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On the Uniform Approximation of Analytic Functions

by Means of Interpolation Polynomials

T. KÔVARI

1. Introduction

Let Dbea domain of the complex plane bounded by a smooth closed Jordan

curve F.
Let {z(kn)}9 1 Sk^n, n= 1, 2, 3,... be a triangular matrix of points of F(z\n)^z[n)

for i^k), and consider the fundamental polynomials of the Lagrange interpolation:

n (D
h*j Zj - Zk

which hâve the property that lj(zj)= 1 and lj(zk) 0 for k^j. We will say that {zkn)}

is a regular point system if the polynomials ftp (z) are uniformly bounded in J5, i.e. if

|/f(z)|^M for zeD, l^jgn, w l,2,... (1.2)

for someM.In particular a System of Fekete points1)^ & regular point system; in fact
in this case (1.2) holds with M= 1.

If/(z) is a function regular in D, and continuous in D, it can be uniformly approx-
imated in D by polynomials. In this paper I shall construct a séquence of polynomials
which converges uniformly to/(z) and, at the same time interpolates/(z) at a regular
point system.

In 1942 Erdôs proved the following resuit about real interpolation [3]. Let {x(kn)}

be a regular point system in [—1, +1]. Then to every continuous function/(x) and
there exists a séquence of polynomials pn (x) such that, 1) the degree ofpn(x) is

2) pMn))=fMH))> l£i£n9 «=1,2,..., 3) pH(x)-*f(x) uniformly in

Adapting Erdôs's proof, I shall prove the following

Theorem: Let D be a domain bounded by a closed Jordan curve F which satisfies

Alpefs smoothness condition (2.1). Let {z^eF be a regular point system for D. Then,

to every function f(z) regular in D and continuous in D and every rj>0, there exists a

séquence ofpolynomials pn(z) such that

l) The Fekete points {w(n)ic} are defined by the property that for each n, they maximise the
discriminant II *

|w& — wj\.
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1 the degree ofpn (z) ^ n 1 + r\)

2) pH(zP)=fW) I£k£n,ji=l92,...
3) pn(z)-*f(z) uniformly in D
4) pn Tn (/) is a linear operator, given explicitly.

2. Preliminary results

Let # (s) dénote the angle between the tangent to F and the positive real axis (as a

function of the arc length parameter s). Let co(/z) dénote the modulus of continuity of
the function $(s). In the papers [1,2] S. Y. Alper introduced the class of domains
whose boundary F satisfies the condition

n

f (x)
^|logx| dx<+oo (2.1)
X

Assuming that condition (2.1) is satisfied, we are able to estimate certain fun-
damental polynomials.

Let

map | C| > 1 conformally onto the exterior of F. We can assume without loss of gêneral-
ity that )S=1. By a classical resuit t^(() is continuous for ICI^l. Thus, the regular
point system {z[n)} can be written in the form: z(^) il/(eak{n)), where we can assume
that #1<#2< •*•<#*> #n — #i<27i. In another paper [4, Theorem 3] Pommerenke
and I proved the following resuit :

Lemma 2.1. IfF satisfies the condition (2.1) and \jt (etdk(M)) is a regular point system,
then:

cv
3iïv-^n)>^, fc=l,2,...n, v=l,2,...n-l (5^ 3^ + 2^) (2.2)

where the constant c>0 does not dépend on n, k or v. To avoid an excess of indices,

we shall now drop the index: (n).
Let w[m] \l/(eli*k+2KJ/m)), l^k^n, 0£j<m9 w^ z(kn) and let l(km)(z) dénote the

fundamental polynomials :

In the above quoted paper [4, (4.3), (4.6)] it was shown, that if (2.1) is satisfied,

one has the following estimâtes
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Lemma 2.2

(i) \ï(km) (i/j (eiB))\ < B (2.3)

(ii) I'*(*(*))\ < —Tï—5-. (2-4)
m\$ — ^fc|

for — 7r^# —#k^ +7i, where the constant B dépends only on the domain D.
From lemmas 2.1 and 2.2 we deduce

Lemma 2.3

r, for ze5 (2.5)
n2

X |^()|1 2^
Cl and C2 does not dépend on n or m.

Proof: Since the sum on the left hand side is subharmonic, it is sufficient to prove
(2.5) for zeF, i.e. z \l/(eiS). Without loss of generality we can also assume that
#„ — 2n<$S&i- Then, applying Lemma 2.2. and Lemma 2.1,

î iïrws))i2 iï(
k=ï

/

m2

m2 A (9,-S,./)2

Tr4^2 n2

c2 m2
which proves (2.5).

Remark. It follows from (2.3), that if condition (2.1) is satisfied, the system:

Zk $ \Çl *" n (2»6)

provides another example for regular point Systems. Hère the real numbers a1? a2,

a3,... are completely arbitrary. We call the system (2.6) a system of Fejèr-points.
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3. Proof of the theorem

Let {qn(z)} be a séquence of polynomials with the property that

(1) qn(z) isofdegree n

(n) qn(z)-+f(z) umformlyin D

By Walsh's classical resuit, such a séquence certainly exists We will specify the
choice of {qn (z)} later We hâve that

-qn(z)\^O (3 1)
zeD

We now wnte m= [i*//i], and

p.., (z) g,_, (z) + £ {/(Zjk) - <?„_, (zt)} lk(z) Km)(z)]2 (3 2)
fc= 1

Clearly

Pn-1 (zv) qn-1 (zv) +/(zv) - qn-1 (^v) =/(zv)
for v 1, 2, n Further

n

Applying (3 1), (1 2), and (2 5)

I f(z) — n (z)\ < e + A/e Y |ï(mVz)|2

-2x 7 4\ 2

-hd+Q 2UilffiB 1 + C! + C2 2 for
m2) \ n1) rj

Hence

max|/(z)-Jpll_1(z)|-+0 as /i-> oo

Thus we hâve proved Theorem 3 with the exception of the last assertion To complète
the proof ît only remains to specify the choice of the polynomials qn(z)

The polynomial

(where Fm(z) is the m-th Faber-polynomial of the domain D) represents the anthmetic
mean of the partial sums of the Faber-expansion off(z) It is known that for every
f(z) regular in D and continuous in D9

uniformly in D (cf [1]) Thus we can choose
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