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Some Congruence Theorems for Closed Hypersurfaces
in Riemann Spaces
(Part I: Method based on Stokes’ Theorem)

Dedicated to the memory of Mrs. Anja Hopf

by YOSHIE KATSURADA, Sapporo

Introduction

1. Usually two point sets F, F of a metric space R are called ‘“‘congruent” if there
exists an isometric mapping of R onto itself carrying F into F. However we shall use
a more general notion of congruence: a group G of 1-1-mappings T of R onto itself
shall be distinguished; then F, F are called congruent modulo G if there exists a

mapping TeG with T(F)=F. 4 “congruence theorem” is a statement saying “F and
F are congruent modulo G”.

2. Our spaces R shall be (m+ 1)-dimensional Riemann spaces and F=W, F=W
shall be m-dimensional closed (several times differentiable) hypersurfaces. Two known
special congruence theorems, namely theorems V and A as stated below, form our
starting point: W, W are closed surfaces in the euclidean space R=E?; a differenti-
able mapping ¢ of W onto W is given; we consider the straight lines (pp) connecting
the points pe W with their images p= ¢ (p); in order to exclude certain exceptions we
further assume that the set of points in which (pp) is tangent to W or W does not
have inner points. H and A are the mean curvatures of W and W respectively. Then
the mentioned theorems read as follows:

THEOREM V: If all straight lines (p p) are parallel to one another and if H(p)=H(p)
for all pe W, the surface W is produced from W by simple translation in the direction
of (pp). W and W are therefore congruent (in the elementary sense).

THeOREM A': If all straight lines (pp) go through a fixed point o (which does not
lie on W or W) and if, assuming that |x| means the distance of a point x from o,

lpl-H(p) = 15| H(p),

then W is produced from W through a ‘“homothety’” (= “‘similarity’’) with the center
o. Therefore W and W are similar (in the elementary sense).

Both of these theorems are ‘“‘congruence theorems’” in the sense explained under 1. :
in Theorem V, G is the group of translations in the direction of the straight lines (p 5)
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since the translations are isometric, Theorem V is an ordinary theorem of elementary
geometry. In Theorem A, G is the group of homotheties with the center 0. — These
theorems are, by the way, known not only for m=2 but for arbitrary m of m-dim-
ensional hypersurfaces in the euclidean E™** (cf. [1], [2], [3]).

3. Now, the aim of H. HopF and the present author was to formulate as general
as possible a theorem valid in arbitrary spaces and containing theorems V and A as
special cases. We consider a Riemann space R=R™*! and a continuous differentiable
l1-parameter group G of 1-1-mappings T, of R onto itself (the group parameter T,
— 00 <1< + 0, is assumed to be always canonic, i.e. T,* T,,=T,, +.,)- The orbits (or
streamlines) of the points of R produced by T, are regular curves covering R simply;
in particular T, has no fixed point for t#0. (In the case of Theorem V is R=E? and
the orbits are parallel straight lines; in the case of Theorem A is R=E>—o and the
orbits are the straight lines through o, not including 0.) In R a closed hypersurface
W= W™ shall be given; to each point pe W we attribute a parameter value t=1(p)
in such a manner that p=T,,,p form a regular hypersurface W=W™ and that the
mapping ¢:p—p and W— W is regular. Furthermore we assume, as under 2. that the
set of points in which orbits are tangent to W or W, has no inner points.

Now we consider an additional hypersurface W,= T, W for each pe W: the point
p lies therefore on W and W,. The mean curvatures of W, W, W, are H, H, H, and
we assume W, such that

H(p)=H,(p) foreach peW. )

(If G consists of isometries of R, we always have H,(5)=H(p), so that the condition
(1) simply means H(p)=H(p) as in Theorem V. In the case of Theorem A, T, is
the homothety with the similarity factor | |- |p| ~*; this leads to H,(5)=|p||p|~" H(p)
so that (1) is also the relation between H and H assumed in Theorem A.)

4. The assumptions formulated under 3. shall be valid. Our aim is to prove with
as few other restrictions as possible the following theorem: The function t(p) is con-
stant, i.e. independent of p; with other words: W is one of the hypersurfaces W=T, W,
or: W is congruent W modulo G.

In the following Part I of this paper we shall prove this for the case that the
transformations T, are homothetic, and somewhat more general, that they are con-
Sformal (either all properly conformal or all improperly conformal). In all these para-
graphs we are treating integral formulas which are deduced using Stokes’ theorem.

In Part II (which H. HopF and the present author hope to publish soon) the
limitation to homothetic or conformal transformations will be dropped but on the
other hand some more stringent restrictions concerning the relative position of the
hypersurfaces W to the transformations T, will have to be adopted. The method of
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proof will be based upon the maximum principle for the solutions of elliptic dif-
ferential equations.")

§ 1. Some integral forms for closed hypersurfaces

We suppose an m+ l-dimensional Riemann space R™*! of class C" (v 3) which
admits an infinitesimal point transformation

#=x"+E(x)dt (1.1)

(where x’ are local coordinates in R™*! and ¢ are the components of a contravariant
vector £). We assume that the orbits of the transformations generated by ¢ cover
R™*! simply and that & is everywhere continuous and #0. Let us choose a coordinate
system such that the orbits of the transformations are new x'-coordinate curves, that
is, a coordinate system in which the vector & has components ¢'=§', where the
symbol 5} denotes Kronecker’s delta; then (1.1) becomes as follows

F=x'+06 61 (1.1

and R™*! admits a one-parameter continuous group G of transformations which are
1-1-mappings of R™*! onto itself and are given by the expression

=x'+8 (1.2)

in the new special coordinate system ([4]).

If the infinitesimal transformation (1.1) is isometric, homothetic, conformal, affine
motion etc., we shall call the one-parametric group G itself isometric, homothetic,
conformal, affine motion, etc.

Now we consider two hypersurfaces W™ and W™ of class C* imbedded in R™*!
which do not pass through a singular point of the tangent vector field of the orbits,
and are given as follows

W™ xt = x'(u%) i=1,...,m+1 a=1,..,m
wm g% =x' u%) + 6\t (u%) (1.3)

where u* are local coordinates of W™ and 7 is a continuous function attached to each
point of the hypersurface W™. We shall henceforth confine ourselves to Latin indices
running from 1 to m+ 1 and Greek indices from 1 to m.

As is known from (1.3) we can attach a transformation T, ,,€G to each point on
the hypersurface W™, such that it depends regularly on p; that is, we have

#=x'+ 8 1(ud)
1) Our papers (Part I and Part II which are common works by H. Hopr and the present author)

have been presented in 1958 at the International Congress of Mathematicians in Edinburgh; a
summary has appeared in the “Abstracts of short communications and scientific programme”, p. 114,
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as the transformation T, , attached to p, whose coordinates are ug, then the corre-
sponding hypersurface W™ indicated by (1.3) is regarded as a set of the point
p=T,,(p) and we also consider the hypersurface T- W" for any TeG.

In this section, the purpose of our study is to introduce some integral forms which
we need in order to prove our congruence theorems.

Let us denote the mean curvature ([5], p. 250), the normal unit vector, the area
element, etc. of a hypersurface Sin R™*! ata point ge S, by H(S, q), n’(S, q), dA(S, q),
etc. respectively.

For a while, we shall confine ourselves to the case m+1=3 to let an explanation
be easy. We consider the following invariant attached to each point p on the surface
Wm

& (A" — ') &) t(u*) dx* (1.4)
=k
where A' means n'(T,,,W, p) and dx* a displacement along W™, i.e., dx*= éxa du*, and

u
def. -
Eijk = \/ g€jk
g being the determinant of the metric tensor g; ; of R™*', and the symbol e; ;, meaning
plus one or minus one, depending on whether the indices i j kK denote an even permu-
tation of 1 2 3 or an odd permutation, and zero when two or three indices have
the same values ([6], p. 7). Throughout this paper repeated lower case Latin indices
call for summation 1 to m+ 1 and repeated lower case Greek indices for summation

1 to m. Every quantity at the corresponding point 5 on W™ is denoted by a symbol
bar. Then we obtain locally the differential expression

Oy élijk(ﬁi - ﬁi)é{ﬂ(“a)dz]fk
= 5[1 é“jkﬁié’{l ‘r(u“)d,_]il‘ - (5[1 é,,-jkfli5{,td2])?k (15)

where the symbol § means the covariant differential along the surface W™, and the
symbol [ ] means alternating in 2 (see [5], p. 14), e.g.

Spr &y (A — ') 8] tdyy 2 =1{0,8 ; (7' — @) 6| td, % — 6,8 ;, (7' — #)6] vd, 7}.
The first term of the right-hand member of (1.5) is written in the form
Sp1 €yl 0% Tdy X =&, Oy ATy Td ) X+ &5, 1 0, (8] D) dpy . (1.6)
The first term of the right-hand member of (1.6) becomes as follows
& kO A0y Tdy X" = Hid\ tdA,
the second term of the right-hand member of (1.6) is rewritten in the form

éijkﬁié[l (5{” T)dZ]xk = éijkﬁi(s[l (5{1|)‘5d2]5€k + é,lkﬁ'5{ d[l sz]xk ¢ (1.7)
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Furthermore applying the relations

o &y 0% ox*
ni = i L]
\/g* ou'! ou?
& ™ =268[07 ([6], p. 8, ex. 9),

(1.8)

where g* means the determinant of the metric tensor g,, on the surface W™ and

¢'™* means (1/\/ g)e'™k '™k having the same meaning as the symbol e, ,,, We can see
that the first term of the right-hand member of (1.7) is developed as follows

- _: s —k _ i -1 —k
Eijknlé[l(éfll)TdZ]x = Sijknlr'il d[lx d2]x T
- %Téijkﬁlf;{l ﬁpéplkd/4.= %T(F{] —_ F(jl)l ﬁjﬁl)dli-

where the symbol ( ) denotes mixing ([5], p. 14). Consequently the first term of the
right-hand member of (1.5) becomes

6[1 élijkﬁi5{,td2]ik = Hﬁ,ai Td/i-
+ 30y — T AA)TdA + 8,7 8] dy tdyy 5. (1.9)
Next we shall calculate the second term of the right-hand member of (1.5):
5[1 élijkﬁiﬁfl T dZ]fk = éijké[l ﬁléi,” TdZ])?k
+ & A0 Oy Ty X+ & A 8 dy Td XL (1.10)
First we must discuss in detail the following quantity
oi' = dii' + I 7 d5* (1.11)

where dfi' means the infinitesimal term of the order one of n'(T,, 44, W™, p+dp)—
n'(T,,) W™, p); therefore we can express it as follows

di' = ' (T,prapy W™, B + dp) — n' (T, W™, p)
= nl(Tt(p+dp) Wmap + dp) - nl(Tt(p) Wm,ﬁ + dﬁ)
+ nl(Tf(p) Wm’ﬁ + dﬁ) - nl(Tt(P) Wm’ p)

excepting the infinitesimal terms of the higher order than one, where p+dp=T,,,
(p+dp), that is, the point on the surface T, W™ corresponding to p+dpe W™; its
coordinates are

' %= x'(u + du) + 6t (u).

Since the difference between the two normal vectors n'(T,44p) W™, P+dp) and
n'(T,, W™, p+dp) which correspond to the same point p+dpe W™ depends only on
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the x'-coordinate value, the following expression is obtained

i m = ~ i m = ~ aﬁl
h (T;:(p+dp) w s D+ dp) —n (Tt(p) w » D+ dp) = 8)21 dr
u+du

excepting the infinitesimal terms of the higher order than one and the infinitesimal
terms of the order one of the difference between the two normals at the points 5 and
p+dp on the surface T,,, W™ is the differential of the normal on the surface T,,, W™:
dii', that is,

dii' = n'(T,py W™, B + dp) — n'(Toipy W™, B)

excepting the infinitesimal terms of the higher order than one. Accordingly (1.11)

may be rewritten by symbols 5 and 3:

with

oi' = dii' + I 7 ds*. (1.12)

3ﬁi and 7' show the covariant differentials of 7’ along the x'-curve and the surface
T,y W™ respectively.
Therefore the first term of the right-hand member of (1.10) is reformed as follows

éijké[l (ﬁl)é'{.” T dz] .fk = éijkg[‘l (ﬁl)afu T d2]5&k
1
+ & 1 0py (A) 8]y Tdyy . (1.13)
For the first term of the right-hand member of (1.13) we have
& jxOp () 0]y vdyy X = Hii; 6 vdA (1.14)
where the quantities with a wave mean the following
A= H(T,,, W™, p), #;=n(T,,, W, D),
dA = dA(T,, W, p), d%=dx(T,, W™, p).
We can see easily that dX =dx from the above definition.
On the other hand, making use of the expression indicated by (1.3):
dx' = dx' + 8" dr
and dx'=dx’, we have
& judpy X dyy X =& dpy  dpy 5 + 28,60 dp 1dyy 5
and we get
dAf; = dAR; + 2§ ;, 0] dy tdyy X,
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that is,
& 10) dpy 1dyy ¥ = 3(dA A, — dAR), (1.15)
and the relation
dAn, & = dAR; S, . (1.16)
For the second term of the right-hand member of (1.13), the following calculations
are developed:

I I {7
Sijké[l(n)é'l’”fdzlxk=8ijk(a”:é“”+1; 1)5 d[]?,'dz]x T

1 : P . o e .
because of the relation o(7')7;=0 at which we arrive by differentiating covariantly
A'fi;=1 along the x'-curve. Now calculating the partial derivative of 7’ indicated in
the form

Li _ i1 Epal ox? 0x1 =_“épq, oxP 0x1
;g;’i‘ oul' gu? \ &* out! ou*
with respect to the %', #* being the determinant of the metric tensor g, on the surface
T, W™ at p, that is,
g* = g*(Tz(p) wr, ﬁ) = |§:ﬁ|

- _ ox' ox?
gaﬁ”gaﬂ(Tr(p)W’p) gua 3 NE

and multiplying its result by 7; and contracting with respect to the index i, we get

on' 0Zi; i )
i =— g"ﬁ‘ﬁ’+2(ag‘1’ﬁ'ﬁ1)ﬁ’ﬁz
X

Thus it follows that

1 5 .
&y 01 () 0y T dyy
1 0g 0 7
=~{ guﬁ'ﬁj—}— (g”ﬁ'ﬁ-’)ﬁlfil-i—Fl i ﬁ} dA . (117)

2 oxt ox!

Moreover the second term of the right-hand member of (1.10) is expressed as

follows
&l 0 (O, )1doy X =YW A, T}, — T W' A;)1dA. (1.18)

Substituting the result of (1.13) which is replaced by the right-hand member of (1.14),
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(1.17) and (1.18) in the right-hand member of (1.10), we have

. A N S
5[le|,-jkﬁ'5’,|'cd2])2k=ﬁr‘zié',tdA+2{ﬁ‘ﬁ,.1’fl

g, . . 1[0z,
— g&!ﬁlﬁl_'-i(a Jﬁ'ﬁ-’) nl}TdA ‘+‘8'Jkn6 d[ltdZ]x (1.19)
X

Now substituting (1.9) and (1.19) in the right-hand member of (1.5) and making use
of (1.15) and (1.16), we have

1(_ . _ g,
+ ~{r§1(1 “‘ﬁlﬁi)“‘ ['(lj)lﬁlﬁ + gjﬁ,’ij
ox!
0 .
- —(—guﬁ'n’)ﬁ'ﬁ,}rdA
ox!
+ L(7; — 7)) (7' — #') (dA + dA),

([ 10g
=(H—H)ﬁi5‘ltdA+a{< ' +26gi’“‘r“z’>g,m

ND | b

agl m -l

= }( — i) (A" — A" tdd
+ 1@, — ) (7 — i) (dA + dA).

From the property of a Riemann connection that the covariant differential of a scalar
is equal to an ordinary differential, we arrive at

dpy &g (A — /) 6] Tdyy & .
_ (A= A) 7,8 cdd + 3G, (7 — i) (7 — ) rdd
+ 3@ — @) (A, — 7)) (dA + dA), (1.20)

=i lag-ik..i.. - ag-l j
G,j5<“+iaxjnn">g,j—~—’ (1.21)

putting

0g, ;
ik ~i ~k 1j
(g + i) g — ael
and 0g;,/0x' are the components of the Lie derivative of g;, with respect to this
special coordinate system ([7], p. 4). Hence the quantity G,; is a tensor.

In the case of m+12=3, we take the following invariant attached to each point on
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the hypersurface W™

= =iy ~i1\ Si2 =i3 =i
Eiinime (AL —AY)OPTdy X2 . d, %!

where d, %, ..., d, % indicate m—1 displacements along W™ and

il cim+1 \/g e“_ im+1

where the symbol e;, ; ., means plus one or minus one, depending on whether the
indices i, ... i,,+, denote an even permutation of 123 ... m+1 or an odd permu-
tation, and zero when at least two indices have the same value ([5], p. 25). Then,
following a similar method and using similar relations,

& ;.. Ox"  dxim

1eeelmim+1

tm+1 \/? aull aum]

(="

m

and

(dd#;, — dA#;), (1.22)

o iz =i3 =im+1
sil...im+151d[1'€d2x ...dm]x’" =

we get easily the result
d[l élil e im e (ﬁi‘ -_ ﬁil) 5112! T dz X‘i3 s dm]j(-:i"”.1

=(- 1)"'{(1?— H) ;6 tdA + Z—I—G,,.(ﬁ’ - #y(@ — W)rdd
m
1 — ~ i ~i -~
+ i;l—(ni —a)(#@ —#')(d4d + dA)} (1.23)

where the symbol [ ] means alternating in m ([5], p. 14) and d4 and d4 are the area
elements of the hypersurfaces W™ and W™ at j respectively.
In the case of m+1=2, let us take the following

d{& (@' — &) 81},
then, by using the analogous method, we can see the chain of the following equalities
d{& (@' — 7)) 8} = 6 {5, ;(7* — 7) 6] 1}
=—{6(g,;i'6]) — 6(& ;10 v — &, ;(FF — 1) 8l de

= — [(;zg,.jéi A ds + Ty 7 74d35) — {xg,, Ll ds

108 . )
+(—-2~ axplqn" AP i+ 2Ly, t t)ds}:lt

— 37, — i) (@ — ) (ds + d3)



Some Congruence Theorems for Closed Hypersurfaces 185

(because of 8] dt = dx/ — dx! = ¥ ds — ¥ d)

=_.[(,z—§)gij5§ﬁfrd5
1(0g;, 1(08,q~,~ S~ -
+2{5%1l_é(§piqtptq)gﬂ}(ﬂ_tj)(fl‘tl)Tdi

+ 3 (A, — A;) (7' — /') (ds + ds')]
(because of g, ;6 i/ ds = g, ;&' A/ ds)
- i i —j - 1 agl lagrs -rs AP ~S\ =
=—[(k - K)g,-jéln’tds+i{a—iil Ry g —ni)g;

x &P, — #,) (A, — fi,) Tds

+ 3@ — A;) (7' — &) (ds + d5)

(because of g7 = 17t + A’ %)
_ w1 og,, 108,, .. .\ _

=—[(k—«)g; ;0. 1d5 + i{(i éﬁlg” + 5 a;zplqnpnq) 81
0g, ; : :
- —g’—’} (@ =AY (W — #) v ds

x

+ (A, — ) (7' — i) (d§ + d3)]
(because of & 781 =g/'gre — grlgie),

that is,
where t', 5, and «k are the tangent unit vector, the arc length, and the curvature of the
curve W™ respectively; and

1'=t(T,W"5), §=s(TyW"p), &=x(TqW" p)
Therefore the relation (1.23) holds good in every case for m+12=2.
If we take the m displacements in the left-hand member of (1.23) as follows
diu*=(du',0,...,0), dyu*=(0,du?0,..,0),....
d,u*=(0,0,...,du™)

and multiply by m!, then it shows the exterior differential of the differential form of
degree m—1 by means of E. CARTAN ([8], p. 81; [5], p. 97). Accordingly (1.23) be-
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comes

1
mfid((n A, 0,1, dx%,. dx))
1

m-—

=(- 1)"'{(17- H) ﬁiéil‘tdff+~2—%1c7,j(ﬁ‘ —A)# —w)yrdd  (1.29)

1 ~
+ — (A —a) (@ - 7)) (dA + dA’)}
2m
where
def. . . ’ N
(A—n,06,1,d%,...,d%) =&, ;. (A" —#d")o¢rd, x°...d,x*",  (1.25)

that is, the differential form of degree m—1 with respect to the du®*.
If the hypersurfaces W™ and W™ are orientable, integrating both members of
(1.24) over the whole hypersurface W™ and applying Stokes’ theorem, we have

j((n A, 6,7, dx, ..., dx)) = (-1)”'{](1{ A6 tdA

owm
1 . : 2
+ o G,J.(ﬁ' — Ay (@ — #)rdd + (1.26)
2m |
Wm
1 =
+— | (7 —#) @A - i) (dAd + dfi)},
2m
Wm

and if the hypersurfaces W™ and W™ are closed, then it follows that

J(H— Masicdd+ - [ Gy =)@ - #yedd +
i "

to [ G-m)(F - @A+ ad)=0. 27

m o

Wm

Especially we consider the differential form of degree m—1 for 7=1 in (1.25),

(7 — 7, 8y, dx, ..., dx)),
then we can see easily

A-A)iddd+— | 6, - @ —i)dd=0  (1.28)
2m /

for the closed orientable hypersurfaces W™ and W™.



Some Congruence Theorems for Closed Hypersurfaces 187

§ 2. Supplementary theorems

THEOREM 2.1. If two hypersurfaces W™ and W™ in R™*! whose points correspond
along the orbits of the transformations € G, are closed orientable and fulfil the relation

A=1,
then it follows that
f G ;@ -aY# -i)dd=0.
Wm

Proof. This theorem is selfevident from (1.28).

CoROLLARY. If the hypersurfaces W™ and W™ are closed and orientable and if
the relation = H holds, and if we shall assume that the invariant G, (7' — #') (7 — #)
is non-negative (or non-positive) at every point on the hypersurface W™, then it
follows that

G (i — i) (# — ) = 0

at every point on the hypersurface W™,

THEOREM 2.2. If G is conformal, that is, &' satisfies the equation &, ;+&;.,=2¢g; ;
([7], p- 32), then it follows that

Gl j=m fﬁgz j
where ¢ is a scalar function and the symbol **;” denotes the covariant derivative.

Proof. In the special coordinate system, a necessary and sufficient condition that
the infinitesimal transformation be conformal, is that

agij )
Fijl+rji1=axl =2¢gij,
accordingly we have
_ _ 08; ) 108, .
Liji+Thin= 7 =208, 25321‘—]"["] =

and it follows that
Glj={(m+ 1)‘7’-4‘5}?1,'—254?”: mfﬁéz,--

COROLLARY 1. If G is homothetic ([7], p. 166), that is, & satisfies &;. ;+&;,;=2Cg; ;
(C=const.), then the relation

Glj =m Cglj
holds.
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CoROLLARY 2. If G is isometric, then it follows that G, ;=0
THEOREM 2.3. A necessary and sufficient condition that 0g; ;/0%" =0 is that G, ;=

Proof. The necessity of the condition is selfevident from the definition of G;;; s
hence it will be enough only to show that the relation: dg,;/0%' =0 is induced from

G,j=0.

From the definition:

and the relations:

_. .08, . ox' oxt i
F:1—%g']é§fj’ g'h“‘a”{‘;,,’éupg*aﬁ'*'nnh,
we have
6 09., . og, .

m

where %'=%!(u”) denotes the hypersurface T,,, W™, §** is the contravariant metric

tensor on T,,, W™ and
grii= ox o g
Ju”* 6u”

*aﬁ

Multiplying both members of (2.1) by 7'7/ and contracting with respect to the indices
/ and j, we have

By making use of G,;=0, we can see that

in08in
~%ih ___’__ —_ 0 2.2
and we get
agih ~i o~ = ag—l j
(é;:fn n) Ziy= 51 2.3)

Moreover multiplying by g'/ and contracting, we have

0 0g
(m + 1)( g‘h~lﬁh) ag-l.l(~*lj+ ~l~)
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from (2.2) and accordingly we have

08;
hosi o
— A=

m-_—— 0.
0x

From the above result and (2.3), it follows that

0% _

st =0. (2.4)

§ 3. Main theorems

We shall prove the following congruence theorem concerning the mean curvature
for closed hypersurfaces with the aid of the statements in the preceding sections. We
shall henceforth confine ourselves to two hypersurfaces W™ and W™ which do not
contain a piece of a hypersurface covered by the orbits of the transformations, which
is expressed by f(x?%, ..., x"*1)=0.

THEOREM 3.1. If the hypersurfaces W™ and W™ are closed and orientable, and if
there exists the relation

~

H=H

at corresponding points along the orbits of the transformations, and if the following
condition is satisfied

G ;@ —-a)(# —)z0 (or=<0)

at every point on the hypersurface W™, then W™ and W™ are congruent mod G to each
other.

Proof. For the closed orientable hypersurfaces W™ and W™, we can see (1.27)s
that is

. A . - 1 - . . -
m
W"l W”I
1 . -
+ J (a; —A)(A' —A')(dA + dA)=0.
2m
wm
Let us use the hypotheses: H=H and G, ;(7' —#')(7/ —#’)2 0 (or £0). Then from
the corollary of Theorem 2.1, we have

Gy (i — i) (# — ) = 0
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at every point on W™, accordingly we obtain

f (i, — i) (7 — i) (dA + dd) = 0.

From dA4 +dA >0, we conclude

n;

ol
=

The relation: 71, =7, gives rise to

J& oz ot J& oz oxm!

Jgrout  aum gt oum™

and

because of X' (u*)=%'(v*) for i=2,...,m+1.

~

From (3.1), A, =#,,..., fiyy =Hpeq and ——=_——, We have

ot ox> oax™t!
oull auz"' auT"]' B
ot ox?ox* oxmti
oul ou? ou® o™

o0 o o
out! ou®  ou™

Let M be a set of points on the hypersurface W™ which satisfy

axZ axm-i-l

ot aum =
Then since

6x2 axm+ 1

ot T

at a point on W™ — M, the following relation must hold

ot ot
" R - =0,
that is,
T = const.,

(3.1

(3.2)

and also for the reason that 7 is a continuous function with respect to »* and for the
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reason that W™ and W™ do not contain a piece of a hypersurface covered by the
orbits of the transformations, we conclude

T = const.

at every point on W™. This fact shows that W™ and W™ are congruent mod G.
Further from Theorem 2.2 and Theorem 3.1, we can conclude the following

CoRrOLLARY 1. If G is a conformal group such that & satisfies ;. ;+¢;,,=2¢g;
with the condition ¢ 20 (or £0), and if the closed orientable hypersurfaces W™ and
W™ fulfil the relation A= H, then W™ and W™ are congruent mod G.

As a special case of the last corollary, we get

COROLLARY 2. If G is homothetic, and if the closed orientable hypersurfaces W™
and W™ fulfil the relation #=H, then W™ and W™ are congruent mod G.

Next we examine the problem: How is the relation A = A rewritten by the corre-
sponding invariants of the hypersurfaces W™ and W™ in the case that G is homo-
thetic?

Let us consider again the infinitesimal transformation (1.1). Then as well-known,
the Lie derivative of an affine connection I 3 « 1s as follows

Lrj'k =4g"'{(Lg Dt (Lgi);—(Lgi)t (7], p. 52) (3.3)

where the symbol L means the Lie derivative.
Because the infinitesimal transformation is homothetic, we have the relation

Lg;j=2Cg; (3.4)

C being a constant. Replacing Lg;; by 2Cg;; in the right-hand member of (3.3), we
get
LF;’( — 0 N

that is, a condition for an affine motion ([7], p. 7).
In our special coordinate system the last result is expressed in the form

or
=0 ([7],p.34) (3.5)
0x
and (3.4) becomes
08 ;
ot =208
that is,
glj=Q2(x1) gtlj(xz,---,xm“) (3.6)
where

(e(xY)) =€ (3.7)
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which is a scalar function attached to each point on the orbits of the transformations.
We suppose a hypersurface W™ which is obtained from W™ by the infinitesimal
transformation and denote these hypersurfaces in the forms

wm:x' = xi(u“)
Trm . ~i i o i (38)
wm: ' = x'(u") + 9} ot

where 07 is an infinitesimal constant.

In the case of m+ 1= 3, the mean curvatures at the corresponding points on these
hypersurfaces are given by

H =n, —‘i’i + I ‘zfj?ff) *«F  ([5], p. 250) (3.9)
" '(6u°‘ ouf T ot ) B P .
and
2~i J
mﬁ:ﬁi(aj“; B+Flk(x)axa2z~-) ~%a B (3.10)
Now from (3.5) we can see
I (x) =T (). (3.11)

From (3.6), for the corresponding normals and metric tensors, the following relations
are induced

=" . g = _,; g~* ap (312)

and by virtue of (3.8) we get
ax' o 0°x’ %%
w® ou outou’  outou’
Substituting (3.11), (3.12) and (3.13) in the right-hand member of (3.9) and making
use of (3.10), we have

(3.13)

eH =¢(%) A. (3.14)

In the case of m+ 1=2, the curvatures at the corresponding points on these curves

are expressed by
B d*x' LTt dx? dx¥\ [dr\?
T e T % ar ) \ds

- dz”‘ % )dx’d dr\?
R= i g+ D@5 5 Nas) -
from (3.11) and the following relations

‘o),
is ods’ T e(®™
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dx!  dx d*xt d*%

dt dt’ di*  dt*’
we obtain similarly
ok = (XK.

Thus the relation (3.14) holds in every case m+12=2. And also the relation (3.14)
means that the quantity ¢ H does not change under a homothetic infinitesimal trans-
formation. Therefore repeating continuously this infinitesimal homothetic transfor-
mation, we can see that the relation (3.14) is given for the finite transformation as

W™ x' = x'(u”)
W% = X (u®) + 6 <
where 7 is a finite constant. Thus we can arrive at
oH =o(®)H (T, W",p) (=¢H).
Consequently the assumption A= H is rewritten as follows
oH=0H.
Corollary 2 of Theorem 3.1 becomes the following

THEOREM 3.2. If G is homothetic, and if the hypersurfaces W™ and W™ are closed
orientable and fulfil the relation

oH=0H
at the corresponding points on the hypersurfaces W™ and W™ along the orbits of the
transformations € G, then W™ and W™ are congruent mod G, where o=e*.

Especially in the case of C=0, the homothetic transformation becomes isometric,
and in this case we have g=1, and Theorem 3.2 becomes the following

COROLLARY. If G is isometric, and if the hypersurfaces W™ and W™ are closed
orientable and fulfil the relation
H=H
at the corresponding points on the hypersurfaces W™ and W™ along the orbits of the
transformations € G, then W™ and W™ are congruent mod G.

Remark 1. In an euclidean space, if G is a translation group, that is, a special
isometric transformation group, the Corollary of Theorem 3.2 just coincides with the
congruence theorems according to the mean curvature of H. Hopr and K. Voss ([1],
p. 187; [2], p. 203, p. 207).

Remark 2. In an euclidean space, if we take a central transformation (homothetic
transformation) then, using a polar coordinate system whose origin is the center of
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the transformation, we can arrive at the following case without difficulty
C=1, o¢o=r

where r denotes the distance between the origin o and a point p; in this case Theorem
3.2 is nothing but the theorem of A. AeppLi ([3], p. 178).

Here we emphasize that Theorem 3.2 includes all the congruence theorems of
closed orientable hypersurfaces in an euclidean space concerning the mean curvature
which have already been dealt with by H. Hopr and K. Voss ([1], p. 187; [2], p. 203,
p. 207), and A. AeppLI ([3], p. 178).
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