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On the Homotopy Suspension !)

by T. GANEA

Introduction

The present paper is devoted to a study of the following process: take an : rbitrary
map d: A— X, use it to attach the cone CA4 to X and obtain a space B=Xu CA4, and
then lift d in a natural way to a map e: A— F, where F is the *““fibre’” of the inclusion
map X— B. An important particular case arises when X is a point; the resulting map e
is then readily identified to the natural embedding 4—-Q2X 4 of A in the loops of its
suspension. This case, which is crucial for computing homotopy groups of spheres, has
been thoroughly investigated in [21], and most of the results therein extend to the
general situation considered here [4]. Next, as shown in [4] and [6], study of the above
process yields a satisfactory theory of the dual of Lusternik-Schnirelmann category;
in particular, it elucidates the relationship between this dual and the homotopical
nilpotency of loop spaces. Finally, the analysis of low-dimensional cases presented
in the last section of this paper reveals that some results of homological algebra may
also be derived from the general theorems pertinent to the process described.

The main problem in this context is to study the map e; specifically, one seeks
convenient descriptions of the homotopy types of the fibre E and of the cofibre K of e
so as to obtain generalizations of the EHP sequence [21]. Duality and the result in
[4; 1.1] suggest that the homotopy type of K only depends on those of 4 and B; how-
ever, examples (see 1.4 below) disprove this conjecture. Nevertheless, the homotopy
type of the suspension 2 K is determined by those of 4 and B, and this enables us to
express the homotopy type of K itself in terms of 4 and B in a limited range of
dimensions. There are several ways of doing that, and the maps which relate K to
various functors of the two arguments 4 and B appear as generalizations of various
forms of the Hopf invariant. Description of the homotopy type of E brings the
generalized Whitehead product into the picture.

Some of those questions were already studied in [4]. The present paper improves
and simplifies the results in [4;§ 3 and § 4], and is independent of them. In [4], a
SR Ao Fy > F,>nsF > Fy=CA
was associated with any space 4; F,,, is the fibre of the inclusion F,—F,u C4, and
A—F,, is the natural lifting of A—F,. The exact sequences

§é 8P ﬂp+q(Fp+1, A)"'" TCp+q(Fp, A)—‘) 1'Cp+q(FpU CA)_) 7'Cp+q_.1(Fp+1, A)"_)"'

1) This work was partially supported by NSF GP-6711.



226 T. GANEA

yield an exact couple and the resulting spectral sequence is dual to that defined in
[7; § 1]. Most of the resultsin [7; § 1 and § 2] readily dualize to the present situation.
The dual of [7; 2.1] asserts that d"=0 if r>cocat 4, the latter being the least integer
k>0 such that A is a retract of F,; the proof follows the pattern described in [7; § 2]
and its geometric part is obtained by straightforward duality from the results in
[6; § 4], so that no details seem to be necessary.

The author gratefully acknowledges stimulating discussions with B. ECKMANN on
the last section of the paper.

1. The homotopy type of a certain cofibre

Consider a cofibration
ASxLB=xuc4 (1)

where d and f are inclusion maps, and B results by erecting a reduced cone over the
subset 4 of X; a point in the cone CA4 is denoted by sa(sel, ae A), the map a—1la
embeds A4 as base in the cone, and 0 4 U I'* is identified to the vertex ( stands for the
base-point in any space). Let n: PB— B be the “‘end-point” fibre map on the space of
paths in B, starting at %, and let F be the fibre space over X induced by f from =;
since f is an inclusion, F=n"!(X). The triple F»X—B may be considered as a
fibration and we will call F the fibre of f; this process, which may be applied to any
map, does not lead to any ambiguity since F has the homotopy type of f ~!(*) in case
fis a fibre map. The loop space 2 B operates on F through the map ¢o: QBx F—F
given by ¢(w, f)=w+f, where + and — denote path addition and subtraction. A
natural lifting e: A— F of d is defined by e(a) (s)=saeB. Let K=FuU CA be the co-
fibre of e, let k: F— K be the inclusion, and introduce the composite

H:QB*A—SQBsF5I(QB x F)SIFS 5K

where * and X are the reduced join and suspension functors, and V¥ collapses to a
point the two ends of the join so that V((1—s) o®sf)={_s, (w, B)); thus, ooV
results by the Hopf construction associated with ¢. The following result was obtained
independently in [5] and [10; 2.1].

THEOREM 1.1. If (X, A) has the homotopy type of a CW-pair, and if A and X are
connected, then H is a homotopy equivalence.
Proof. Let E=n"'(4) and G=n"'(CA) so that PB=FUG and E=FNG. Let
the maps
GUCES5PBUCFSXF

be given by inclusion and by o(PB)=%*, o(sf)={l-s, ), respectively. Since
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(PB; F, G, E) has the homotopy type of a CW-ad [12] and since PB is contractible,
¢ and ¢ induce isomorphisms of homology groups. The triples E-»A4—B and
G—CA—- B may be regarded as fibrations, and the fibre of a nullhomotopic fibre map
is homotopy equivalent to the Cartesian product of the total space with the loop space
of the base. Hence, the maps QBx A—E and @BxCA—G, given by (w, sa)
—w-+e(sa) with e(sa) (t)=tsae C A and s=1 for the first, are homotopy equivalences.
So is then [14; p. 314] the induced map ¥ in the diagram

ZAvVQBxA5(QB x CA)UC(2B x A)S5GUCE,

where 4 is the homotopy equivalence given by

A{s,a) =(x,2s5a) or (2—2s)(*a),
ML =-s)o®sa)=(w,2sa) or (2-2s)(w,a),

according as 0<2s5<1 or 1 <2s<2. Since 4 and X are O-connected, the domain and
range of ... are 1-connected so that the latter is a homotopy equivalence.
Since go@ oo A coincides with e on 2 A4, Zkooo@ooA restricted to QBxA is also
a homotopy equivalence which, as direct inspection reveals, coincides with H.

REMARK 1.2. Ye and Xk have a left and a right homotopy inverse, respectively;
if 6:B—X A collapses X to a point, a left homotopy inverse r of Xe is given by

rs, By =0.p(s).

ExaMPLE 1.3. Take X=CA4 and B=2A4in (1); e: A—F is then readily seen to be
equivalent to the homotopy suspension 4->QX 4. If 4 is a CW-complex, QX 4% A4
has the homotopy type of the collapsed product 2QZX A% 4. Hence, by 1.1, 2QX 4
has the homotopy type of 24 v Z QX A % A. By iterated substitution of this expression
in place of XQX 4, and noting that A% ---% A is (m-1)-connected if it contains m
connected factors, we obtain the known [11] result

IQIA~IZAVIEAXA)V--VEAX-%A)vV--

ExaMPLE 1.4. We now show that the homotopy type of K is not determined by
those of A and B in (1). Consider the cofibration $"—»>CS"—S"*!, where S" is the
n-sphere, n>2. The resulting K is QS"*! U CS” which is well known to have non-
trivial cup products. Therefore, it cannot have the homotopy type of a suspension.
On the other hand, the K corresponding to the cofibration $"—S"v $"*1—$"*! has
the homotopy type of a suspension, as follows from

PROPOSITION 1.5. If, in the cofibration A—iX—gB, the map f has a right homotopy
inverse or, more generally, if the inclusion 0:Q B— F is nullhomotopic, then K has the
homotopy type of QB A provided A is 0-connected and (X, A) is 1-connected.
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Proof. Define p in the diagram
QBvALQBxALQBxA

bixe

P QB x F n

le
A —Ey F vty K

by p|2B=0 and p|4=1; let j be the inclusion, and let g denote the collapsing map.
Since 00, the first square homotopy commutes and there results a map u yielding
homotopy commutativity in the second square. Therefore, inspection of the definition
of H reveals that ZuoZqoV~H, where V:QBxA—>X(2Bx A) is defined as before.
Since X g V'is a homotopy equivalence, 1.1 implies that so is also Z u. The connectivity
assumptions imply that both QB3 4 and K are 1-connected, and u is a homotopy
equivalence since it induces isomorphisms of homology groups.

2. The Hopf invariants

Introduce the diagram

F ——— K -5 Q(QBxA)

Te IT {2y (2)
QBLQ(zAbB)BQ*(z 4 x B)

where k is as before, 0 is the inclusion, Yp Z is the fibre (PYx QZ)U(QY X PZ) of
the inclusion j: Yv Z— Y x Z, and ¢, { are natural maps given by

e(m @O =nOxL®), ¥((1 —s)o@sa)(®) =<t a) x ol —5s);

thus, ¢ is induced by the collapsing map q: Yx Z— Y% Z, and y is a composite of
standard maps.

To obtain J, compose the inclusion K—»QX K with QG, where G is a homotopy
inverse of H. It follows from 1.3 that J may be considered as a generalization of the
James invariants as described in [1]. Next, recall that ¥ 4 co-operates on B through
the map 7: B—X A v B which pinches together all points halfway up the cone CA4;
let 7=(o, 8) and note that

(o6(ta),0(sa))eZAvB forO<s<t<l,andf~1. 3)
In the diagram
ervzsexpnSarwvatawxz)Lawvz),

where / is the projection and M(n, {)=(n, *)+(*,{), one has QjoM~1 and there
results a map R such that

QloR+Mijﬁ1 and Rle’_‘_’l, (4)
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the values of R(n, {) (s) on the thirds of 0<s<1 are

(’73s’ CSs)’ ('7’ CZ——3s)’ ('13-—3s’ *) with (Eu (v) = é(u U)

for any path £. Then, W is defined as R. Q27; it obviously generalizes the delicate Hopf
invariant of G. W. WHITEHEAD as modified by HiLTON [8], whereas Q ¢ . W generalizes
the crude Hopf invariant. To define T, let G be the fibre of the inclusioni: B»X 4 v B;
the map h:G—->Q(Z A v B), given by h(y)=y—i.roy, satisfies

doh~1 and hol+QioQr=~1,

where r:XAv B— B is the retraction and J the inclusion. Define S=Rohog: F—
Q(XAb B), where g(f)=t.B. This construction is due to TopA and Q¢.S
coincides with his relative Hopf invariant [20]. Using (4) and the fact that o(X) ==,
the map QI/.S is easily seen to coincide with Q/.Q where, for BeF, the values of
Q(B) (s)eX Ab B on the thirds of 0<s< 1 are

(60B35 00B35), (00B,00B5-35), (00P3-35%); )]

hence, by (4), we may assume S(f) (s) to be given by (5). Using (3), it is easily seen now
that So.e~0, and there results a map T with T-k~ S its homotopy class is uniquely
determined since, by 1.2, Xk has a right homotopy inverse. Next, let the value of
h,:QBxA->Q(X A% B) at (1 —s)w@sa and ¢ be

cow(2t) % 0ow((1 —s)2tu) if 0<2t<1,
cgoe(a)(2t — 1) % OowoMin((1 —s) 2tu+1—u),1) if 1<2r<2.

Using primes to denote adjoints, ¢ S': X F—Q(Z A% B) is homotopic to ¢ given by
¢ s, BY(t)=00B(2)%0-P((1—s)t) so that, by (3), hy~¢.T - H; also, since O~1,
ho~y. This yields the first part of our next result; the low-dimensional cases of the
second part are obtained using [16].

THEOREM 2.1. Diagram (2) homotopy commutes. If A is (n—1)-connected and
(X, A) is m-connected (n>1, m>0), then e is (m+n—1)-connected, J is 2m+2n—1)-
connected, \y is (2m+n+ 1)-connected, ¢ is (N+ 1)-connected, and T is (N—1)-con-
nected, where N=m+n+ Min(m, n).

REMARK 2.2. In the relative Hopf invariant Qo Tsk, the map Q. T is (2m+n)-
connected, and 7' is monomorphic on homology and homotopy groups in dimensions
<2m+n—1.

Resume consideration of (1). Suppose that X has a comultiplication {: X—»XVv X
and that 4 has a suspension structure given by some homotopy equivalence a: 2 Y— A4
with inverse 7. Using primes to denote adjoints, define the crude Hopf (o, £)-invariant
of d by

H(d)=(¢'on):ZA->X %X
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where, with R as in (4) and ¢ as in (2), ¢ is the composite

y3e4BoxBexvx)Saxhx)B o (x x X);

this definition is consistent with that in [2; 2.11] where the suspension structure on 4
is unique. Let g: Bx B—B% B and o: B— X A be the collapsing maps, and let 4 be the
diagonal map. By arguments similar to those in [2; 3.7], one obtains

ProproSITION 2.3. If X has a comultiplication and if A is a suspension, then q.A
~(f%f)oH(d)oo:B—Bx%B.

This result may be dualized and admits various generalizations. Note that g. 4
induces the cup product in any multiplicative cohomology theory on B. Taking
A=S8%*"1and X=S%, 2.3 readily yields the classical result [19] relating H(d) to the
cup product in S* U e?*,

3. The Whitehead product

The preceding results enable us to simplify and improve slightly the results in
[4; 3.2 and 4.1]. Introduce the diagram

DhASDvAIDxASDxA
14 Ip Ir v

E 5 4 5 F 5 k (6)
i I I
g d J

oBEZD &5 4 5 x 4L B

where D and E, with projections g and A, are the fibres of the inclusions d and e,
respectively. The map i is induced by the projection = so that i(¢)=noe, and the
bottom squares obviously commute. Next, ¢ is the natural map from the fibre of d
to the loops of its cofibre followed by loop inversion; regarding Q B as a subset of F
under the inclusion 0, one has ¢ (&)=e(&(1))—f-¢& and

dop~eog via h(&)=e(l)+(—f-&)eF, @)

where £eD and f,(s)=p(¢s) for any path f. The map p is given by p|D=g and p|4=1,
whereas r=g.(¢ x e) so that, by (7), eop~roj. Since D% A has the homotopy type
of the cofibre of j when 4 and D have the homotopy type of CW-complexes, p, r, and
h, induce maps A and u such that the remaining squares homotopy commute.

THEOREM 3.1. If (X, A) has the homotopy type of a CW-pair, then (6) homotopy
commutes. If A is (n—1)-connected and (X, A) is m-connected, then ¢ is (m+n—1)-
connected and p is (m+2n—1)-connected when c>1, whereas A is (m+n+c—2)-
connected when ¢ >2; here c=Min(m, n).
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Proof. The connectivity of ¢ follows easily. The diagram

Dx AL Z(D x A5 2(D x A)
Jort 1Zn
QBxA il — XK

where V and H are as in § 1, homotopy commutes. Since the horizontals are homotopy
equivalences, X u has the connectivity of ¢+1, which is m+2n, and the connectivity
of u follows since its domain and range are 1-connected. When ¢ > 2, the “relative
Whitehead theorem” [13] may be invoked to derive the connectivity of A from that
of u noting that p is c-connected.

To complete the picture, recall [4; 5.1] that, with no restrictions on m or n, there
is a homotopy equivalence ¢ yielding homotopy commutativity in the diagram

QD+ QAL Z(QD x QA)3Z(QD % QA)
le LS, 51 ®)

DpA———s>DvA—2 4

where the bracket on the right denotes the Whitehead product of

SOD3D5A4 and QA A

here, S{s, a)=a(s). Then, 3.1 and (8) enable us to replace, in a certain range of
dimensions, the map 4 in (6) by a Whitehead product, and various generalizations of
the EHP sequence [21] are available (cf. [4; § 5]).

4. Low dimensions

We study the extent to which the last statement in 3.1 survives when c=1. The
notation is as in 3.1 and (6). We use square brackets to denote Whitehead products
and subgroups generated by them; the Whitehead product of 1-dimensional elements
is their commutator, and the operation of n; on &, may be expressed in terms of
Whitehead products. Suppose first that n=1 and m>1. Let Il =n,(A4), G=mn,,(A),
and let M=Img,=Kerd, =G, where the subscript m denotes induced homomor-
phisms of homotopy groups.

THEOREM 4.1. Suppose that A is connected and that (X, A) has the homotopy type
of an m-connected CW-pair with m>1. Then

Imh, =Im(hoA),=[M, ] and =,(F)=~G/[M,II]

under the epimorphism e,,. Furthermore, there is an exact sequence T, ,1(X)—> 7,1 (B)
— M|[M, 110, where the first homomorphism is induced by f.
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Proof. Obvious identifications enable us to insert 4, and g, in the commutative
diagram . ,
Tm+1 (F’ A) - nm(A)

e I
Hy i1 (X, A) € 1y g (X, A)'g'?“m(A)
17 s+

H,. (B, CA) €, (B, CA)
in which the ¢’s are Hurewicz homomorphisms. One has

Im hm =gm(Im7r#) = gm(Kerf#)’ (9)
the latter equality being valid since the sequence F— X — B is (essentially) a fibration.
Since B is m-connected, g, is isomorphic; also, f, is isomorphic by excision. Therefore,

Ker f, = Kerg.

Since (X, 4) is m-connected, the structure of Ker g is given by the relative Hurewicz
theorem [15; Th. 4, p. 397], and we obtain

gm(Ker f,) =[M, IT]. (10)
Next, the first inclusion in

[M, H]CIm(pol)m=Im(hol)mCImhm (11)

follows easily from (8); the equality is given by (6), and the second inclusion is ob-
vious. The first part of 4.1 follows now by inspection of (9), (10), and (11). The con-
nectivity of e is m+n—1=m by 2.1. The exact sequence results upon noting that, in
the homotopy sequence of the fibration F—» X— B, =,,(F)-n,(X) is equivalent to the
natural homomorphism G/[ M, IT]-G/M which has M/[ M, IT] as kernel.

As a by-product of the proof we have

PROPOSITION 4.2. Im(pol),=[M, IT].

REMARK 4.3. If m=1 and n>2 so that m+n—1=n, then 4.1 is trivially true in
the sense that

Im(hoA), «Imh, = Kere, =0;

this follows since now Kere, may be computed by passing to homology where 1.2
applies. The exact sequence becomes

Ryr1(X)> 7, (B)> N>0, where N =Img,=Kerd,.

Thus, since Db A is (m+n—2)-connected, we may say that ho4 in (6) behaves as
if A were (m+n+ c—2)-connected even when c=1.
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EXAMPLE 4.4, Let 4 be an m-dimensional CW-complex with 7,(4)=0 for
1 <g<m, and let X result by attaching cells to 4 so as to kill n,(4) for all g>1. Thus,
X is aspherical and H,(X)~ H,(IT) for all g, where IT =mn, (A). Consider the diagram

0=, (X)> 7y (B)> 7y (B, X)o7, (X)=0

les lez
0=H,,(4)— H,(X) > H,y((B)— H, (B, X)

where the ¢’s denote Hurewicz homomorphisms. Since B is m-connected, g, is iso-
morphic and, by exactness of the rows, we obtain H,,,,(X)~Kerg,. To compute the
latter, introduce the diagram

I'n(A)— i1 (CA, A)— T'yiy (B, X)

! ! i)
[ (A), ] = T (A) = T 1 (C A, A) 5 7,1 (B, X)
les le 1%

Hm(A)_a_:—l-)Hm+1 (CA’ A)_d‘_)Hm+1(B’ X)

where 07! is inverse to the appropriate boundary isomorphism, d,,., and d, are in-
duced by the inclusion d, the I'’s are the kernels of the g¢’s, and the top horizontals
are induced by the bottom squares. Since d,,, .0~ ! coincides with e,, followed by a
natural isomorphism =, (F)-n, (B, X), it is epimorphic and has [=r,(A4), II] as
kernel by 4.1; also, the bottom composite is clearly isomorphic. Therefore,

Hm+1 (H) = Fm+l (B’ X) = Fm(A)/[nm(A)’ H] ’
a well known result due to HopF [9].

ExAMPLE 4.5. Let 4 and X be aspherical spaces with fundamental groups Il and
II/ M, respectively, where M is a normal subgroup of IT; let d induce IT—II/M. Since
B is 1-connected, H,(B)~m,(B) by the Hurewicz theorem; since n,(X)=0, n,(B)
> M|[M, II] by the exact sequence in 4.1. Therefore, part of the homology sequence
of the cofibration A—X— B may be rewritten as

H, (IT) - H,(I1/M) - M|[M, IT] - H, (IT) » H, (II/M) - 0.

This exact sequence was recently obtained by methods of homological algebra in
[31, [17], [18].
REFERENCES

[1]1 M. G. BARRATT, Remarks on James’ invariants, Colloquium on Algebraic Topology, Aarhus
1962, 102-103.

[2] 1. BersTEIN and P. J. HiLTON, Category and generalized Hopf invariants, Illinois J. Math. 4 (1960),
437-451.

[3] B. EckMANN and U. StaMMBACH, Homologie et différentielles; basses dimensions, cas spéciaux.
C. R. Acad. Sci. Paris 265 (1967), 46-48.



234 T. GANEA

[4] T. GANEA, A generalization of the homology and homotopy suspension, Comment. Math. Helv.
39 (1965), 295-322.

[S] ———, On the spectral sequence of the generalized homotopy suspension, Notices Amer. Math.
Soc. 13 (1966), 475.

[6] , Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417~

427.
[7] M. GINSBURG, On the Lusternik-Schnirelmann category, Annals of Math. 77 (1963), 538-551.
[8] P. J. HILTON, Generalizations of the Hopf invariant, Colloque de Topologie Algébrique, Louvain
1957, 9-27.
[9] H. HopF, Beitrige zur Homotopietheorie, Comment. Math. Helv. 17 (1944-45), 307-326.
[10] 1. M. JAMES, A relation between Postnikov classes, Quart. J. Math. Oxford 17 (1966), 269-280.
[11] J. MILNOR, The construction FK, Mimeographed Notes, Princeton Univ.
[12] , On spaces having the homotopy type of a CW-complex, Trans. Amer. Soc. 90 (1959),
272-280.
[13] 1. NaMIokA, Maps of pairs in homotopy theory, Proc. London Math. Soc. 12 (1962), 725-738.
[14] D. Puppre, Homotopiemengen und ihre induzierten Abbildungen I, Math. Zeitschr. 69 (1958),
299-344.
[15] E. SPANIER, Algebraic Topology, McGraw-Hill Book Company, New York, 1966.
[16] , The homotopy excision theorem, Michigan Math. J. 14 (1967), 245-255.
(171 J. StALLINGS, Homology and central series of groups, J. of Algebra 2 (1965), 170-181.
[18] U. STAMMBACH, Anwendungen der Homologietheorie der Gruppen auf Zentralreihen und auf
Invarianten von Prdsentierungen, Math. Zeitschr. 94 (1966), 157-177.
[19] N. SteeNrOD, Cohomology invariants of mappings, Annals of Math. 50 (1949), 954-988.
[20] H. TopA, On the double suspension E2, J. Inst. Polytechnics, Osaka City Univ. 7 (1956), 103-145.
[21] G. W. WHITEHEAD, On the Freudenthal theorems. Annals of Math. 57 (1953), 209-228.

University of Washington
Seattle, Washington
Received September 26, 1967

Revised May 22, 1968



	On the Homotopy Suspension.

