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Kompakte Limesrâume und limitierte Funktionenalgebren

E. Binz

Einleitung

Es bezeichneAr einen Limesraum (s. [7]). Die 9î-Algebra aller stetigen Funktionen
von X nach dem Kôrper der reellen Zahlen 91 heisse ^(X). In [2] wurden einige
Bemerkungen zur Korrespondenz zwischen X und seiner, mit der Limitierung der

stetigen Konvergenz (s. [1] und [6]) versehenen Funktionenalgebra ^C(X) zusammen-
gestellt. Dabei wurden dort spezielle Limesrâume, nâmlich die c-einbettbaren, etwas
nâher betrachtet. Ein c-einbettbarer Limesraum Y ist dadurch charakterisiert, dass

seine Limitierung durch die limitierte $R-Algebra (s. [1]) ^C{Y) bestimmt ist.
Hier nun sollen die Beziehungen zwischen einem kompakten Limesraum X und

seiner Limesalgebra (ist dasselbe wie limitierte Algebra) ^C(X) nâher untersucht
werden (s. Sâtze 3, 4, 6, 8 und 9). Wir nennen einen Limesraum kompakt, wenn er
separiert ist und jeder Ultrafilter konvergiert. Insbesondere soll festgestellt werden,
welche der kompakten Limesrâume oeinbettbar sind (s. Sâtze 4 und 9). Es wird sich

herausstellen, dass es genau die topologischen sind. (Ein Limesraum heisst topologisch,
falls seine Limitierung eine Topologie ist.) Dass es kompakte Limesrâume gibt, die
nicht topologisch sind, kann etwa aus [5], Satz 4.12., p. 57 gefolgert werden. Man
wâhle einen separierten nicht-topologischen Limesraum. Nach dem erwâhnten Satze

besitzt dieser eine (separierte) Kompaktifizierung. Dièse kann aber nicht topologisch
sein!

Der von C. H. Cook und H. R. Fischer in [6] behandelte verallgemeinerte Begriff
der Gleichstetigkeit und der von denselben Autoren verallgemeinerte Satz von Ascoli
(s. [6]) erlauben uns, das angekundigte Vorhaben leicht auszufùhren. Die in [6] im
Zusammenhang mit den uniformen Limitierungen (uniform convergence structures)
eingefiihrten Begriffe werden hier als bekannt vorausgesetzt. Die von uns aus [6] be-

nôtigten Terme und Sâtze werden in (1.4) und (1.5) kurz zusammengestellt.

1. Vorbemerkungen

In diesem Paragraphen sollen einige spâter zur Anwendung kommende grund-
legende Begriffe und Beziehungen aus [1], [2] und [6] kurz aufgefûhrt werden.

1.1. Seien A und A' zwei limitierte 5R-Algebren (s. [1]) mit Einselement e und ef

resp. Statt von einem Algebrahomomorphismus (nicht notwendig stetig) zwischen A

und A' (der e in e' ùberfûhrt) sprechen wir im folgenden kurz von einem Homo-

morphismus zwischen A und A'. Die Menge aller stetigen Homomorphismen von A
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in A' heisse 3^^m{A, A'). Wenn A' identisch mit 5R ist, so kûrzen wir 3ti?o*n{A, 51)

durch ffî&mA ab. Die Menge aller Homomorphismen von A nach 9? heisse Hom/1.
Trâgt ffîom A die Limitierung der stetigen resp. der punktweisen Konvergenz (s. [1]

und [6]), so schreiben wir3F&<mcA resp. £<F&ms A. Letzterer ist ein vollstàndig regulârer
(s. [8], p. 36) topologischer Raum.

Fur jeden Homomorphismus ue<ffî#m (A, A') ist (falls 3t#m A und 3tfo-m A'
nicht leer sind)

U

resp.
U l 3fé*oms A' ffî&<ms A

definiert durch u*(h) hou fur jedes heJ^œmA', stetig.
1.2. Seien X und Y Limesrâume (s. [1] und [7]). Die Menge der stetigen Ab-

bildungen von X nach Y heisse ^(X, Y). Ist dièse mit der Limitierung Ac der stetigen

resp. mit der Limitierung As der punktweisen Konvergenz versehen, so setzen wir
tëc(X, Y) resp. ^S(X9 Y). Letzterer ist genau dann topologisch, wenn Ftopologisch
ist. Der Einfachheit halber ersetzen wir das Zeichen <g(X9 5R) durch V(X). Die beiden
Râume <VC(X) und <VS(X) sind limitierte 5R-Algebren (s. [1]).

Fur jedes/e^(X, Y) ist die Abbildung

f*:Ve(Y) >

welche jedes getëc(Y) in gofe^c(X) ûberfuhrt, ein stetiger Homomorphismus.
1.3. Jedes Elément x aus einem Limesraum X induziert einen stetigen

Homomorphismus

ix(x):Vc(X) >3t,

definiert durch ix(x) (f)=f(x) fur jedes feVc(X) (s. [2]). Die Abbildung

i% ' X > Jtif'&wiç *

(fiihrt jedes xeXin ix(x) ûber) ist nach [2] ebenfalls stetig. Weil

id : Jf#mc %c (X) > JTom, Vc (X)

stetig ist (s. [2]) muss

ix : X œoms ^c {X)
auch stetig sein.

Wie in [2] steht I(X) fur ix(X)aJëp#m<£c(X). Durch Einfûhren der Limitierung
der stetigen resp. der punktweisen Konvergenz auf I(X) erhâlt man die Limesrâume

lc(X) und IS{X). Dabei ist IS(X) als Unterraum von Jf^ms^c(X) ein vollstàndig
regulârer topologischer Raum.

Satz 9 in [2] besagt, dass fur jeden Limesraum X
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ein Isomorphismus ist. Der darauffolgende Satz 10 hait insbesondere fest, dass fur
jeden Limesraum X

ein bistetiger Isomorphismus ist. Das gibt Anlass zur folgenden Définition (s. [2]) :

Définition 1. Ein Limesraum X heisst c-einbeîtbar, faite ix'X *4C^0 e^n

Homôomorphismus ist. Ein c-einbettbarer Limesraum X wird c-volleinbettbar genannt,
faite I(X)=Jf#mVc(X) gilt.

Sei ^(JQdie^î-Algebra aller stetigen, beschrânkten Funktionen von X nach 5R.

Lemma 1. Fur einen Limesraum X sei IC(X) ein kompakter, topologischer Raum.
Dann gelten V(X) V°(X) und l(X) Uom <g°(X).

Der Beweis soll hier nur kurz skizziert werden. Die Voraussetzungen implizieren:
V°(Ic(X))vind folglich V(X) V0(X). Aus 10.5.C, p. 142 in [8] folgert man

HomV°(Ic(X)). Die Abbildung i% induziert eine Bijektion von I(X) auf
woraus I(X) Hom<£°(X) resultiert.

1.4. C. H. Cook und H. R. Fischer fûhrten in [6] den Begriff der uniformen LU
mitierung (uniform convergence structure) auf einer nicht-leeren Menge ExE ein.
Dieser stellt eine Verallgemeinerung desjenigen der uniformen Struktur von Bourbaki
[3] dar. Die Menge E zusammen mit einer uniformen Limitierung heisst uniformer
Limesraum {uniform convergence space). Jede uniforme Limitierung auf Ex E induziert

in natiirlicher Weise eine Limitierung auf E. Die Menge E versehen mit dieser

Limitierung heisse der zum betrachteten uniformen Limesraum assoziierte Limesraum.
Sowohl den uniformen Limesraum, als auch den dazu assoziierten Limesraum werden
wir fortan mit dem selben Symbol bezeichnen.

Fur einen Limesraum X und einen uniformen Limesraum Y definierten die oben

genannten Autoren auf ^(X, Y) die Limitierung der uniformen Konvergenz (the
structure of uniform convergence, s. [6], p. 98, § 2). Wir bezeichnen dièse Limitierung
mit Au. Die Menge ^(X, Y) versehen mit Au heisse ^U(X, Y). Die Limitierung der
uniformen Konvergenz auf ^(X, Y) ist stets/einer als die Limitierung der stetigen
Konvergenz (s. Theorem 6 in [6])! Sind speziell X ein topologischer und Y ein (im
Sinne von [3]) uniformisierbarer Raum, so sind die Limitierung der uniformen
Konvergenz und die Topologie der uniformen Konvergenz auf të(X, Y) identisch!1)

In unseren Betrachtungen in (2.) wird Au stets auf ^(X) definiert sein. Die uniforme
Limitierung auf 91 x 5R sei stets die von der Addition in 91 erzeugte uniforme Struktur
im Sinne von [3].

1.5. Seien X ein Limesraum und Y ein uniformer Limesraum. Die Menge aller
Abbildungen von X nach Y sei mit tF(X, Y) bezeichnet. Eine nicht-leere Teilmenge

*) Die Aussage bleibt auch dann richtig, wenn Xdurch einen beliebigen Limesraum ersetzt wird.
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Y) versehen mit der Limitierung der punktweisen Konvergenz heisse Hs.

In [6] findet sich :

Définition 2. Es bezeichnen X ein Limesraum und Y ein uniformer Limesraum.
Eine nicht-leere Teilmenge Hd^{X, Y) heisst gleichstetig in xoeX, falls

d:X

definiert durch d(x)(f)=f(x)fur jedes xeX und jedes feHs, an der Stelle x0
stetig ist.

H heisst gleichstetig, falls H injedem xeX gleichstetig ist.
Wenn Hcz^r(X, Y) gleichstetig ist, so sind aile Funktionen in H stetig, d.h.

Hctf(X9 Y).
Eine nicht-leere Teilmenge Hcz(é>(X9 Y) versehen mit der Limitierung der stetigen

Konvergenz sei mit Hc bezeichnet. Sind Hc und Hs vermôgeder Identitâthomôomorph,
so drùcken wir das oft durch HC HS aus.

Lemma 2 (Cook und Fischer). Seien X ein Limesraum und Y ein uniformer Limesraum.

Fur eine gleichstetige Teilmenge Hcfë^X, Y) gilt HC HS.

Lemma 3 (Cook und Fischer). Die Voraussetzungen seien wie in Lemma 2. Eine
nicht-leere Teilmenge einer gleichstetigen Menge Mc^(I, Y) ist gleichstetig.

Eine nicht-leere Teilmenge A cZ eines Limesraumes Z heisst relativ kompakt, falls
die Adhârenz (s. [7]) À in Z kompakt ist.

Satz von Ascoli (Cook und Fischer). Seien X ein Limesraum, Y ein separierter,
uniformer Raum (im Sinne von [3]) undHafê^X, Y) eine nicht-leere Teilmenge. Genau

dann ist Hatë^X, Y) relativ kompakt, wenn H gleichstetig ist und

H(x) {f(x)\feH, xeX fest}

fiir jedes xeX in Y relativ kompakt ist.

Bemerkung: Sei (A, A) ein kompakter Unterraum des separierten Limesraumes Z.
Dann gilt A Â. Fur jeden separierten Limesraum F ist ^C(X9 Y) separiert (s. [1]).
Folglich ist mit einem kompakten Unterraum Hccz^c(X, Y) die Menge H relativ
kompakt.

2. Ûber kompakte JC(X)

Weil fur jeden Limesraum XdiQ Limesalgebren ^C(IC(X)) und ^C{X) vermôge /*
bistetig isomorph sind, kônnen wir an Stelle von tëc(X) das Objekt tfc(lc(X)) unter-
suchen. Fur jeden kompakten Limesraum X ist IC(X) ebenfalls kompakt. Deshalb
versuchen wir in diesem Paragraphen erst Nâheres ûber den kompakten Limesraum
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IC(X) zu erfahren, um spâter mit Hilfe von &C(IC(X)) stârkere Aussagen ûber
machen zu kônnen.

2.1. Um etwas weitere Aufschlusse zu erhalten, wâhlen wir fur einen Limesraum
Zeine Teilmenge HczJ^r/m^c(X), die I(X) umfasst,und versuchen festzustellen, wie
einschrânkend die Eigenschaft ,,kompakt" fur Hc ist. Es sei bemerkt, dass Hs topolo-
gisch ist.

Aus dem Satze von Ascoli und der Bemerkung in (1.5.) erhâlt man:

Lemma 4. Wenn Hc kompakt ist, dann ist H gleichstetig.
Die Lemmata 2 und 4 implizieren :

Lemma 5. Wenn H gleichstetig ist, dann gilt Hc Hs. Ist Hc kompakt, so ist er
topologisch.

Mehr iiber kompakte Hc erfahren wir (s. Satz 3), wenn wir die Beziehung zwischen
der Kompaktheit von Hc und der Gleichstetigkeit von H eingehender studieren (s.

Satz 1). Dazu benôtigen wir die nâchsten drei Lemmata.

Lemma 6. HC HS impliziert, dass

definiert durch d(f){h) h(f) fur jedes fe^c(X) und jedes heHc, ein bistetiger Iso-
morphismus ist.

Vorerst verifiziert man, dass

ein kommutatives Diagramm stetiger Abbildungen ist. (Hierin ist ix aufgefasst als

Abbildung von Xin H.) Mithin muss c/injektiv sein. Homs^(I) bedeute den topolo-
gischen Raum gebildet aus der Menge aller Homomorphismen von ^(X) nach 5R

und der Topologie der punktweisen Konvergenz. Aus 11.7. in [8] entnehmen wir,
dass I(X) in Homs^(Z) dicht liegt. Das bedeutet, dass I(X)<=:HS ebenfalls dicht liegt.
Weil HC HS vorausgesetzt ist, muss daher /* injektiv sein. Nun ergibt sich aus dem

obigen Diagramm leicht die Surjektivitât und hernach die Bistetigkeit von d.

Lemma 7. Sei X ein vollstàndig regulârer topologischer Raum, fiir den ^C(X) eine

topologische Algebra ist. Dann ist die Limitierung Ac auf ^C(X) die Topologie der

kompakten Konvergenz.
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Unter den gemachten Voraussetzungen ist Ac eine Topologie. Dièse ist nach [4],
exercice 10c, §3, p. 72 identisch mit der Topologie der kompakten Konvergenz.

Lemma 8. Ein vollstândig regulârer topologischer Raum X,fiir den

ein Homôomorphismus ist, muss notwendigerweise kompakt sein.

Die Voraussetzungen implizieren : Au auf ^U(X) ist die Topologie der gleich-
mâssigen Konvergenz (s. 1.4) und ist mit der algebraischen Struktur von ^(X) ver-
trâglich. Daher ist nach Lemma 7 Ac die Topologie der kompakten Konvergenz. Wir
betrachten die Nullumgebung

U {feV(X)\\f (x)\ < 1 fur jedes xeX}

in ^U(X). Nach Voraussetzung enthâlt U eine Nullumgebung der Form

V {feV(X)\ \f(x)\ < s fur jedes xeK},
wobei e>0e9t und K eine kompakte Menge ist. Wenn nun K^X wâre, so gâbe es

ein xeX, das nicht in ATliegen wùrde. Nun ist X vollstândig regulâr und daher flndet
sich éinfe<^{X) mit/(x) 2 und/|AT=0. Dièse Funktion wâre offensichtlich in V
aber nicht in U. Also ist K= X.

Satz 1. Sei X ein Limesraum. Eine Teilmenge HciJ^^m^^X) mit H=>I(X) ist

genau dann gleichstetig, wenn Hc ein kompakter, topologischer Raum ist.
Wenn Hc kompakt ist, so ist nach Lemma 4 H gleichstetig. Nun nehmen wir

umgekehrt H als gleichstetig an. Dann gelten (s. Définition 2 und Lemma 5):

(i) d : ^c (X) Vu (Hs) ist stetig.
und

(ii) HC HS.

Die Limitierung von ^U(HS) ist feiner als diejenige von ^C(HS) (s. 1.4). Daher folgert
man aus (ii) und Lemma 6, dass

ein Homôomorphismus ist. Weil der Limesraum Hc wegen (ii) ein vollstândig regulârer
topologischer Raum ist, muss er nach Lemma 8 kompakt und topologisch sein.

2.2. Sei Zein Limesraum. ^(A^bezeichnedie SR-Algebra aller stetigen, beschrânk-

ten Funktionen von X nach 91. Weiter bezeichne Homs^°(X) den topologischen
Raum, bestehend aus der Menge aller Homomorphismen von ^°{X) nach 5R und der

Topologie der punktweisen Konvergenz.

Satz 2. Furjèden Limesraum X ist Homs^°(Z) kompakt.
Weil i$:V(Ia(X)) >V(X) ein Isomorphismus ist (s. Satz 9 in [2]), sind
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und <%°{X) vermôge iî\V°(la(X)) isomorph. Daher sind Homsr(/s(I))
und Homs((^o(X) homôomorph. Es ist IS(X) ein vollstândig regulàrer topologischer
Raum. Nach 11.5 und 11.9 in [8] ist Homsr(/s(I)) kompakt. Also ist auch

kompakt.

Satz 3. Seien X ein Limesraum und H<^^^m^c{X) eine Teilmenge, welche I(X)
umfasst. Dann sind die folgenden Âussagen âquivalent:

(i) Hc ist kompakt.
(ii) IC(X) und Hom,*0^) sind identisch.

(ii) impliziert nach Satz 2 offensichtlich (i). Umgekehrt sei Hc kompakt. Dann
sind H und I(X) gleichstetig (s. Lemmata 4 und 3). Also ist nach Satz 1 der Raum
IC(X) kompakt und nach Lemma 5 gar topologisch. Mit Hilfe von Lemma 1 schliessen

wir nun

Korollar 1. Furjeden kompakten Limesraum X ist
Denn fur jeden kompakten Limesraum X ist IC(X) kompakt und folglich ist die

Behauptung nach Satz 3 wahr.

3. Kompaktheit und c-Einbettbarkeit

Hier nun soll angegeben werden, welche der kompakten Limesrâume c-einbettbar
(s. Définition 1 in (1.3)) sind.

3.1. Ein kompakter, c-einbettbarer Limesraum ist nach Satz 3 topologisch und es

gilt Jf#mc<£c(X) Homs(£(X). Umgekehrt ist jeder kompakte, topologische Raum
ovolleinbettbar (s. [2]). Zusammengefasst kônnen wir also sagen:

Satz 4. Ein kompakter Limesraum ist genau dann c-einbettbar, wenn er topologisch
ist. Jeder kompakte, topologische Raum X ist c-volleinbettbar und es gilt ^omc ^c (X)

Jeder Unterraum eines c-einbettbaren Limesraumes ist c-einbettbar. Also gilt:

Satz 5. Jeder kompakte Unterraum eines c-einbettbaren Limesraumes ist topologisch.

Furjeden Limesraum Zist ^C(X) c-einbettbar (s. [2]). Folglich ist jeder kompakte
Unterraum von ^C(X) topologisch.

3.2. Nun sei X ein kompakter Limesraum. Der Limesraum IC(X) ist ebenfalls

kompakt und nach Satz 3 sogar topologisch. Daher ist die Limitierung auf <&C(IC(X))

identisch mit der ûblichen Supremumsnormtopologie. Also ist ^C(IC(X)) eine Banach-

algebra. Die Abbildung

i*x:Vc(lc(X)) >

ist ein bistetiger Isomorphismus (s. 1.3). Daraus folgt:
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Satz 6. Fur jeden kompakten Limesraum X ist ^C{X) eine Banachalgebra unter
der ublichen Supremumsnorm.

4. ^t.(X) als Banachalgebra

Der eben ausgesprochene Satz 6 fùhrt uns nun zur Frage, fur welche der oeinbett-
baren Limesrâume X die Limesalgebra tëc(X) eine Banachalgebra ist. Eine voll-
stândige Antwort enthâlt Satz 9.

4.1. Sei X ein pseudokompakter Limesraum (d.h. aile stetigen Funktionen von X
nachStsind beschrânkt). ^(X) versehen mit der ublichen Supremumsnormtopologie
heisse Vn(X).

Satz 7. Sei X ein Limesraum, fur den tëc(X) eine Banachalgebra ist. Dann ist X
pseudokompakt und

ist ein bistetiger Isomorphismus.
Wir weisen erst nach, dass jedes/e^JT) beschrânkt ist. Sei V0 {fe(Vc(X)\

||/||<1}. Dabei bedeutet /-> ||/1| die Norm in %C(X). Es ist Vo eine offene Null-
umgebung. Aile Elemente in e+ Vo sind invertibel. Hierin bedeutet e das Einselement.

Man wâhle nun ein Xe3i mit |A| ^ 1. Dann gilt

e + r1-Voce+Vo.

Also ist fur jedes fe Vo die Funktione + X~ ^/invertibel, was f(x)^ — X fur jedes xeX
bedeutet. Der Allgemeinheit von X wegen folgt |/(x)|<l fur aile xeX. Also ist jede
Funktion in Vo beschrânkt, was aber die Beschrânktheit aller Funktionen in ^C(X)
nach sich zieht. Daher ist X pseudokompakt. Wie man nun leicht verifiziert, ist id
als Isomorphismus von der Banachalgebra ^C(X) auf die Banachalgebra ^n(X) stetig.
Daher ist id sogar bistetig.

Lemma 9. Fur einen pseudokompakten, vollstândig regulâren topologischen Raum X
ist ^vm^^X) ein kompakter, topologischer Raum.

Es bezeichne P(X) die Stone-Cech'sche Kompaktifizierung (s. [8]) von X und

ip-.X >P(X) die (stetige) naturliche Inklusionsabbildung. Es ist

ein bistetiger Isomorphismus. Deshalb ist

ein Homôomorphismus. Als kompakter, topologischer Raum ist p(X) homôomorph
zu J^^mc^n(p(X)). Mithin ist auch J^4>mc^n(X) kompakt und topologisch.
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Satz 8. Wennfur einen Limesraum X die Limesalgebra ^C{X) eine Banachalgebra
ist, dann ist IC(X) ein kompakter, topologischer Raum.

Sei &C(X) eine Banachalgebra. Einerseits wissen wir, dass

ein bistetiger Isomorphismus ist. Wir folgern damit aus Satz 7: Es ist IC(X) pseudo-
kompakt und ^C(IC(X)) und ^n(Ic(X)) sind vermôge der Identitât homôomorph.
Anderseits sind ^(IC(X)) und ^(IS(X)) identisch. Also ist auch IS(X) pseudokompakt
und

id:Ve(Ic(X)) >

ist bistetig. Jetzt folgern wir mit Hilfe von Lemma 9 die Kompaktheit von
J^>^mc(^c(Ic(X)). Daraus schliessen wir, dass auch 2tfom^C{X) kompakt ist. Aus
Satz 3 lesen wir daher ab, dass IC(X) kompakt und topologisch ist.

Mit Hilfe der Sâtze 4, 6 und 8 folgern wir abschliessend :

Satz 9. Fur einen c-einbettbaren Limesraum X sind diefolgenden Aussagen gleich-

wertig :

(i) X ist kompakt.
(ii) X ist kompakt und topologisch.

(iii) %C(X) ist eine Banachalgebra.

University of Michigan, Ann Arbor, Mich.
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