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On the Uniform Approximation of Analytic Functions
by Means of Interpolation Polynomials

T. KOvVARI

1. Introduction

Let D be a domain of the complex plane bounded by a smooth closed Jordan
curve I'.

Let {z{}, 1Sk<n, n=1,2,3,... be a triangular matrix of points of I' (z{" # z{"
for i#k), and consider the fundamental polynomials of the Lagrange interpolation:
zZ—z

=11~

k#¥jZj— Zg

(1.1)

which have the property that /;(z;)=1 and /;(z,)=0 for k #j. We will say that {z{}
is a regular point system if the polynomials /" (z) are uniformly bounded in D, i.e. if

") <M for zeD, 1<j<n, n=1,2,.. (1.2

for some M. In particular a system of Fekete pointsl)is a regular point system; in fact
in this case (1.2) holds with M =1.

If f(z) is a function regular in D, and continuous in D, it can be uniformly approx-
imated in D by polynomials. In this paper I shall construct a sequence of polynomials
which converges uniformly to f(z) and, at the same time interpolates f(z) at a regular
point system.

In 1942 ERDOs proved the following result about real interpolation [3]. Let {x{
be a regular point system in [ —1, +1]. Then to every continuous function f(x) and
n >0 there exists a sequence of polynomials p,(x) such that, 1) the degree of p,(x) is
sn(l1+1n), 2) p,(x")=f(x"), 1Zign, n=1,2,..., 3) p,(x)=f(x) uniformly in
[-1, +1].

Adapting Erdos’s proof, I shall prove the following

THEOREM: Let D be a domain bounded by a closed Jordan curve I' which satisfies
Alper’s smoothness condition (2.1). Let {z{"} €I be a regular point system for D. Then,
to every function f(z) regular in D and continuous in D and every n>0, there exists a
sequence of polynomials p,(z) such that

1) The Fekete points {w!®)x} are defined by the property that for each n, they maximise the
discriminant IT ~ |wx — wj.
15k, jsn
k#j
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1) the degree of p,(z)<n(1+n)

2) pa(ZM)=f(z"), 1Sk<n, n=1,2,...

3) pa(2)=f(2) uniformly in D

4) p,=T,(f) is a linear operator, given explicitly.

2. Preliminary results

Let 3(s) denote the angle between the tangent to I' and the positive real axis (as a
function of the arc length parameter s). Let o (h) denote the modulus of continuity of
the function 3(s). In the papers [1,2] S.Y. ALPER introduced the class of domains
whose boundary I satisfies the condition

Jw(m) log x| dx < 4+ o0 (2.1)

0

Assuming that condition (2.1) is satisfied, we are able to estimate certain fun-
damental polynomials.
Let

z=y () =4 +ao+%+“'
map |{| > 1 conformally onto the exterior of I'. We can assume without loss of general-
ity that f=1. By a classical result ¥ ({) is continuous for |{|=1. Thus, the regular
point system {z{} can be written in the form: z{™ =y (¢"**"”), where we can assume
that 9, <93,<--<9,, 3,—3;<2=n. In another paper [4, Theorem 3] POMMERENKE
and I proved the following result:

LeMMA 2.1. If I satisfies the condition (2.1) and (e"s"(")) is a regular point system,
then:
cv
gm— 9im k=1,2,..n, v=1,2,..n—=1 (979, =9" +2m) (2.2)
n’
where the constant ¢>0 does not depend on n, k or v. To avoid an excess of indices,
we shall now drop the index: (n). )
Let wi"=y (e'®*+2"/m) 1<k<n, 0<j<m, w)=z" and let [{™ (z) denote the
fundamental polynomials:

m=1 z — w™
~(m) ka]
i (z) = ——
k ( ) _]1_11 Zk _ w;(mj)
In the above quoted paper [4, (4.3), (4.6)] it was shown, that if (2.1) is satisfied,
one has the following estimates
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LEMMA 2.2
(i) lis™ (¥ (*))l < B (2.3)
nB
(i) ™ (Y ()l < 3 (2.4)
for —n<3—9, < +n, where the constant B depends only on the domain D.
From lemmas 2.1 and 2.2 we deduce
LEMMA 2.3
n 2
Z '("')(z)l £C,+C,—5, for ze D (2.95)
Plem m?

where C, and C, does not depend on n or m.

Proof" Since the sum on the left hand side is subharmonic, it is sufficient to prove
(2.5) for zerT, i.e. z=y (e'*). Without loss of generality we can also assume that
3,—2n<93<3,. Then, applying Lemma 2.2. and Lemma 2.1,

> [ (6 () = 157 (0 ()P
. [(n+1)/2]1-1 /2]

P ELGEN L R
+ P ()

n2B? l(n+1)/2]1-1 1

<B*+- —- S
m ng (9 - 91+j)2
nzBl[n/z]—x X
+ 5 o +
m* = (9~ 9, ;+2n)
" 2B2 (n+1)/2]-1 1
<2B - —
2 j=1 ('91 - '91+,)2
22
B2 n/2]-1 1
+‘;n"z“‘ Z 9“‘“*—_'2
Jj=1 ( n J)
2n2B*n? 1
2
S2B°+ 55 L o
cm 15jsn/2)
4B2 2
<2B*+——,.
¢ m

which proves (2.5).
Remark. It follows from (2.3), that if condition (2.1) is satisfied, the system:

2" = i (/e 2nikim) (2.6)

provides another example for regular point systems. Here the real numbers a;, a5,
a3,... are completely arbitrary. We call the system (2.6) a system of Fejér-points.
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3. Proof of the theorem

Let {g,(z)} be a sequence of polynomials with the property that
@) 4,(z) isofdegree n
(ii) 4,(z)>f(z) uniformlyin D.

By Walsh’s classical result, such a sequence certainly exists. We will specify the
choice of {g,(z)} later. We have that

&, = max 1/(2) — qx(2)| = 0 (3.1)

We now write m=[4nn], and

Per@D =0 @)+ L (G- 4 GO TET ()
Clearly:
pn— 1 (Zv) = qn—l (Zv) +f(Zv) - qn-—l(zv) =f(zv)

for v=1, 2,...n. Further

1£(2) = Pa-1 (@) £1f(2) — gp=1 (2)] + élif(zk) — qu—1 ) 1 (2)] 7™ (2)|2 .
Applying (3.1), (1.2), and (2.5):

1f(2) = Pa-1 (D) S &0 + M&‘nk; " (2))?
2

n 4 2
§Ms,,(l+C,+C2~~5>§Ms,,<1+C1+C2 2) for n=-.
m n n

Hence

max [f(z) — p,—1(2)| >0 as n- 0.

Thus we have proved Theorem 3 with the exception of the last assertion. To complete
the proof it only remains to specify the choice of the polynomials g,(z).
The polynomial

Su_1(2) = zju. u J 1 £ (1) [,,.Zlo (1 - ’:) ': ;:;fj)] dt

(where F,,(z) is the m-th Faber-polynomial of the domain D) represents the arithmetic
mean of the partial sums of the Faber-expansion of f(z). It is known that for every
f(z) regular in D and continuous in D,

sa(2) > f(2)

uniformly in D (cf. [1]). Thus we can choose

4a(2) = 54(2).
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