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Some Congruence Theorems for Closed Hypersurfaces in Riemann
Spaces (Part II: Method based on a Maximum Principle)

by HEINZ HOPF in Ziirich and YosHIE KATSURADA in Sapporo

Introduction

This is the continuation of the previous paper [1] of which we assume at least the
“Introduction’ as well known to the present reader. In [1] it has been proved: If
W, W are closed hypersurfaces in an (m+1)-dimensional Riemann space with
W=T, W, where the transformations T, (depending on the parameter 7) are properly
conformal (and even a bit more generally so) and if

H(p)=H,(p) foreachpeW D

holds (for the notation compare the quoted ‘“‘Introduction”), then W, W are con-
gruent modulo G (where G is the group of the transformations T,). In the present paper,
we shall cancel the assumption that the transformations T, are properly conformal;
in fact, they are essentially arbitrary; however we will assume that no orbit of a trans-
formation T, is tangent to the surface W (and even a weaker assumption on the orbits
will be sufficient). Then we shall prove: W and W are congruent (that is, W=T,W).
— Here we like to call the reader’s attention to the fact that neither the assumption
made in part I (that the T, are properly conformal) nor the assumption made in
part II (on the orbits of the T,) covers the other.

As said in the introduction of [1], the method of proof of our theorem in the
present paper is based on the maximum principle of the solution of an elliptic differ-
ential equation. The kernel of this principle is contained in a theorem of E. HoPF [2]
which we treat together with two rather easy consequences in § 1. Then § 2 contains
the proof of our congruence theorem.

§ 1. Some auxiliary theorems on a linear partial differential expression of elliptic type

In an m-dimensional coordinate neighbourhood U we consider a linear partial
differential expression of the second order of elliptic type
o'o 0P

L(®)=9¢"F —  +h —
(®)=9 6u°’5uﬂ+

where g*’(u) and A7 (u) are continuous functions of a point p(u) in U and where the
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quadratic form g* 4,4, is supposed to be positive definite everywhere in U. Through-
out this paper repeated lower case Greek indices call for summation from 1 to m.
Then the following theorem has been proved by E. HopF:

THEOREM 1.1. If in a coordinate neighbourhood U a function ®(p) of class C*
satisfies the inequality L(®)=0 and if there exists a fixed point p, in U such that
@ (p)<P(po) everywhere in U, then we have ®(p)=®(p,) everywhere in U. If L($)<0

and ®(p)=P(p,) everywhere in U, then we have ®(p)=®(p,) everywhere in U ([2],
p. 147).

We prove easily

THEOREM 1.2. Let g*(u, t) be a continuous function of a point ue U and of a para-
meter t, 0=t<1, and let the quadratic form g**(u,t) A,44 be positive definite every-
where, then [3g (u, t) dt- A, Ag is positive definite everywhere in U.

Proof. If we integrate the quantity g* (u, t) 4,4, over the interval 0<¢<1, then

we have 0 1

fg“ﬁ(u, 1) A Agdt = | fg"‘”(u, t) dt) halg.
0 ( 0 )

Since g*¥(u, t) 2,44 is positive definite everywhere in U and in the interval 0<¢<1,
its integral over the interval 0=r<1 is also positive. Therefore {[5g**(u, t)dt} 1,7
must be positive definite everywhere in U. -

Now we consider in U a linear partial differential expression of the second order
1

1
*® 0P
l(®) = Jg”(u, 1) dt PN, + Jh’(u, 1) dtau"
0 0
where g*(u, t) and h(u, t) are continuous functions of the point ueU and of the
point ¢ in the interval 0<¢<1; the quadratic form g (u, t)A, 4 is supposed to be
positive definite everywhere in U and in the interval 0<¢< 1. Then from Theorem 1.1
and Theorem 1.2 we get the following

THEOREM 1.3. If in a coordinate neighbourhood U a function ®(p) of class C*
satisfies the inequality I(p)=0 and if there exists a fixed point p, in U such that
®(p) < ®D(p,) everywhere in U, then we have ®(p)=®(p,) everywherein U. If 1($)<0
and ®(p)=®(p,) everywhere in U, then we have ®(p)=®(p,) everywhere in U. —

Especially in the case that g*/(u, t) and h”(u, t) are constant with respect to the
parameter ¢, Theorem 1.3 becomes E. HopF’s theorem.

" § 2. A congruence theorem for closed hypersurfaces

We suppose an (m+ 1)-dimensional Riemann space R"*! of class C” (v 3) which
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admits an infinitesimal transformation
£ =x'+ E(x) ot @1

(where x'are local coordinatesin R™*! and &' are the components of a contravariant
vector). We assume that the orbits of the transformations generated by ¢ cover
R™* ! simply and that ¢ is everywhere continuous and #0. Let us choose a coordinate
system such that the orbits of the transformations generated by ¢ are new x'-coor-
dinate curves, that is a coordinate system in which the vector £ has components
& =4", where the symbol § ; denotes the Kronecker delta; then (2.1) becomes

# = x'+ 8} o7. 2.1)

Thus R™*! admits a one-parameter continuous group G of transformations which
are (1-1)-mappings of R™*1 onto itself and are given by

H=x" 481 2.2)

in the new special coordinate system [3].
We consider now two hypersurfaces W™ and W™ of class C’imbedded in R™*!
which do not pass through a singular point of the vector field £. Let points on the

two hypersurfaces correspond along the orbits of the transformations. Then the two
hypersurfaces W™ and W™ are given by

wm: xt = x'(u%), i=1,..m+1 )

Wm: ¥ =x"u)+8t@w), a=1,...,m 5(2'3)

where u* are local coordinates of W™ and t(u*) is a fonction of class C” defined on
W™. We shall henceforth confine ourselves to Latin indices running from 1 to m+1
and Greek indices from 1 to m.

Besides the surfaces (2.3) we now consider, to each point p,e W, the surface
Wi 5 = x'(u®) + 8 T (uf),

where ug are the local coordinates of p,. Then the corresponding point p, lies on
W™ and on W,r. We can consider the additional hypersurfaces W.'=T,,,(W™) to
each point pe W™ and the mean curvatures H, H, ﬁp of W™ Wwm, W'; ([4], p. 250),
and we claim that the following theorem holds:

THEOREM 2.1. Let W™ and W™ given by (2.3) be two closed hypersurfaces in R™**.
Suppose that no orbit of the transformations generated by & ever contacts W™ at the
maximum point po€ W™ so that t(p)<t(p,) everywhere in W™. If the relation

H(p) = H,(p) (1)

holds for each point pe W™, then W™ and W™ are congruent mod. G. (W™ and W™ are
congruent mod.G means that W™=T,W™ for a certain T,eG).
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Proof. We consider the family of the hypersurfaces
wr)=Q1-0)W"+tW" 0=<t<1,
generated by W™ and W™ whose points correspond along the orbits of the transfor-
mations T, where W™ and W™ mean W™ (0) and W"™(1) respectively.
Then according to (2.3), W™(t) is given by the expression
wm(@t): x'wht) =1 - x'(w)+tx@w), 0=st=l. (2.9
(2.4) may be rewritten as follows:
wm(t): x'(u* t)=x"w?) + 6t -t(w?), O0=Zt=l. (2.5)
The relation between W™ and W(¢) becomes as follows:
) =x' )+ 6,1 —1)t(u?).

If we take the hypersurface W™(1,) defined by a fixed value ¢, in 0<7=<1, then we
have the transformation Tj; _,.).(,0)€G attached to the point on W™(t,) correspond-
ing to poe W™, given by

Tt —toysipoy® £ = X' + 03 (L = to) t(u5), (1 — to) T(ug) = const.

Thus we get the additional hypersurface

( 0) 7-'(1 —to) t(po) Wm(tO)
which passes through the corresponding point 5 on W™, and is given by

Wi (to): %5, (U7, to) = x (U7, to) + 81 (1 — to) T(ug), (1 — to) T(ug) = const.  (2.6)
Therefore we have the hypersurfaces

We)=Tu-nwaW" (), O0=stsl,
for all hypersurfaces in the family which pass through the corresponding point 5, on
W™. Thus we can consider Wi(t)= T - 1),y W™ (2) for each pe W™,

Let H,,(to), fi,(to), §22° (to) be the mean curvature, the normal unit vector and
the metric tensor of W"'(to) at p, respectively. Then we can consider the mean
curvature H,(¢), the normal unit vector #,(t) and the metric tensor g,*7(¢) of WJ'(1),
0=t<1, at the corresponding point p to each point pe W™.

From the definition of the mean curvature of a hypersurface we have

62~P(u t) ~*¢xﬁ

A,(1) = ,,,(t) e &0 2.7)
where it is understood that
8% (u, t) 3 o*%,(u, t)  _, OXL(u, 1) 0%k (u, f) 6xp(u t)

— : ol 2.8
ou® ou® dutouf TR g ou® a0 2:8)
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I’y and T7,,(t) are the Christoffel symbols with respect to the metric tensor g;; of
R™*! and gy, 4(¢) respectively, at the corresponding point p to pe W™. (Throughout
this paper repeated lower case Latin indices call for summation from 1 to m+1; but
p is not a summation index!)

From the definition of the normal unit vector of a hypersurface we have

ﬁptl (t) _ éiz...im+ 1i af;z(u’ —t) . aAi;’"jf;_(lll_t_)

NCIORS ou™

(2.9)

where

- f
851---im+1—' g eix,...imﬂ

£ being determinant of the metric tensor g;; of R™*! at the corresponding point p, and
the symbol e; ; ,, means plus one or minus one depending on whether the indices
i;...Iy+1 denote an even or an odd permutation, of 1,2,...m+1,and zero when at least
two indices have the same value ([4], p. 25). The symbol [...] means alternating in m
([4], p. 14); & (¢) is the determinant of the metric tensor g5, ;(¢) on the hypersurface
W,(t) at the corresponding point j.

Since from (2.5) and (2.6) we obtain

0%, (u, 1) 0x'(u, 1)  0x'(u) . tar(u)
ou* ot au® oo (2.10
O°%,(u, 1) 0°x'(u, 1) 0°x'(u) y tazr (u) 10)
outou®  outou®  ou” ou’ Y out au®
and since
0% (u, t
ﬁpi(t) —ipa_(«uy»h) = Os
(2.7) becomes "
- 1 *x'(u, t) . 0x'(u,t) ox*(u, t)
A= —i (gt -2 + T ’ ’
0= 2080 (g + 14y O )

and we have

. _ 0x'(u, 1) 0x'(u, t)
B =8 o

where g;; is the metric tensor of R™*! at the point p.

As seen from the above results, only dx' (u, t)/ou” and 8*x" (u, t)/0u*0u’ contained
in A ,(¢) depend on the parameter ¢. Therefore if we now differentiate the mean cur-
vatures H,(t) of W,(¢), 0<¢<1, at the point j corresponding to pe W with respect to
t, we have

dH (1) B 0l (1) 0%t (u) oH (1) 0t(u)

dt 6(62x1(u, t))'au“auﬂ+ 6(<ax1(u, t)) e

ou® oub ou’

(2.11)
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Integrating both members of (2.11) over the interval 0<¢< 1, we get

1

A, (5%, 1) — A, (4", 0) = J

oH (1) it 0%t (u)
a(azx' (u, t)) ou® ou’

u® P

0
1

oH, (1) ot ()
' J o) Yo
A ou’

where we see easily that H,(u, 1)=H(p) and H,(u, 0)=H (p).
Now we make use of the hypothesis H(p)=H ,(p); then we have

1 1
of (1) 0%t (u) oH (1) 0t (u)
- dt ———-dt —"=0. 2.12
Ja<62x1 (u, t)) ourout T J a((’)x1 (u, t)) ou’ (2.12)
S\ Ou”ou’ A ou’
From (2.7), (2.8) and (2.10) we have
oH (1) 1 "
(50| " m O8O
ol —>2 7
( ou” ou® )
and from (2.9) and (2.10)
PR G LI RS ORI A0
" Jawm o at am
Therefore setting
« OxX*(u) ox"*'(u)
n, = au[I e aum] ’ 213)
0 @
G, () =" >
V& (1)
we have
1 2. (0) 1
H,(t —
J T dt=(——1)"’(m——1)!\/gn’l"fG;‘“”(t)dt. (2.14)
ol — 27
A ( ou* ou® ) °

Since our closed hypersurface W™ is compact and the function t is continuous,
there is a point p, such that 7(p)<t(p,) everywhere in W™, and also the orbits of the
transformations never are tangent to W™ at such a maximum point p, (that these
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orbits are tangent to W™ would mean that at this point n, =n’ =0). Consequently we
can take a neighbourhood U of p, in which n}#0. In U, it follows from (2.12) and
(2.19)

1 1

%t (u) 1 oH (1) 0t (u)
*af . _— —_— «—p —_—— =
{ GO o iy m - 1)t a(ax‘ (u, t)) Wouwr =
ou’
0

As known from (2.13) the quadratic form G}*#(r) 4,4, is positive definite everywhere
in U and in the interval 0<¢<1; G:“” (t)and the factor before the second integral as
well as the integrand are continuous in U and in 0<¢<1; and 7 is a function of class
C',v=z2,onU.

Consequently, it follows from Theorem 1.3 that we have t(p)=t(p,) for all

peU,; as one sees easily this is true for all pe W™. Thus t(p)=const. and W™=
T.(pW"™, q.e.d.
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