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Groupes d’homotopie des variétés de Stiefel complexes

par FRANCOIS SIGRIST 1)

Introduction

Le but de ce travail est la détermination des groupes 7, 4 ,(Uy 4, m) pour 0<p <6.
Rappelons que Uy, m €st la variété des (k+m) x m matrices unitaires. Les résultats
se déduisent principalement de la suite exacte d’homotopie associée a la fibration
Ui—t.m-1=Up, m—U,, ;- Au § 1, Dutilisation systématique d’une formule d’ECKMANN
pour les espaces fibrés a base sphérique permet de déterminer les groupes d’homotopie
de U, ,. Rappelons le résultat d’ECKMANN: Soit F—»E—S™ une fibration de base
sphérique, et soit (1) I'image du générateur de =,(S™) par "’homomorphisme
0:1,(S™)—n,_,(F). La connaissance de (1) permet d’évaluer 0:7,(S™)—n;_,(F)
sur toutes les suspensions, grace a la formule 0(Za)=0(1).a. Appliquée a la fibration
§2"735U, ,—S*""', la formule raméne la détermination des groupes d’homotopie
de U, , a I’étude des compositions pour les applications sphériques, effectuée princi-
palement par TODA.

Le § 2 traite des groupes d’homotopie de U, ; et U, 4. L’application des suites
exactes d’homotopie rameéne la détermination des groupes d’homotopie a celle des
invariants U(n, k) de JaMES: Si I’'on considére la fibration U,_, ,—;—U, ;—»S2""1,
'ordre de 0(1) dans 75 ,-,(U,-1 x-1) est appelé nombre de JAMEs U(n, k).Une étude
systématique du systtme de nombres U(n, k) est due a JaAMEs: a I'aide des propriétés
démontrées dans le travail de JAMEs, il est possible de déterminer presque toutes les
valeurs de U(n, 3) et U(n, 4). La K-théorie des variétés de STIEFEL complexes, étudiée
par ATIYAH et TopD, permet enfin, a 'aide des théorémes d’intégralité, d’achever
complétement la détermination des groups 7y 4+ ,(Uy s m,m)» 0<P<6.

§ 1. Les groupes d’homotopie de U, ,

Nous utiliserons la suite exacte d’homotopie de la fibration S2" 3> U, ,—»S2"" 1,
Pour n pair, cette fibration a une section bien connue, donc #;(U, ,)==n;(S*" )@
7;(S*"73%). A l'aide des valeurs connues des groupes d’homotopie des sphéres, on
obtient alors:

1) L’auteur tient & remercier vivement MM. les professeurs B. ECKMANN et P. J. HILTON pour
leurs suggestions enrichissantes au cours de la rédaction de ce travail.
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n pair n=2 n=4 n=6
2 n—4(Un,2) 0 0 0
2n-3(Un,2) VA Z Z
2 n—-2(Un,2) 0 Z> Zo
2 n-1(Un, 2) y/ Z+7Z; Z+7Zs
72n(Un,2) Z; Zo+ Zoy Zy+ Zos
72 n+1(Un,2) Z Zy+Zs Z>
2n+2(Un, 2) Z» Zss+Z2 Zos
T2 n+3(Un, 2) Z2 Zs Z2
n2n+4(Un, 2) Z Z3o Zs4o

Pour » impair, la fibration S2""*- U, ,—»S?"~! n’a pas de section. La théoréme
d’ECKMANN [4] affirme en effet: pour n impair, ’homomorphisme d:7,,_,(S2""')—
Tan—2(S2" ?)n’est pas trivial, (1) est Papplication essentielle S2"~2—S2"~3 obtenue
en prenant la (2n — 5)-iéme suspension de I'application de HopF p: S*—S?. Les homo-
morphismes 9:7,(S2" " 1)—n;_;(S?"3) peuvent étre évalués sur les suspensions 2
I'aide d’une formule d’ECKMANN [3]: 0(Za)=0(1)oa. Cette formule nous permettra
de déterminer 0 pour toutes les valeurs de i inférieures a (2n+6). Nous écrivons
p:S3->S%et q:S"—>S* pour les applications de Hopr. La référence [Hu] se rapporte
au livre de S. T. Hu: Homotopy theory (Academic Press, New York-London) et la
référence [TopA] au livre de H. TopA: Composition methods in homotopy groups of
spheres (Princeton University Press).

Dimension 2n—1
Ton-1(S2" " )=Z  générateur 1
Ton-2(S2""3)=2Z, générateur 2" °p
6(1)=22 n—5p,
0 est un épimorphisme.

[ECKMANN [4]]

Dimension 2n
T,a(S2" " )=Z, générateur 22" 3p

Tan-1(S2"73)=Z, générateur 2>" 3(p.Zp) [Hu, p. 328]
a(ZZn—3)=22n—5poZZn—4p= Z'Zn—S(poz'p)’
0 est un isomorphisme.
Dimension 2n+ 1
n=3 n,(S°)=2Z, générateur X3(p-Zp)
16(S?)=2,, [Hu, p. 329]

(23 (poZp)=2po(Z*(poZp))=Z2p.2°po2°p,

¢lément d’ordre 2. [Hu, p. 329]
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n=5 7y, (S*"Y)=2Z, générateur 2>"*(p.Zp)
Ty,(S2" " N=1Z,, générateur X" g [Hu, p. 330]
A(Z2" 3 (poZp))=22" " poZ2" Y (poZp)=22""3(poZpo2?p)=12 2*"""gq
[Topa, p. 190]
0 est un monomorphisme.

Dimension 2n+2
n=3 14(S%)=2Z,, générateur Xq [Hu, p. 330]
n,(S=2Z, générateur Zpoq [HiLToN [6]]
0(Zq)=Z2poq,
0 est un épimorphisme.
n=S5 7my,..(S*" " Y)=Z,, générateur 22" 3¢

T2n+1(S2"7)=0 [Hu, p. 331]
Dimension 2n+3
n=3 nyo(S°)=Z, générateur X(q-2°’p) [Hu, p. 331]
ng(SHN=2Z, générateur Zpoq.Z°p [Hu, p. 330, TopA, p. 42,
0(Z(qo2°p))=Zpoqo2°p, HiLTON [6]]
0 est un isomorphisme.
n25  Ty,es(S2"T1)=0 [Hu, p. 331]
Tania(S777%)=0 [Hu, p. 332]
Dimension 2n+4
n=3 n,,(5°)=2, [Hu, p. 332]
o(S%) =2, [Hu, p. 332]
0 est trivial.
n=5 my,ea(S*"H)=0 [Hu, p. 332]
Ranes(S2"%)=2, [Hu, p. 332]

Dimension 2n+5
n=3 1;,(S°)=2,
M10(S*)=2,s
0 est trivial.

n=5 m,5(8°)=Z, générateur X°(g.2>q) [TopA, p. 189]
114(S7)=2Zy20 [Hu, p. 332]

0(2°(go2%q)=2X°po2*qo27g=0 puisque X’p.Z*q=0:5"->S’

n=7 my,.s(S2")=Z, générateur I*"" *(q.2%q) [Topa, p. 189]
Man+a(S2"73)=Zs40 [Hu, p. 332]

A(Z2"5(qo23q))= 22" S po32n6g. 32" 3g=0

puisque 22" 3 p. X2 6g=0:8%"+18%""3,
La suite exacte d’homotopie de S?" *—>U, ,—S?"! fournit alors les valeurs sui-
vantes des groupes d’homotopie de U, ,, pour n impair:
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n impair n=73 n=>5 n=17
tan-a(Un,2) 0 0 0
ﬂzn—a(Un,z) Z Z Z
en—2(Un,2) 0 0 0
n2n-1(Un,2) Z 4 Z
20 (Un,2) Zg Z2 VAT
2 n+1(Un, 2) 0 0 0
2n+2(Un,2) Z2 Zsy Zos
n2n+3(Un,2) Zs Z Z
n2n+4(Un,2) Z3o Z120 Z24o

§ 2. Quelques groupes d’homotopie de U, ; et U, ,

Les groupes d’homotopie de U; ;=U(3) se déterminent a I’aide de la fibration
S'— U, ;- U; ,. On obtient alors:
1 (Us3)=2Z m(Uy3)=m(Us,) i>1
De fagon analogue, la fibration U,_, ,—U, ;—S*""! montre que 7;(U, ;)=
7;(U,-1,2) pour i<2n—2. Le calcul de ces groupes se raméne aux résultats du para-
graphe précédent. Nous envisageons maintenant les cas n=4 et n=35 séparément.
U, 3=SU(4). D’aprés les théorémes de Borr [2], les groupes d’homotopie sont
donnés par
6 (Us,3) = 16 (SU(4)) = 0
n7(Us,3) = 75 (SU(4)) =Z
ng(Us,3) = g (SU(4)) =24

Pour n=>5 nous considérons tout d’abord la suite exacte de U(5)-U(7)-U, ;:

== 7112(U(7)) =712 (Us,2) = 714 (U(S)) =Ty (U(7)) - ny(Us,2) 7510(U (5))
- 0 - 0 -, (UGB)-» Z - Z = Zy50

Cette suite exacte fournit 7, (U(5))=0.
La suite exacte de U, ,—Us 3—>S°:

—> Ty (U4, 2) = yy (Us, 3) = Ty (Sg) -
- Z, “’7‘11(U5,3)_’ Zz, -

montre que ’ordre de =, (Us_ 3) est une puissance de 2.
La suite exacte d’homotopie de U(2)—>U(5)—Us ;:

USE! (U(5)) =Ty (Us, 3) = 71710(U(2)) - 7flo(U(S)) - 7t10(Us, 3) = To (U(2)) ~2
= “9(U(5))“’ g (Us,3) = 7tz;(U\z))“’ ns(U(S))‘* 7tzz(Ues,z,)“*’7"7(1](2))—’717([](5))
0 “*”11(U5,'3)“’ Z,;, - Z,5 “’Wlo(Us,s)“" Z, -
- Z - ﬂ9(U5,3)—* Z, —* 0 —¥ ns(Us,s)"’ Z, - Z
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fournit, puisque 7y, (Us ;) est un 2-groupe:

7511(U5,3) =0
nlO(U5,3) =2,
ng(U5,3) = Z ou Z + ZZ

ﬂs(Us, 3) =Z,

La détermination de ng(Us ;) s’effectue a I'aide de la fibration U, ,—Us ;—S°:

> my0(8%) > ng(Us,2) = 19 (Us,3) = 7o (5%)
- Z, »Z,+Z, >ny(Us )~ Z

On voit que n4(Us, 3) ne peut pas étre isomorphe a Z, donc
Ttg(U5, 3) g Z + Z2

Avant d’envisager les autres cas, introduisons la notation suivante, due a JAMEs [8]:
dans la suite exacte d’homotopie de la fibration U, ;».8%"!, I'image de n,,_,(U, ;)
PXan—1(S2" 1)=Z est caractérisée par un nombre entier U(n, k) que nous appel-
lerons nombre de James de U, ,. La détermination des nombres U(n, 3) et U(n, 4)
est renvoyée au prochain paragraphe (§3). Dans la suite de ce paragraphe, nous
utiliserons le diagramme commutatif

S2n—5_’SZn-5_’ *

Le diagramme contient quatre fibrations. Les quatre suites exactes d’homotopie cor-
respondantes (1, 2, 3 et 4) se groupent en une ,,tresse’’ exacte

\/\/\/\./\/\/
FAVAVAVAVA VAN

ou tous les carrés et tous les triangles sont commutatifs. Un tel diagramme de suites
exactes a regu le nom de ,,rolling stone diagram” (ECKMANN et HiLTON [5]).

Le fait que les variétés de STIEFEL associées comme ci-dessus donnent lieu a une
tresse exacte a €té démontré par JAMES [7].
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La partie suivante de la tresse exacte

7f2n—1(52"_5)—’ Man-1 (Un, 3) = 752:-—1(32"_1)"" RZ"_Z(Szn—s) =T n—s(SZ"—s)

NS NS NS NS
n2n-—1(Un—1,2) nZn—l(Un,Z) 7z:2n—2([]n--l,2) 7.‘:Zn--Z(IJn,Z)
7N 7N 7N 7N

U] n(Szn—l) - 7‘2n—1(52"_3)"‘* 7‘2n-2(szn_5)”" nZn—Z(Un, 3)“* 7Tzn—z(SZ"_l)

fournit pour n pair >6

O—'_)TCZn—l(Un,3) »Z > ZZ _—)ZZ
NS N SN S NS
0 Z+7Z, Z,, Z,
/N / NN 7N\
ly——— L, 2 ZLyy——— T34 2(U, 3)—— 0

et par conséquent
Tan-1(Un3)=2Z Tyn-2(Up3)=2Z 12

U(n, 3)
Pour »n impair >7,
0—"‘“*752n—1(Un,3) >»Z » 7, »Z,
NS NN / NS
Z, Z 2,,+ 7, 0
/N /NS N /N
Ly~ z, N ’7T2n—2(Un,3)—’0

on obtient

Ton—1 (Un, 3) = Z T, n—Z(Un, 3) = ZU(483)

Remarquons ensuite que la suite exacte, (pour 7> 6)

”2n(szn—5) - n2n(Un, 3)"’ ”2n(Un,2)‘* Ton-1 (Szn_s)
0 _’TCZn(Un,S)_)TCZn(Un,Z)_) 0

fournit la valeur du groupe 7,,(U, ).
Nous avons encore besoin de déterminer le groupe 7, ,_,(U, 4):
Pour n=4, 74(U(4))=0 d’aprés le thédréme de BorT.
Pour n=5, 7g(Us 4)=0 également d’aprés le théoréme de BoTT.
Pour n=6, la fibration SU(2)—>SU(6)— Us_4 fournit

71510(SU(6)) —= 710(Us,4) > 7o (SU(Z)) — Ty (SU(6))
- 0 - n10(Us,a) >  Zs - Z

et par conséquent 7,4(Us 4)=Zs;.
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Pour n>7 la fibration S?"~ 7' U, ,—U, , fournit

n2n—2(szn_7)—“)n2n—2(Un,4)—' Ty n"‘Z(U"’3)—) RZ"—3(SZH_7)
0 —+7r2,,-z(Un,4)—’ nzn—z(Un,s)_* 0

127

donc m,,_»(U, 4)=7;,-,(U, 3), groupe que nous avons déja déterminé.

Nous pouvons alors dresser une table des groupes d’homotopie 7, 4 ,(Uy 4 ,,) pour
0<p<6, en remarquant que la fibration U4y m= Ukt ms1.m+1—=S ¥ 2" 1 montre
que le groupe 7y, 4 , (U4 m, m) €5t indépendant de m sitdt que 2m>p.

Table des groupes nak+p(Uk+m, m)

Y 0 1 2 2543 25+4
" ;
p=0 0 0 0 0 0
p=1 Z zZ zZ Z Z
p=2 1 0 Z Z Z, Zs
=2 | 0 OMA" Z: - 0 N Z:
p=13 1 0 Z: Z: Z: Z:
=2 Z z Z+Z: Z : Z+ Z;i k
p=4 1 0 Zy2 Zs4 Z.24 Zs4
2 * M Z2 Zs Zos +Zs Z2 : ﬁ7Z724+Z; o
>3 o o | | 2w | z u
U(25+6, 3) U(25+7, 3)
p=>5 1 0 Z Z 0 0
2 | oz | o |zrz| o o
s | oz |z |zem| oz | oz
p=6 1 0 Z> Z 0 0
- WZMA‘ B ~Z12 Z; _ iz;-i- iz - Z'24“ ‘ 24 B
3 Zo | Za | Za Zutza | Zw
Csa | o 0 Zs Z oz e
U(25+7, 8) U(25+8, 3)

Nous calculerons les valeurs de U(n, 3) dans le prochain paragraphe, Celles-ci sont:
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n =(mod 24) 3 4 5 6 7 8 9 10 11 12 13 14
Un, 3) 2 6 24 4 12 3 8 12 6 2 24 12
n =(mod 24) 15 16 17 18 19 20 21 22 23 24 25 26
U(n, 3) 4 3 24 4 6 6 8 12 12 1 24 12

§ 3. Détermination des nombres de James U(n, 3) et U(n, 4)

Rappelons la définition de U(n, k): c’est I'ordre de d(1) dans 7, ,,_,(U,-; x-1), OU
0 est 'opérateur bord de la suite exacte de la fibration U,_; , ;> U, ,—S?""!. JAMES
a établi dans [8] un grand nombre de propriétés des nombres U(n, k). Nous n’en
retiendrons qu’une partie, nécessaire a la détermination des valeurs de U(n, 3).

Théorémes de JAMES [8]:

(0) U(m, k) est multiple de U(m, I) pour I<k

(I) U(n, k) U(m, k) est un multiple de U(m+n, k)

(II) Soit b, la plus petite valeur de m pour laquelle U(m, k)=1. Alors
U(n, k)= l<>n est un multiple de b,.

(1) U(mby, k+1)-(mby, bys1)=bi 4y
((p, q) désigne le plus grand commun diviseur de p et de q.)

(IV) Sim>2k—1et U(n, k)=1 alors U(m, k)=U(m+n, k)

Les nombres U(n, k) sont connus pour k=1, 2, (n—1), n. Ce sont

U(n, 1)

U(n, 2)

1
(1 pour n pair
22 pour n impair
U(n,n—1)=U(n, n)=(n—1)! (Théoréme de BotT [2])
Nous allons maintenant déterminer les valeurs de U(n, 3). Puisque b, =2, et U(4, 3)=
6, le théoréme III de James fournit 6(4, b3)=b; d’ou by;=24, et par conséquent
U(2m, 3)=12/(m, 12). Pour n pair, les valeurs de U(n, 3) sont donc connues, et sont
périodiques de période 24:

(Théoréme d’ECKMANN [4])

8 10 12 14 16 18 20 22 24 26

n=(mod 24) 4 6
6 4 3 12 2 12 3 4 6 12 1 12

Un,3)

Pour n impair, une utilisation systématique du théoréme I de James fournit, a
laide de U(3, 3)=2:

n=3 mod 24
U(27, 3) est multiple de 2=U(27, 2)
U(27, 3) est diviseur de 2=U(24, 3)- U(3, 3)
U(27, 3)=2 et U(24q+3, 3)=2 a l'aide de (IV)



Groupes d’homotopie des variétés de STIEFEL complexes 129

n=11 mod24
U(11, 3) est un diviseur de U(8, 3)-U(3, 3)=6
U(11, 3)- U(3, 3)=2-U(11, 3) est un multiple de U(14, 3)=12
Donc U(24q+11,3)=6

n=19 mod 24
U(19, 3) est un diviseur de U(16, 3)-U(3, 3)=6
U(19, 3)- U(3, 3)=2-U(19, 3) est un multiple de U(22, 3)=12
Donc U(24¢+19, 3)=6

n=5 mod24
Nous utiliserons les résultats du § 2. La suite exacte d’homotopie de
U4,2"’U5,3—’593
3]
e (Us,3) = 1o (Sg) — 115 (Us, 2) = 15 (Us, 3) = g (59)
2+72,—- Z -2,,+2,- Z, - 0

fournit U(5, 3)=24 donc U(24g+5, 3)=24

n=21 mod 24
U(21, 3) est un diviseur de U(18, 3)-U(3, 3)=8
U(21, 3)-U(8, 3)=3-U(21, 3) est un multiple de U(29, 3)=U(5, 3)=24
Donc U(24g+21)=8

n=13 mod24

U(13, 3) est un diviseur de U(10, 3)- U(3, 3)=24

U(13, 3)-U(3, 3)=2-U(13, 3) est un multiple de U(16, 3)=3

U(13, 3)-U(8, 3)=3-U(13, 3) est un multiple de U(21, 3)=8

Donc U(24g+13, 3)=24

Les valeurs suivantes de U(n, 3) ne peuvent pas &tre entiérement déterminées a
l’aide des résultats de JAMES; on obtient cependant:

n=7T mod 24
U(7, 3) est un diviseur de U(4, 3)-U(3, 3)=12

n=9 mod 24
U(9, 3) est un diviseur de U(6, 3)- U(3, 3)=38

n=15 mod24
U(15, 3) est un diviseur de U(12, 3)-U(3, 3)=4

n=17 mod24
U(17, 3) est un diviseur de U(14, 3)-U(3, 3)=24

n=23 mod24
U(23, 3) est un diviseur de U(20, 3)-U(3, 3)=12
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n=25 mod24

U(25, 3) est un diviseur de U(22, 3)-U(3, 3)=24

Pour achever la détermination des nombres U(n, 3), nous remarquerons tout
d’abord que U(4, 3)=U(4,4)=6, U(5, 3)=U(5, 4)=24, et que, pour n>6, le dia-
gramme

Tp- I(Un 4) =Ty 1(52" l)———_)TCZn 2(U- 1, 2) Ty 3(32" 7)
AN / N /
nZn-—l(Un,3) Tc2n—2(Un—1,3)
N /

7'CZn—Z(Szn_’])

montre que U(n, 3)=U(n, 4) puisque n,,_,(S*"~7)=0. On a donc U(n, 3)=U(n, 4)
pour tout n.

ATIYAH et ToDpD [1] ont calculé le caractére de CHERN des variétés de STIEFEL com-
plexes. Les théorémes d’intégralité de ATivAH et HIRZEBRUCH permettent de formuler
la propriété suivante: Soit Zo;t' le développement de MACLAURIN de la fonction
[log(1—¢)/—t]™". Les nombres de JAMES U(n, k) jouissent de la propriété suivante:
Les produits U(n, k)-a,, U(n, k)ay,..., U(n, k), _; sont tous entiers.

log(l — )" 3n—35 -2 -3
og(1—0 ™" _, _n, nBn=9), nh-2)(n=3),
—t 2 24 48

Le théoréme d’ATiYAH et Tobp pour k=4 affirme donc:

n 3n—-35 —2)(n-3
U(n,4)-=, Ul(n, 4)-n( . —), U (n, 4)'n(n )(n ) sont entiers.
2 24 48
n=7 mod 24
U(7,4) [%, 4%, 33] entiers =U(7, 4) multiple de 12.
n=9 mod 24
U9, 4):[5, 32, 2] entiers = U(9, 4) multiple de 8
n=15 mod24
U(15, 4)-[1%, 25, 123] entiers = U(15, 4) multiple de 4
n=17 mod 24
U(17, 4)-[L7L, 35, 53%] entiers =U(17, 4) multiple de 24
n=23 mod 24
U(23, 4)-[23, 184, 895] entiers = U(23, 4) multiple de 12
n=25 mod24

U(25, 4)-[%*, 815, 8325] entiers = U(25, 4) multiple de 24



Groupes d’homotopie des variétés de STIEFEL complexes. 131

On obtient donc la tabelle suivante des valeurs de U(n, 3)%):

n =(mod 24) 3 4 5 6 7 8 9 10 11 12 13 14
U(n, 3) 2 6 24 4 12 3 8 12 6 2 24 12
n =(mod 24) 15 16 17 18 19 20 21 22 23 24 25 26
U, 3) 4 3 24 4 6 6 8 12 12 1 24 12

Les valeurs des groupes n,,_,(U, 1) et n5,-,(U, ) sont donc complétement connues.
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