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Kompakte Limesriume und limitierte Funktionenalgebren

E. BiNz

Einleitung

Es bezeichne X einen Limesraum (s. [7]). Die R-Algebra aller stetigen Funktionen
von X nach dem Korper der reellen Zahlen R heisse €(X). In [2] wurden einige
Bemerkungen zur Korrespondenz zwischen X und seiner, mit der Limitierung der
stetigen Konvergenz (s. [1] und [6]) versehenen Funktionenalgebra % .(X) zusammen-
gestellt. Dabei wurden dort spezielle Limesrdaume, namlich die c-einbettbaren, etwas
ndher betrachtet. Ein c-einbettbarer Limesraum Y ist dadurch charakterisiert, dass
seine Limitierung durch die limitierte R-Algebra (s. [1]) €.(Y) bestimmt ist.

Hier nun sollen die Beziehungen zwischen einem kompakten Limesraum X und
seiner Limesalgebra (ist dasselbe wie limitierte Algebra) €.(X) ndher untersucht
werden (s. Sétze 3, 4, 6, 8 und 9). Wir nennen einen Limesraum kompakt, wenn er
separiert ist und jeder Ultrafilter konvergiert. Insbesondere soll festgestellt werden,
welche der kompakten Limesrdume c-einbettbar sind (s. Sitze 4 und 9). Es wird sich
herausstellen, dass es genau die topologischen sind. (Ein Limesraum heisst topologisch,
falls seine Limitierung eine Topologie ist.) Dass es kompakte Limesrdume gibt, die
nicht topologisch sind, kann etwa aus [5], Satz 4.12., p. 57 gefolgert werden. Man
wihle einen separierten nicht-topologischen Limesraum. Nach dem erwidhnten Satze
besitzt dieser eine (separierte) Kompaktifizierung. Diese kann aber nicht topologisch
sein!

Der von C. H. Cook und H. R. FISCHER in [6] behandelte verallgemeinerte Begriff
der Gleichstetigkeit und der von denselben Autoren verallgemeinerte Satz von Ascoli
(s. [6]) erlauben uns, das angekiindigte Vorhaben leicht auszufiihren. Die in [6] im
Zusammenhang mit den wuniformen Limitierungen (uniform convergence structures)
eingefiihrten Begriffe werden hier als bekannt vorausgesetzt. Die von uns aus [6] be-
notigten Terme und Sdtze werden in (1.4) und (1.5) kurz zusammengestellt.

1. Vorbemerkungen

In diesem Paragraphen sollen einige spiter zur Anwendung kommende grund-
legende Begriffe und Beziehungen aus [1], [2] und [6] kurz aufgefiihrt werden.

1.1. Seien 4 und A4’ zwei limitierte R-Algebren (s. [1]) mit Einselement e und e’
resp. Statt von einem Algebrahomomorphismus (nicht notwendig stetig) zwischen A4
und A’ (der e in e’ iiberfiihrt) sprechen wir im folgenden kurz von einem Homo-
morphismus zwischen 4 und A’. Die Menge aller stetigen Homomorphismen von A4
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in A’ heisse # 0m(A, A’). Wenn A’ identisch mit R ist, so kiirzen wir #on (A4, R)
durch # 0 A ab. Die Menge aller Homomorphismen von 4 nach ‘R heisse Hom 4.

Tragt H# om A die Limitierung der stetigen resp. der punktweisen Konvergenz (s. [1]
und [6]), so schreiben wir # ome A resp. # oy A. Letzterer ist ein vollstindig reguldrer
(s. [8], p. 36) topologischer Raum.

Fiir jeden Homomorphismus u€# o (A, A') ist (falls #ome A und #Fom A’
nicht leer sind)

u*: Jf{)ch' ¥ e%//(;mc A

resp.

u*:%oms A ———— Hom A,

definiert durch u*(h)=hou fiir jedes he# om A’', stetig.

1.2. Seien X und Y Limesrdume (s. [1] und [7]). Die Menge der stetigen Ab-
bildungen von X nach Y heisse € (X, Y). Ist diese mit der Limitierung A, der stetigen
resp. mit der Limitierung A, der punktweisen Konvergenz versehen, so setzen wir
€.(X, Y) resp. €,(X, Y). Letzterer ist genau dann fopologisch, wenn Y topologisch
ist. Der Einfachheit halber ersetzen wir das Zeichen € (X, R) durch ¥ (X). Die beiden
Riaume %.(X) und %,(X) sind limitierte R-Algebren (s. [1]).

Fiir jedes fe% (X, Y) ist die Abbildung

f*:%.(Y) %.(X),

welche jedes ge€.(Y) in gof €% .(X) liberfiihrt, ein stetiger Homomorphismus.
1.3. Jedes Element x aus einem Limesraum X induziert einen stetigen Homo-
morphismus

ix(x):€(X) R,
definiert durch iy (x) (f)=f(x) fiir jedes f€ % (X) (s. [2]). Die Abbildung
iy: X Hom,€.(X)
(fiihrt jedes xe X in ix(x) iiber) ist nach [2] ebenfalls stetig. Weil
id: Hom. € (X)————— Hom;€ . (X)

stetig ist (s. [2]) muss
ix: X ——— Hom;E . (X)
auch stetig sein.

Wie in [2] steht I(X) fiir ix(X)<c#0m % .(X). Durch Einfiihren der Limitierung
der stetigen resp. der punktweisen Konvergenz auf I(X) erhilt man die Limesrdume
I(X) und L(X). Dabei ist I,(X) als Unterraum von 5#¢sm ;% (X) ein vollstindig re-
guléirer topologischer Raum.

Satz 9 in [2] besagt, dass fiir jeden Limesraum X

id*: € (I,(X))—— ¢ (I.(X))
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ein Isomorphismus ist. Der darauffolgende Satz 10 hilt insbesondere fest, dass fiir
jeden Limesraum X

ix: € (L(X)——— F.(X)
ein bistetiger [somorphismus ist. Das gibt Anlass zur folgenden Definition (s. [2]):

DEFINITION 1. Ein Limesraum X heisst c-einbettbar, falls iy: X————— I (X) ein
Homdomorphismus ist. Ein c-einbettbarer Limesraum X wird c-volleinbettbar genannt,
falls (X)=#0m¥ (X) gilt.

Sei €°(X) die R-Algebra aller stetigen, beschrinkten Funktionen von X nach R.

LEMMA 1. Fiir einen Limesraum X sei I1.(X) ein kompakter, topologischer Raum.
Dann gelten €(X)=%¢°(X) und I( X)=Hom %°(X).

Der Beweis soll hier nur kurz skizziert werden. Die Voraussetzungen implizieren:
€ (1.(X))=%¢°(I.(X)) und folglich € (X)=%"(X). Aus 10.5.c, p. 142 in [8] folgert man
I(I.(X))=Hom¥"(I.(X)). Die Abbildung i} induziert eine Bijektion von I(X) auf
I(I(X)), woraus I(X)=Hom%°(X) resultiert.

1.4. C. H. Cook und H. R. FisCHER fiihrten in [6] den Begriff der uniformen Li-
mitierung (uniform convergence structure) auf einer nicht-leeren Menge E x E ein.
Dieser stellt eine Verallgemeinerung desjenigen der uniformen Struktur von BOURBAKI
[3] dar. Die Menge E zusammen mit einer uniformen Limitierung heisst uniformer
Limesraum (uniform convergence space). Jede uniforme Limitierung auf E x E indu-
ziert in natiirlicher Weise eine Limitierung auf E. Die Menge E versehen mit dieser
Limitierung heisse der zum betrachteten uniformen Limesraum assoziierte Limesraum.
Sowohl den uniformen Limesraum, als auch den dazu assoziierten Limesraum werden
wir fortan mit dem selben Symbol bezeichnen.

Fiir einen Limesraum X und einen uniformen Limesraum Y definierten die oben
genannten Autoren auf € (X, Y) die Limitierung der uniformen Konvergenz (the
structure of uniform convergence, s. [6], p. 98, § 2). Wir bezeichnen diese Limitierung
mit A,. Die Menge € (X, Y) versehen mit A, heisse €,(X, Y). Die Limitierung der
uniformen Konvergenz auf € (X, Y) ist stets feiner als die Limitierung der stetigen
Konvergenz (s. Theorem 6 in [6])! Sind speziell X ein topologischer und Y ein (im
Sinne von [3]) uniformisierbarer Raum, so sind die Limitierung der uniformen Kon-
vergenz und die Topologie der uniformen Konvergenz auf € (X, Y) identisch!*)

In unseren Betrachtungen in (2.) wird A, stets auf € (X)) definiert sein. Die uniforme
Limitierung auf ‘R x ‘R sei stets die von der Addition in ‘R erzeugte uniforme Struktur
im Sinne von [3].

1.5. Seien X ein Limesraum und Y ein uniformer Limesraum. Die Menge aller
Abbildungen von X nach Y sei mit % (X, Y) bezeichnet. Eine nicht-leere Teilmenge

1) Die Aussage bleibt auch dann richtig, wenn X durch einen beliebigen Limesraum ersetzt wird.
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Hc % (X, Y) versehen mit der Limitierung der punktweisen Konvergenz heisse H,.
In [6] findet sich:

DEFINITION 2. Es bezeichnen X ein Limesraum und Y ein uniformer Limesraum.
Eine nicht-leere Teilmenge H =% (X, Y) heisst gleichstetig in x,e X, falls

d:X——€,(H, Y),

definiert durch d(x)(f)=f(x) fiir jedes xeX und jedes feH,, an der Stelle x,
stetig ist.

H heisst gleichstetig, falls H in jedem xe X gleichstetig ist.

Wenn Hc % (X, Y) gleichstetig ist, so sind alle Funktionen in H stetig, d.h.
Hc¥(X,Y).

Eine nicht-leere Teilmenge H< % (X, Y) versehen mit der Limitierung der stetigen
Konvergenz sei mit H, bezeichnet. Sind H, und H, vermoge der Identitdit homdomorph,
so driicken wir das oft durch H,=H_ aus.

LeMMA 2 (Cook und FISCHER). Seien X ein Limesraum und Y ein uniformer Limes-
raum. Fiir eine gleichstetige Teilmenge H= ¥ (X, Y) gilt H.= H,.

LeEMMA 3 (Cook und FISCHER). Die Voraussetzungen seien wie in Lemma 2. Eine
nicht-leere Teilmenge einer gleichstetigen Menge M =€ (X, Y) ist gleichstetig.

Eine nicht-leere Teilmenge 4 = Z eines Limesraumes Z heisst relativ kompakt, falls
die Adhédrenz (s. [7]) 4 in Z kompakt ist.

SATZ VON AscoLi (Cook und FISCHER). Seien X ein Limesraum, Y ein separierter,
uniformer Raum (im Sinne von [3]) und H<= € (X, Y) eine nicht-leere Teilmenge. Genau
dann ist Hc € (X, Y) relativ kompakt, wenn H gleichstetig ist und

H(x)={f(x)| feH, xeX  fest}
fiir jedes xe X in Y relativ kompakt ist.

Bemerkung : Sei (A4, A) ein kompakter Unterraum des separierten Limesraumes Z.
Dann gilt 4= 4. Fiir jeden separierten Limesraum Y ist €.(X, Y) separiert (s. [1]).
Folglich ist mit einem kompakten Unterraum H,c%,.(X, Y) die Menge H relativ
kompakt.

2. Uber kompakte I.(X)

Weil fiir jeden Limesraum X die Limesalgebren %, (I,(X)) und %,(X) vermoge iy
bistetig isomorph sind, kénnen wir an Stelle von €,.(X) das Objekt %, (I,(X)) unter-
suchen. Fiir jeden kompakten Limesraum X ist I.(X) ebenfalls kompakt. Deshalb
versuchen wir in diesem Paragraphen erst Ndheres liber den kompakten Limesraum
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I.(X) zu erfahren, um spiter mit Hilfe von %, (I.(X)) stirkere Aussagen iiber € (X)
machen zu konnen.

2.1. Um etwas weitere Aufschliisse zu erhalten, wiahlen wir fiir einen Limesraum
X eine Teilmenge Hc o 0m € (X), die I(X) umfasst, und versuchen festzustellen, wie
einschrinkend die Eigenschaft ,,kompakt* fiir H, ist. Es sei bemerkt, dass H, topolo-
gisch ist.

Aus dem Satze von Ascoli und der Bemerkung in (1.5.) erhélt man:

LeMMA 4. Wenn H, kompakt ist, dann ist H gleichstetig.
Die Lemmata 2 und 4 implizieren:

LEMMA 5. Wenn H gleichstetig ist, dann gilt H,.=H,. Ist H, kompakt, so ist er
topologisch.

Mehr iiber kompakte H. erfahren wir (s. Satz 3), wenn wir die Beziehung zwischen
der Kompaktheit von H, und der Gleichstetigkeit von H eingehender studieren (s.
Satz 1). Dazu benétigen wir die ndchsten drei Lemmata.

LEMMA 6. H.=H, impliziert, dass
d:€ (X)——F.(H,),

definiert durch d( f) (h)=h(f) fiir jedes f €€ .(X) und jedes he H,, ein bistetiger Iso-
morphismus ist.

Vorerst verifiziert man, dass

(gc (X) __d—_') %c (Hc)
€.(X)

ein kommutatives Diagramm stetiger Abbildungen ist. (Hierin ist iy aufgefasst als
Abbildung von X in H.) Mithin muss d injektiv sein. Hom, % (X') bedeute den topolo-
gischen Raum gebildet aus der Menge aller Homomorphismen von %(X) nach R
und der Topologie der punktweisen Konvergenz. Aus 11.7. in [8] entnehmen wir,
dass I(X) in Hom, % (X) dicht liegt. Das bedeutet, dass I(X) = H; ebenfalls dicht liegt.
Weil H,= H, vorausgesetzt ist, muss daher iy injektiv sein. Nun ergibt sich aus dem
obigen Diagramm leicht die Surjektivitit und hernach die Bistetigkeit von d.

LEMMA 7. Sei X ein vollstindig reguldrer topologischer Raum, fiir den €.(X) eine
topologische Algebra ist. Dann ist die Limitierung A. auf €.(X) die Topologie der
kompakten Konvergenz.
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Unter den gemachten Voraussetzungen ist A, eine Topologie. Diese ist nach [4],
exercice 10c, §3, p. 72 identisch mit der Topologie der kompakten Konvergenz.

LeEMMA 8. Ein volilstindig reguldrer topologischer Raum X, fiir den

ein Homoomorphismus ist, muss notwendigerweise kompakt sein.

Die Voraussetzungen implizieren: A, auf %,(X) ist die Topologie der gleich-
méssigen Konvergenz (s. 1.4) und ist mit der algebraischen Struktur von % (X) ver-
traglich. Daher ist nach Lemma 7 A, die Topologie der kompakten Konvergenz. Wir
betrachten die Nullumgebung

U={fe€¢X)|If(x) <1 fiir jedes xe X}
in ,(X). Nach Voraussetzung enthélt U eine Nullumgebung der Form
V={fe€X)If(x)<e firjedes xeK},

wobei ¢>0€R und K eine kompakte Menge ist. Wenn nun K# X wire, so gibe es
ein xe X, das nicht in K liegen wiirde. Nun ist X vollstdndig reguldr und daher findet
sich ein fe € (X) mit f(x)=2 und f|K=0. Diese Funktion wire offensichtlich in V'
aber nicht in U. Also ist K=X.

SATZ 1. Sei X ein Limesraum. Eine Teilmenge HcH om € (X) mit HoI(X) ist
genau dann gleichstetig, wenn H, ein kompakter, topologischer Raum ist.

Wenn H, kompakt ist, so ist nach Lemma 4 H gleichstetig. Nun nehmen wir
umgekehrt H als gleichstetig an. Dann gelten (s. Definition 2 und Lemma 5):

i) d:%¢.(X)— €, (H,)ist stetig.
und
(i) H.=H,.

Die Limitierung von %,(H,) ist feiner als diejenige von €.(H,) (s. 1.4). Daher folgert
man aus (ii) und Lemma 6, dass

id: ¢,(H)—— % .(H,)

ein HomGomorphismus ist. Weil der Limesraum H, wegen (ii) ein vollstindig reguldrer
topologischer Raum ist, muss er nach Lemma 8 kompakt und topologisch sein.

2.2. Sei X ein Limesraum. ¥°(X)bezeichne die ‘R-Algebra aller stetigen, beschrank-
ten Funktionen von X nach R. Weiter bezeichne Hom,%°(X) den topologischen
Raum, bestehend aus der Menge aller Homomorphismen von ¥°(X) nach R und der
Topologie der punktweisen Konvergenz.

SATZ 2. Fiir jeden Limesraum X ist Hom,%°(X) kompakst.
Weil iy : € (I,(X)————%(X) ein Isomorphismus ist (s. Satz 9 in [2]), sind
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%°(I,(X)) und #°(X) vermdge ix|%°(I,(X)) isomorph. Daher sind Hom, %" (I,(X))
und Hom,%°(X) homSéomorph. Es ist I;(X) ein vollstindig reguldrer topologischer
Raum. Nach 11.5 und 11.9 in [8] ist Hom,%°(I,(X)) kompakt. Also ist auch
Hom,%°(X) kompakt.

SATZ 3. Seien X ein Limesraum und H<# 0m € .(X) eine Teilmenge, welche 1(X)
umfasst. Dann sind die folgenden Aussagen dquivalent:

(1) H, ist kompakt.

(i) I.(X) und Hom,%°(X) sind identisch.

(ii) impliziert nach Satz 2 offensichtlich (i). Umgekehrt sei H, kompakt. Dann
sind H und I(X) gleichstetig (s. Lemmata 4 und 3). Also ist nach Satz 1 der Raum

I.(X) kompakt und nach Lemma 5 gar topologisch. Mit Hilfe von Lemma 1 schliessen
wir nun I.(X)=Hom,%°(X).

KOROLLAR 1. Fiir jeden kompakten Limesraum X ist I,(X)=Hom % (X).
Denn fiir jeden kompakten Limesraum X ist I.(X) kompakt und folglich ist die
Behauptung nach Satz 3 wabhr.

3. Kompaktheit und c-Einbettbarkeit

Hier nun soll angegeben werden, welche der kompakten Limesrdume c-einbettbar
(s. Definition 1 in (1.3)) sind.

3.1. Ein kompakter, c-einbettbarer Limesraum ist nach Satz 3 topologisch und es
gilt #0m €. (X)=Hom,%(X). Umgekehrt ist jeder kompakte, topologische Raum
c-volleinbettbar (s. [2]). Zusammengefasst konnen wir also sagen:

SATz 4. Ein kompakter Limesraum ist genau dann c-einbettbar, wenn er topologisch
ist. Jeder kompakte, topologische Raum X ist c-volleinbettbar und es gilt # om € (X)=
Hom, ¢ (X).

Jeder Unterraum eines c-einbettbaren Limesraumes ist c-einbettbar. Also gilt:

SATZ 5. Jeder kompakte Unterraum eines c-einbettbaren Limesraumes ist topolo-
gisch.

Fiir jeden Limesraum X ist €.(X) c-einbettbar (s. [2]). Folglich ist jeder kompakte
Unterraum von %,.(X) topologisch.

3.2. Nun sei X ein kompakter Limesraum. Der Limesraum I (X) ist ebenfalls
kompakt und nach Satz 3 sogar topologisch. Daher ist die Limitierung auf % (I.(X))
identisch mit der iiblichen Supremumsnormtopologie. Also ist €. (I.(X)) eine Banach-
algebra. Die Abbildung

i;:gc(lc(x))*—'———"%c(X)

ist ein bistetiger Isomorphismus (s. 1.3). Daraus folgt:
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SATZ 6. Fiir jeden kompakten Limesraum X ist €.(X) eine Banachalgebra unter
der iiblichen Supremumsnorm.

4. %.(X) als Banachalgebra

Der eben ausgesprochene Satz 6 fiihrt uns nun zur Frage, fiir welche der c-einbett-
baren Limesrdume X die Limesalgebra % .(X) eine Banachalgebra ist. Eine voll-
stindige Antwort enthélt Satz 9.

4.1. Sei X ein pseudokompakter Limesraum (d.h. alle stetigen Funktionen von X

nach R sind beschrinkt). € (X) versehen mit der iiblichen Supremumsnormtopologie
heisse €,(X).

SATZ 7. Sei X ein Limesraum, fiir den €.(X) eine Banachalgebra ist. Dann ist X
pseudokompakt und

id: % ,(X) €,(X)

ist ein bistetiger Isomorphismus.

Wir weisen erst nach, dass jedes fe%,(X) beschriankt ist. Sei Vo={fe¥%.(X)|
| £l <1}. Dabei bedeutet f— | f || die Norm in €.(X). Es ist V, eine offene Null-
umgebung. Alle Elemente in e+ Vj, sind invertibel. Hierin bedeutet e das Einselement.
Man wihle nun ein AeR mit |4|=1. Dann gilt

e+ A N Voce+ V.

Also ist fiir jedes f eV, die Funktione+ 1~ '- f invertibel, was f(x)# — A fiir jedes xe X
bedeutet. Der Allgemeinheit von A wegen folgt | f(x)| <1 fiir alle xe X. Also ist jede
Funktion in V, beschrinkt, was aber die Beschridnktheit aller Funktionen in %.(X)
nach sich zieht. Daher ist X pseudokompakt. Wie man nun leicht verifiziert, ist id
als Isomorphismus von der Banachalgebra € .(X) auf die Banachalgebra €,(X) stetig.
Daher ist id sogar bistetig.

LeMMA 9. Fiir einen pseudokompakten, vollstindig reguldren topologischen Raum X
ist # om, € ,(X) ein kompakter, topologischer Raum.

Es bezeichne f(X) die Stone-Cech’sche Kompaktifizierung (s. [8]) von X und
ip: X——— (X)) die (stetige) natiirliche Inklusionsabbildung. Es ist

ein bistetiger Isomorphismus. Deshalb ist

i;*:%ﬂmc(gn(){)—————)fomc €, (ﬂ(X))

ein Homdomorphismus. Als kompakter, topologischer Raum ist f(X) homdomorph
zu H# om, €, (B(X)). Mithin ist auch H# ss,€,(X) kompakt und topologisch.
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SATZ 8. Wenn fiir einen Limesraum X die Limesalgebra € .(X) eine Banachalgebra
ist, dann ist I.(X) ein kompakter, topologischer Raum.
Sei #.(X) eine Banachalgebra. Einerseits wissen wir, dass

i%:%.(1(X) %.(X)

ein bistetiger [somorphismus ist. Wir folgern damit aus Satz 7: Es ist I,(X) pseudo-
kompakt und %.(I.(X)) und %,(I.(X)) sind vermége der Identitit homdomorph.

Anderseits sind % (I,(X)) und € (I,(X)) identisch. Also ist auch I;(X) pseudokompakt
und

id: % (I.(X)) €. (1(X))

ist bistetig. Jetzt folgern wir mit Hilfe von Lemma 9 die Kompaktheit von
H om,€,(I,(X)). Daraus schliessen wir, dass auch # s, %.(X) kompakt ist. Aus
Satz 3 lesen wir daher ab, dass I.(X') kompakt und topologisch ist.

Mit Hilfe der Sitze 4, 6 und 8 folgern wir abschliessend:

SATZ 9. Fiir einen c-einbettbaren Limesraum X sind die folgenden Aussagen gleich-
wertig:
(1) X ist kompakt.
(i) X ist kompakt und topologisch.
(iii) €.(X) ist eine Banachalgebra.

University of Michigan, Ann Arbor, Mich.
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