(Â, Ê, B/J), W)-+ HomBfJ(H*(A, B, BjJ)9 W)

est un isomorphisme pour tout B//-module injectif W. Par conséquent l'homomor-
phisme canonique ^ R RjJ) ^^ Ê RjJ)
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est lui-même un isomorphisme. Par un argument standard on démontre alors le
corollaire pour tout B/J-module. On passe au cas général par induction au moyen de

la proposition 1.1.

VI. Algèbres sur un corps

Continuons l'étude des relations entre les premiers et les deuxièmes groupes de

cohomologie, comme nous y invite la proposition 4.4. Vu les résultats du paragraphe
précédent, il semble normal de remplacer les groupes de cohomologie par des groupes
d'homologie.

Commençons par le cas simple des corps. Considérons un corps Ket un sous-corps
k. Nous savons que H2 (k9 K9 K) est toujours nul (Proposition 1.6) et que Hx (k, K, K)
est nul si l'extension est séparable (Proposition 1.5). Nous allons établir un isomorphisme

entre Ht (k9 K9 K) et un deuxième groupe d'homologie aisément calculable.

Lemme 6.1. Soient k un corps de caractéristiquep>0et Kun surcorps de ki/p. Alors
Vhomomorphisme canonique

H1(k,K,K)^H1(kl»,K,K)
est nul.

Démonstration. Soit P le corps premier de k. De la proposition 1.2 découle alors le

diagramme suivant avec deux suites exactes :

H, (P, K9 K) -+ Ht (fc, K,K) >H0 (P, k9 K)
ï ï t

Ht(P9 K9 K) —iï^fc1", X, K)^H0(P9 k1Ip9 K).

Puisque Ht (P, K9 K) est nul, il suffit de démontrer que l'homomorphisme canonique

H0(P9k9K)->H0(P9ki/p9K)

est nul. Cela est bien clair en vertu des égalités suivantes pour les différentielles
absolues de ki/p: si x est un élément de k9 alprs

dx d(xïlpf pxp-llPd(xl/p) 0.

Rappelons le résultat suivant.

Lemme 6.2. Soient k un corps de caractéristique p>0 et k' un sous-corps de k1/p.

Soit A une k-algèbre qui soit un anneau local d'idéal maximal I. Alors le produit
tensoriel A<g)kkf est un anneau local. L'idéal maximal est formé des éléments du

produit tensoriel dont une puissance appartient à l'image de I®kk'.
Nous établirons des isomorphismes entre premiers et deuxièmes groupes d'homologie

au moyen du résultat suivant.
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Lemme 6.3. Soient X un corps, C une X-algèbre, Y un surcorps de X et Z une

C®x Y-algèbre qui soit un corps. Alors l'homomorphisme canonique

H2{C,Z,Z)->H2{C®XY,Z,Z)

est un monomorphisme. En outre il existe un monomorphisme naturel

H2 (C ®x Y, Z, Z) -> H, (X, C, Z)

qui est un isomorphisme si l'homomorphisme canonique

Ht{X,Z,Z)^H1{Y,Z,Z)
est nul.

Démonstration. De la proposition 1.2 découle le diagramme suivant avec deux
suites exactes:

H2(X, Z, Z)-+H2(C, Z, Z) >Hl(X, C, Z) >Ht{X9 Z, Z)
1 |a [fi [y

H2(Y, Z, Z) -+H2(C ®x Y, Z, Z) AHt (y, C ®x Y, Z)-^H1(Y, Z, Z).

Nous en savons ce qui suit:
a) H2 (X, Z, Z) est nul (Proposition 1.6)

b) H2 (y, Z, Z) est nul (Proposition 1.6)

c) fï est un isomorphisme ([An] Proposition 19.6).

D'après a) et c) l'homomorphisme Soa est un monomorphisme, donc a est un
monomorphisme. D'après b), l'homomorphisme e est un monomorphisme. D'après c), le

monomorphisme fi~1 o£ est bien défini. Si y est nul, Ô op est nul, donc S est nul et s est

un isomorphisme. Le monomorphisme j8~1 oe est alors un isomorphisme. Le lemme est

ainsi démontré.

Théorème 6.4. Soient un corps K et un sous-corps k de caractéristiquep>0.
Considérons le produit tensoriel K®kki/p B et l'idéal maximal J des éléments nilpotents
de B. Alors les espaces vectoriels sur BjJ

et H2(B, B\J, B/J)

sont isomorphes de manière naturelle. Le deuxième espace vectoriel se calcule de la
manière suivante: on considère le complexe suivant de B-modules

où x®y est envoyé sur xy par n et sur x®y—y®x par t et on forme le B-module

Ker/i/Imt annulé par J.
L'idéal / est le noyau de l'homomorphisme du produit tensoriel K®kki/p dans

une extension dc,K algébriquement close. Par conséquent / mesure de combien les

extensions K et ki/p de k ne sont pas linéairement disjointes. D'autre part, comme le
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démontre le théorème, l'espace vectoriel Hx (k, K9 K) est nul si et seulement si l'extension

K de k est séparable. Par conséquent cet espace vectoriel mesure de combien
l'extension n'est pas séparable. Le théorème met en relation ces deux mesures. On a

donc obtenu une généralisation du critère de séparabilité de MacLane.
Démonstration. On applique le lemme 6.3 en remplaçant (X, C, 7, Z) par

(k, K, kllp, B/J). On vérifie que la condition de ce lemme est satisfaite en appliquant
le lemme 6.1 en remplaçant (k, K) par (k, B/J). Alors l'isomorphisme du lemme 6.3

est l'isomorphisme du théorème.

La deuxième partie du théorème est un cas particulier de [An] Proposition 26.2.

Dans le même ordre d'idée on a l'égalité de Cartier: voir [Gr] Théorème 21.7.1.

Proposition 6.5. Soit K une extension de type fini de k. Alors l'espace vectoriel

Ht(k, K, K) est de rang fini, /=0, 1. En outre on a l'égalité

rg* Ho (/c, K, K)-igK H, (/c, K, K) deg tr, K.

Démonstration. A l'aide des propositions 1.2 et 1.6 on se ramène au cas d'une
extension monogène d'un des trois types suivants:

a) transcendante pure
b) algébrique séparable
c) radicielle
On peut alors calculer explicitement ([An] Propositions 20.3 et 25.1). On trouve

alors pour l'égalité: (1,0,1), (0,0,0) et (1,1,0).
Approfondissons maintenant l'étude des relations entre les premiers et les

deuxièmes groupes d'homologie. Le théorème 6.4 nous montre ce à quoi nous pouvons
nous attendre. Nous traiterons maintenant le cas d'une algèbre sur un corps, locale et
noethérienne si l'on veut exploiter l'isomorphisme qui sera établi. Rappelons deux
faits. Considérons d'une part un corps k et une ^-algèbre A noethérienne qui soit un
anneau local d'idéal maximal /. Alors Hi (k, A, AII) est nul si et seulement si la k-
algèbre A munie de la topologie /-préadique est formellement lisse : voir le corollaire
5.4. Considérons d'autre part un anneau B noethérien local d'idéal maximal /. Alors
H2(B, B/J, BjJ) est nul si et seulement si l'anneau B est régulier: voir la proposition 1.7.

Rappelons encore un résultat bien connu: voir [Gr] Corollaire 19.6.5.

Proposition 6.6. Soit une extension finie k' d'un corps k. Soit aussi une k-algèbre A

qui soit un anneau local noethérien d'idéal maximal I et qui soit formellement lisse une

fois munie de la topologie I-préadique. Alors l'anneau semi-local A®kk' est régulier.
Démonstration. Appelons M, les idéaux maximaux du produit tensoriel A®kkr

et Kt les corps résiduels A®kk'lMt avec /=1, 2,..., n. Ce produit tensoriel est une

.4-algèbre de type fini, par conséquent il s'agit d'un anneau noethérien. Cet anneau
semi-local est régulier si l'on démontre que chacun des anneaux locaux (A(g)kk')Mi
est régulier. Appliquons le lemme 6.3 en remplaçant (X, C, 7, Z) par (k, A, k', Kt).
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On a donc un monomorphisme

H2 (A ®k k', Kh Kt) -* Ht (k, A, K,).

Mais le but de ce monomorphisme est isomorphe à

H1(k,A,All)®AllK, 0.

Par suite la source de ce monomorphisme est un espace vectoriel nul. Il est d'ailleurs
isomorphe à

H2((A®kk')Mt, Kt, Kt)

d'après [An] Proposition 20.3. Mais la nullité de ce dernier espace vectoriel entraîne
la régularité de l'anneau local (A®kk')Mi, ce qu'il fallait démontrer.

Il existe une réciproque de la proposition précédente: voir [Gr] Théorème 22.5.8.

Nous allons la déduire comme corollaire d'un isomorphisme généralisant celui du
théorème 6.4.

Théorème 6.7. Soient un corps k de caractéristiquep>0 et une k-algèbre A qui soit

un anneau local de corps résiduel K. Considérons Vanneau local A®kki/p et son corps
résiduel L. Alors les espaces vectoriels sur L

Hl(KA9K)®KL et H2(A®kkUp,L,L)

sont isomorphes. Si en outre k! désigne un corps compris entre k et kî/p et Lr le corps
résiduel de Vanneau local A®kk' f Vhomomorphisme canonique

H2(A ®kk\ L', ll)®vL^ H2{A ®fcfc1/p, L, L)

est un monomorphisme. De plus on a Végalité suivante:

U lm\H2{A ®kk\ L', L)®VV\ H2(A ®kk1/p, L, L)

où k! parcourt Vensemble filtrant des extensions k1 de k finies et contenues dans ki/p.
Démonstration. On démontre la première partie du théorème 6.7 comme la

première partie du théorème 6.4, en appliquant la deuxième partie du lemme 6.3 où

(k, A, k1/p, L) remplace (X, C, F, Z).
On démontre la deuxième partie du théorème en appliquant la première partie du

lemme 6.3 où (k'9A®kk',k1/p,L) remplace (X, C, Y, Z). L'homomorphisme
canonique ^ {A ^ fe, ^ L) _^ ^{A ^ fcl/p> L £)

est donc un monomorphisme. Mais H((L\ L, L) est nul pour i=2, 3: voir [An]
Proposition 22.2. On applique la proposition 1.2 en remplaçant (A,B,C) par
(A®kk\ L\ L) qui démontre alors que l'homomorphisme canonique

H2(A ®kk\ L', L)®VL-+ H2(A ®kk\ L, L)

est un isomorphisme.
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Pour démontrer la troisième partie du théorème il faut et il suffit de vérifier
l'égalité suivante :

U lm\H2{A ®kk\ L, Lj] H2(A ®kkl/p, L, L).

Celle-là découle de [An] Proposition 18.4 en vertu de l'égalité suivante:

où Ton identifie A®kk' à son image dans A®kkl/p.
Le théorème étant démontré, il est immédiat d'en déduire la réciproque de la

proposition 6.6: voir [Gr] Théorème 22.5.8.

Corollaire 6.8. Soient un corps k de caractéristiquep>0 et une k-algèbre A locale
noethérienne. Si pour toute extension finie k' de k telle que kfpczk Vanneau A®kk' est

régulier, alors la k-algèbre A est formellement lisse pour sa topologie préadique.
Démonstration. Pour tout k', l'anneau local A®kkr est régulier, donc l'espace

vectoriel H2(A®kk\ L',L') est nul. D'après le théorème 6.7 l'espace vectoriel

i/j (k, A, K) est par suite nul, donc la A>algèbre A est formellement lisse.

Ajouté en mars 1968:

J'aimerais mentionner les deux travaux suivants:
S. Lichtenbaum - M. Schlessinger, The Cotangent Complex of a Morphism,

Trans. A.M.S. 128 (1967), 41-70.
M. André, On the Vanishing of the Second Homology Group of a Commutative

Algebra, Reports of the Midwest Category Seminar II, Springer Lecture Notes (1968).
Dans le premier, les groupes d'homologie Hi(A9 B, W) pour /=0, 1, 2 sont définis

autrement et on y démontre également le corollaire 6.8. ci-dessus. Dans le deuxième,

on voit apparaître une condition nécessaire et suffisante pour que H* (A, A/I9.) soit

identiquement nul.
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