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Sur le maximum d'un processus aléatoire

par Tiziano Pelli

Introduction

Soit Xi9 i= 1, 2,... une suite de variables aléatoires réelles et Zn= Max Xt.

De nombreuses études ont été faites sur le comportement asymptotique de

aBx + ôn], où an>0 et bn sont des constantes.
Les premières recherches à ce sujet ont été effectuées pour des variables aléatoires

indépendantes et identiquement réparties ; les résultats obtenus ont donné une réponse
complète à plusieurs problèmes (voir B. Y. Gnedenko [8], J. Geffroy [7]). Dans les

dernières années, parallèlement aux études entreprises pour des sommes de variables
aléatoires normées, plusieurs auteurs ont considéré le cas où les variables Xi9 i 1,2,...
ont une certaine dépendance entre elles et ce travail désire apporter une contribution
au développement de cette théorie.

Après avoir introduit les notations indispensables (par. 1) et exposé des résultats

classiques fréquemment employés par la suite (par. 2), on examine sous quelles
conditions la convergence de Pn[Xl<anx + bn] vers une loi limite entraîne celle de

jP[Zn<tfnx+ èn] vers la même loi, pour des processus quelconques à lois marginales
identiques. Les résultats obtenus sont ensuite appliqués (par. 4) à des processus
soumis à des dépendances particulières. Le même problème, cette fois pour des

processus de mélange strict, stationnaires, est étudié dans le par. 5 à l'aide de méthodes

employées par R. M. Loynes dans [9].
Le par. 6 est dédié aux processus de Markov à temps discret, strict, stationnaires

et satisfaisant à la condition de Doeblin: les théorèmes 1.6 et 2.6 portent sur la classe

des lois limites possibles de P[Zn<anx + b^\, le théorème 3.6 est du même type de

ceux démontrés dans les paragraphes précédents.
En vertu de la relation Min Xt= — Max( — X/) on remarquera que toute con-

1 < i < n 1 ^ i < n

sidération faite sur le comportement asymptotique de Zn peut être transposée sur
celui de Min Xt.

1. Notations

Soit Xi9 /=1,2,... un processus aléatoire défini dans l'espace de probabilité
(0,501, P) et à valeurs dans l'espace des nombres réels R. On notera par SRjj-, où

k^j\ la (7-algèbre engendrée dans Q par les variables Xh j=j,y-hl,..., k. La variable
aléatoire Max (Xu X2i Xn), sera désignée par Zn.
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On dit qu'une fonction F(x), définie dans R, croissante et continue à gauche, est

une fonction de répartition (abr. f. de r.), si lim F(x) 0 et lim F(x) 1. Une fonction
x-* — oo x-* oo

de répartition est appelée propre, s'il existe au moins un point x0, tel que 0 < F(x0) < 1.

En général on notera avec des majuscules les fonctions de répartition et avec des

minuscules les fonctions quelconques. Les f. de r. Fi(x)=P\_Xi<x'] sont dites lois
marginales du processus Xh i=l, 2, L'ensemble des f. de r. F(ax + b) où a et b

sont des constantes, a>0, est appelé «type de la loi F(x)».
La limite lim ank a d'une suite de nombres réels {ank} suivant les entiers nl9 n2,

Jfc-x»

sera simplement notée ank-+a. La notation ank\a (respect. ankla) sera réservée aux
suites croissant vers «a» par des valeurs strictement inférieures à «a» (respect,
décroissant vers «a» par des valeurs strictement supérieures à «a»),

fn(x), «=1,2,... ttf(x) étant des fonctions croissantes définies dans R, C(f (x))
l'ensemble de points où/(x) est continue, on écrit fH(x)->f(x), lorsque fn(x)-+f(x)
pour tout xeC(/(x)). Si la convergence a lieu pour tout xeR on notera simplement
fH(x)-*f(x).

Comme d'habitude on utilisera la notation P(A\B)=P(AnB)/P(B) siP(B)^0 et
|

2. Résultats classiques

Les résultats de ce paragraphe sont bien connus (voir B. V. Gnedenko [8], J.

Geffroy [7]); on se limitera à les énoncer.

Lemme 2.1. Soient Fn(x)9 «=1,2,... une suite def. de r., an>0, an>0, bn et f$n des

constantes réellesr, G(x) et H(x) desf. de r. propres. Si

alors H(x) et G(x) sont du même type.

Lemme 2.2. Soient Fn(x), «= 1, 2,... une suite def. de r. et G(x) unef. de r. propre.
Si pour des constantes réelles an>Q, bn, an>0, et fin on a

alorsaja.-+l e/(ôB-j8n)/an-»0.

Lemme 2.3. Soient Fn(x), n 1, 2,... une suite def. de r., G(x) unef. de r. propre
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et an>0, bn9 aw>0, f$n des constantes réelles. Si Fn(anx + bn)-^G(x) alors les relations

aJ*H-*l et (bn-pn)lan^0 entraînent Fn(otn

Soient Xi9 /= 1, 2,... une suite de variables aléatoires indépendantes, obéissant à

une même loi F(x). On a P[ZH<x]=P Ç\ [Xi<x]) Fn(x). Pour étudier dans

w
^=1 '

quelles conditions P[Zn<anx + b^\-+G(x\ où an>0 et G(x) est une f. de r. propre,
le lemme suivant est d'une grande utilité.

Lemme 2.4. Soit F(x) unef. de r., G(x) unef. de r. propre, an>0et bn des constantes.
Pour que l'on ait Fn (an x + bn)-+G (x) ilfaut et ilsuffit que n{\- F(an x + *„)) -> - log(G (x))
pour tout x tel que G(x)^0.

wLe problème de déterminer les lois propres qu'on peut obtenir comme limite ->
de Fn(anx + bn) a été résolu par B. Gnedenko [8], qui a démontré que les lois limites
possibles sont du type des lois #i(x), #2(x), ^W suivantes:

x " pourx^O où a>0
r^-(-x)a pourx <0

2) 4>2(x)H
(1 pourx ^ 0 où a >0

3) <P3(x) e~e x
pour tout x.

S'il existe des nombres an>0 et bn tels que Fn(anx + bn)^><Pk(x), où k peut prendre
la valeur 1, 2 où 3, alors on dit que F(x) appartient au domaine d'attraction de ^(x).
B. Gnedenko (loc. cit.) donne des conditions nécessaires et suffisantes pour qu'une
f. de r. F(x) appartienne au domaine d'attraction de chacune des trois lois limites
<&k(x). Il faut ajouter qu'une f. de r. F(x) est attirée par $i(x) (respect. <P2(X)) d'une

façon plus particulière : il existe une suite anî oo (respect. an|0) telle que Fn(anx)-+<î>l (x)
(respect. Fn(anx + x0)-><I>2(x), où x0 est une constante).

3. Convergence vers #&(*): cas général

Soit Xh /= 1, 2,... un processus aléatoire à lois marginales identiques: P[Zf <x]
F(x) pour tout /=1,2 Plusieurs auteurs (voir S. M. Berman [2], R. M. Loynes
[9] et G. S. Watson [13]) ont étudié le problème de déterminer dans quelles
conditions la relation Fn(anx + bn)-+4>k(x) entraîne la convergence de P\Zn<anx + b^\

vers $k{x). Dans ce paragraphe on examine la même question.

Théorème 3.1. Soit Xh i= 1,2,... un processus aléatoire à lois marginales identiques:

P{Xi<x] F(x). Supposons que Fn(anx + bn)-+&k(x), où an>0 et bn sont des

constantes, alors, pour que Von ait P\Zn<anx-\-b^\-^^k{x) il faut et il suffit que, pour
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tout intervalle (x\ x"), où <Pk(x')>Q et $k(x")< 1, // existe une suite un[Q telle que

(I/O P[ZM < anx + bj n(F(anx + bn) - F(an(x - Q + bn)) -

(3.1)

uniformément en xe(x', x"), pour toute suite tnl0 telle que tn^un, n= 1, 2,....
Avant de commencer la démonstration on donne quelques lemmes.

Lemme 3.1. Soient fn(x), n=l, 2,... et f(x) des fonctions croissantes définies dans

l'intervalle fermé [#, 6] et soit f(x) continue dans le même intervalle. Si fn(x)-+f(x)
pour tout xe\_a, b], alors la convergence a lieu uniformément dans [a, b~\.

La démonstration de ce lemme est élémentaire.

Lemme 3.2. Soient /„(*), «=1, 2,... et f(x) des fonctions croissantes définies dans

{a, b) etf(x) deuxfois continûment différentiable dans le même intervalle. Sifn(x)-+f(x)
pour tout xe {a, b), alors il existe une suite un[§ telle que

\Jn\x) ~~ Jn\x ~ ln))lln ~* J \x) yû.Z)

uniformément en x€\a\ b'~\, pour toute suite tn[0pour laquelle tn^un, n=l, 2,..., où

[a\ è'] est un intervalle fermé quelconque contenu dans {a, b).
Démonstration. En vertu des hypothèses faites on a

\{f (x) -f(x- tn))jtn -f (x)\ <Atn (3.3)

quel que soit xe[a', 6'], où A est une constante finie.

D'après le lemme 3.1 fn(x)-*f(x) uniformément en x pour tout intervalle
fermé contenu dans (a, b); il s'ensuit qu'on peut trouver une suite un\O telle que

(\Â(x)-f(x)\ + \fn(x~ tn)-f{x- tn)\)ltn tend vers 0 uniformément en xe[a\ b'\ pour
toute suite tn[0 telle que tn^un, «= 1, 2,.... Si on observe que

+ /(x-*„)-/„(x-O)/fB
alors, de (3.3) on obtient (3.2) et le lemme est démontré.

Lemme 3.3. Soient Hn(x), «=1,2,... des f. de r. Supposons que pour toute suite

fJO on ait
Htt(x + tn)-Hn(x-Q^0 (3.4)

W
pour tout xe(a9 b), alors la relation Hn(x)-+h(x) entraîne la continuité de h(x) dans

(a,b).

Démonstration. Soit x un point quelconque de (a, b). On considère une suite an[0
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telle que x + an et x — an soient des points de continuité de la fonction h{x) pour tout
«=1,2,... et on définit une suite kn]oo ayant la propriété suivante:

\Hkn(x + an)~h(x + an)\ + \Hkn(x - an) - h{x - aB)| ->0.

Si on écrit

h(x + an) - h(x - an) h(x + an)- Hkn(x + an) + Hkn(x + aw) -
- Hkn(x - an) + Hkn(x -an)-h(x- an)

alors de (3.4) on obtient que

h(x + an)-h(x-an)-+0. (3.5)

La fonction /*(x) étant croissante et le point xe(a, b) quelconque, la relation (3.5)
entraîne la continuité de h(x) dans (a, b).

Lemme 3.4. Soit Hn(x), n=\,2,... une suite def. de r. telle que Hn(x) converge vers
unefonction h(x) pour tout xe[a, b~\. Supposons que h(x) soit continue dans [a, b] et

qu'il existe une suite wnj0 telle que, pour toute suite tn[0, où tn > un, n= 1, 2,..., l'on ait

(Hn(x)-Hn(x-tn))ltn-g(x) (3.6)

(/*„(*+ 0-H.(*))/<„-g(x) (3.6')

quel que soit xe\a, b~\, où g(x) est une fonction définie dans [a, b~\, alors la fonction
limite h (x) est dérivable dans {a, b) et on a

fc'(x) g(x)
pour tout xe(a, b).

Démonstration. La fonction limite h(x) étant continue dans [a, i], d'après le

lemme 3.1, il existe une suite sn[0, telle que, pour toute suite ^J,0, où tn ^ sn, n 1,2,...,
la relation

(\Hn(x) - h(x)\ + \Hn(x + tH)-h(x + tn)\ + \Hn(x -tn)-h(x- tn)\)/tn-*O (3.7)

est vérifiée pour tout xe(a, b).
On considère une suite rm|0 et une suite /imî<x> telle que pour m =1,2,...

Max(unm, O<rm- Si on écrit

(h(x + rm) - h(x))lrm (h(x + rm) - HnJx + rm) +
+ Hnm(x + rm) - Hnm(x) + Httm(x) - h{x))jrm

et

(h(x) -h{x- rm))lrm (fc(x) - Hnm{x) + HnJx) -
- Hnm(x - rm) + Hnm(x -rm)-h(x- rm))jrm,
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de (3.6), (3.6') et (3.7) on obtient

(h(x + rm)-h(x))/rm-*g(x) (3.8)
et

(h (x) -h(x- rm))lrm -> g(x) pour tout xe(a,b). (3.8')

La fonction h(x) étant croissante et la suite rmJ,0 ayant été choisie d'une façon
arbitraire, les relations (3.8) et (3.8') entraînent l'identité h'(x)=g(x) pour tout xe(a, b).

Démonstration du théorème 3.1.

a) La condition (3.1) est nécessaire.

On pose Gn{anx + bt)=P\Zn<anx + brù. En vertu du lemme 3.2 appliqué à la suite

Gn(anx+bn) et à la fonction limite $k(x)9 il existe des nombres snl0, tels que, pour
toute suite f,iO, où tn^sn, «= 1, 2,... on a {Gn{anx+bn)~Gn{an{x-tn) + bn))ltn-*<ï>rk{x)

uniformément en xe(x', x"). Si on écrit

Gn(anx + bn) - Gn(an(x - tn) + bn)

(3.10)

il en résulte

Û (Ô [^ < **x + 6J n K(x - O + 6n < Xt < anx

uniformémentenxe^^x"). D'après le lemme 2.4 on a — aï(1 — F(
pour tout x tel que <Pk(x)^0. On applique de nouveau le lemme 3.2 à la suite de

fonctions — n{\— F(anx + bn)) et à la fonction limite log(^(x)) pour un intervalle
(a, b), tel que [x', x"~]cz(a, b) et #fc(x)>0 pour tout xe[a, 6]. Il s'ensuit qu'on peut
trouver une suite t;nJ,O, telle que

n(F(anx + bn)-F (an(x - tn) + bH))ltH-* 4>'k(x)l*k{x) (3.11)

uniformément en xe(x', x"), pour toute suite fnJ,O, où /„ ^ t;n, n 1, 2,.... Si on observe

qu'en raison du lemme 3.1 on a Gn(anx+bn)-><l>k(x) uniformément en xe(x', x"), de

(3.11) on déduit que

n(F(anx + bn) - F(an(x - tn) + bn)) Gn(anx + bH)/tH - *i(x) (3.12)

uniformément en xe(xr, x/;), pour toute suite fJO, telle que rn^ yn, n= 1, 2,.... Si on
pose wn Max(5rn, vn), n= 1, 2,... des relations (3.10) et (3.12) on obtient que la
condition (3.1) est nécessaire.

b) La condition (3.1) est suffisante.

En vertu du théorème de compacité faible des f. croissantes à val. dans [0, l],il
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suffit de démontrer que, pour toute sous-suite d'indices «fcîoo, telle que Gnk(ank

converge -? vers une fonction limite g(x), on a g(x) <Pk(x).

Comme dans la première partie de la démonstration du théorème, on voit que la
convergence de Fn(anx + bn) vers <Pk(x) entraîne l'existence d'une suite vn[0, telle que
la relation (3.11) est vérifiée uniformément en xe(x', x"), pour toute suite tnl0, où

tn^vn9 n=\, 2,.... De la relation (3.9) et de la condition (3.1) on déduit que

{Gn{anx + bn) - Gn(an(x - Q + />„))/*„ - *'k(x) Gn(anx + bn)l4>k(x) -> 0 (3.13)

uniformément en xe(x', x"), pour toute suite frt jO, telle que tn ^ Max(wn, vn), «=1,2,....
Les fonctions Gn(anx + bn) étant croissantes et les nombres an positifs, de (3.13) il
résulte que pour toute suite fn|0 on a

Gn(an(x + 0 + bn) - Gn(an(x - tn) + bn) - 0 (3.14)

quel que soit xe(x', x").
Soit une sous-suite nk, fc=l, 2,... telle que Gnk{ankx + bnk)^>g{x). En vertu de la

relation (3.14) on peut appliquer le lemme 3.3 à la suite de f. de r. Gnk(attkx + bnk),

k= 1, 2,... et à la fonction limite g(x). On obtient que g(x) est continue dans l'intervalle

(xf, x"). D'après le lemme 3.1 et de la relation (3.13), on déduit que pour toute
suite fnk|0, telle que tnu^ Max(w/Jk, vnk), k 1, 2,... les relations

(Gnk(ankx + bj - Gnk(ank(x - tj + bnk)ltnk -> <P'k(x) g(x)l*k(x) (3.15)
et

(CBk(Mx + tj + bj - Gnk(ankx + bjltnk - *;(x) g(x)l<Pk(x) (3-15')

sont vérifiées pour tout xe\_y\ j"], ou [/, y"~] est un intervalle quelconque contenu
dans (x\ x").

Les relations (3.15) et (3.15') étant satisfaites, on peut appliquer le lemme 3.4 à la
suite de f. de r. Gnk(ankx + bnk) et à la fonction limite g(x). Il en résulte que g(x) est

dérivable dans (/, /') et qu'elle satisfait à l'équation différentielle

g'(x) #;(*) g(x)/*fc(x) quel que soit xe(/, /). (3.16)

Soitxfc inf{x:<£fc(x)=l} etyk= {sup x:<2>fc(x) 0}. D'après la condition (3.1), l'équation

différentielle (3.16) doit être satisfaite dans chaque intervalle \_y', /']c(yk, xk);
il en résulte que

g'(x) ^(x)g(x)/^fc(x) quel que soit xe(yk,xk). (3.17)

Si on observe que Gn(anx + bn)^ 1 -n(l -F(anx + bn)), en raison du lemme 2.4 on
obtient lim g(x)= 1 ; de (3.17) il s'ensuit que g(x) doit être égale à <&k(x) pour tout

x-+xk
xe(yk, xk). La fonction g(x) étant croissante on a g(x) <Pk(x) pour tout x. La
démonstration du théorème est ainsi terminée.
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Remarque. La condition (3.1) est équivalente à la suivante:

(I/O î P(K(x)) {P([an(x - tn) + bn< Xt < anx + fcj|tfj(x)) -
- (F(anx + bn) - F(an(x - tn) + bn))} - f (n, x) -> 0 (3.18)

uniformément en ie(x', jc"), pour toute suite /^jO, telle que tn^ wrt, n= 1, 2,..., où

fli(x)= Pi [X,<aBx + èn]

et J#i

/ (n, x) 1//, £ P([an(x - /„) + bn < X, < anx + ftj n 5"(x)) -

- l/'n-P (Û (^.W rx [an(x -tn) + bn<Xi<anx + 6J)) (3.19)

Si on observe que pour toute suite finie d'ensembles Ah /= 1, 2,... on a

=i
n-2 n-k-1n-2 n-k-1 / / k \ \

+ 11 P(Ajn(r\AeJ+l,)nAj+k+1),
k=l j=l \ \h=l / /

/ (n, x) 1/t, £ P(( H K <anx + bai) n [aH(x - tn) + bn^Xj<anx + bn] n

alors on peut écrire

_Q
"

(Ç+ 1/'. Z I P (Çn [*i <anx + bS) n[an(x - Q + bn^Xj<anx + &„] n

^ fi K+J- < a.(x - O + ^]) n [«n(x - tn) + bn< XJ+k+1 < anx + bn] n

n( H [^(< ".* + &.])). (3-20)

4. Applications du théorème 3.1

Soit Xh i— 1, 2,... un processus aléatoire ayant la propriété suivante:

sup\P(AnB1nB2) - P(^)P(^ n^2)| < <x(n) (4.1)

où: a(«)40 et le supremum est pris sur tous les ensembles

\, ^eSRV"11, B2eWT+n et sur touti n 4-1, n + 2,....
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Des exemples pourraient facilement le montrer, la condition (4.1) qui vient d'être
introduite est bien plus générale que la condition de mélange uniformément forte
(voir Loynes [9]).

Théorème 4.1. Soit Xh i 1, 2.,.. un processus aléatoire à lois marginales identiques,
P\Xi<x~] F(x), ayant la propriété (4.1) et tel que n<x(n)-*0. Supposons que
Fn(anx + bn) -> <Pk (x), alorspour que P \Zn <anx-\-b^\-^ <Pk (x), ilfaut et il suffit que, pour
tout intervalle (x\ x"), il existe des entiers mn]co et des nombres un\$, tels que

mJn-+Q, na(mM)->0 (4.2)
" î 2p([an(x - Q + bn^Xt< anx + 6J n
i mn+2

\j e / (mn, i)c / j e / (mn, i)

/(*,*)-><> (4.4)

uniformément en xe(x', x"), pour toute suite tnl0, telle que tn^u'n, «=1,2,..., où
l'intervalle (x',x") a la même signification que dans le théorème 3.1, où I(mn,i)
[1, — mn + i)v(i+mn+\, «], /=Awn + 2,..., n — mn — 2 et où la fonction f (n, x) est

définie par la relation (3.19).

Démonstration. Il suffit de démontrer que, pour le processus considéré, la
condition (3.1) est équivalente aux conditions (4.2), (4.3) et (4.4).

D'après les hypothèses faites sur la fonction a(«), il s'ensuit qu'on peut donner
des entiers mwtoo et des nombres snl0, tels que

mn/n->0 et n a (mn)/sn -> 0. (4.5)

En vertu du lemme 2.4 on a

\j
(4.6)

/ (mn, i)

uniformément en xe(x\ x") et en ie[mn+1, n — mn— 1]. Soit une suite t?nJ,0 ayant la
même signification que dans la démonstration du théorème 3.1; en raison de la

propriété (4.1), des relations (4.5) et (4.6) on obtient

(I/O" Z P([an(x - tn) + bn^ Xt < anx + h] n f| lXj < «n* + 6
i mn+l \ jel(mn,i)

- (I/O P\_Zn<anx + 6J n (F (a, x + bn) - F (an (x - Q + bn)) -, 0 (4.7)

uniformément en xe(x', x"), pour toute suite /B|.O telle que tn^Max(sn, vn),n l,2
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Si on pose w^ Max(wn, vn9 sn), de (3.1) et de (4.7) il résulte que

(I/O" I p(\an{x-Q + bm<Xl<anx + bàn f! IX < a.x + *„]) -
i mM+l \ j e I (mn, i) /

IX < *„* + bH]n[an(x - tn) + bn<Xt< anx + *>

'*' (4.8)

uniformément en xe(x\ x"), pour toute suite tnl0 telle que fM ^ w^, « 1, 2,....
La validité de (4.8) entraîne celle de (4.3) et de (4.4). D'autre part si les conditions

(4.3) et (4.4) sont vérifiées, la relation (4.8) l'est également. Si on pose un Max (u'n9 sn9 vn)

de (4.8) et (4.7) on obtient (3.1). La démonstration est ainsi terminée.

Soit X» i=l,2,... un processus aléatoire tel que, pour tous ensembles y

A2e<mjJ9 B^mT", B2em?+n, où /</et /=«+ 19/i + 2 l'on ait

\P(AnB)-P(A)P(B)\ < a(n)P(i4)P(£) (4.9)

quel que soit n^N, où N est un nombre entier positif fini et où la fonction a(n)lO
est indépendante de A AlnA2, B=BX nB2, Uj.

Pour un processus satisfaisant à (4.9) on peut donner une condition nécessaire et
suffisante simple pour que P[Zn<anx+b,ï\-+$k(x).

Théorème 4.2. Soit Xt, i= 1, 2,... un processus aléatoire ayant la propriété (4.9) et
tel que P([Xj<x]n[XJ+h<x]) ne dépend pas de j=\,2,... pour tout /z=l,2,
Supposons que Fn (an x + bn)-+ <Pk (x), où an > 0, alors pour que Von ait P [Zn < an x + 6J ->

<Pk(x), ilfaut et il suffit que

lim PflX ^ x] n [Xh > x])IP [X, ^x] 0 (4.10)
x->x0

pour tout h 29..., où xo inf{x:F(x)= 1}.

Démonstration. On démontre que, pour le processus considéré, la condition (4.10)
est équivalente à la condition (3.1).

a) La condition (4.10) est nécessaire.

En vertu de la propriété (4.9), de même que dans la démonstration du théorème
4.1 on démontre que, pour toute suite mjco, telle que mJn-+0, on a

(I/O" Z P([°n(x ~ Q + bn^Xt< anx + bn]n H [*, < anx + bn]) -
i mn + 2 \ jel(mn,i) /
-(lltn)P[Zn<anx + bn]n(F(anx + bn) - F(an(x - Q + bH))-+0 (4.11)

uniformément en xe(x', x"), pour toute suite tn[0, telle que tn^vn, «=1,2,..., où
l'intervalle I(mn, i) et la suite tf^O ont la même signification que dans la démonstration
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du théorème précédent. En raison des hypothèses faites, de (4.11) et de (3.1) on obtient

(n/tn) P (([X, >anx + bn]n [Xh > an x + bn~\)c n [X, > an (x - tn) + 6J n

nlX^aJx-Q + b^^O (4.12)

uniformément en xe(x\ x"), pour toute suite fn|0, telle que fw>Max(wn, vn) et quel
que soit h 2, 3,.... De (3.11) on déduit qu'il existe un nombre entier L<oo tel que

F(anx + bn) - F(an(x - vn) + bn) >0, Vn ^ L. (4.13)

De (3.11), (4.12) et (4.13) il s'ensuit que

P(([Xi >anx + bn]n [Xh >anx + bn])cn [X, > an(x - rB) + 6j n
n [Xh >an(x- tn) + 6J) (l/(F(anx + fcj - F(aM(x - g + bn))) -+ 0 (4.14)

uniformément en xe(x\ x"), pour toute suite tnl0, telle que /M^Max(t//J, vn) et quel

que soit h 29 3,

Pour un point xe(x\ x") la relation Fn(anx + bn)^><Pk(x) entraîne la convergence
des suites anx + bn et an(x — tn) + bn, n=l, 2,... vers x0, telle que anx + bn<x0 pour tout
n^L', où L' est un entier suffisamment grand. Soit un nombre entier A/> Max(L, L').
On considère une suite njyj= 1,2,... définie de la façon suivante:

«! =Af, ny Min{n:n ^ ^.^^(x - O + ft» ^ Vix + ^-J'
où i;; Max(M||,t?II) (4.15)

Soient des nombres qn 9j=2, 3,..., tels que

anj(x - qn) + bnj aHj^x + bnj_x (4.16)

De (4.15) et (4.16) on a

anj-i(x - v'Hj.x) + 6nj_t ^ anj(x - qn) + bnj (4.17)

En raison du lemme 2.2 il résulte que ajan+l->l et que (bn+l-bn)lan->0; de (4.15) et

(4.17) on obtient

qnj-*0 et qHj>v'Hj9 J 2,3,.... (4.18)
On pose

&nj [aHj(x - qn) + bnj ^Xl<anjx + bnj]
et

Bn3 (K^c + bnj ^ X,] n [anjx + 6nj ^ X,])cn
n K> - gj + bnj ^ X,] n [anj(x - qn) + bnj ^ Xh]

pour un entier h^2 déterminé. De (4.16) il s'ensuit que

£ bM^X{<x0] (4.19)
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et

bM^X1< x0] n[aMx + bM*:Xh< x0]
i 2

Pour les probabilités P(Anj) et P(Bnj) on obtient facilement l'inégalité suivante:

L P(Bn)l l P(Aaj) < snp(P(Baj)IP(An)) (4.20)
j=2 j=2 j^2

En raison de (4.14), de (4.18) et de (4.19), l'inégalité (4.20) entraîne la relation

P([aMx + bM^Xl< x0] n[aMx + bM^Xh< xo])/(F(xo) - F(aMx + bM)) -+ 0

(4.21)

quand Mfoo, pour un point quelconque xe(x', x") et quel que soit h — 2, 3,.... Une

application simple du lemme 2.4 permet d'obtenir (4.10) de (4.21). La première partie
de la démonstration est ainsi terminée.

b) La condition (4.10) est suffisante.
Si (4.10) est vérifiée, alors on peut donner des nombres entiers m^co et une suite

wnl0, tels que

(I/O" î P(["n(x ~ Q + bn<Xt< anx + bn~\ r! U [*, ^ anx + 6J - 0
i mn+l J i~'wn

uniformément en xe(x', x"), pour toute suite rnJ,O, telle que tn^ wn, n= 1, 2,.... Si on
choisit wn Max(wn, i;n), «= 1, 2,..., où la suite i?nj0 a la signification habituelle, alors,
en vertu de la propriété (4.9) et du lemme 2.4, de (4.22) on obtient

(I/O f P{{an{x -tH) + bH**Xl<aHx + bn] n f| [X, < anx + bn] -
i=i j=ij*i
- (I/O n (F(anx + bn)-F(an(x - Q + fcn)) P[Zn<anx + 6j -> 0 (4.23)

uniformément en xe(x\ x"), pour toute suite *w J0, où /„ ^ ww, n 1, 2,.... En raison de

la propriété (4.9), pour toute suite tn\$, telle que tn^un, n= 1, 2,... la fonction/(«, x)
tend vers 0 uniformément en xe(x', x"); de (4.23) il s'ensuit que la relation (3.1) est

vérifiée. La condition (4.10) est donc aussi suffisante et le théorème 4.1 est ainsi

complètement démontré.

5. Convergence vers 4>&(x): condition de mélange

Soît Xt, /=1,2,... un processus aléatoire strictement stationnaire soumis à la
condition de mélange uniformément forte, à savoir :

sup\P(AnB) - P(A)P(B)\ < a(n) (5.1)
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oùa(«)|0et où le supremum est pris sur tout ensemble A e9Jt* et 2?e3Jt*+n, k 1,2,....
M. Rosenblatt [12], ïbragimov et d'autres auteurs ont étudié le comportement

asymptotique de P[Sn<anx + bn~], Sn indiquant la somme Xi + X2-ï \-Xn et an>0
et bn étant des constantes. R. M. Loynes [9] a considéré le problème correspondant
pour la variable Zn. Il a démontré que les lois limites possibles sont du type de $l (x),
<P2(X) et ^3(¦*)• Dans ce paragraphe on se pose la même question que dans les deux
précédents pour des processus satisfaisant à la condition de mélange uniformément
forte. Les résultats obtenus dérivent directement des méthodes employées par R. M.
Loynes (loc. cit.).

Théorème 5.1. Soit Xn i=\, 2,... un processus aléatoire strictement stationnaire

ayant la propriété (5.1), et g{ri) une fonction définie et à valeurs dans les nombres entiers
telle que

g(n)ln->0 et a(g(n)) n/g(n)->0. (5.2)

Supposons que Fn(anx + bn)-><Pk(x), alors pour que l'on ait P{Zn<anx + b^\-^^k{x) la
condition suivante est nécessaire et suffisante:

n PflX ^ anx + bn] n \X2 > anx + 6j) +

+ (nlg(n))'t (gW-J')^Pi >anx + bn-]n
j o

n H IX < an* + bn]n[XJ + 3 > anx + bn])-^0 (5.3)

pour tout x, où <Pk(x)>0.

Démonstration. En vertu des hypothèses faites il existe une fonction g{ri)
satisfaisant à (5.2) et telle que

P(Ô 1% < a.* + bS) ~ (p Q [X. <<*»* + M)"/8<n) ^ 0. (5.4)

Si l'on observe que d'après le lemme 2.4, pour tout x, où <&k(x)>09 on a

(g(«)
\ /g(«) \

U [*, > anx + bn]j -+0 et (n/g(n))P(^U [^ > anx + bn]J < C <oo

pour tout «, alors de (4.5) on obtient

0 (5.5)

pour tout x tel que &k(x)>0. Il en résulte que P\Zn<anx+6„]->#&(*) si et seulement
si

("/g 00) Î}?K>M + bJ - {nig (n)) P \j [Xt> an x + bn]) -> 0 (5.6)

pour tout x tel que <Pk(x)>0.
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Le processus aléatoire considéré étant strictement stationnaire de (5.6) il s'ensuit

que la condition (5.3) est bien nécessaire et suffisante.
Si à la place d'un processus ayant la propriété (5.1) on considère un processus

strict, stationnaire *-mélange, voir [4], alors, à l'aide du théorème 5.1 on démontre
aisément que (4.10) est une condition nécessaire et suffisante pour que la relation
Fn(anx + bn)-+4>k(x) entraîne la convergence de P[Zn<anx + bn~] vers <Pk(x). Pour des

processus de ce type la résolution du problème posé est donc beaucoup plus simple

que pour les processus considérés dans le théorème 4.2, mais il faut ajouter que la

condition *-mélange est bien plus forte que la condition (4.9).
Un processus m-dépendant étant aussi *-mélange, de (4.10) on déduit immédiatement

que la condition de G. S. Watson [13] est nécessaire et suffisante, ce qui avait

déjà été démontré par Newell [11].

6. Lois limites pour un processus de Markov

w
Les travaux dédiés à l'étude des lois qui peuvent intervenir comme limite -> de

P[Zn<anx-\-b^\ dans le cas d'un processus de Markov, sont fort peu nombreux (voir
S. M. Berman [2] et R. Cogburn [5] pour des processus à temps discret, G. F. Newell
[10] et S. M. Berman [3] pour des processus à temps continu). Dans ce paragraphe
on démontre quelques résultats obtenus à ce sujet.

Soit Xh i= 1, 2,... un processus de Markov strictement stationnaire, défini par une

probabilité de transition p(x, A) et par une probabilité initiale p(A), où x est un point
de R et A un élément de la a-algèbre P(R) des ensembles de Borel de R, Si Ah
i— 1, 2,..., n sont des ensembles appartenant à p(R) alors, pour un tel processus, on a

O) jp(dxi) jp(xi9dx2)...jp(x^udxH).
A2 An

Si le processus considéré satisfait à la condition de Doeblin (voir Doob [6], pp.
192-221), alors on peut démontrer qu'il existe un nombre fini d'ensembles invariants
Ea9 a=l,2,...,rf, décomposés dans un nombre fini de classes cycliques aCa,

a= 1, 2,..., da9 a= 1, 2,..., d. Sans porter atteinte à la généralité on peut supposer que

p(Ea)>0 pour tout 0=1, 2,..., d, alors on a

:1, p(EanEb) O

pour tout a # b et p{aCa n aCfi) 0 pour tout a 7e )S, quel que soit a 1, 2,..., d. Soit

pim)(x,A)=\ p(x, dxx) p(xudx2)... p(xm-2>dxm.1)\ p(xm-.udxm)
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et

D'après les hypothèses faites on peut démontrer (voir Doob [6], pp. 190-221) qu'il
existe une constante positive C telle que

<C/w, n 1,2,.... (6.1)

pour tout ensemble Aep(R) et quel que soit xeEa, a=\, 2,..., d.

On considère d'abord des processus à un seul ensemble invariant.

Théorème 6.1. Soit Xh i= 1, 2,... un processus de Markov strictement stationnaire,
satisfaisant à la condition de Doeblin et avec un seul ensemble invariant. Supposons que

an>0 et bn soient des constantes, alors la classe des lois propres qui peuvent intervenir

comme limite -* de P\Zn<anx-\-b^\ es t la même que dans le cas de l'indépendance.
Avant de commencer la démonstration on donne les deux lemmes suivants :

Lemme 6.1. Soit Xi9 /=1,2,... un processus de Markov strictement stationnaire
satisfaisant à la condition de Doeblin etfn9 w= 1, 2,... une suite de fonctions déf. dans

R, mesurables p(R) et unif. limitées, |/J<M, w=l, 2,.... Si q^oo est une suite de

nombres entiers, alors on a l'inégalité:

J jPO**i)/,.(*i) :

A AHEa
(6.2)

quel que soit xleEa, pour tout ensemble de Borel Aefï(R) et chaque a.

La démonstration de ce lemme est très peu différente de celle du lemme 7.2 de [6],

p. 224.

Lemme 6.2. Soit Xh i= 1, 2,... un processus identique à celui considéré dans le lemme

6.1. Supposons que pour une suite de nombres yn9 n 1, 2,... et pour un indice déterminé

a on ait
HmsupPflX < yn~\\[Xl e£j) < 1 (6.3)

n-*ao

alors pour toute suite de nombres entiers m^co on a

(6.4)

Démonstration. Considérons une suite de nombres entiers gnîoo telle que qJn->0.
On peut écrire :

Vn

£ J PVl)(xltdxl
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J P(xll + i,dxl+2)...(llqH) Ç J Pil2)(xqn+l9dxqn

— oo — oo

00

\ p(xq
4«

n + 1+l2, dxqn+2+l2)...(llqn) £ p(l^(x9n(rrj_1)+1,(-oo,jn))
oo

°ù fn lmjqn]. En vertu de (6.1) il en résulte que

P(lZmn < yn~\ n Oi e£j) < (PflX < yn] n [Xt e JEj) + C/^)r" (6.5)

De (6.5) et (6.3) on obtient immédiatement (6.4).
w

Démonstration du théorème 6.1. SiP[Zn<anx + bn~]->G(x), où G(x) est une f. de r.

propre et si x* est un point tel que G(x* — 0)>0, alors en raison du lemme 6.2,

f>[Xl;^anx-l-&n]->>0 pour tout x^x*. Supposons que / soit un nombre entier positif
et qnîoo une suite d'entiers telle que qn^n — 1 et P\_X1^anx + bn] qn->0, alors on a la
relation suivante:

^)|i J P(ll)(xlfdxl+1) J />(*1+1

J p(xrt_gn+ll, dxM_^n+ll + 1) J p(xM_^n+I1 + 1, dxn_qn+ll + 2) --
R

Ë J

An(x)

An(x) An(x) R

Z Pilj)(Xn(j-l),dxn(j-1) + lJ)x
ij=l J

An(x)

J J p(xnj.qn+lji dxnj_qn+J + 1)->Q, (6.6)

An{x) An(x)

où An (x) — oo, an x+ 6W). En vertu du lemme 6.1 on obtientP [Znj <anx+ bn~]-*GJ (x)
en tout point de continuité de G(x) tel que x^x*. G(x) étant une f. de r., on en

déduit que

PlZnj<anx + bn]^GJ(x). (6.8)

D'après le lemme 2.1, de (6.8) nous pouvons conclure que pour tout 7= 1, 2,..., il
existe des constantes a, et fi3 telles que

x + /g G(x). (6.9)

Cette équation fonctionelle étant la même que dans le cas de l'indépendance le théorème

est démontré.
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Si le nombre d'ensembles invariants du processus considéré est plus grand que 1,

nous nous limiterons à l'étude d'un problème restreint. Nous supposerons que pour
tout nombre entier r^ 1 et pour des constantes an>0 et bn, n 2, 2,..., l'on ait

<anx + bn]"Gr(x) (6.10)

où les Gr(x) sont des f. de r. propres. D'après le lemme 2.1, les lois Gr(x), r= 1, 2,...,
doivent alors être du même type.

Nous nous poserons donc la question de déterminer la classe des types limites
possibles.

Soient cfl>0 et ta, a= 1, 2,..., d, des constantes; il est facile de voir que chaque
fonction de la forme

v / \ - / ^ (0 pour x ^ ta
*

!>.€(*-O, ou e(x-0 |1 pour x>f- et X>fl l

peut être obtenue comme fonction limite. Le cas intéressant à étudier est donc celui
où on exclut toute fonction de cette forme. Les types de f. de r. qui n'appartiennent
pas à cette classe seront appelés «types propres».

Théorème 6.2. Soit l'ensemble des processus de Markov strictement stationnaires,
satisfaisant à la condition de Doeblin et ayant d'ensembles invariants. La classe des

types propres limites de P{Znr<anx + b^\, r= 1, 2,... est celle engendrée par les f. de

r. suivantes:

ico($,(x))s"+ t cae(x) (6.11)
a=ï a d' + l

Zcfl(4)2(x))s"+ £ ca6(x) (6.12)

d

I ca(#3(x))s" (6.13)

oùd'^l, oùsa>0 et ca>0, £ ca — 1, sont des constantes et où l'exposant ce, intervenant
a= 1

dans les fonctions #i(x) et <&2{x)> ne dépend pas de l'indice a.

Démonstration. Considérons un processus déterminé Xh i— 1,2,.... Les probabilités
conditionnelles P([Zn<anx + bn]\[X1eEa]) (notées par la suite avec Pfl[Zn<anx + ^J
étant des f. de r., d'après le théorème de compacité faible des fonctions croissantes à

valeurs dans [0, 1], on peut trouver une suite de nombres entiers n^oo telle que

Pa[Znk<ankx + bnk-\™Ha(x) (6.14)

pour tout fl=l, 2, ...,d. En vertu des lemmes 6.1 et 6.2 et à l'aide d'une relation
w

semblable à (6.6), de (6.14) il s'ensuit que Pa[ZMkJ.<aWkx + 6nJ-»2^(.x) pour tout
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a= 1, 2,..., d et tout7 1, 2,... ; cette relation pouvant facilement être étendue à tout
nombre rationnel j>0, il en résulte que

a=i
d d

pour tout nombre rationnel 7>0. Les fonctions £ p(Ea)Ha(x) et £ p(Ea) Hja(x)
a=l a=l

étant d'un type propre, en vertu du lemme 2.1 on peut trouver des constantes 0^ > 0

et Pj telles que

£ p(Ea) Hi(oLjX + Pj) £ p(£fl) //.(*) (6.16)
a=l a=l

pour tout nombre rationnel j>0.
D'après le lemme 2.2, à partir de (6.15) et de (6.16) on obtient

w *

Soit r un nombre entier positif, de (6.15) on a

r l^lnkjjr <ankX -t

En vertu du lemme 2.3, de (6.17) on déduit que

P[Z[nw> < aVBknx + blnkn-] Z £ p{Ea) Hi'iajx + /?,-) (6.19)
a=l

D'autre part de (6.10) et (6.15) on obtient

£ p (Ea) Hra (x) Gr (x) (6.20)

Enfin de (6.10) et de (6.20) il résulte que

Y p(Ea)(Hi'iajx + Pj) - Hra(x)) 0 (6.21)
a=l

pour tout nombre rationnel7>0 et tout entier r> 1.

Toute fonction de répartition d'un type propre intervenant comme limite -> de

P\_Zn<anx+bn~] doit donc satisfaire à l'équation fonctionnelle (6.21).
On peut distinguer trois cas :

1) II existe un nombre rationnel^> 1 tel que <Xj < 1 (dorénavant on notera ccj a(j)).
Dans ce cas, d'après la relation (6.21), à l'aide de méthodes peu différentes de

celles employées par Gnedenko dans [8], pp. 432-433, on obtient (7 indiquera tou-
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jours un nombre rationnel):

a(j) < 1 et j8 (/)/(! - a(j)) const. pour tout j > 1 (6.22)

0 < Gj (x) < 1 pour tout x < P(j)l(l - a(;)) (6.23)
et

G, (P(j)l(l - a(/))) 1 pour tout ; > 1. (6.24)

Soient p et q des nombres entiers. En vertu de la relation (6.21) et à l'aide du lemme
2.2 on trouve

«(p/*) a(p)/«fa) et fi(plq) (/J(p) - /»(*))/<«(*) (6.25)

De (6.22), de (6.24) et de (6.25) il résulte que

oc(j) > 1 pour tout j < 1 (6.26)
et

J? 0)/(l - a (j)) const. pour tout j. (6.27)
Si on pose

Ha(x) fffl(x + ^(;)/(l - aO'))) et (7, (x) X p(£.) ^.(x) (6.28)
a=l

de (6.27) et (6.24) il s'ensuit que

^x(0)=l et 0<^i(x)<l pour tout xe(-oo,0). (6.29)

En outre, des relations (6.21) et (6.28) on déduit que les fonctions ffa(x) doivent
satisfaire à l'équation fonctionnelle suivante :

£ P(e.) {m («(./) x) - n:(X))=o (6.30)

pour tout nombre rationnel j>0 et tout entier r> 1. On démontre à présent que la
fonction Gi(x) est continue dans l'intervalle —oo,0). Supposons le contraire: il
existe alors un pointye(- oo, 0) tel que 0<^1(^)< 1 et (jl(y)-Gl(y-0)>0; d'autre

part on peut trouver uny'*> 1 de façon que

iG1(y-0) (6.31)
fl=l

mais d'après (6.22) on a (7i(j/«(7*))< ^1(^-0)» de (6.30) il s'ensuit que

6i0>MJ*))= £

cette relation étant en contradiction avec (6.31), la fonction Gl(x) est bien continue
dans — 00, 0).

A l'aide des relations (6.22)-(6.27) et en raison de l'équation (6.30), on démontre
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facilement que la fonction a(y) peut être étendue univoquement à une fonction
définie en tout point xe( — oo,0), continue et décroissante dans cet intervalle, telle

que a(x)jO pour x|oo et a(x)îoo pour xjO.
Soit un point fixé ze(- oo,0). Supposons que pour les indices aua2,->.,ad*9 où

d*^d, l'on ait HOi(z) Max Ha(x) pour tout /=1, 2,..., d*, alors la relation (6.30)

et les considérations faites sur la fonction a (y) impliquent que, pour tout point
xe( — oo, 0), le nombre d'indices at, tels que Max Ha(x) Ha(x) ne dépend pas de x

et est égal à d*. De la continuité de Gi(x) on déduit que ces indices sont les mêmes

pour tout x; en vertu de (6.30) il s'ensuit que

Hai(x) BiX*U) x) P°ur tout » !' 2> ••> d* • (6-32)

Etant donné que de (6.30) et de (6.32) on a

il nous est permis de conclure que

i{j)x) (6.33)

pour tout indice a= 1, 2,..., */ et tout nombre rationnel y >0.
Il est connu (B. V. Gnedenko [8]), que les seules f. de r. H(x) satisfaisant aux

relations (6.33) et (6.29) sont celles de la forme <&s2(x) et e(x), s> 0 étant une constante.
Comme Gt (x) est une f. de r. propre, il en résulte que

<?i(*)=IpCE.,)(*2 (*))"¦•+ £ P(£.>(x), où d'>\ (6.34)

On remarquera que la constante a intervenant dans <P2(X)> v°ir paragraphe 2, est

indépendante de l'indice at.
2) II existe un nombre rationnel y>l tel que a(y)>l. De même que dans le

premier cas on démontre alors que:
a) Le quotient /?(y)/(l — <*(/)) ne dépend pas dey>0.
b) La fonction Gl(x) est continue et telle que 0<Gl(x)< 1, pour tout

xe(p(j)l(l-*U))9 oo) et (?1(j5(y)/(l-a(y))~0) 0.

c) La fonction a (y) peut être étendue univoquement à une fonction a(x), définie

pour tout xeR, continue, croissante et telle que oc(x)10 pour x[0 et a(x)too pour x|oo.
Si on pose Ha(x) Ha(x + p(j)/(l-oL(j)) pour tout a=l,2,...9d et ^(x)

£ /?(iia) Ha(x), alors, comme dans le premier cas, on démontre que la relation

Ha(x) HJa(a(j)x)-doit être vérifiée pour tout nombre rationnely>0 et tout indice
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La fonction Gx (x) étant propre, dans ce cas on peut conclure que

<?i(*) I P(K) (*i W)sai + I P(Eje(x), où d' » 1. (6.35)

3) II existe un nombre rationnely> 1 tel que a (j) 1. En raison des considérations
faites dans les deux premiers cas alors on déduit immédiatement que oe(y)=l pour
touty> 0. La f. de r. Gt (x) étant d'un type propre, à l'aide d'argumentations analogues
à celles qui viennent d'être employées, on obtient que

d

Les probabilités p(Ea) étant arbitraires, pourvu que £ p(Ea) 1 çtp(Ea)>0, il nous

reste à démontrer que les f. de r. définies par les relations (6.11)—(6.13) peuvent

effectivement intervenir comme limite -» deP\Zn<anx-\-b^\, quand P{Znr<anx-\-b^\

Soient des ensembles EaeP(R) telles que
a) Chaque Ea est dense dans R,a=\,2,...,d

d

b) EanEb 0 si a^bet £ Ea R.
a= 1

Nous considérons un processus de Markov défini de la façon suivante:

P(x9 [yl9 y2)) (<2>2(y2, a))s« - (<P2(yi9 oc))s% Vxe£a, a 1, 2,..., d'.

quel que soit l'intervalle [^i,^2)> où ^a>^ «= 1» 2,..., d\ sont des constantes et où

a et a — <5, 0<(3<a, indiquent les exposants intervenant dans 4>2(*).

(^2(^2»«))Sa -^(^(^^a))4- Va l,2,...,d'
^2(^2^ a ~* ^) "~ ca^i{y^ a ~ ^) Va d' + 1,..., d

où les ca sont des constantes positives telles que £ cfl=l. Le processus qui vient
0=1

d'être défini est strictement stationnaire et satisfait à la condition de Doeblin. Si on

pose an=l//i1/a et bn 0, w=l, 2,... alors on a

a=\
cfle(x),

De la même façon on peut construire des processus, dont P{Znr<anx-\-b^\ converge
vers les f. de r. limites considérées dans les deux autres cas. La classe de types limites
possibles est donc bien celle définie par les f. de r. (6.11)—(6.13). Le théorème est ainsi

complètement démontré.
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Corollaire. Soit Xh /=1, 2,... un processus de Markov strictement stationnaire
et satisfaisant à la condition de Doeblin. Supposons que pour tout r= 1, 2,... Von ait

P[Znr<aRx-\-b^\-^Gr{x)^ où Gr(x) est une f. de r. d'un type propre, alors les relations
suivantes sont vérifiées :

v)y"> Vi 1, 2,..., d' (6.37)

Vi d' + 1,..., d (6.37')

où v, y>0 et sOt>§ sont des constantes, 1 ^d'^dpour k 1,2 et d' 0pour k 3, {{at}
indique une permutation des nombres entiers 1, 2,..., d).

On considère d'abord le lemme suivant:

Lemme 6.3. Soit {cn} une suite de nombres réels. Si pour toute sous-suite convergente
{cn}, {cnj+1} converge vers la même limite, alors tous lespoints compris entre deuxpoints
d'accumulation de cm n= 1,2,... sont aussi des points d'accumulations de la suite
considérée.

La démonstration de ce lemme est élémentaire.

Démonstration du corollaire. D'après le lemme 6.2 on déduit que

P[Z,<all+1x + fcJI+1]-P[Zli+1 <all+iX + fcll+1]^0. (6.38)

En vertu du lemme 2.2 il en résulte que

an+1/an-^l et (bn+l - &>„->(). (6.39)

En raison des lemmes 2.3 et 6.2 et de la relation (6.39), pour toute suite d'indices

nj-+co tels que

Pah[Znj < anx + bnj-] -+(<Pk(yx + v))-', i 1, 2,..., d\ h 1, 2,.... d'.

Pah[Znj < anjx + fc.J ^e(yx + v), i d' + 1,..., d, h d' + 1,..., d.
(6.40)

on a

^^ ^
(6.41)

Le nombre de fonction limites étant plus petit ou égal à */, de (6.40) et (6.41) une

application directe du lemme 6.3 nous permet de conclure que les relations (6.37) et

(6.37') doivent être vérifiées.

On démontre encore un théorème analogue à ceux considérés dans les paragraphes
précédents.
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Théorème 6.3. Soit Xh i= 1, 2,... un processus de Markov strictement stationnaire
et satisfaisant à la condition de Doeblin. Supposons que Pna[X1<anx + bn]-+(<Pk(xya

pour tout a 1, 2,..., d, où sa>0 indiquent des constantes, alors, pour que

P[Zn<anx + bj -> £ p{Ea) (<f*(x))s"
a= 1

il faut et il suffit qu'il existe une suite de nombres entiers mjoo tels que mJn->0,
n/mî~>0 et

mn

,ï + ijn [X2 ^ anx + *>„]) + (n/rn,) £ (m. - j) x
j 0

t > anx + 6J n Q K < anx + bn] n [X;+3 ^ anx + *>„]) -. 0 (6.42)

Démonstration. On considère une suite m^co telle que mJn-^0 et «/m^->0. En
raison des lemmes 6.1 et 2.4 et à l'aide d'une relation semblable à (6.6) on obtient

Pa[Zn < anx + fcj - (Pa[_Zmn < anx + fen])"/m"^0 Va 1, 2,..., d.

Pour que d

P[Zn < anx + fvH

il est donc nécessaire et suffisant que

< anx + bn-]-i p(Ea)(Pa[Zmn < anx + bn]fm"^0 (6.43)
a=l a=l

mais en raison du lemme 2.4 la relation (6.43) est équivalente à

(n/mn) £ (l PalX, > anx + 6J - Pfl((j K > «nx + 6jY) ->0. (6.44)

Le processus considéré étant strictement stationnaire, de (6.44) il s'ensuit que la
condition (6.42) est bien nécessaire et suffisante.

Corollaire. Si le processus de Markov considéré dans le théorème 6.3 n'a pas de

sous-classes cycliques, la condition (6.42) est vérifiée si et seulement si

lim P([Xl > x] n [Xj > x])/P [X, > x] 0 (6.45)

pour toutj=2,..., où xo inf{
Démonstration. Si (6.42) est vérifiée, alors de (6.44) on obtient

P([Xt > anx + ftj nlXj > anx + b^IPlX, > anx + fcj ^0 Vj 2,....
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et une simple application du lemme 2.4 nous permet de conclure que la relation (6.45)
doit être aussi vérifiée.

Inversement si la condition (6.45) est satisfaite, alors il existe une suite de nombres
entiers qn\co telle que

n £ P([Xt > anx + bj n [X, > anx + bj) - 0. (6.46)

Sil'on observe (voir [6], p. 208) que l'expression intervenant dans (6.42) est majorisée par

n £ P([Xt > anx + 6J n \X, > anx + bj) + (n/mn) £ (mn-j) (A/n2 + B<?»
J=l J=qn

où A, B,0^q<1 sont des constantes; de (6.46) on obtient immédiatement que la
relation (6.42) doit être vérifiée.
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