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Doppelverhiltnisse und quasikonforme Abbildungen

H. RENGGLI

§ 1. Einleitung

1. Sei h ein orientierungstreuer Homdomorphismus der Riemannschen Zahlen-
kugel Z auf sich. Sind z,, z,, z; drei beliebige verschiedene Punkte in Z, so gibt es
zwei Mobiustransformationen /; und /,, so dass [;(0)=z,, /;(1)=2z,, [;(c0)=z; und
I,(h(z1))=0, I,(h(z;))=1, 1,(h(z3))= o0 gelten. Somit ist f, f=1,.hol;, ein orientie-
rungstreuer Homoéomorphismus von Z auf sich mit 0, 1 und oo als Fixpunkten. Lasst
man nun bei festem 4 die drei Punkte z,, z,, z; beliebig variieren, so erhidlt man auf
diese Weise eine ganze Schar §§ von normierten Abbildungen f. Man kann es jetzt so
auffassen, dass jedes f die Verzerrungseigenschaften von 4 beziiglich dreier Grund-
punkte ausdriickt.

Es scheint deshalb natiirlich sich zu fragen, wann die Schar & einem Verzerrungs-
satze geniigt. Wir zeigen im §2, dass dies genau dann der Fall ist, falls § eine gewisse
Kompaktheitsbedingung erfiillt. Zugleich werden wir das Resultat gerade fiir eine
ganze Schar § von solchen Hom6omorphismen # beweisen (Satz 1). Dieser Satz
verallgemeinert ein Resultat von A. BEURLING und L. AHLFORS ([3], Theorem 2), das
sich auf Homoomorphismen der reellen Zahlengeraden auf sich bezieht. Wir haben
den von A. BEURLING und L. AHLFORS gegebenen Beweis mutatis mutandis auf den
Fall der Zahlenkugel iibertragen.

2. Schrankt man & und damit & durch derartige Bedingungen ein, so kann A
nicht ein beliebiger Homdomorphismus sein. Vielmehr ist 4 in diesem Falle quasi-
konform (Satz 2). Dies leitet iiber zum Problem, die quasikonformen Automorphis-
men von Z gegeniiber den topologischen abzugrenzen. Das kann natiirlich auf viele
weitere Arten geschehen, so unter anderm auch durch einschrinkende Bedingungen
fiir die Verdnderung der Doppelverhiltnisse bei der betreffenden Abbildung. Es ist
ein orientierungstreuer Homdomorphismus von Z auf sich genau dann quasikonform,
falls fiir die Doppelverhéltnisse eine sogenannte Verzerrungsfunktion existiert oder
falls alle Doppelverhiltnisse vom absoluten Betrag 1 quasiinvariant sind (Satz 2).
Dass sich bei quasikonformen Automorphismen von Z die Doppelverhéltnisse nicht
beliebig &ndern konnen, ist iibrigens schon bemerkt worden (cf. [1], p. 294).

Fiir den Beweis benétigen wir einmal Satz 1, also eine gewisse Verzerrungsaussage.
Fiir verwandte Betrachtungen von Verzerrungseigenschaften normierter quasikonfor-
mer Automorphismen von Z verweisen wir auf die Arbeit von O. LEHTO, K. I. VIR-
TANEN und J. VAISALA [7]. Andererseits brauchen wir als wesentliches Hilfsmittel
einen Satz von F. W. GEHRING [4], dass ndmlich die quasikonformen Abbildungen
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durch die Beschrianktheit der Kreisdilatation gekennzeichnet werden kénnen.

Uebrigens sind die Doppelverhéltnisse bei einem quasikonformen Automorphis-
mus von Z im allgemeinen nicht quasiinvariant. Vielmehr ist ein quasikonformer
Automorphismus f der Ebene E genau dann quasiisometrisch in E, falls die Doppel-
verhéltnisse fiir die durch f(o0)= oo erweiterte quasikonforme Abbildung von Z auf
sich quasiinvariant sind (Satz 3).

3. Da man quasikonforme Abbildungen lokal verindern kann ohne sie global
abdndern zu miissen, ist eine quasikonforme Abbildung f eines Gebietes G sicher erst
dann eindeutig bestimmt, wenn man sie auf einer in G dichten Punktmenge kennt.
Welchen Bedingungen muss aber f dort geniigen, damit f auf eindeutige Weise zu
einer quasikonformen Abbildung von G erweitert werden kann? Dies hingt zusammen
mit der Frage der Verallgemeinerung von quasikonformen Abbildungen auf beliebige
Punktmengen. Wir zeigen im § 4, dass die sogenannten Abbildungen von beschriankter
Dreiecksdilatation eine solche natiirliche Verallgemeinerung darstellen.

Sei also § eine beliebige in der Ebene E gelegene Punktmenge und f eine einein-
deutige Abbildung von S in E. Seien nun P, Q, R drei beliebige verschiedene Punkte

in S, und sei zum Beispiel fiir die Lingen Fé und PR der Seiten des Dreiecks PQR

die Ungleichung F_QS_P—R erfiillt. Wir nennen jetzt f von beschriankter Dreiecksdila-
tation auf S, falls eine Zahl C, C>1, existiert, so dass fiir alle derartigen Dreiecke
beziiglich ihrer Bilder P’ Q" R’ die Beziehung P'O'<C -P'R’ giiltig ist. Offenbar ist
diese Bedingung von globaler Natur.

Eine Abbildung f, f:S—E, von beschriankter Dreiecksdilatation ldsst sich ein-
deutig zu einer topologischen Abbildung der beziiglich Z abgeschlossenen Hiille S
erweitern (Lemma 5). Ist ferner S dicht in einem Gebiete G, so ist entweder die Er-
weiterung oder dann ihre konjugierte quasikonform in G (Satz 4). Nun ist aber eine
quasikonforme Abbildung eines Gebietes G in E im allgemeinen nicht von beschrink-
ter Dreiecksdilatation, doch besitzt sie auf jeder kompakten Teilmenge beschrinkte
Dreiecksdilatation (Zusatz 2).

Der Zusammenhang der Funktionen von beschrinkter Dreiecksdilatation mit den
quasikonformen Abbildungen beruht natiirlich darauf, dass die Dreiecksdilatation in
natiirlicher Weise die Kreisdilatation verallgemeinert. Einen Ansatz die Kreisdilata-
tion zu verallgemeinern stellen die @-Abbildungen von F. W. GEHRING ([5], 8) dar.
Ferner muss auch der Satz von A. Mor1 ([9], Lemma 4) in diesem Zusammenhang
genannt werden, den wir iibrigens zum Beweise von Zusatz 2 heranziehen.

4. Der Begriff der Funktionen von beschrankter Dreiecksdilatation gestattet es
auch; verschiedene Fragen der quasikonformen Abbildungen von einem einheitlichen
Gesichtspunkt aus zu betrachten. Sei f ein zunehmender Hom6omorphismus der
reellen Zahlengeraden R auf sich. Genau dann ist f quasisymmetrisch, falls f be-
schrinkte Dreiecksdilatation besitzt (Satz 5). Ist ferner f eine Abbildung von R in
E und hat f beschriankte Dreiecksdilatation, so ist f(R) eine sogenannte Quasigerade
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(Satz 6). Ueberdies sind die quasikonformen Abbildungen einer Halbebene, die sich
zu quasikonformen Abbildungen der Ebene erweitern lassen, genau Abbildungen von
beschriankter Dreiecksdilatation (Satz 7).

Ist f auf S von beschriankter Dreiecksdilatation und S nicht beschrinkt, so kann
S nur durch f(c0)= oo stetig im Punkte oo ergiinzt werden (Lemma 4). Nimmt man
nun den Punkt oo als Fixpunkt zur Definition von f hinzu, so kann die Eigenschaft
beschrinkte Dreiecksdilatation zu besitzen, durch Anderung von Doppelverhéltnissen
bei der Abbildung f ausgedriickt werden. Man hat dazu nur das aus den vier Punkten
P, R, Q, oo gebildete Doppelverhiltnis zu betrachten.

Damit erhélt man eine gegeniiber Mobiustransformationen invariante Formulie-
rung der Dreiecksdilatation. In Satz 8 zeigen wir, wie sich damit kompliziertere
Probleme der quasikonformen Fortsetzung behandeln lassen. Vorbereitend dazu
geben wir in Lemma 8 eine notwendige und hinreichende Bedingung, dass eine quasi-
konforme Abbildung eines von endlich vielen getrennt gelegenen Kreisen berandeten
Teilgebietes der Ebene sich zu einer quasikonformen Abbildung von Z erweitern
ldsst. In diesem Zusammenhang mochten wir auf die Arbeit von G. SPRINGER [11]
hinweisen. Die obige Bedingung erginzt die Sdtze von G. SPRINGER, doch unter-
scheiden sich seine Fragestellungen und Methoden in verschiedener Hinsicht von den
unsrigen.

5. Fiir die meisten von uns zitierten Sédtze konnten wir auf die neuern zusammen-
fassenden Darstellungen von O. LEHTO und K. I. VIRTANEN [8] einerseits und von
L. V. AHLFORS [2] andererseits hinweisen. Die dltern von uns benutzten Sitze findet
man auch im Buch von H. P. KiUnNz1 [6].

§ 2. Ein Verzerrungssatz

Es sei $ eine nicht leere Schar von orientierungstreuen Homdéomorphismen der
Riemannschen Zahlenkugel Z auf sich. Mit £($)) bezeichnen wir die aus $ durch
beidseitige Komposition mit konformen Automorphismen von Z gebildete Menge,
das heisst mit jedem he$) gehort jede Abbildung 7,040/, zu (%), wobei /; und /,
beliebige Mobiustransformationen sind. Also ist £($) abgeschlossen gegeniiber Kom-
position mit konformen Automorphismen von Z. Ferner bezeichnen wir mit Jt die
Schar aller orientierungstreuen Homdomorphismen von Z auf sich, die die Punkte
0, 1 und oo als Fixpunkte besitzen, und mit £y($) den Durchschnitt R L(H).
Schliesslich werde die komplexe Zahlenebene mit E notiert.

Eine Folge f; von Abbildungen von E in E heisst lokal gleichméssig konvergent
in E, falls zu jedem z, ze E, eine Umgebung existiert, in der die Folge f; beziiglich der
euklidischen Metrik gleichméssig konvergiert. Da E lokalkompakt ist, ist die lokal
gleichmissige Konvergenz gleichbedeutend mit der gleichméssigen Konvergenz auf
jeder kompakten Teilmenge von E.



164 H. RENGGLI

Nun beweisen wir

SATZ 1. Jede unendliche Teilmenge von L,(%)) ist genau dann relativ folgenkompakt
in R beziiglich lokaler gleichmdssiger Konvergenz in E, falls L,(9) einem Verzerrungs-
satze geniigt, mit andern Worten es sind die beiden folgenden Aussagen dquivalent:

a) Aus jeder unendlichen Teilmenge von () ldsst sich eine Folge auswdihlen, die
in E lokal gleichmdssig gegen ein Element aus M konvergiert.

b) Es gibt zwei fiir positive r definierte positive zunehmende Funktionen M und m
mit M(r)=m(r) undlim M(r)=0, so dass bei gegebenem r fiir jedes f € L,(%) und fiir

r—0

jede komplexe Zahl z mit |z|=r die Ungleichungen m(r)<|f(z)| < M(r) gelten.

Beweis. Wir fiihren fiir jedes fet die beiden Funktionen N(r, f)=max|f(z)|
jzi=r
und n(r, f)=min|f(z)| ein. Dann definieren wir M(r)= sup N(r,f) bzw.
Izl =r f & £o(H)
m(r)= inf n(r,f). Ist nun a) erfiillt, so lassen sich zwei in E lokal gleichmassig
S e Lo(H)

konvergente Folgen f; und f; aus £,(%) auswihlen, so dass M(r)= lim N(r, f;) bzw.
m(r)=lim n(r, ;) gelten und die Grenzfunktionen fy = lim f; und f,,=lim f; zu N
J— i— a0 j
gehoren. Aus der gleichmissigen Konvergenz auf |z| =r folgt aber die stetige Kon-
vergenz fiir |z| =r. Folglich sind sogar die Beziehungen M(r)=N(r, fy;) und m(r)=
n(r, f,,) erfiillt. Ferner ergibt sich, dass die Funktionen M und m definiert und zu-
nehmend sind und dass M(r)=m(r)>0 gilt. Ueberdies ist m(r)<|f(z)| <M (r) fiir
€L (9) und |z]|=r.

Sei r, r,>0, eine Nullfolge. Dann gibt es zu jedem ¢ >0 Funktionen f; aus £4(%)
und komplexe Zahlen z, mit |z,|=r,, so dass die Ungleichungen M(r,)<e+|fi(z:)l
gelten. Nun diirfen wir annehmen, dass die Folge f, bereits in E lokal gleichmaissig
gegen ein Element feIt konvergiert. Da die Konvergenz im Nullpunkt stetig ist,
ergibt sich /(0)=lim f,(z,), also lim M(r,)=0.

k— o0 k— o0
Es gelte b). Dann gibt es zu jedem ¢>0 ein 6>0, so dass M(r)<e, falls r<9.
Somit ist | f(z)| <e fiir jedes fe L, (D), sobald |z|<$ gilt. Sei

#(z) = f(z+z0) = f(z0)
f(L+20) = f(2z0)
Nun ist offenbar ge £,(9), also |g(z)| <¢ fiir |z] <. Daraus ergibt sich

If (z + zo) — f (o)l < &lf (1 + 2o) = f (z0)l <2&M(r¥)
fiir 14 |zo| <r* und |z| <9, feLe($). Die Schar £y($) ist demnach in jeder kom-
pakten Teilmenge von E gleichgradig stetig. Da sie iiberdies in jeder kompakten Teil-
menge gleichmissig beschrinkt ist, enthilt jede unendliche Teilmenge von £, ($) eine
Folge f;, die in E lokal gleichméssig gegen eine auf E stetige Grenzfunktion f kon-

z, komplex.
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vergiert. Bezeichnet / die durch /(z)=z"" erklarte Transformation, so lassen sich die-
selben Ueberlegungen auf die durch h;=I.f;./ definierte Folge h;, h;e L, (D), an-
wenden. Also diirfen wir annehmen, dass die Grenzfunktion fauch in einer Umgebung
des Punktes oo stetig ist.

Die durch

fiz +2') = fi(Z)
fil+2') - fi(2)
definierte Folge g; gehort ebenfalls zu £y($). Sei r'=|z'| und r’'>0. Dann sind fiir
die Folgen f; und g; nach Voraussetzung die Ungleichungen 0 <m(r’)<| f;(z')| und
lg:(—2)|<M(r’) erfiillt. Da f normiert ist, gilt somit f(1+2z")—f(z")#0 fiir jedes z'.
Da auch die Beziehungen 0 <m(r)<|g;(z)| fiir |z] =r und r> 0 gelten, ergibt sich jetzt
f(z+2)#f(2') fir z#0, das heisst f ist eineindeutig.

Also ist f eineindeutig und stetig auf Z und somit ein Homéomorphismus von Z
auf sich. Da fiiberdies orientierungstreu sein muss, gilt f eIt und Satz 1 ist bewiesen.

gi(z)=

BEMERKUNG 1. Die beiden Verzerrungsfunktionen M und m hdngen natiirlich von
der betrachteten Klasse $ ab. Ueberdies sind sie auch voneinander abhdngig. Fiir
[(z)=z"" gilt nimlich lo f -1€ 8y (D), sobald f € L, (D). Damit lisst sich die Beziehung
M(r)-m(r~Y)=1 leicht herleiten.

§ 3. Quasikonforme Abbildungen

1. Sind z,, z,, z5, z, vier verschiedene Punkte der Riemannschen Zahlenkugel Z,
so verstehen wir unter dem Doppelverhiltnis D(z, z, z; z,) die Zahl

Sei A ein orientierungstreuer Homdomorphismus von Z auf sich und D ein beliebiges
Doppelverhiltnis. Dann bezeichnen wir mit D, das zugeordnete Doppelverhiltnis

D(h(z,) h(z2) h(z3) h(z4)).

Wir iibernehmen die Bezeichnungen £, £(9), M und L, ($H) des vorigen Abschnit-
tes. Gilt eine der Aussagen von Satz 1, so kann die Schar $ nicht aus beliebigen
Homd&omorphismen bestehen. Vielmehr gilt

SATZ 2. Sei $) eine nicht leere Schar von orientierungstreuen Homéomorphismen von
Z auf sich. Dann sind die folgenden Aussagen dquivalent:
a) Es gibt eine Zahl K, K> 1, so dass jedes h, he$), hochstens K-quasikonform ist.

b) L,(9)ist relativ folgenkompakt in ‘R beziiglich lokaler gleichmdssiger Konvergenz
in E.
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c) Lo(9) geniigt einem Verzerrungssatz.
d) Es gibt eine fiir positive r definierte positive zunehmende Funktion M mit
lim M (r)=0, so dass fiir jedes he$) und jedes Doppelverhiltnis D mit |D|<r die Un-

r—0
gleichung |D,| < M(r) gilt.

e) Esgibt eine Konstante C, C> 1, so dass fiir jedes he §) und jedes Doppelverhdltnis
D mit |D|=1 die Beziehungen C ~' <|D,| < C richtig sind.

Beweis. Ist a) erfiillt, so besteht £,($) offensichtlich aus normierten quasikonfor-
men Abbildungen, deren Maximaldilatationen K nicht iibertreffen. Dann ist £(%)
nach bekannten Sétzen der quasikonformen Abbildungen (cf. [8], II. § 5) relativ
folgenkompakt in M beziiglich lokaler gleichmissiger Konvergenz in E. Somit folgt
b), und gemiss Satz 1 gilt dann c). Es gibt also eine fiir £ (9) giiltige mit M bezeich-
nete Verzerrungsfunktion.

Sei he$, und seien z,, z,, 23, z, beliebige verschiedene Punkte in Z. Dann kénnen
wir zwei Mobiustransformationen /; und /, so wiahlen, dass /;(z,)=1, /,(z3)=0,
li(z4)=00, und 1,(1)=h(z,), 1,(0)=h(z;), I,(0)=h(z,) gelten. Da jedes g, g=
I, Yohol ', zu L4(9) gehort, geniigt jedes g dem erwdhnten Verzerrungssatz. Dem-
nach ist |[D(g(z) 1 0 o0)|=|g(z)| < M(r), sobald |D(z 10 o0)|=|z|<r. Aus h=1,080]
und der Tatsache, dass die Doppelverhiltnisse bei Mobiustransformationen sich nicht
dndern, folgt somit d). Setzt man C=M(1) und beniitzt D(abcd)-D(bacd)=1,
so ergibt d) sofort e).

Sei he$), sei h(0)=2z, und / eine Mobiustransformation mit /(z,)= co. Dann hat
g=1I.h den Punkt co als Fixpunkt. Gilt fiir 4 die Aussage e), so gilt sie auch fiir g.
Sind nun z,, z,, z; beliebige verschiedene komplexe Zahlen, so ist |D(g(z,) g(z,)
g(z3) 00)| < C richtig, sobald |D(z, z, z; o0)|=1 erfiillt ist. Also folgt fiir je drei ver-
schiedene komplexe Zahlen z;, z,, z; mit |z; —z;| =|z, — z;| die Ungleichung

g(z1) —g(z3)
g(z2) — g(z3)|

Demnach ist die Kreisdilatation H durch C beschrinkt und somit g hochstens C-
quasikonform ([4]; [8], IV. § 4). Da dann auch 4 hochstens C-quasikonform ist, gilt
a) und Satz 2 ist bewiesen.

2. Fiir eine quasikonforme Abbildung von Z auf Z dndern sich die Doppelverhilt-
nisse gemdss Satz 2. Doch sind sie im allgemeinen nicht quasiinvariant. Vielmehr gilt

< C.

SATZ 3. Sei f ein orientierungstreuer Homoomorphismus von Z auf sich mit f(c0)= oo
Dann sind die beiden folgenden Aussagen dquivalent:

a) Die Doppelverhdltnisse sind quasiinvariant, das heisst es gibt eine Konstante K,
K>1, so dass fiir je zwei zugeordnete Doppelverhiltnisse D und D die Ungleichungen
K~'<|D;/D|<K gelten.
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b) Die Abbildung f ist quasiisometrisch in E, das heisst es gibt eine Konstante C,
C>1, so dass fiir je zwei komplexe Zahlen u und v die Ungleichungen

C™ M u—vl <|f (W) —f(v)| < Clu—v|
richtig sind.
Natiirlich ist f jeweils quasikonform.

Beweis. Fiir g,
_f@)=1(0)
fM)—-1©)

ist geMN. Gilt nun a) fiir £, so gilt a) auch fiir g. Mit Hilfe von v=(v 10 o) folgt
einmal K~ '<|g(v)/v]< K. Andererseits ergibt sich fiir D=(u0 v o) die Bedingung

g(2)

< K.

K—l<lg(u)_g(v) v )
u—v g(v)
Daraus erhdlt man bei geeignet gewédhltem C, C>1, die Ungleichung

ORI

c '«
i u-—v

S C ’
also b). Die Umkehrung, dass b) nidmlich a) impliziert, bestédtigt sich unmittelbar. Da

schliesslich a) die Aussage von Satz 2. e) verschirft, ist f in beiden Fillen quasi-
konform.

§ 4. Die Dreiecksdilatation

1. Sei S eine beliebige Punktmenge der komplexen Zahlenebene E und f eine
Funktion von § in E. Sei ze S, und seien u und v in S gelegene komplexe Zahlen,
die den Beziehungen v#z und |u—z|<|v—z| geniigen sollen. Ferner wollen wir ver-
einbaren, dass ein Quotient oo ist, falls er nicht definiert ist.

DEFINITION. Die Zahl

W) -1()

f@)-f(
heisst die Dreiecksdilatation von f im Punkte z und wird mit V(z) bezeichnet. Die durch
die Zahlen V(z) auf S definierte Funktion V heisst die Dreiecksdilatation von f auf S.

Sind die Zahlen V(z) endlich beziehungsweise beschrdnkt, so sagen wir, f habe end-
liche beziehungsweise beschrdnkte Dreiecksdilatation V.

2. Trivialerweise gilt ¥(z)>1. Doch ist V im allgemeinen weder beschrinkt noch
endlich. Vielmehr haben Funktionen f mit endlichem oder sogar beschrinktem V
spezielle Eigenschaften.

sup
u,v
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LEMMA 1. Hat f endliche Dreiecksdilatation, so ist f eineindeutig.

Beweis. Gibe es nimlich zwei verschiedene Punkte z; und z, mit f(z,)=/(z,), so
wire gemdss unserer Konvention V(z,)=V(z,)= o0, also ¥ nicht endlich.

LEMMA 2. Hat f, f: S— E, beschrinkte Dreiecksdilatation, undist z,, z,€ S, eine gegen
2o, 2o€ E, konvergente Zahlenfolge mit z,# z,, fiir jedes i, so ist die Bildfolge f(z;) in E
konvergent.

Beweis. Offensichtlich gibt es einen Index k mit z; #z,, so dass |z;—z,| <|z; — z,|
gilt fiir jedes /, i> k. Unter Benutzung von Lemma 1 folgt daraus

1f (z) = F @I < V() f(z0) = f (@),
und somit ist die Folge f(z;) beschrinkt. Also existiert eine Teilfolge z; von z;, fiir
die f(z;) konvergiert. Nun gibt es zu jedem j* einen Index N(j*), so dass fiir jedes i
und jedes j mit i, j> N(j*) die Beziehungen |z;—z;| <|z;«—z;| und z . # z; erfiillt sind.
Daraus ergibt sich

If (z) = FE) < V(E)If (z2j0) = f(2))]
Also ist die Folge f(z;) konvergent.

LEMMA 3. Hat f, f:S—E, beschrinkte Dreiecksdilatation, so ist f stetig.

Beweis. In einem isolierten Punkt z, von S ist f trivialerweise stetig. Sei also z,,
z;€ S, eine gegen z,, zo€S, konvergente Folge mit z;# z, fiir jedes i. Nach Lemma 2
konvergiert die Bildfolge f(z;). Nun gibt es zu jedem i* einen Index N(i*), so dass
|zo — z;| < |zis—z;| und zu # z; fiir i> N(i*) erfiillt sind. Daraus ergibt sich

1f (z0) = f @) < V(2)If (zir) = f (2]

Also konvergiert f(z;) gegen f(z,), das heisst f ist stetig.

3. Im folgenden fassen wir jede in E gelegene Punktmenge als Teilmenge der Rie-
mannschen Zahlenkugel Z auf. Speziell soll § die in Z gebildete abgeschlossene Hiille
von S bezeichnen.

LeMMA 4. Sei S nicht beschrinkt, und f, f:S—E, von beschrinkter Dreiecksdilata-
tion. Dann gilt lim f(z)=oo0.

zeS,z—®

Beweis. Wir nehmen indirekt an, es existiere eine Folge z;, z;€S, mit z;— oo, flir
die f(z;) in E konvergiert. Nun gibt es zu jedem i* einen Index N(i*), so dass
|2y — 2| < |2;— 24| fiir i> N(i*) gelten. Also folgt

f (z1) = f @)l S V(21 f (z) — f (z)l.

Ist jetzt f(z,) verschieden vom Grenzwert von f(z;), so erhalten wir offenbar einen
Widerspruch.
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LEMMA 5. Hat f, f:S—E, beschrinkte Dreiecksdilatation, so ldsst sich f in ein-
deutiger Weise zu einer topologischen Abbildung g von S erweitern.

Beweis. Einmal ist f nach Lemma 3 stetig. Dann gibt es geméss den Lemmata 2
und 4 eine auf S definierte, eindeutig bestimmte stetige Erweiterung g. Ueberdies ist
g nach Lemma 2 in jedem endlichen Punkte endlich.

Wire g nicht eineindeutig, so gibe es zwei verschiedene Punkte z; und z, in E,
fiir die g(z,)=g(z,) gilt und die infolge Lemma 1 nicht beide in S liegen. Sei z, ¢S,
und z,, zo€S, derart gewéhlt, dass g(z,)#g(z;) und |z, —z,| <%|z; — z,| richtig sind.
Ferner seien z; und z; zwei Folgen aus $ mit z;—z, und z;—z,. Nun gibt es einen
Index N, so dass |zo—z;|<|z;—2z;| und z;#z; fiir alle i, j> N erfiillt sind. Somit folgt

If (z0) = f (@) S V(2)If (z)) = f (z)l,
woraus sich fiir i, j— oo sofort ein Widerspruch ergibt.
Da g auf dem kompakten S eineindeutig und stetig ist, ist g topologisch.

LEMMA 6. Sei S eine in einem Teilgebiet G von E dichte Punktmenge und f, f : S—E,
von beschrdnkter Dreiecksdilatation. Dann ldsst sich f in eindeutiger Weise zu einer

topologischen Abbildung g, g: G— E, erweitern, die auf G beschrdnkte Dreiecksdilatation
besitzt.

Beweis. Gemidss Lemma 5 kann f in eindeutiger Weise zu einer topologischen
Abbildung g von G erweitert werden. Nach Voraussetzung ist die beziiglich f be-
rechnete Dreiecksdilatation V, beschriinkt, das heisst es gibt eine Konstante C, C>1,

fir die V;(z)<C auf § gilt. Wir zeigen jetzt, dass das fiir g berechnete V, dieselbe
Schranke C besitzt.

Andernfalls gibt es drei Punkte z, , v in G mit

g(u) —g(2)
g(v) — g(2)
Offenbar kann man jetzt drei in S gelegene Punkte z’, #’, v’ bestimmen, die die Be-
ziehungen |y’ —z'| <|v'—2'| und v’ #Z’ erfiillen und fiir die

g(w) —g(2)
g (V) — g()
giiltig bleibt. Daraus folgt C <V,(z’), also ein Widerspruch.

4. Nun gehen wir auf den Zusammenhang zwischen den Funktionen von be-
schrinkter Dreiecksdilatation und den quasikonformen Abbildungen ein.

lu—z|<|lv—z], v#z und C<

C<

SATZ 4. Sei S eine in einem Teilgebiet G von E dichte Punktmenge und f eine Ab-
bildung von S in E. Hat f beschrdinkte Dreiecksdilatation, so ldsst sich f in eindeutiger
Weise zu einer topologischen Abbildung h der abgeschlossenen Hiille G, G < Z, er-
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weitern. Ueberdies ist entweder die Beschrinkung g von h auf G oder ihre konjugierte
Funktion g quasikonform in G.

Beweis. Dass die Erweiterungen g und 4 eindeutig bestimmt und topologisch sind,
folgt aus Lemma 5. Folglich ist entweder g oder ihre konjugierte g orientierungstreu.
Nun hat g gemidss Lemma 6 beschrinkte Dreiecksdilatation, und es gilt offenbar
zwischen der Kreisdilatation H und der Dreiecksdilatation ¥ die Beziehung H(z) < V(z)
in G. Somit ist die Kreisdilatation beschrankt und demnach entweder g oder g quasi-
konform (l.c.).

5. Im allgemeinen ist die Dreiecksdilatation einer quasikonformen Abbildung
nicht beschrdnkt. Doch gelten die folgenden Aussagen:

ZUSATZ 1. Sei f ein orientierungstreuer Homdéomorphismus von E auf E. Die Ab-
bildung f ist genau dann quasikonform, falls sie beschrinkte Dreiecksdilatation besitzt.

Beweis. Infolge Satz 4 muss nur mehr die Umkehrung bewiesen werden. Wir er-
weitern f durch f(c0)=00 zu einer quasikonformen Abbildung von Z auf Z. Nun
konnen wir Satz 2 anwenden. Geméss der Aussage von Satz 2.d) ist

|D(f(zl)f(22)f(23) °O)| < M(1)
fiir |D(z, z, z3 0)|< 1, also hat f beschriankte Dreiecksdilatation.

ZUSATZ 2. Sei G ein Teilgebiet von E und f eine quasikonforme Abbildung von G in
E. Ist S eine beliebige kompakte Teilmenge von G, so hat die Beschrinkung von f auf
S beschrinkte Dreiecksdilatation auf S.

Beweis. Wir nehmen indirekt an, es gdbe in S Zahlenfolgen z;, u;, v; mit
lu;—z;| <|v;—z;| und v;#2z;, so dass

f () = f(z)
Fo)—f@)

gilt. Man darf voraussetzen, dass die Folge z; bereits gegen eine Zahl z, in S kon-
vergiert. Da das kompakte S endlichen Durchmesser besitzt, muss auch die Folge v;
gegen z, konvergieren. Weil z, in G liegt, gibt es eine Kreisscheibe U, U < G, um z,,
in der man ein Resultat von A. Mor1 ([9], Lemma 4; [8], p. 111) anwenden kann.
Sei nun N derart gewihlt, dass fiir alle 7, i> N, die Kreise V,={z:|z—z;]|=|v;—z;|} in
U liegen. Dann gilt

f )= f( )l My

;f(”) f(z)l mi
wobei M; beziehungsweise m; das Maximum beziehungsweise das Minimum von

| f(z)—f(z)| auf V; bezeichnen. Nach dem erwidhnten Satz von A. MoRI sind die
Zahlen M;/m; fiir i > N beschriankt. Damit erhalten wir den gewiinschten Widerspruch.
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§ 5. Quasikonforme Fortsetzung

1. Wir bezeichnen mit R die als Teilmenge der komplexen Zahlenebene E auf-
gefasste reelle Zahlengerade, und mit R*, R*=RuU {0}, die Abschliessung von R
beziiglich der Riemannschen Zahlenkugel Z. Aus den Lemmata 4 und 5 ergibt sich

LEMMA 7. Hat f, f: R—E, beschrinkte Dreiecksdilatation, so lisst sich f durch
f(0)= 00 zu einer topologischen Abbildung von R* erweitern, und somit ist f (R*) eine
Jordankurve in Z.

2. Die Abbildungen von beschriankter Dreiecksdilatation konnen zur Charakteri-
sierung der quasisymmetrischen Funktionen wie auch der Quasigeraden benutzt
werden. Dabei heisst eine stetige zunehmende Funktion f von R auf R quasisymme-
trisch, falls eine Konstante C, C> 1, existiert, so dass fiir jedes x, xe R, und jedes ¢,
t>0, die Beziehungen 4 —f()

C'g~ "—"- 7Y C
f)=f(x—1)
erfiillt sind (cf. [8], II. § 7.1). Ferner nennen wir das Bild einer Geraden bei einer
quasikonformen Abbildung von E auf E eine Quasigerade. Schliesslich heisse eine
Abbildung f von R auf R quasikonform, falls eine quasikonforme Abbildung von E
auf F existiert, deren Beschrankung auf R mit f zusammenfallt.

Dass jede quasisymmetrische Funktion von R auf R quasikonform ist und um-

gekehrt, haben A. BEURLING und L. AHLFORS bewiesen [3]. Wir zeigen nun zusétzlich

SATZ 5. Sei f ein zunehmender Homoomorphismus von R auf R. Dann sind dquiva-
lent: a) f ist quasikonform; b) f hat beschrinkte Dreiecksdilatation; c) f ist quasi-
symmetrisch.

Beweis. Gilt a), so gibt es eine quasikonforme Abbildung von E auf E, die f er-
weitert. Da diese gemiss Zusatz 1 beschrinkte Dreiecksdilatation besitzt, ergibt sich
b). Aus b) erhdlt man sofort ¢). Dass schliesslich c) die Aussage a) impliziert, folgt
aus der bekannten Konstruktion von A. BEURLING und L. AHLFORS (l.c.; [8], I1. § 6.5).

3. Nun werden wir zeigen, dass die Quasigeraden ebenfalls durch Funktionen von
beschrinkter Dreiecksdilatation gekennzeichnet werden konnen. Zum Beweise be-
nutzen wir die von L. AHLFORS gegebene Charakterisierung solcher Kurven [1].

SATZ 6. Hat f, f: R—E, beschriinkte Dreiecksdilatation, so ist f (R) eine Quasi-
gerade. Umgekehrt gibt es zu jeder Quasigeraden eine Parameterdarstellung f, f: R—E,
die beschrdnkte Dreiecksdilatation besitzt.

Beweis. Hat f beschriankte Dreiecksdilatation, so gibt es eine Konstante C, C>1,
so dass fiir x; <x;<x, oder x, <x; <x; die Bezichung

fg_(xs) — f(x1)

f (xz) — f(xy)

<C
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giiltig ist. Dies vereint mit Lemma 7 kennzeichnet aber eine Quasigerade (l.c.; [2],
IV.E). Umgekehrt gibt es zu jeder Quasigeraden eine quasikonforme Abbildung f von
E auf E, deren Beschriankung auf R diese darstellt. Nach Zusatz 1 hat f beschrinkte
Dreiecksdilatation, also a fortiori deren Beschrankung auf R.

4. Der Begriff der Funktionen von beschriankter Dreiecksdilatation kann auch auf
weitere Fragen der quasikonformen Fortsetzung angewendet werden. Es bezeichne
H, H c E, die obere Halbebene. Dann gilt

SATZ 7. Eine quasikonforme Abbildung f von H in E ldsst sich genau dann zu einer
quasikonformen Abbildung von E auf E erweitern, falls f beschrinkte Dreiecksdilatation
auf H besitzt. Ist zusdtzlich [ quasiisometrisch, so gibt es eine quasiisometrische Er-
weiterung.

Beweis. Seien x, u, v drei beliebige Punkte auf R mit |u— x| <|v— x| und v# x. Hat
nun f beschrinkte Dreiecksdilatation auf H, so gibt es eine nur von f abhéngige Kon-
stante C, C>1, so dass

Su+iy)—f(x+iy)
f+iy)—f(x+iy)

Da sich f nach Lemma 5 topologisch auf H U R erweitern ldsst, erhélt man

@) - ()

f) = f(x)
Also hat f beschrinkte Dreiecksdilatation auf R, und f(R) ist nach Satz 6 eine
Quasigerade. Somit kann f durch quasikonforme Spiegelung fortgesetzt werden (cf.
[2], IV. D). Aus Zusatz 1 folgt die Umkehrung. Schliesslich ergibt sich die gesuchte
quasiisometrische Fortsetzung mit Hilfe von ([2], IV. D. Lemma 3).

5. In Ergdnzung zu den Sdtzen von G. SPRINGER iiber quasikonforme Abbildungen
von Gebieten endlichen Zusammenhangs ([11]; [8], II. § 8.3) beweisen wir

<C fir y>0 giltigist.

<C auf R.

LEMMA 8. Sei G ein von endlich vielen getrennt gelegenen Kreisen berandetes Teil-
gebiet von E, und f eine quasikonforme Abbildung von G in Z. Genau dann kann f zu
einer quasikonformen Abbildung von Z auf Z erweitert werden, falls eine Konstante C,
C>1, existiert, so dass fiir jedes Doppelverhdltnis D aus Punkten in G die Ungleichung
|D;| < C gilt, sobald |D| <1 erfiillt ist.

Beweis. Sei S ein Randkreis von G, und T das Innere der Komponente von Z —G,
die S enthdlt. Wir werden zuerst zeigen, dass sich f topologisch auf S erweitern lésst.
Mit den Randwerten von f auf S werden wir dann eine quasikonforme Abbildung
von T konstruieren. Wenden wir dies auf alle Randkreise an, so erhalten wir schliess-
lich eine auf Z definierte Abbildung mit den gewiinschten Eigenschaften.

Sei reG, und seien /; und /; zwei Mdobiustransformationen mit /,(r)=oco und
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li(00)=f(r). Sei p=Iy'of-l ", und seien z, u, v drei verschiedene Punkte in (G)
mit |u—z| <|v—z|. Da die Mobiustransformationen die Doppelverhiltnisse invariant
lassen und f sie geméss Voraussetzung verdndert, ergibt sich aus |[D(u v z )| <1 die
Beziehung |D(p(u) p(v) p(z) )| < C. Demnach hat p beschriinkte Dreiecksdilatation
auf /;(G), und man kann p nach Lemma 5 topologisch erweitern. Sei nun S ein Rand-
kreis von G und D ein Doppelverhiltnis aus Punkten in S mit |D|<1. Da sich f,
f=1lopol;, topologisch auf S erweitern ldsst und die Doppelverhiltnisse in G sich
gemdss Voraussetzung verdndern, erhdlt man durch eine einfache Stetigkeitsbetrach-
tung |D;| < C auf S.

Sei ze S, und seien /; und /, zwei Mobiustransformationen mit/, (S)=R,/,(G) = H,
[i({)y=00 und /,(0)=f(t). Sei g=1; 'ofcl;!, und seien x,u, v drei verschiedene
Punkte auf R mit |u— x| <|v—x|. Nun ergibt sich wie vorhin | D(g(u) g(v) g(x) 0)|<C
aus |D(u v x 00)|<1. Demnach hat g beschrinkte Dreiecksdilatation auf R, und es
ist g(R) nach Satz 6 eine Quasigerade. Folglich gibt es eine quasikonforme Abbildung
k von E auf E, die R auf g(R) abbildet und fiir die (k™ 'o/; 'of) (G) = H gilt. Setzen
wir A=k~ ! und erweitern & durch 4(c0)= oo auf Z, so gibt es nach Satz 2 fiir 4 eine
Verzerrungsfunktion M fiir die Verdnderung der Doppelverhiltnisse. Sei M*= M (C)
und m=hog. Nun gilt |D(m(u) m(v) m(x) )| <M* fir |D(uvx 0)|<1 beziiglich
der durch m induzierten Abbildung von R auf R. Somit hat m beschrinkte Drei-
ecksdilatation auf R und ist geméss Satz 5 quasikonform. Bezeichnet H* die untere
Halbebene, so gibt es also eine quasikonforme Abbildung m* von H* auf H* mit
den durch m auf R gegebenen Randwerten. Jetzt bildet /,okom*./, das von S be-
randete Gebiet T quasikonform auf das Innere der von f(S) berandeten Komponente
von Z—f(G) ab, 16st demnach das angekiindigte Randwertproblem.

Es gibt also eine topologische Abbildung f* von Z auf Z, die f erweitert und auf
jedem T quasikonform ist. Nach der analytischen Definition der quasikonformen
Abbildungen (cf. [2], II.B) sind die Randkreise von G quasikonform hebbar. Also ist
S/ * die gesuchte Erweiterung.

Die Umkehrung des Lemmas folgt aus Satz 2.

6. Schliesslich beweisen wir

SATZ 8. Sei G ein Teilgebiet von E, dessen Randkomponentenmenge derart aus
Punkten und Kreisen bestehen soll, dass die Menge der Kreise sich in hochstens endlich
vielen Randkomponenten hduft.

Eine quasikonforme Abbildung f von G in Z kann genau dann zu einer quasikonfor-
men Abbildung von Z auf Z erweitert werden, falls eine Konstante C, C>1, existiert,
so dass fiir jedes Doppelverhdltnis D aus Punkten in G die Ungleichung |D/|<C gilt,
sobald |D| <1 erfiillt ist.

Beweis. Sei W die Punktmenge, die die Komponenten von Z— G enthilt, die
ihrerseits die Haufungsrandkomponenten der Randkreise von G enthalten. Nun
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fassen wir die Komponenten der Menge (Z — G)— W, die aus abgeschlossenen Kreis-
scheiben bestehen, zu einer Punktmenge V' zusammen, und vereinigen die librigen
Komponenten von (Z— G)— W zu einer Punktmenge U. Somit ist U total unzusam-
menhingend, und es bilden die Mengen G, U, V, W eine Zerlegung von Z. Sukzessive
soll fauf U, V, W quasikonform erweitert werden.

Offenbar ist Gu U ein Gebiet. Wir gehen nun wie im Beweise von Lemma 8 vor
und werden die dort eingefiihrten Bezeichnungen iibernehmen. So hat das analog
definierte p beschrinkte Dreiecksdilatation auf /(G). Somit kann p nach Lemma 5
topologisch erweitert werden, und man kann iiberdies Satz 4 anwenden. Speziell ist
also p in (G u U) quasikonform. Nun ldsst sich auch f sowohl topologisch auf den
Rand von G wie auch quasikonform auf G u U fortsetzen.

Ist S ein Randkreis von G, so kann man wie im Beweise von Lemma 8 mit den
Randwerten von f auf S eine quasikonforme Abbildung der zugeordneten Menge T
konstruieren, unabhingig ob 7 zu V oder W gehort. Doch miissen wir zusétzlich
zeigen, dass die Maximaldilatationen der dabei auftretenden Abbildungen beschriankt
sind. Gemdss der Konstruktion fiir Lemma 8§ geniigt es zu zeigen, dass dies fiir die
jedem T zugeordneten Abbildungen k& und m* der Fall ist. Einmal gibt es solche k,
deren Maximaldilatationen unterhalb einer nur von C abhdngigen Schranke liegen
(cf. [2], IV. E). Fassen wir andererseits die Abbildungen 4, A=k ™!, zu einer Schar §
zusammen, so ergibt sich gemdss Satz 2 eine fiir die ganze Schar § giiltige Verzer-
rungsfunktion M. Setzen wir jetzt M*=M(C), so kann man schliesslich jeweilen
solche m* konstruieren, deren Maximaldilatationen unterhalb einer nur von M* ab-
hiangigen Schranke liegen (cf. [8], II. § 6.5).

Wir konnen also f zu einer auf Gu Uu V definierten Funktion erweitern, die in
jedem T, T < V, quasikonform ist und dort beschriankte Maximaldilatation besitzt.
Da jedes S, S < V, eine isolierte Randkomponente von Gu U darstellt, ist die so
erweiterte Abbildung f'analog dem Beweise in Lemma 8 quasikonformin Gu Uu V.
Schliesslich enthdlt W nach Voraussetzung nur endlich viele Kreisscheiben, fiir die
wir librigens bereits quasikonforme Abbildungen konstruiert haben. Es geniigt also,
die verbleibenden endlich vielen Kreise und Punkte quasikonform zu heben. Somit
gibt es eine solche Erweiterung.

Die Umkehrung des Satzes folgt aus Satz 2.

BEMERKUNG 2. Ohne Aenderung der iibrigen Voraussetzungen nehmen wir an, dass
die Punktmenge W aus endlich vielen Kreisscheiben und einer Punktmenge O, be-
stehen soll. Nun ldisst sich der obige Beweis iibertragen. Man hat dabei einzig zu be-
achten, dass eine Menge O 4, quasikonform hebbar ist ([10], p. 67; [8], V. § 3).
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