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Groupes d'homotopie des variétés de Stiefel complexes

par François Sigrist x)

Introduction

Le but de ce travail est la détermination des groupes nlk+p(Uk+mfn) pour 0^p ^6.
Rappelons que Uk+m>m est la variété des (k + m)xm matrices unitaires. Les résultats
se déduisent principalement de la suite exacte d'homotopie associée à la flbration
Un-itm-i-*UHtnr*Unti- Au § 1> l'utilisation systématique d'une formule d'EcKMANN

pour les espaces fibres à base sphérique permet de déterminer les groupes d'homotopie
de Unt2. Rappelons le résultat d'EcKMANN: Soit F-+E->Sm une fibration de base

sphérique, et soit d(l) l'image du générateur de nm(Sm) par l'homomorphisme
d:7im(S"n)->7Tm_1(F). La connaissance de d(l) permet d'évaluer 3:^i(5"n)->7ri_1(F)
sur toutes les suspensions, grâce à la formule d(2a) d(l)oa. Appliquée à la fibration
S2n~3-+Unt2-+S2n~l, la formule ramène la détermination des groupes d'homotopie
de Unt2 à l'étude des compositions pour les applications sphériques, effectuée

principalement par Toda.
Le § 2 traite des groupes d'homotopie de Un3 et UUt4. L'application des suites

exactes d'homotopie ramène la détermination des groupes d'homotopie à celle des

invariants U(n, k) de James: Si l'on considère la fibration Un^l k-i->Untk-+S2n~l9
l'ordre de 3(1) dans n2n-2(^1-1,^-1) est appelé nombre de James U(n, A:).Une étude

systématique du système de nombres U(n, k) est due à James: à l'aide des propriétés
démontrées dans le travail de James, il est possible de déterminer presque toutes les

valeurs de U(n9 3) et U(n, 4). La ^-théorie des variétés de Stiefel complexes, étudiée

par Atiyah et Todd, permet enfin, à l'aide des théorèmes d'intégralité, d'achever

complètement la détermination des groups n2k+p(Uk+m,n)> 0^/?<6.

§ 1. Les groupes d'homotopie de Un 2

Nous utiliserons la suite exacte d'homotopie de la fibration S2n~3-+Unt2->S2n~l.
Pour n pair, cette fibration a une section bien connue, donc 7ii(Unf2) ^i(S2n^1)®
ni(S2n~3). A l'aide des valeurs connues des groupes d'homotopie des sphères, on
obtient alors :

*) L'auteur tient à remercier vivement MM. les professeurs B. Eckmann et P. J. Hilton pour
leurs suggestions enrichissantes au cours de la rédaction de ce travail.
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n pair

7l2n-A(Un,2)
7l2n-3(Un,2)
7t2n-2(Un,2)
7l2n-l(Un,2)
7l2n(Un,2)
7t2n+l(Un,2)
7Z2n+2(Un,2)
7Z2n+3(Un,2)
7l2n+l{Un,2)

n 2

0
Z
0
z
z2
z2
Zl2
z2
z2

0

Z
z2

z + z2
Z2 4- Z24
Z2 + Z2

Z24 4- Z2
z2
Z30

0
Z
z2

z + z2
Z2 4- Z24

z2
Z24

z2
Z240

Pour « impair, la fibration S2n 3-*Unf2-+S2n * n'a pas de section. La théorème
cI'Eckmann [4] affirme en effet: pour n impair, l'homomorphisme d:nln_1{S2n~1)-*
n2 n- 2 (S2 n~ 3) n'est pas trivial, d( 1 est l'application essentielle S2 n~ 2->S2 n ~3 obtenue

en prenant la (2« — 5)-ième suspension de l'application de Hopf/? : S3-*S2. Les homo-
morphismes d:ni(S2n~1)-+ni-.i(S2n~3) peuvent être évalués sur les suspensions à

l'aide d'une formule d'EcKMANN [3]: d(2a) ô(l)oa. Cette formule nous permettra
de déterminer d pour toutes les valeurs de / inférieures à (2 n + 6). Nous écrivons

p:S3-+S2 et q:S1-+S4 pour les applications de Hopf. La référence [HuJ se rapporte
au livre de S. T. Hu: Homotopy theory (Académie Press, New York-London) et la
référence [Toda] au livre de H. Toda: Composition methods in homotopy groups of
sphères (Princeton University Press).

Dimension 2n—l
nln-1{S2n~1)
n2n-2(S2n~3)
Ô(l)=I2n-5p,

générateur 1

générateur
[ECKMANN [4]]

ô est un épimorphisme.

Dimension 2n

générateur I2n~3

générateur I2n-5(polp) [Hu, p. 328]

d est un isomorphisme.

Dimension 2 n+1
«=3 n1(S5) générateur Z3(poZp)

6() i2
ô(Z3(po Zp)) Ip o(Z2 (p o Zp)) Zp o Z2p o Z3p,
élément d'ordre 2.

[Hu, p. 329]

[Hu, p. 329]
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n2n+l(S2n~1) Z2 générateur Z2n~3(poZp)
^2n(S2n~3) Z24 générateur I2n~7q [Hu, p. 330]

[Toda, p. 190]
ô est un monomorphisme.

Dimension 2n + 2

n 3 n8(S5) Z24. générateur Zq [Hu, p. 330]
n1(S3) Z2 générateur Zpoq [Hilton [6]]

d(Zq)=Zpoq9
d est un épimorphisme.
n^5 7i2n + 2(S2n~1) Z24 générateur Z2n~5q

n2n+i(S2n~3) 0 [Hu,p.331]

Dimension 2n + 3

n 3 n9(S5) Z2 générateur Z(qoZ5p) [Hu, p. 331]
ns(S3) Z2 générateur ZpoqoZ5p [Hu, p. 330, Toda, p. 42,

d(Z(qoZ5p))=ZpoqoZ5p, Hilton [6]]
ô est un isomorphisme.

n>5 n2n + 3(S2n-l) 0 [Hu,p.331]
^2W+2(^2""3) 0 [Hu,p.332]

Dimension 2n + 4

« 3 tc10(55) Z2 [Hu, p. 332]
7i9(53) Z3 [Hu,p.332]

d est trivial.
n>5 7r2n+4(52"-1) 0 [Hu,p.332]

n2n+3(S2n-3) Z2 [Hu,p.332]

Dimension 2n + 5

ô est trivial.
n 5 n15(S9) Z2 générateur Z5(qoZ3q) [Toda, p. 189]

tt14(S7) Z120 [Hu,p.332]
d(Z5(qoZ3q)=Z5poZ4qoZ1q 0 puisque Z^oZ^q^OiS^-^S7
n>l n2n+5(S2n-1) Z2 générateur Z2n~ 5(qoZ3q) [Toda, p. 189]

7T2n + 4(S2M~3) Z24o [HU, P. 332]

d(Z2n-5(qoZ3q))=Z2n-5poZ2n-6qoZ2n-3q 0

puisque Z2n~5poZ2n-6q 0:S2n + i^S2n~3.
La suite exacte d'homotopie de S2n~3-+Un2->S2n~1 fournit alors les valeurs
suivantes des groupes d'homotopie de Unt2, pour n impair:
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n impair

7l2n-A(Un,2)
7Z2n-z(Un,2)
7t2n-2(Un,2)
7t2n-l(Un,2)
7l2n(Un,2)
7Z2n+l(Un,2)
7l2n+2(JJn,2)
7l2n+3{Un,2)
n2n+4(Un,2)

n =: 3

0
z
0
z
Z6
0
Zl2
z3
Z30

w 5

0
Z
0
z
Z12
0
Z24
Z2
Z120

0
Z
0

z
Z12
0
Z24
z2
Z240

§ 2. Quelques groupes d'homotopie de UHt3 et (7n>4

Les groupes d'homotopie de U33=U(3) se déterminent à l'aide de la fibration
S1-*^,3-^^3,2- On obtient alors:

7^(1/3,3) Z ^(173,3)^ ^.(^3,2) *>1
De façon analogue, la fibration Un-\,2-*Un,3-*Slnl niontre que tt^U,,^)^

ni{Un-i,i) Pour i<2n — 2. Le calcul de ces groupes se ramène aux résultats du
paragraphe précédent. Nous envisageons maintenant les cas n 4 et n 5 séparément.

U43 SU(4). D'après les théorèmes de Bott [2], les groupes d'homotopie sont
donnés par

Pour n 5 nous considérons tout d'abord la suite exacte de U(5)-*U(7)-+U12:

0 0 120

Cette suite exacte fournit nll(U(5)) 0.

La suite exacte de VA2-^V53-^S9:

Z2 ^ntl(U5,3)^ Z2

montre que l'ordre de ^11(^5,3) est une puissance de 2.

La suite exacte d'homotopie de U(2)-+U(5)-*U5t3:

«8

«n (I/5.3) ¦

rt9(USt3)-
15 120

5i3)->Ml7(2))->*7(l/(5))
^io(^5,3)-^ Z3 "-?

^8(^5,3)-^ Z2 -> Z
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fournit, puisque nil(U53) est un 2-groupe:

ou Z + Z2

7r8(l/53) Z2

La détermination de n9(U53) s'effectue à l'aide de la fibration l/4f2^^5,3~*S9:

Z2 -»Z2 + Z2 ->tt9 (l/53) -> Z

On voit que 7r9(l/5 3) ne peut pas être isomorphe à Z, donc

Avant d'envisager les autres cas, introduisons la notation suivante, due à James [8]:
dans la suite exacte d'homotopie de la fibration Un>fc15f2n~1, l'image de n2n-i(Unk)
î?n2n-i(S2n~1) Z est caractérisée par un nombre entier U(n,k) que nous appellerons

nombre de James de UUtk. La détermination des nombres U{n, 3) et U(n, 4)
est renvoyée au prochain paragraphe (§3). Dans la suite de ce paragraphe, nous
utiliserons le diagramme commutatif

S2"'5-

ï

1
'

s2n-3

-+s2"-5

ï
^Un,3

1

—> *

i

i
_+s2n-l

Le diagramme contient quatre fibrations. Les quatre suites exactes d'homotopie
correspondantes (1, 2, 3 et 4) se groupent en une ,,tresse" exacte

1

où tous les carrés et tous les triangles sont commutatifs. Un tel diagramme de suites

exactes a reçu le nom de ,,rolling stone diagram" (Eckmann et Hilton [5]).
Le fait que les variétés de Stiefel associées comme ci-dessus donnent lieu à une

tresse exacte a été démontré par James [7].
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La partie suivante de la tresse exacte

\i2n-l(
y

fournit pour n

n\j —————

\ 0

/z2—

y
'i4-i 2) *

\ '

pair ^6

* n2n-l\L
y

\— z2

et par conséquent

Pour n impair

0\j

\z
y

z2—
on obtient

n2n-\

y
2\—> z2

\hn-l
2

73

j }

\
/

{Un "

"*\

y
(Un 2)

\

z + z

Z

/z

\
y 2

12

_2(S2

y
2 \

n2n

7

\Z

r
-^24

\!n-2(

/

\ Z

*—

-2(1-

24 +

/"
Un-l,

\

/
12 \
Jn 3)

z2

\

\ y
2) 12.-2(14-

\ z2

y
«-2(14,3)—

Z 12

l/(*, 3)

> 7

\ 0

y
1.-2(14,3)—

2)

/
\

/•

i2»-l(l4,3) Z 12n-2(^n.3) Z 48
Vin, 3)

Remarquons ensuite que la suite exacte, (pour n > 6)

0 -«21,(14,3)->n2ll(l4,2)-> 0

fournit la valeur du groupe n2n(Un3).
Nous avons encore besoin de déterminer le groupe n2w_2(^n,4):
Pour n 4, 7r6 t/(4)) 0 d'après le théorème de Bott.
Pour n 5, ^si^s^)^^ également d'après le théorème de Bott.
Pour « 6, la fîbration SU(2)-+SU(6)-+U6t4. fournit

7T1O(S17(6)) -+ 7ilo(l/6,4) - n9(SU(2)) -> n9(SU(6))
• 0 ->tc10(1/654)^ Z3 -^ Z

et par conséquent %0(^6,4) ^3-
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Pour n^l la fibration S2n~7-*Unf4r-+Unt3 fournit

127

0 0

donc n2n_2(Un4)^n2n_2(Un3% groupe que nous avons déjà déterminé.
Nous pouvons alors dresser une table des groupes d'homotopie n2k+p(Uk+m) pour

9 en remarquant que la fibration Uk+m ,m-+Uk+m+lm+i —>S

que le groupe n2k+p(Uk+mm) est indépendant de m sitôt que 2m>p.

2k + 2m+l montre

p 0

p=l
p 2

/> 3

P 5

p 6

1

>2

1

>2

1

2

>3

1

2

^3

1

2

3

>4

0

0

z

0

0

0

z

0

z2

0

0

Z2

z

0

Zl2

Z6

0

Table des groupes 712 fc+

1

0

Z

Z2

0

z2

z

Z12

z6

0

Z2

0

z

z2

Z12

Z24

0

2

0

z

Z2

z2

Z2

Z+Z2

Z24

Z24 + Z2

z2

Z2

Z2 + Z2

Z + Z2

Z2

Z24 + Z2

Z24

z3

pyUfc+m, m)

25 + 3

0

Z

Z2

0

z2

z

Z24

Z12

Z 12

t/(2s+6, 3)

0

0

z

0

Z24

Z24 + Z2

Z 48

17(2s+7, 3)

25 + 4

0

Z

z2

z2

Z2

Z + Z2

Z24

Z24 + Z2

Z 48

(7(2s+7, 3)

0

z2

z

0

Z24

Z12

Z 12

t7(2s+8, 3)

Nous calculerons les valeurs de C/(«, 3) dans le prochain paragraphe, Celles-ci sont :
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rt=(mod24)

U(n,3)

n (mod 24)

U(n, 3)

3

2

15

4

4

6

16

3

5

24

17

24

6

4

18

4

7

12

19

6

8

3

20

6

9

8

21

8

10

12

22

12

11

6

23

12

12

2

24

1

13

24

25

24

14

12

26

12

§ 3. Détermination des nombres de James U(n, 3) et U(n, 4)

Rappelons la définition de U(n, k): c'est l'ordre de ô(l) dans n2n-2(Un-ltk-i), où
d est l'opérateur bord de la suite exacte de la fibration Un-.lk-.1->Unk-+S2n~1. James

a établi dans [8] un grand nombre de propriétés des nombres U(n, k). Nous n'en
retiendrons qu'une partie, nécessaire à la détermination des valeurs de U(n, 3).

Théorèmes de James [8] :

(0) U(m, k) est multiple de U(m, l) pour l^k
(I) U(n, k) U(m, k) est un multiple de U(m + n, k)
(II) Soit bk la plus petite valeur de m pour laquelle U(m, k) 1. Alors

U(n, k)= Ion est un multiple de bk.

(III) U(mbk9k+l)'(mbk,bk+i) bk+1

((/?, q) désigne le plus grand commun diviseur de p et de q.)

(IV) Si m^2k-1 et U(n, k)= 1 alors U(m, k)= U(m + n, k)
Les nombres U(n, k) sont connus pour k= 1, 2, (n— 1), n. Ce sont
U(n, 1) =1

U(n,2) =\\ P°Ur n paiF
(Théorème d'EcKMANN [4])v ' (2 pour n impair
v

£/(/*, n-1)= £/(«, /!) (/!-1)! (Théorème de Bon [2])
Nous allons maintenant déterminer les valeurs de U(n, 3). Puisque b2 2, et (7(4, 3)
6, le théorème III de James fournit 6(4, b3) b3 d'où 63 24, et par conséquent

U(2m, 3)= 12/(m, 12). Pour n pair, les valeurs de U(n, 3) sont donc connues, et sont
périodiques de période 24:

n (mod 24)
U(n, 3)

4
6

6

4
8

3

10
12

12

2
14

12
16

3

18

4
20

6
22
12

24
1

26
12

Pour n impair, une utilisation systématique du théorème I de James fournit, à

l'aide de (7(3, 3) 2:

n 3 mod24
(7(27, 3) est multiple de 2= (7(27, 2)

17(27, 3) est diviseur de 2= (7(24, 3)-1/(3, 3)

£7(27, 3) 2 et U(24q + 3, 3) 2 à l'aide de (IV)
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«=11 mod24
(7(11, 3) est un diviseur de (7(8, 3)- U(3, 3) 6

1/(11, 3)- (7(3, 3) 2-(7(ll, 3) est un multiple de (7(14, 3)= 12

Donc (7(24?+ll,3) 6

n=19mod24
£7(19, 3) est un diviseur de (7(16, 3)- (7(3, 3) 6

(7(19, 3)-£/(3, 3) 2- 1/(19, 3) est un multiple de 1/(22, 3)= 12

Donc l/(24?+19, 3) 6

tf==5 mod24
Nous utiliserons les résultats du § 2. La suite exacte d'homotopie de

Z + Z2-» Z ->Z24 + Z2-> Z2 -> 0

fournit (7(5, 3) 24 donc (7(24?+ 5, 3) 24

« 21 mod24
1/(21, 3) est un diviseur de (7(18, 3)- (7(3, 3) 8

(7(21, 3)- (7(8, 3) 3-17(21, 3) est un multiple de (7(29, 3)= (7(5, 3) 24

Donc (7(24?+ 21) 8

«=13mod24
1/(13, 3) est un diviseur de £/(10, 3)- (7(3, 3) 24

(7(13, 3)- (7(3, 3) 2- (7(13, 3) est un multiple de (7(16, 3) 3

(/(13, 3)- (7(8, 3) 3- (7(13, 3) est un multiple de (7(21, 3) 8

Donc (7(24?+13, 3) 24

Les valeurs suivantes de U(n, 3) ne peuvent pas être entièrement déterminées à

l'aide des résultats de James; on obtient cependant:

« 7mod24
UÇ7, 3) est un diviseur de U(4, 3)- (7(3, 3)= 12

« 9mod24
£/(9, 3) est un diviseur de U(6, 3)- C/(3, 3) 8

«=15mod24
U(15, 3) est un diviseur de t/(12, 3)- £/(3, 3) 4

«=17mod24
17(17, 3) est un diviseur de t/(14, 3)- (7(3, 3) 24

w 23mod24
(7(23, 3) est un diviseur de (7(20, 3)- (7(3, 3)= 12
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« 25mod24
U(25, 3) est un diviseur de C/(22, 3)- (7(3, 3) 24

Pour achever la détermination des nombres U(n9 3), nous remarquerons tout
d'abord que U(4, 3)= 1/(4, 4) 6, £/(5, 3)=£/(5, 4) 24, et que, pour «^6, le

diagramme

(TT \ /C"2rt —1 \ <? /t t \ /C'2fi — 7\7t y n i i L/ n a —' «t^n i\*^ / ~~~*-^~~—? 7C o t i \J \ ¦} —^ 7T o -i 113 j

\ ' / \a Z1

2^1
n,3

^

2. 2

montre que U(n, 3)= C/(«, 4) puisque 7r2n_2(*S'2/l"7) 0. On a donc U(n, 3)= C/(«, 4)

pour tout n.

Atiyah et Todd [1] ont calculé le caractère de Chern des variétés de Stiefel
complexes. Les théorèmes d'intégralité de Atiyah et Hirzebruch permettent de formuler
la propriété suivante : Soit Iccttl le développement de Maclaurin de la fonction
[log(l — *)/ — t]~n. Les nombres de James U(n, A:) jouissent de la propriété suivante:
Les produits U(«, k)'ocu U(n, A:)a2,..., U(n, k)^^^ sont tous entiers.

log(l - r)T"
x _

n n(3n-5)^2 _ ^(^Xn-J)
2 24 48

Le théorème d'Atiyah et Todd pour k 4 affirme donc:

U(n, 4)• -, U(n, 4)• -^———-, U (n, 4)• — sont entiers.

U(7, 4)- [|, -^ H] entiers => t/(7, 4) multiple de 12.

« 9mod24
^(9, 4)-[f, -¥-, -¥-] entiers =>C/(9, 4) multiple de 8

n \5 mod24
C/(15, 4)-[Y, 25, -Lf^] entiers =>(/(15, 4) multiple de 4

«=17mod24
^(l7, 4)•[¦¥•, ^ï2^, -H^] entiers => 1/(17, 4) multiple de 24

A* 23mod24
1/(23, 4)-[^, i~P, *%£] entiers =>t/(23, 4) multiple de 12

« 25mod24
1/(25, 4)-[^-5-, -^, -4|^.] entiers =>C/(25, 4) multiple de 24
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On obtient donc la tabelle suivante des valeurs de U(n, 3)2):

n (mod
U(n, 3)

n (mod
U(n, 3)

24)

24)

3

2

15

4

4
6

16

3

5

24

17

24

6
4

18

4

7

12

19

6

8
3

20
6

9
8

21

8

10
12

22
12

11

6

23
12

12

2

24
1

13

24

25
24

14
12

26
12

Les valeurs des groupes n2n-2(Un> 3) et 7r2n_2(^,4) sont donc complètement connues.
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2) II est facile de vérifier que U(2m + 1,3) est égal à 24/(m- 1,12). Ceci permet de simplifier
quelque peu la formulation.
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