Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 43 (1968)

Artikel: Sur le maximum d'un processus aléatoire.
Autor: Pelli, Tiziano

DOl: https://doi.org/10.5169/seals-32913

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-32913
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

137

Sur le maximum d’un processus aléatoire

par TizIANO PELLI

Introduction

Soit X;, i=1, 2,... une suite de variables aléatoires réelles et Z,= Max X;.
1<i<n

De nombreuses études ont été faites sur le comportement asymptotique de
P{Z,<a,x+b,], ou a,>0 et b, sont des constantes.

Les premiéres recherches a ce sujet ont été effectuées pour des variables aléatoires
indépendantes et identiquement réparties; les résultats obtenus ont donné une réponse
compléte a plusieurs problémes (voir B. V. GNEDENKO [8], J. GEFFROY [7]). Dans les
derniéres années, parallelement aux études entreprises pour des sommes de variables
aléatoires normées, plusieurs auteurs ont considéré le cas ou les variables X, i=1, 2, ...
ont une certaine dépendance entre elles et ce travail désire apporter une contribution
au développement de cette théorie.

Aprés avoir introduit les notations indispensables (par. 1) et exposé des résultats
classiques fréquemment employés par la suite (par. 2), on examine sous quelles con-
ditions la convergence de P"[X,<a,x+b,] vers une loi limite entraine celle de
P[Z,<a,x+b,] vers la méme loi, pour des processus quelconques a lois marginales
identiques. Les résultats obtenus sont ensuite appliqués (par. 4) a des processus
soumis a des dépendances particuliéres. Le méme probleme, cette fois pour des pro-
cessus de mélange strict. stationnaires, est étudié dans le par. 5 a ’aide de méthodes
employées par R. M. LoYNES dans [9].

Le par. 6 est dédié aux processus de Markov a temps discret, strict. stationnaires
et satisfaisant a la condition de Doeblin: les théorémes 1.6 et 2.6 portent sur la classe
des lois limites possibles de P[Z,<a,x+b,], le théoreme 3.6 est du méme type de
ceux démontrés dans les paragraphes précédents.

En vertu de la relation Min X;= — Max (—X;) on remarquera que toute con-

1<i<n 1<i<n
sidération faite sur le comportement asymptotique de Z, peut €tre transposée sur
celui de Min X,.

1<i<€n
1. Notations

Soit X;, i=1,2,... un processus aléatoire défini dans I’espace de probabilité
(2, M, P) et a valeurs dans I’espace des nombres réels R. On notera par 932'}, ou
k >j, la o-algébre engendrée dans Q par les variables X;, i=j,j+1,..., k. La variable
aléatoire Max (X, X,, ..., X,), sera désignée par Z,.
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On dit qu’une fonction F(x), définie dans R, croissante et continue a gauche, est
une fonction de répartition (abr. f. de r.), si lim F(x)=0et lim F(x)=1. Une fonction

x> =00 XxX—* 00
de répartition est appelée propre, s’il existe au moins un point x,, tel que 0 < F(x) < 1.
En général on notera avec des majuscules les fonctions de répartition et avec des
minuscules les fonctions quelconques. Les f. de r. F;(x)=P[X;<x] sont dites lois
marginales du processus X;, i=1,2,.... L’ensemble des f. de r. F(ax+b)ou aetb
sont des constantes, a> 0, est appelé «type de la loi F(x)».

La limite lim a,, =a d’une suite de nombres réels {a,, } suivant les entiers n,, n,, ...
k=

sera simplement notée a, —a. La notation a,, fa (respect. a,, |a) sera réservée aux
suites croissant vers «a» par des valeurs strictement inférieures a «a» (respect. dé-
croissant vers «a» par des valeurs strictement supérieures & «a»).

fo(x), n=1,2,... et f(x) étant des fonctions croissantes définies dans R, C( f (x))

I’ensemble de points ol f(x) est continue, on écrit f,,(x)z f(x), lorsque f,(x)—-f(x)
pour tout xe C(f(x)). Si la convergence a licu pour tout xR on notera simplement
(¥ ()

Comme d’habitude on utilisera la notation P(A4|B)=P(A N B)/P(B)si P(B)#0 et
P(A|B)=0si P(B)=0.

2. Résultats classiques

~ Les résultats de ce paragraphe sont bien connus (voir B. V. GNEDENKO (8], J.
GEFFROY [7]); on se limitera a les énoncer.

LEMME 2.1. Soient F,(x), n=1, 2,... une suite de f. de r., a,>0, a,>0, b, et f, des
constantes réelles, G(x) et H(x) des f. de r. propres. Si

F,(a,x +b,) = H(x)
Fy(@x + B) ™ G(x)
alors H(x) et G(x) sont du méme type.

LEMME 2.2. Soient F,(x), n=1, 2, ... une suite de f. de r. et G(x) une f. de r. propre.
Si pour des constantes réelles a,>0, b,, ,>0, et B, on a

F,(a,x + b,) > G (x)
Fy (4% + Bp) > G ()
alors a,|a,—1 et (b,— B,)/a,—O0.

LEMME 2.3. Soient F,(x), n=1,2,... une suite de f. de r., G(x) une f. de r. propre
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et a,>0,b,, ,>0, B, des constantes réelles. Si F, (a,,x+b,,)z G (x) alors les relations
a,/a,—1 et (b,—B,)/a,—0 entrainent F,(x,x+ /3,,)—”4 G(x).
Soient X;, i=1, 2,... une suite de variables aléatoires indépendantes, obéissant a

une méme loi F(x). On a P[Z,<x]|=P (ﬂ [Xi<x]>=F"(x). Pour étudier dans
i=1

quelles conditions P[Z,,<a,,x+b,,]z G(x), ou a,>0 et G(x) est une f. de r. propre,
le lemme suivant est d’une grande utilité.

LEMME 2.4. Soit F(x) unef. der., G(x)unef. der. propre, a,>0 et b, des constantes.
Pour quel’onait F"(a,x+b,)— G (x) il faut et il suffit que n(1 — F(a,x +b,))— —log(G(x))
pour tout x tel que G(x)#0.

Le probleme de déterminer les lois propres qu’on peut obtenir comme limite —
de F"(a,x+b,) a été résolu par B. GNEDENKO [8], qui a démontré que les lois limites
possibles sont du type des lois @, (x), ®,(x), ®;(x) suivantes:

0 pour x <0
D @, ={ .-

pourx >0 ou a>0

_(_x)a

pour x <0

2) b,(x) = {e

1 pourx>0 ou a>0

3) Py(x)=e"° " pour tout x.

S’il existe des nombres a,>0 et b, tels que F"(a,x+b,)— P,(x), ou k peut prendre
la valeur 1, 2 ou 3, alors on dit que F(x) appartient au domaine d’attraction de @,(x).
B. GNEDENKO (loc. cit.) donne des conditions nécessaires et suffisantes pour qu’une
f. de r. F(x) appartienne au domaine d’attraction de chacune des trois lois limites
@, (x). Il faut ajouter qu’une f. de r. F(x) est attirée par @, (x) (respect. ®,(x)) d’une
fagon plus particuliére: il existe une suite @,1 oo (respect. a,}0) telle que F"(a,x)— P, (x)
(respect. F"(a,x+ xo)—P,(x), ol x, est une constante).

3. Convergence vers @,(x): cas général

Soit X;, i=1, 2, ... un processus aléatoire a lois marginales identiques: P[ X;<x]=
F(x) pour tout i=1, 2,.... Plusieurs auteurs (voir S. M. BERMAN [2], R. M. LOYNES
[9] et G. S. WATSON [13]) ont étudié le probléme de déterminer dans quelles con-
ditions la relation F"(a,x+b,)—®,(x) entraine la convergence de P[Z,<a,x+b,]
vers @, (x). Dans ce paragraphe on examine la méme question.

THEOREME 3.1. Soit X;,i=1, 2,... un processus aléatoire a lois marginales identiques:
P[X;<x]=F(x). Supposons que F"(a,x+b,)—P,(x), ot a,>0 et b, sont des con-
stantes, alors, pour que I'on ait P[Z,<a,x+b,]->®(x) il faut et il suffit que, pour
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tout intervalle (x', x"), ot ®,(x")>0 et D,(x")<1, il existe une suite u,|0 telle que

(1/tn)P[Zn<anx + bn] n(F(anx + bn)—'F(an(x - tn)+ bn))—'

-—(1/t,,)P<L”) ((n] [X;<a,x+b,]n[a,(x—t)+ b, < X;<a,x + b,,])>—>0

i=l AJ=1
J#i (3.1)
uniformément en xe(x’', x"), pour toute suite t,|0 telle que t,>u,, n=1,2,....
Avant de commencer la démonstration on donne quelques lemmes.

LEMME 3.1. Soient f,(x), n=1, 2, ... et f(x) des fonctions croissantes définies dans
Uintervalle fermé [a, b] et soit f(x) continue dans le méme intervalle. Si f,(x)—f(x)
pour tout x€[a, b], alors la convergence a lieu uniformément dans [a, b].

La démonstration de ce lemme est élémentaire.

LEMME 3.2. Soient f,(x), n=1,2,... et f(x) des fonctions croissantes définies dans
(a, b) et f (x) deux fois continiiment différentiable dans le méme intervalle. Si f,(x)—f (x)
pour tout xe(a, b), alors il existe une suite u,|0 telle que

(fn(x) - fn(x - tn))/tn _’f, (x) (3'2)

uniformément en x€[a’, b'], pour toute suite t,|0 pour laquelle t,>u,, n=1,2,..., ou
[a', b"] est un intervalle fermé quelconque contenu dans (a, b).
Démonstration. En vertu des hypothéses faites on a

I(f (X) - f (x - tn))/tn _'f, (X)' <4 In (33)

quel que soit xe[a’, b'], ou 4 est une constante finie.

D’aprés le lemme 3.1 f,(x)—f(x) uniformément en x pour tout intervalle
fermé contenu dans (a, b); il s’ensuit qu’on peut trouver une suite u,|0 telle que
(1 () =f () + | fu(x—1,)—f (x—t,)])/, tend vers O uniformément en xe[a’, b'], pour
toute suite ¢#,|0 telle que ¢,>u,, n=1, 2,.... Si on observe que

(fn(x) - fn(x - tn))/tn = (fn(x) - f(X) + f(x) - f(x - tn) +
+ f(x - tn) - fn(x - tn))/tn
alors, de (3.3) on obtient (3.2) et le lemme est démontré.

LEMME 3.3. Soient H,(x), n=1,2,... des f. de r. Supposons que pour toute suite
t,10 on ait
H,(x +t,)—H,(x—1t,)->0 (3.9)

pour tout x&(a, b), alors la relation H,,(x)zh(x) entraine la continuité de h(x) dans
(a, b).

Démonstration. Soit x un point quelconque de (g, b). On considére une suite @,]0
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telle que x+a, et x—a, soient des points de continuité de la fonction 4(x) pour tout
n=1,2,... et on définit une suite k,7co ayant la propriété suivante:

IHk,.(x -+ an) - h(x + an)l + |Hkn(x — an) - h(x - an)‘ - 0.
Si on écrit
h(x+a,) —h(x —a,) =h(x+a,)— H, (x+a,) +H(x+a,)—

- Hkn(x - an) + Hkn(x - an) - h(x - an)
alors de (3.4) on obtient que

h(x +a,)—h(x —a,)—0. (3.5

La fonction h(x) étant croissante et le point xe(a, ) quelconque, la relation (3.5)
entraine la continuité de /(x) dans (a, b).

LEMME 3.4. Soit H,(x), n=1, 2,... une suite de f. de r. telle que H,(x) converge vers
une fonction h(x) pour tout x€[a, b]. Supposons que h(x) soit continue dans [a, b] et
qu’il existe une suite u,]0 telle que, pour toute suite t,|0, ott t,>u,, n=1,2,..., I'on ait

(Hn (X) - Hn (x - tn))/tn - g(x) (36)
(H,(x + ) — Hy(x))/t, > g (%) (3.6)

quel que soit x€[a, b], ot g(x) est une fonction définie dans [a, b], alors la fonction
limite h(x) est dérivable dans (a, b) et on a

W (x) = g(x)
pour tout x€(a, b).

Démonstration. La fonction limite A(x) étant continue dans [a, b], d’apres le
lemme 3.1, il existe une suite 5,10, telle que, pour toute suite £,]0, ou ¢, >s,, n=1,2,...,
la relation

(1H,(x) = h(x)| + |H,(x + t,) — h(x + t,)| + |H,(x — t,) — h(x — t,))/t,» 0  (3.7)

est vérifiée pour tout xe(a, b).
On considere une suite r,|0 et une suite n,loo telle que pour m=1,2,...
Max(uy,, S,,)<r,. Sion écrit

(h(x+rp) = h(xX)rm=(h(x +ry) — H, (x+ r,) +
+H, (x+r,)—H, (x)+ H, (x) = h(x))/r,

et

(h(x) = h(x — r))/rw = (h(x) — H, (x) + H,,_(x) —
—H, (x—=ry,)+H, (x—=r,)—h(x—r,))r,
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de (3.6), (3.6") et (3.7) on obtient

(h(x + 1) = h(x))[r, — g(x) (3.8)
et

(h(x)—h(x —ry))/rm—g(x) pourtout xe(a,b). (3.8)

La fonction /(x) étant croissante et la suite r, |0 ayant été choisie d’une fagon arbi-
traire, les relations (3.8) et (3.8’) entrainent I'identité 4’ (x)=g(x) pour tout xe(a, b).

Démonstration du théoréme 3.1.

a) La condition (3.1) est nécessaire.

On pose G,(a,x+b,)=P[Z,<a,x+b,]. En vertu du lemme 3.2 appliqué a la suite
G,(a,x+b,) et a la fonction limite @,(x), il existe des nombres 5,0, tels que, pour
toute suite #,0, o ¢, >s,,n=1, 2,... on a (G,(a,x+b,)— G,(a,(x—1,) +b,))/t,~ D (x)
uniformément en xe(x’, x”). Si on écrit

G,(a,x + b,) — G,(a,(x —t,) + b,) =
_ p((} (ﬁ [X, < ayx + b,]  [ay(x — 1,) + b, < X, < a,x + b,,])) (3.9)

i=1 \j=1
j#i

il en résulte

P(Lnj (ﬂ [X; <a,x + b ]n[a,(x —t,) + b, < X; < a,x + b.,]))/t,,—> b; (x)
o :':"1 (3.10)

uniformémenten xe(x’, x"). D’aprés le lemme 2.4 ona —n(1 — F(a, x+b,)—>log(®,(x))
pour tout x tel que @,(x)#0. On applique de nouveau le lemme 3.2 a la suite de
fonctions —n(1—F(a,x+b,)) et & la fonction limite log(®,(x)) pour un intervalle
(a, b), tel que [x', x"]=(a, b) et ®,(x)>0 pour tout xe[a, b]. Il s’ensuit qu’on peut
trouver une suite v,]0, telle que

n(F (a,x + b,) — F(a,(x — 1,) + b,)/t,— B4 (x)/®, () (3.11)

uniformément en xe(x’, x"), pour toute suite #,|0, ot ¢, >v,, n=1, 2, ... Si on observe
qu’en raison du lemme 3.1 on a G,(a,x+b,)- ®,(x) uniformément en xe(x’, x"), de
(3.11) on déduit que

n(F(ayx + b,) — F(a,(x — t,) + b,)) G,(a,x + b,)/t, — & (x) (3.12)

uniformément en xe(x’, x”), pour toute suite ¢,]0, telle que #,>v,, n=1,2,.... Si on
pose’u,,= Max(s,, v,), n=1, 2, ... des relations (3.10) et (3.12) on obtient que la con-
dition (3.1) est nécessaire.

b) La condition (3.1) est suffisante.

En vertu du théoréme de compacité faible des f. croissantes a val. dans [0, 1],il
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suffit de démontrer que, pour toute sous-suite d’indices #,f o, telle que G,, (a,, x +b,,)
converge % vers une fonction limite g(x), on a g(x)=&,(x).

Comme dans la premiére partie de la démonstration du théoréme, on voit que la
convergence de F"(a,x+b,) vers @,(x) entraine I’existence d’une suite v,|0, telle que
la relation (3.11) est vérifiée uniformément en xe(x’, x"), pour toute suite £,]0, ot
t,=v,, n=1,2,.... De la relation (3.9) et de la condition (3.1) on déduit que

(G,(a,x + b,) — G,(a,(x —t,) + by))/t, — Pp(x) G,(a,x + b,)[P,(x) >0 (3.13)

uniformément en xe(x’, x"), pour toutesuite 7,] 0, telle que ¢, > Max (u,, v,),n=1,2, ....
Les fonctions G,(a,x+b,) étant croissantes et les nombres a, positifs, de (3.13) il
résulte que pour toute suite 7,0 on a

G,(a,(x +1,)+b,)— G,(a,(x —t,)+ b,) >0 (3.14)

quel que soit xe(x’, x").
Soit une sous-suite n,, k=1, 2,... telle que Gnk(a,,kx+b,,k)z g(x). En vertu de la
relation (3.14) on peut appliquer le lemme 3.3 a la suite de f. de r. G, (a, x+b,,),
k=1,2,... et & la fonction limite g(x). On obtient que g(x) est continue dans I'inter-

valle (x', x"). D’aprés le lemme 3.1 et de la relation (3.13), on déduit que pour toute
suite ¢, |0, telle que ¢, > Max(u,,, v, ), k=1, 2,... les relations

(Gnk (a"kx + bnk) - Gnk(ank(x - tnk) + bnk)/tnk - ¢;{ (x) g(x)/q)k (X) (315)
et

(Guy (@ (x + 1) + by) = G (g x + byt > B4 (x) g (B (x) (315

sont vérifiées pour tout xe[y’, "], ou [y', y"] est un intervalle quelconque contenu
dans (x', x").

Les relations (3.15) et (3.15') étant satisfaites, on peut appliquer le lemme 3.4 a la
suite de f. de r. G, (a, x+b,,) et & la fonction limite g(x). Il en résulte que g(x) est
dérivable dans (y’, y”) et qu’elle satisfait a ’équation différentielle

g (x) = ®i(x) g(x)/P(x) quelquesoit xe(y’,y"). (3.16)

Soit x, =inf {x: ®,(x)=1} et y, = {sup x: P, (x)=0}. D’aprés la condition (3.1), I'’équa-
tion différentielle (3.16) doit étre satisfaite dans chaque intervalle [y, y"] = (¥, xi);
il en résulte que

g (x) = &, (x) g(x)/®(x) quelquesoit xe(yp ;). (3.17)

Si on observe que G,(a,x+b,)>1—n(1—F(a,x+b,)), en raison du lemme 2.4 on
obtient lim g(x)=1; de (3.17) il s’ensuit que g(x) doit étre égale a4 &,(x) pour tout

X XK

x€(, x;). La fonction g(x) étant croissante on a g(x)=®,(x) pour tout x. La dé-
monstration du théoréme est ainsi terminée.
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REMARQUE. La condition (3.1) est équivalente a la suivante:

(1/t,.)_z§1 P(B,(x)) {P([a,(x — t,) + b, < X; < a,x + b,]|B,(x)) —
—(F(ayx +b,)— F(a,(x—t,)+ b))} — f(n,x)-0  (3.18)

uniformément en xe(x’, x"), pour toute suite #,]0, telle que 7,>u,, n=1,2,..., ol

Bi(x)= N [X<ax+b]

J_
et J#i

£ %) =1ty Y P([an(x — 1) + by < X, < ayx + b,] A Bi(x) -
— 1/t P (Ln) (Bi(x)n[a,(x —t,) + b, < X; < a,x + b,,])). (3.19)

Si on observe que pour toute suite finie d’ensembles 4;, i=1,2,... on a

n—1

iélP(Ai)—P<iL:le,-> Y Py +

J—

n—2n—k—1
CEE () m):
=1 j=

n—1 j-1
f(n,x)=1/t, Y P((ﬂ [X;<a,x + b,,])m[a,,(x~— t,) + b, < X;<a,x+b,]n
ji=1 i=1

Nnla,(x—t)+b, < X;.y <a,x+ bn]m( N [Xi<a,x+ b,,])) +

alors on peut écrire

i=j+2
n—-2n—k—1 ji—1
+1/t, Y Z P((ﬂ[X,-<a,,x+b,,])n[a,,(x——t,,)+b,,<Xj<a,,x+b,,]m
k=1 j=1 i=1
(ﬂ[X,,+J<a,,(x—t,,)+b,,]>n[a,,(x t,) + by < X111 < ayx + b,] N
h=1
n( N [X,-<a,,x+b,,])>. (3.20)
i=j+k+2

4. Applications du théoréme 3.1
Soit X;, i=1, 2,... un processus aléatoire ayant la propriété suivante:
sup|P(4 N B, n B,) — P(A)P(B, N B,)| < a(n) 4.1)
ou: a(n)l0 et le supremum est pris sur tous les ensembles

AeM:, B, eM™", B,eIMM>, etsurtouti=n+1,n+2,....
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Des exemples pourraient facilement le montrer, la condition (4.1) qui vient d’étre
introduite est bien plus générale que la condition de mélange uniformément forte
(voir LoyNEs [9]).

THEOREME 4.1. Soit X;,i=1, 2.,.. un processus aléatoire a lois marginales identiques,
P[X;<x]=F(x), ayant la propriété (4.1) et tel que no(n)—0. Supposons que
F*(a,x+b,)—>®,(x), alors pour que P[Z,<a,x+b,] - ®,(x), il faut et il suffit que, pour
tout intervalle (x', x"), il existe des entiers m,} oo et des nombres u,|0, tels que

m,/n—-0, na(m,)—0 4.2)
n—my,—2
(1/t) Y P([an(x —t,) + b, < X; < a,x + b,] N
i=mp,+2

n( U [Xj>a,,x+b,,]>m N [X;<a,x+b,])»0 (4.3)

jel(my, i) jel(mn,i)
JEi

f(n,x)-0 “4.4)

uniformément en xe(x’, x"), pour toute suite t,|0, telle que t,>u,, n=1,2,..., ot I'in-
tervalle (x', x") a la méme signification que dans le théoréme 3.1, ot I(m,,i)=
[1, —m,+i)u(i+m,+1,n],i=m,+2,..., n—m,—2 et ou la fonction f(n, x) est dé-
finie par la relation (3.19).

Démonstration. 11 suffit de démontrer que, pour le processus considéré, la con-
dition (3.1) est équivalente aux conditions (4.2), (4.3) et (4.4).

D’aprés les hypotheses faites sur la fonction a(n), il s’ensuit qu’on peut donner
des entiers m,Too et des nombres s,]0, tels que

m,/n—->0 et na(m,)s,—0. 4.5)
En vertu du lemme 2.4 on a
p( N [Xj<a,,x+b,,]>—P[Z,,<a,,x+b,,]—->0 4.6)
JeI (mn, i)

uniformément en xe(x’, x") et en i€[m,+ 1, n—m,—1]. Soit une suite v,|0 ayant la
méme signification que dans la démonstration du théoreme 3.1; en raison de la
propriété (4.1), des relations (4.5) et (4.6) on obtient

n—my,—1
1/s) 3 P<[a,,(x—t,,)+b,,<Xi<a,,x+b,,]n N [Xj<a,,x+b,,]>—-
i=mp+1 jel(m,,i)

- (t,)P[Z,< a,x + b,|n(F(a,x + b,) — F(a,(x —t,) + b,)) >0  (47)

uniformément en xe(x’, x"), pour toute suite #,| 0 telle que 7, > Max(s,, v,),n=1,2,....
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Si on pose u,=Max(u,, v,, 5,), de (3.1) et de (4.7) il résulte que

am) 3 P([a,,(x )+ b <Xi<ax+bla N [X<ax+ b,,]) -
i=mp+1 jel (mp, i)
_(1/t)P< (ﬂ[X<ax+b] N[a,(x — t)+b,,<X,-<a,,x+b,,])>-+
tf

J#i (4.8)

uniformément en xe(x’, x"), pour toute suite #,}0 telle que t,>u,, n=1, 2,....

La validité de (4.8) entraine celle de (4.3) et de (4.4). D’autre part si les conditions
(4.3) et (4.4) sont vérifiées, larelation (4.8) ’est également. Si on pose u, = Max(u,, s,, v,)
de (4.8) et (4.7) on obtient (3.1). La démonstration est ainsi terminée.

Soit X;, i=1,2,... un processus aléatoire tel que, pour tous ensembles 4, eI,
A, €M, B eM ™", B,eM?,,, oui<jeti=n+1,n+2,..., on ait

|P(AnB)— P(A)P(B)| < «a(n)P(A4)P(B) (4.9)

quel que soit n> N, o N est un nombre entier positif fini et ol la fonction a(n)|0
est indépendante de A=A, nA4,, B=B,nB,,i,j.

Pour un processus satisfaisant a (4.9) on peut donner une condition nécessaire et
suffisante simple pour que P[Z,<a,x+b,]— D, (x).

THEOREME 4.2. Soit X;, i=1, 2, ... un processus aléatoire ayant la propriété (4.9) et
tel que P([X;<x]n[X;+4<x]) ne dépend pas de j=1,2,... pour tout h=1,2,..
Supposons que F"(a,x +b,)> P(x), ott a,>0, alors pour que I'on ait P[Z,<a,x+b,]—
@, (x), il faut et il suffit que

lim P([X, = x]n[X, > x])/P[X, 2 x] =0 (4.10)

pour tout h=2, ..., oti xo=inf {x: F(x)=1}.

Démonstration. On démontre que, pour le processus considéré, la condition (4.10)
est équivalente a la condition (3.1).

a) La condition (4.10) est nécessaire.

En vertu de la propriété (4.9), de méme que dans la démonstration du théoréme
4.1 on démontre que, pour toute suite m,1 oo, telle que m,/n—0, on a

n—my—2
) X P<[a,,(x——t,,)+b,,<X,-<a,,x+b,,]m N [Xj<a,,x+b,,]>--
i=mp+2 jelI(my,i)

—(1t)P[Z,< a,x + b,|n(F(a,x + b,) — F(a,(x — t,) + b,)) >0 (4.11)

uniformément en xe(x’, x”), pour toute suite #,]0, telle que ¢,>v,, n=1,2,..., ol
’intervalle I(m,, i) et la suite v,] 0 ont la méme signification que dans la démonstration
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du théoreme précédent. En raison des hypothéses faites, de (4.11) et de (3.1) on obtient

(n/t) P(([X, = ayx + b, ] n[X} = a,x + b,]) n[X; = a,(x —1,) + b,] N
N[Xy=a,(x—1)+b,])>0 (412)
uniformément en xe(x’, x"), pour toute suite ¢,]0, telle que #,>Max(u,, v,) et quel
que soit h=2, 3,.... De (3.11) on déduit qu’il existe un nombre entier L< oo tel que
F(a,x+b,)—F(a,(x—v,)+b,)>0, Vn>L. (4.13)
De (3.11), (4.12) et (4.13) il s’ensuit que

P(([X; za,x+ b ]n[Xp = ap,x + b)) n[X; > a,(x—t,)+ b, ]
N[X, = a,(x —t,) + b,]) 1/(F(a,x + b,) — F(a,(x —t,) + b)) >0  (4.14)

uniformément en xe(x’, x"), pour toute suite ¢,]0, telle que ¢, >Max(u,, v,) et quel
que soit h=2, 3,....

Pour un point xe(x’, x") la relation F"(a,x+b,)— ®,(x) entraine la convergence
des suites a,x+b, et a,(x—1,)+b,, n=1, 2,... vers x,, telle que a,x+ b, < x, pour tout
n>L’, ou L' est un entier suffisamment grand. Soit un nombre entier M > Max(L, L’).
On considére une suite n;, j=1, 2, ... définie de la fagon suivante:

ng=M, nj=Min{n:n>n;_,a,(x—v,)+b,>a,_x+b,_},
ou v, = Max(u,, v,) (4.15)
Soient des nombres g, , j=2, 3,..., tels que
a,,(x = 4q,) + b, =a,_,x+b,,_, (4.16)
De (4.15) et (4.16) on a
Qp—y (X = Uy, 1) + byymy < a,,(x —q,) + by, 4.17)

En raison du lemme 2.2 il résulte que a,/a,.;—1 et que (b,,,—b,)/a,—0; de (4.15) et
(4.17) on obtient

qn,—0 et q,2v, j=23,... (4.18)
On pose

Anj = [aNj(x - QIIJ') + bnj S Xl < anjx + bnj]
et

B, = ([a,,x + b,, < X,]n[a,,x + b,, < X, ])’n
N [anj(x‘_ qnj) + bnj < Xl] N [anj(x - qnj) + bnj < Xh]

pour un entier A>2 déterminé. De (4.16) il s’ensuit que

Y A, =layx+ by < X, <xo] (4.19)
=2
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et

Y B, =[ayx + by < X; <xo]n[ayx + by < X, < x0]
j=2
Pour les probabilités P(4, ) et P(B,,) on obtient facilement I'inégalité suivante:

Y, P(B.)I Y, P(4,) < sup(P(B,)/P(4,) (4.20)

En raison de (4.14), de (4.18) et de (4.19), I'inégalité (4.20) entraine la relation

P([apx + by < X; <xo] N [apx + by < X, < Xo])/(F(xo) — F(apx + by))— 0
(4.21)

quand M 1c0, pour un point quelconque xe(x’, x”) et quel que soit h=2, 3,.... Une
application simple du lemme 2.4 permet d’obtenir (4.10) de (4.21). La premicre partie
de la démonstration est ainsi terminée.

b) La condition (4.10) est suffisante.

Si (4.10) est vérifiée, alors on peut donner des nombres entiers m,T oo et une suite
w,l0, tels que

n—-my,—1 i+m,+1

(/1) > P([a(x t)+ b, < X;<a,x+b,]n U [X;Za,x+b,]->0
i=mp+ j=i—-my
Jj#Fi

uniformément en xe(x’, x"), pour toute suite #,|0, telle que #,>w,, n=1,2,.... Si on
choisit u,=Max(w,, v,), n=1, 2,..., ou la suite v,|0 a la signification habituelle, alors,
en vertu de la propriété (4.9) et du lemme 2.4, de (4.22) on obtient

n n
1/t) Y P(la,(x —t,)+ b, < X;<a,x+b,]n N [X;<a,x+b,] -
i=1 =1
j#i
—(@/t)n(F(a,x + b,) — F(a,(x —t,) + b)) P[Z, < a,x +b,] >0  (4.23)
uniformément en xe(x’, x"), pour toute suite #,]0, ou t,>u,, n=1, 2,.... En raison de
la propriété (4.9), pour toute suite ¢,]0, telle que t,>u,, n=1, 2,... la fonction f (n, x)
tend vers 0 uniformément en xe(x’, x"); de (4.23) il s’ensuit que la relation (3.1) est

vérifiée. La condition (4.10) est donc aussi suffisante et le théoréme 4.1 est ainsi
complétement démontré.

5. Convergence vers @,(x): condition de mélange

Soit X;, i=1,2,... un processus aléatoire strictement stationnaire soumis a la
condition de mélange uniformément forte, a savoir:

sup|P(4 n B) — P(A)P(B)| < a(n) (5.1
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olta(n)|0et ol le supremum est pris sur tout ensemble A eI et BeM>, ,, k=1,2,....

M. ROSENBLATT [12], IBRAGIMOV et d’autres auteurs ont étudié le comportement
asymptotique de P[S,<a,x+b,], S, indiquant la somme X, +X,+--+ X, et a,>0
et b, étant des constantes. R. M. LoYNEs [9] a considéré le probléme correspondant
pour la variable Z,. Il a démontré que les lois limites possibles sont du type de &, (x),
@, (x) et P;3(x). Dans ce paragraphe on se pose la méme question que dans les deux
précédents pour des processus satisfaisant a la condition de mélange uniformément
forte. Les résultats obtenus dérivent directement des méthodes employées par R. M.
Loynes (loc. cit.).

THEOREME 5.1. Soit X;, i=1,2,... un processus aléatoire strictement stationnaire
ayant la propriété (5.1), et g(n) une fonction définie et a valeurs dans les nombres entiers
telle que

g(n)/n—-0 et oa(g(n)n/g(n)—0. (5.2

Supposons que F"(a,x+b,)— P, (x), alors pour que I'on ait P[Z,<a,x+b,]->P,(x) la
condition suivante est nécessaire et suffisante:

nP([X, > a,x +b,|n[X, > ax+b])+

+(n/g(n))2(g(n) HP([X, > a,x +b,]n

NN [Xk<a,,x+b,,]m[Xj+3>a,,x+b,,])—>0 (5.3)
k=2
pour tout x, ot ¥, (x)>0.

Démonstration. En vertu des hypothéses faites il existe une fonction g(n) satis-
faisant a (5.2) et telle que

n g(n)
P(m [X,<a,x+ b,,]) ~ (P N[X:<a,x+ bu])"/g"” -0. (5.4)
i i=1

i=1
Si ’on observe que d’aprés le lemme 2.4, pour tout x, ou @,(x)>0, on a
g(n)

(@)[X ax+b]>—+0 et (n/g(n))P(U[X ax+b]><C<oo

pour tout n, alors de (4.5) on obtient
g(n)

<ﬂ[X <a x+b]>—exp<——nP(U[X ax+b])/g(n)>—+0 (5.5)

pour tout x tel que @,(x)>0. Il en résulte que P[Z, <a,x+b,] > P, (x) si et seulement
si
g(n) g(n)

(n/g(n))ZP[X a,x + b,] — (n/g(n))P(U[X ax+b]>—+0 (5.6)

pour tout x tel que @, (x)>0.
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Le processus aléatoire considéré étant strictement stationnaire de (5.6) il s’ensuit
que la condition (5.3) est bien nécessaire et suffisante.

Si a la place d’un processus ayant la propriété (5.1) on considére un processus
strict. stationnaire *-mélange, voir [4], alors, & I’aide du théoréme 5.1 on démontre
aisément que (4.10) est une condition nécessaire et suffisante pour que la relation
F"(a,x+b,)— ®(x) entraine la convergence de P[Z,<a,x+b,] vers &,(x). Pour des
processus de ce type la résolution du probléme posé est donc beaucoup plus simple
que pour les processus considérés dans le théoréme 4.2, mais il faut ajouter que la
condition *-mélange est bien plus forte que la condition (4.9).

Un processus m-dépendant étant aussi *-mélange, de (4.10) on déduit immédiate-
ment que la condition de G. S. WATSON [13] est nécessaire et suffisante, ce qui avait
déja été démontré par NEWELL [11].

6. Lois limites pour un processus de Markov

Les travaux dédiés a I’étude des lois qui peuvent intervenir comme limite % de
P[Z,<a,x+b,] dans le cas d’un processus de Markov, sont fort peu nombreux (voir
S. M. BERMAN [2] et R. COGBURN [5] pour des processus a temps discret, G. F. NEWELL
[10] et S. M. BERMAN [3] pour des processus & temps continu). Dans ce paragraphe
on démontre quelques résultats obtenus a ce sujet.

Soit X;,i=1, 2,... un processus de Markov strictement stationnaire, défini par une
probabilité de transition p(x, A) et par une probabilité initiale p(4), ol x est un point
de R et A un élément de la o-algébre f(R) des ensembles de Borel de R. Si 4,
i=1,2,..., nsont des ensembles appartenant & f(R) alors, pour un tel processus, on a

P(ié1 [X,-eA,-]) = fp(dxl)fp(xl, dx,)... fp(x,,_l, dx,).

Ag An

Si le processus considéré satisfait a la condition de Doeblin (voir DooB [6], pp.
192-221), alors on peut démontrer qu’il existe un nombre fini d’ensembles invariants
E, a=1,2,...,d, décomposés dans un nombre fini de classes cycliques ,C,,
a=1,2,...,d,a=1,2,...,d. Sans porter atteinte a la généralité¢ on peut supposer que
p(E,)>0 pour tout a=1, 2,..., d, alors on a

d
p(u Ea)=1, p(E,AEy) =0
a=1

pour tout a#b et p(,C,n ,C;)=0 pour tout a# B, quel que soit a=1, 2,..., d. Soit

p™ (x, A) ='Jp(x, dxl)fp(xl, dx,) ... fp(xm_z, dx,,,_l)f P (Xp— 1, dX,)
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et
pV(x, A) = p(x, A).

D’apres les hypotheses faites on peut démontrer (voir Doos [6], pp. 190-221) qu’il
existe une constante positive C telle que

(1/n) i p™(x, A)— p(A|E,) < C/n, n=1,2,.... (6.1)

pour tout ensemble 4 ef(R) et quel que soit xeE,, a=1,2,...,d.
On considere d’abord des processus a un seul ensemble invariant.

THEOREME 6.1. Soit X, i=1, 2, ... un processus de Markov strictement stationnaire,
satisfaisant a la condition de Doeblin et avec un seul ensemble invariant. Supposons que
a,>0 et b, soient des constantes, alors la classe des lois propres qui peuvent intervenir

. W R e 12
comme limite - de P[Z,<a,x+b,] es t la méme que dans le cas de I'indépendance.
Avant de commencer la démonstration on donne les deux lemmes suivants:

LeMME 6.1. Soit X;, i=1, 2,... un processus de Markov strictement stationnaire
satisfaisant a la condition de Doeblin et f,, n=1, 2, ... une suite de fonctions déf. dans
R, mesurables B(R) et unif. limitées, | f,|<M, n=1,2,.... Si q,10 est une suite de
nombres entiers, alors on a I'inégalité:

’(l/q”):gl p(i)(xl’ dxi+1)fn(xi+ 1) - (1/p(Ea)) f p(dxl)fn(xl)

ANE,

<2CMJq,

(6.2)
quel que soit x;€E,, pour tout ensemble de Borel Acfi(R) et chaque a.

La démonstration de ce lemme est trés peu différente de celle du lemme 7.2 de [6],
p. 224.

LEMME 6.2. Soit X;,i=1, 2, ... un processus identique a celui considéré dans le lemme
6.1. Supposons que pour une suite de nombres y,, n=1, 2, ... et pour un indice déterminé
aon ait

limsup P([ X, <y, JI[X:€E.]) < 1 (6.3)

n-—* oo

alors pour toute suite de nombres entiers m,} oo on a

P(Z,, < y.J[X,€E])~0. (6.4)

Démonstration. Considérons une suite de nombres entiers g,1 oo telle que g,/n—0.

On peut écrire:
Yn

P([Zm,. < yn] N [Xl EEa]) < fp(dxl) (1/,) ZV: P(il)(xu dX;1)

i1=1
Eq ~ a0
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[+4) Yn
an _
f p(Xi 415 dX;y2) ... (1/9,) '21 P(u)(xq,.+ 15 dxq,,+1+iz)
ir=
e LI
f P(Xgu 41412 AXgpt2+i) - (1/41) . Z_lp "0 (Xguirn— 1)+ 15 (— 05 V1))

ou r,=[m,/q,]- En vertu de (6.1) il en résulte que
P(Z,, <y Jn[X.€eE]) < (P([X, < yu]n[Xi€E.]) + Clq,)" (6.5)
De (6.5) et (6.3) on obtient immédiatement (6.4).

Démonstration du théoréme 6.1. Si P[ Z, <a,,x+b,,]2; G(x), ou G(x)est une f. der.
propre et si x* est un point tel que G(x*—0)>0, alors en raison du lemme 6.2,
P[X,>a,x+b,]—0 pour tout x>x*. Supposons que j soit un nombre entier positif
et g,1 o0 une suite d’entiers telle que g, <n—1et P[X,>a,x+b,] q,—0, alors on a la
relation suivante:

q“ .
P[an < anx + bn] - Jp(dxl) (I/qn)z1 p(”)(xl’ dxi+1) f p(xi+ 1> xi+2)"'
R

1=
A An(x)

. f p(xn—q,.—f-i;’ dxn—qn+i1+l)fp(xn—q,,+i1+19 dxn—q,,+i1+2)"'
An(x)

R
qn * .
- (1/g,) Z P(u)(xm dX,4i,) f "'fp(x2n~qn+i2+1adx2n-q,.+iz+2)"'

iz =1
An(x) An(x) R

qn ' .
(g Y p? (Xn(j=1y> dxn(j—1)+ij) X

ij =1 J
An(x)

f f p(xnj-q,,+ij9 dXyj—g,+5+1) =0, (6.6)
Anx)y  An(x)
oit 4,(x)=(— 0, a,x+b,). En vertu dulemme 6.1 on obtient P[Z, ; <a,x+b,]—>G’(x)
en tout point de continuité de G(x) tel que x>x*. G(x) étant une f. de r., on en
déduit que
P[Z,; < a,x + b,] > G'(x). (6.8)

D’aprés le lemme 2.1, de (6.8) nous pouvons conclure que pour tout j=1,2,..., il
existe des constantes a; et f; telles que

G/ (a;x + B;) = G(x). (6.9)

Cette équation fonctionelle étant la méme que dans le cas de I'indépendance le théo-
réme est démontré.
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Si le nombre d’ensembles invariants du processus considéré est plus grand que 1,
nous nous limiterons a ’étude d’un probléme restreint. Nous supposerons que pour
tout nombre entier r>1 et pour des constantes a,>0 et b,, n=2, 2, ..., ’on ait

P[Z, <a,x + b,] > G,(x) (6.10)

ou les G,(x) sont des f. de r. propres. D’apres le lemme 2.1, les lois G,(x), r=1,2,...,
doivent alors étre du méme type.

Nous nous poserons donc la question de déterminer la classe des types limites
possibles.

Soient ¢,>0 et t,, a=1, 2,..., d, des constantes; il est facile de voir que chaque
fonction de la forme

d
0 pour x<t
c,e(x—1t), ou e(x—t)= et £, =1
‘,Z‘l € o) ( ) {1 pour x>t )
peut étre obtenue comme fonction limite. Le cas intéressant a étudier est donc celui
ol on exclut toute fonction de cette forme. Les types de f. de r. qui n’appartiennent
pas & cette classe seront appelés «types propres».

THEOREME 6.2. Soit 'ensemble des processus de Markov strictement stationnaires,
satisfaisant a la condition de Doeblin et ayant d’ensembles invariants. La classe des
types propres limites de P[Z,,<a,x+b,], r=1, 2,... est celle engendrée par les f. de

r. suivantes:
d’

; o (P (X)) + N :;+ c,€(x) (6.11)
dg Ca(P,5 (X)) + . ;ﬂc e(x) (6.12)
3 a(@3(9)" 613

d
oud' >1,0us,>0etc,>0, Y c,=1, sont des constantes et oir I'exposant a, intervenant

a=1

dans les fonctions ®@,(x) et ®,(x), ne dépend pas de l'indice a.

Démonstration. Considérons un processus déterminé X;,i=1, 2,.... Les probabilités
conditionnelles P([ Z,<a,x+b,]|[ X, €E,]) (notées par la suite avec P,[Z,<a,x+b,]
étant des f. de r., d’aprés le théoréme de compacité faible des fonctions croissantes a
valeurs dans [0, 1], on peut trouver une suite de nombres entiers #, oo telle que

P,[Z, < a, x+ b, ]> H,(x) (6.14)

pour tout a=1,2,...,d. En vertu des lemmes 6.1 et 6.2 et a I’aide d’une relation

semblable a (6. 6) de (6.14) il s’ensuit que P,[Z <a,,kx+b,,k]-> Hi(x) pour tout

nij
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a=1,2,...,det tout j=1, 2,...; cette relation pouvant facilement étre étendue a tout
nombre rationnel j> 0, il en résulte que

d
P[Z, ;< a,x +b,] ud Y. p(E,) Hi(x) (6.15)
a=1

d d
pour tout nombre rationnel j>0. Les fonctions Y p(E,) H,(x) et Y p(E,) Hi(x)
a=1 a=1

étant d’un type propre, en vertu du lemme 2.1 on peut trouver des constantes o;>0
et B; telles que

}i‘l p(E,) Hl (¢;x + B;) = }Zjl p(E,) H,(x) (6.16)

pour tout nombre rationnel j> 0.
D’aprés le lemme 2.2, a partir de (6.15) et de (6.16) on obtient

an %l =1 et (b — an % — by)lag 0 (6.17)

Soit » un nombre entier positif, de (6.15) on a

d
P[Z[”k.i]r < Ay X + b”k] LV) Z p(Ea) ng (x) (6-18)
a=1

En vertu du lemme 2.3, de (6.17) on déduit que

d
w .
P[Zy, 1 < Ay X + bpmn] = Zl p(E,) Hy (o;x + B;) (6.19)

D’autre part de (6.10) et (6.15) on obtient

5 p(E) Hi ()= 6, (6:20)

Enfin de (6.10) et de (6.20) il résulte que

21 p(E.) (H (2;x + B;) — H; (x)) =0 (6.21)

pour tout nombre rationnel j>0 et tout entier r>1.

Toute fonction de répartition d’un type propre intervenant comme limite 2 de
P[Z,<a,x+b,] doit donc satisfaire & ’équation fonctionnelle (6.21).

On peut distinguer trois cas:

1) Il existe un nombre rationnel j> 1 tel que «; < 1 (dorénavant on notera o; =(5)).

Dans ce cas, d’aprés la relation (6.21), & I’aide de méthodes peu différentes de
celles employées par GNEDENKO dans [8], pp. 432-433, on obtient (j indiquera tou-
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jours un nombre rationnel):

a(j)<1 et B(j)/(1 —a(j))=const. pourtout j>1 (6.22)

0<G,(x)<1 pourtout x<B(j)/(1—a()) (6.23)
et

G, (B()(A—a(j))=1 pourtout j>1. (6.24)

Soient p et g des nombres entiers. En vertu de la relation (6.21) et 4 ’aide du lemme
2.2 on trouve

a(p/q) = a(p)la(q) et P(p/q)=(B(p) — B(q))/a(q) (6.25)
De (6.22), de (6.24) et de (6.25) il résulte que

a(j)>1 pourtout j<1 (6.26)
et

B()/(1 — a(j)) = const.  pour tout  j. (6.27)
Si on pose

d
MW =HG+POIA-20) e G()= Y pE) LK) (629)
de (6.27) et (6.24) il s’ensuit que
G (0)=1 et 0<G,(x)<1 pourtout xe(—oc0,0). (6.29)

En outre, des relations (6.21) et (6.28) on déduit que les fonctions H,(x) doivent
satisfaire a I’équation fonctionnelle suivante:

5. p(E) (72 () 9) ~ () =0 (630

pour tout nombre rationnel j>0 et tout entier »>1. On démontre a présent que la
fonction G, (x) est continue dans lintervalle (— oo, 0). Supposons le contraire: il
existe alors un point ye(— oo, 0) tel que 0< G, (y)<1et G,(¥)—G,(y—0)>0; d’autre
part on peut trouver un j*>1 de fagon que

él p(E) A (y)> G, (y - 0) (6.31)
mais d’aprés (6.22) on a G, (y/a(j*))<G,(y—0), de (6.30) il s’ensuit que
Gy (v/a (%)) = ai p(E) B (y) < Gi(y - 0),
cette relation étant en contradiction avec (6.31), la fonction G, (x) est bien continue

dans (— o0, 0).
A T’aide des relations (6.22)—(6.27) et en raison de I’équation (6.30), on démontre
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facilement que la fonction a(j) peut €tre étendue univoquement a une fonction
définie en tout point xe(— oo, 0), continue et décroissante dans cet intervalle, telle
que a(x)}0 pour xtoo et a(x)fco pour x|0.

Soit un point fixé ze(— o0, 0). Supposons que pour les indices a,, a,, ..., @z, ou
d*<d, l'on ait A, (z)= Max H,(x) pour tout i=1, 2,..., d*, alors la relation (6.30)

1<as<d

et les considérations faites sur la fonction «(j) impliquent que, pour tout point
x€(— o0, 0), le nombre d’indices a;, tels que Max H,(x)=H, (x) ne dépend pas de x

1<a<d

et est égal & d*. De la continuité de G, (x) on déduit que ces indices sont les mémes
pour tout x; en vertu de (6.30) il s’ensuit que

H,(x)=H («(j)x) pourtout i=1,2, .., d*. (6.32)
Etant donné que de (6.30) et de (6.32) on a

i p(E,) (A} (a(j) x) — H;,(x)) =0,

i=d*+1
il nous est permis de conclure que
H,(x) = H(«(j) x) (6.33)
pour tout indice a=1, 2, ..., d et tout nombre rationnel j> 0.
Il est connu (B. V. GNEDENKO [8]), que les seules f. de r. H(x) satisfaisant aux
relations (6.33) et (6.29) sont celles de la forme @5 (x) et €(x), s> 0 étant une constante.
Comme G, (x) est une f. de r. propre, il en résulte que

Gi()= 2 p(E)(22(0) + 3 p(E)e(x), on d'>1  (634)

i=

-

On remarquera que la constante « intervenant dans @,(x), voir paragraphe 2, est
indépendante de I’indice a;.

2) 11 existe un nombre rationnel j>1 tel que a(j)>1. De méme que dans le
premier cas on démontre alors que:

a) Le quotient B(j)/(1 —a(j)) ne dépend pas de j>0.

b) La fonction G, (x) est continue et telle que 0< G, (x) <1, pour tout
xe(B(/)I(1—a()), @) et Gy (B()(1-a(}))~0)=0.

¢) La fonction a( j) peut étre étendue univoquement a une fonction «(x), définie
pour tout xe R, continue, croissante et telle que a(x)|0 pour x|0 et a(x)f oo pour xT 0.

Si on pose H,(x)=H,(x+B(j)/(1—a(j)) pour tout a=1,2,...,d et G (x)=

[ 1
Y p(E,) H,(x), alors, comme dans le premier cas, on démontre que la relation
a=1

H,(x)=Hi(a(j) x) doit étre vérifiée pour tout nombre rationnel j>0 et tout indice
a=1,2,...,d.
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La fonction G, (x) étant propre, dans ce cas on peut conclure que

Gl (X) = _;1 p(Eai) ((pl (x))saz - .=dz,+1 p(Eai)G(x), ou d’ >1. (635)

3) Ilexiste un nombre rationnel j> 1 tel que a( j)=1. En raison des considérations
faites dans les deux premiers cas alors on déduit immédiatement que o(j)=1 pour
toutj>0. Laf. der. G, (x)étant d’un type propre, a I’aide d’argumentations analogues
a celles qui viennent d’étre employées, on obtient que

G,(x)= zil p(E,) (®5(x)). (6.36)

d
Les probabilités p(E,) étant arbitraires, pourvu que Y p(E,)=1 et p(E,)>0, il nous
a=1

reste & démontrer que les f. de r. définies par les relations (6.11)-(6.13) peuvent
effectivement intervenir comme limite 2 de P{Z,<a,x+b,],quand P[Z,,<a,x+b,]
56,(x).

Soient des ensembles E,ef(R) telles que

a) Chaque E, est dense dans R, a=1, 2,...,d

d
b) E,nE,=0sia#bet ) E,=R.

a=1
Nous considérons un processus de Markov défini de la fagon suivante:

p(x, [V ¥2) = (@, (20 ) — (D, (yy, )", VxeE,, a=12,..d.
p(x, [y, y2)) = P2 (y2, 0 = 0) — @, (y,, 0 = 9), VxeE,, a=d +1,..,d.

quel que soit I'intervalle [ y,, ,), ou 5,>0, a=1, 2,...,d’, sont des constantes et ou
a et o —9, 0<J <a, indiquent les exposants intervenant dans @, (x).

P([y y )ﬂE ) = Ca(¢2(y29 a))sa — Ca(¢2(y1’ a))sa Va= 1, 2,.“, d’
1 V2 a Cad’z(}’z,d—é)—cacbz(yl,a—é) Va=d +1,....d

d
ol les ¢, sont des constantes positives telles que > c¢,=1. Le processus qui vient

a=1
d’étre défini est strictement stationnaire et satisfait a la condition de Doeblin. Si on
pose a,=1/n'"* et b,=0,n=1,2,... alors on a

d’ d
P[Z, <a,x +b,]> Y (@) + Y ce(x), Vr=1,2,....
a=1 a=d"+1
De la méme fagon on peut construire des processus, dont P[Z,. <a,x+b, ] converge
vers les f. de r. limites considérées dans les deux autres cas. La classe de types limites
possibles est donc bien celle définie par les f. de r. (6.11)-(6.13). Le théoréme est ainsi
complétement démontré.
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COROLLAIRE. Soit X;, i=1, 2,... un processus de Markov strictement stationnaire
et satisfaisant a la condition de Doeblin. Supposons que pour tout r=1,2,... I'on ait

P [Z,,,<a,‘x+b,,]—‘r> G,(x), o G,(x) est une f. de r. d’un type propre, alors les relations
suivantes sont vérifiées:

P [Z,<a,x+b,] - (D (yx+V)’ Vi=12,..4d (6.37)
P.[Z,<a,x+b]5e(yx +v), Vi=d +1,...,d (6.37)

ouv, y>0 et s, >0 sont des constantes, 1 <d’'<dpour k=1,2 et d' =0 pour k=3, ({a;}
indique une permutation des nombres entiers 1, 2,...,d).
On considére d’abord le lemme suivant:

LEMME 6.3. Soit {c,} une suite de nombres réels. Si pour toute sous-suite convergente
{¢a}> {Cny+ L} converge vers la méme limite, alors tous les points compris entre deux points
d’accumulation de c,,n=1, 2, ... sont aussi des points d’accumulations de la suite con-
sidérée.

La démonstration de ce lemme est élémentaire.

Démonstration du corollaire. D’aprés le lemme 6.2 on déduit que

P[Z,<ayy X+ byy1] = P[Zyyy <aysy X+ byyy] 0. (6.38)
En vertu du lemme 2.2 il en résulte que
an+1/an -1 et (bn+1 - bn)/an - 0. (639)

En raison des lemmes 2.3 et 6.2 et de la relation (6.39), pour toute suite d’indices
n;— oo tels que

P,[Z,, <a,x+b,]>(®(yx+v), i=12,..,d, h=12..,d.

P, [Z,, < anx +b,] 5 e(yx +v), i=d +1,..,d, h=d +1,..,d.
(6.40)

on a

Pah[zn,ﬂ<an,+1x+bnj+1]_’((pk()’x+ﬂ))sa‘> i=1,2,...,d h=12,..,d

Po[Zye1 <ane1 X+ by o125 (0x + B), i=1+d,..,d h=d+1,...d.
(6.41)

Le nombre de fonction limites étant plus petit ou égal & d, de (6.40) et (6.41) une
application directe du lemme 6.3 nous permet de conclure que les relations (6.37) et
(6.37") doivent étre vérifiées.

On démontre encore un théoréme analogue a ceux considérés dans les paragraphes
précédents.
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THEOREME 6.3. Soit X;, i=1, 2,... un processus de Markov strictement stationnaire
et satisfaisant a la condition de Doeblin. Supposons que P,[ X, <a,x+b,]—(P;(x)™
pour tout a=1, 2, ..., d, ot s,>0 indiquent des constantes, alors, pour que

d
P[Z,<a,x +b,]— Y p(E,)(Pu(x))
a=1
il faut et il suffit qu’'il existe une suite de nombres entiers m,} o tels que m,/n—0,

nim2-0 et

nP([X,>a,x+b,]n[X, > ax+b])+(n/m)2(m —j) x
2+j
xP([Xl ax+b]r\ﬂ[Xk<ax+b] LX; 3>a,,x+b,,])—->0 (6.42)
pour tout x tel que P,(x)>0.

Démonstration. On considére une suite m,loo telle que m,/n—0 et n/m:-0. En
raison des lemmes 6.1 et 2.4 et a I’aide d’une relation semblable 4 (6.6) on obtient

P,[Z,<a,x +b,] - (P,[Z, <a,x+b])"™ >0 Va=1,2,....d.
Pour que d
P[Z,<a,x +b,] > ) p(E,)(®:(x))"
a=1
il est donc nécessaire et suffisant que

d d
Y p(E)PI[X, <a,x+b]— Y p(E)(P,[Z,, <ayx+b])"™ >0 (6.43)
a=1 a=1

mais en raison du lemme 2.4 la relation (6.43) est équivalente a

d
(n/m,,)Z(ZP[X a,x+b,] - P(U[X ax+b]>>—>0. (6.44)

a=1
Le processus considéré étant strictement stationnaire, de (6.44) il s’ensuit que la

condition (6.42) est bien nécessaire et suffisante.

COROLLAIRE. Si le processus de Markov considéré dans le théoréme 6.3 n’a pas de
sous-classes cycliques, la condition (6.42) est vérifiée si et seulement si

lim P([X, > x]n[X; > x])/P[X; 2x]=0 (6.45)

X X0
pour tout j=2,..., ot xo=inf {x:P[ X, = x]=1}.
Démonstration. Si (6.42) est vérifiée, alors de (6.44) on obtient

P(IX, 2 a,x+b]n[X;>a,x+b,])/P[X;>a,x+b,] >0 Vj=2,...
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et une simple application du lemme 2.4 nous permet de conclure que la relation (6.45)
doit étre aussi vérifiée.

Inversement si la condition (6.45) est satisfaite, alors il existe une suite de nombres
entiers ¢g,Too telle que

4n
ny P(X;>ax+b]n[X;>a,x+b,])—0. (6.46)
ji=1
Sil’on observe(voir [6], p. 208) que ’expression intervenant dans (6.42) est majorisée par

n i P([X, > a,x + b, ]n[X; > a,x + b,]) + (n/m,) g (m, — j) (A/n* + Bo’In)

J=an

ou 4, B,0<¢<1 sont des constantes; de (6.46) on obtient immédiatement que la
relation (6.42) doit étre vérifiée.
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