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Operational Calculus for Two Commuting Closed Operators

J. T. MarTI (EIR, Wiirenlingen)

1. Introduction

Functions of an endomorphism 7 of a complex Banach space X can be defined
through a proper homomorphic mapping @ of an algebra H into the Banach algebra
B(X) of all endomorphism of X. The elements of H are locally holomorphic complex
functions f(4) defined on a neighborhood of the spectrum o(7T) of T. If @ is con-
tinuous and the image of A under @ is T, then @ is unique and is represented by a
Cauchy integral: @(f)=2ni)"'{; f (1) (A=T)"'dA, where I is a suitably chosen
curve in the complex plane. @( 1) is a function of T, and the construction of functions
of T by this procedure is known as operational calculus for bounded linear operators.
The Cauchy formula has been used by DUNFORD [2, 3, 4] and by TAyLOR [10] to
define functions of an endomorphism of X. Such a function could be defined also by
a power series expansion in 7, valid in a neighborhood of ¢(T), and the result is
equivalent to the result obtainable with Cauchy’s formula. However, if 7'is unbounded
and closed, a generalization is possible only by use of the integral formula (TAYLOR
[11], HiLLE and PHILLIPS [7]). Another extension of the theory is the generalization
to functions of more than one variable, which goes straightforward only in the case
of commuting endomorphisms of X. Such functions have been introduced by
SCHWARTZ [8] and WAELBROEK [13], where uniqueness is proven in the last cited work.

The theory presented in this note deals with functions of two (not necessarily
bounded) commuting closed linear operators T; and T, on X to itself. Again, the
functions are defined through a proper homomorphism @ of an algebra H into B(X).
Here H consists of locally holomorphic complex functions f(4,, 4,) whose domain
V is a neighborhood of ¢,(T;)x ¢,.(T,), 0.(T;) being the extended spectrum of 7.
This implies that V is unbounded, if T; or T, is unbounded. In principle, the main
theorem describes the following facts: Provided that @ transforms (A—A4;)"" into
(A—T;)~" for j=1, 2 and for each 1 in the resolvent set of T;,& is unique and has
the representation given by formula (1).

The operational calculus for closed linear operators plays an important role in
the theory of Banach algebras [12, 14], in the spectral theory [4], the theory of semi-
groups [7] and in quantum theory [1]. As an application we shall give a representation
for polynomials in two endomorphisms of X. Furthermore, we derive formulas for
the resolvents of the sum and the product of commuting closed linear transformations
and show that the extended spectrum of the sum (product) is contained in the sum
(product) of the extended spectra of the single transformations.
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2. The operational calculus

Let ¥, and V, be Cauchy domains, open subsets of the extended complex plane
C with a finite positive number of components whose boundaries are nonempty and
are composed of a finite positive number of simple closed rectifiable curves. Let
V=V, x V, be the Cartesian product of ¥; and V, in C2. We denote by yxy the charac-
teristic function of a set X. Let H (V) then be the complex algebra of all functions
f:C*-C which are locally holomorphic in ¥ and vanish in the complement of V
with respect to C2. In H (V) we use the ordinary definition of arithmetic operations.
Zv is the unit element of H (V).

Now let U be a Cauchy domain and X a closed subset of U. Then there exists a
Cauchy domain U’, such that X < U’ and U’ < U [11, Theorem 3.3]. The union I’
of all boundaries of U’, with the usual positive orientation, we call an oriented
envelope of X with respect to U.

Next, let X be a complex Banach space, O (X) the class of all closed linear transfor-
mations with domain and range in X and B(X) the complex Banach algebra of all
endomorphisms of X with identity 7. Let T be an element of O (X) with domain D(T),
spectrum o (7)) and resolvent set ¢(7T). The extended spectrum o,(7) is the set of all
singular points of the resolvent R(4, T) of T in C. By €(X) we denote the class of
all pairs {T;, T, } of operators of O (X)which satisfy D(T;) =« D(T5), T,[D(T)] =
D(T,) and commute on the set {x|xe D(T;), Tyxe D(T5)}. If T, is bounded on X%,
this definition is equivalent to that of M. H. STONE [9, Definition 3]. Then we have

LEMMA 1. Let D(T;) =« D(T,) and T,[D(T;)] = D(T,). A necessary and sufficient
condition that R(Ay, Ty) R(4,, T,)=R(A,, T;) R(Ay, Ty) for each pair {A,, 4,}eo(T))
x o(T,) is that {T,, T,}eC(X).

Proof. If {Ty, T,}eC(X) we have {x|xeD(T)), T;xeD(T,)}={x|xeD(T),
(4 I-Ty)xe D(T3) } =R (4, T)[D(T:)]=R(4, Ty) R(4,, T)(X), since the R(4;, T))
are one-to-one transformations of X onto D(T;). For each xeX

R(A2, T) R(A, T)[(A I=T) (A I=T,) = (A, [ = T2) (A4 1 — Ty)]
X R(Ay, Ty) R(4,, T,) x
= [R(41, T) R(A3, T) — R(42, Ty) R(4y, Ty)] x.

Hence a sufficient condition for the right-hand side to vanish is that T; and T,
commute, i.e. {Tj, T,}e®(X). On the other hand, if the right-hand side is zero, again
since the resolvents are one-to-one, we have (T; T, — T, T;) R(4,, Ty) R(4,, T)x=0.
Thus {T;, T,}e€(X) and this proves the necessary condition, g.e.d.

Finally, we denote by ®(X, V) the class of all elements of €(X) for which
o.(T,) xo.(T,) = V. Based on the preceding definitions we have
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THEOREM 2. For each pair { T, T,}€ ®(X, V) there exists a proper homomorphism
@ of H (V) into B(X) such that

(l) ¢[(l - 'lj)“1 XV(A’D '12)] = R(’lﬁ Tj)’ A¢ Vj9 J = 19 2.

(i) If a sequence f, in H (V) converges pointwise to fe H (V'), the convergence being
uniform on each compact subset of V, then this implies lim,||®( f,)—2@(f )| =0.

(i1i) @ is unique and is defined by

0(1) = £ (0,0) 1+ 5 [ £ G o) R G T)

1
. Jf(oo, 12) R(Ay, T) di, )

J- J- f (A1, 22) R(Ay, Ty) R(4,, T,) dA, dA,,

ryr;

1
+ e,
2ri)?

where I';, j=1, 2 is an oriented envelope of ¢,(T;) with respect to V,, containing A= oo
in its interior if V; is unbounded.

Proof. Since the integrands of (1) are locally holomorphic in Vn[g(T;)x o(T5)]
the integrals exist and are independent of the choice of I'; and I',. Clearly &, defined
by (1), is linear. In order to demonstrate that it is a homomorphism we take f, ge H(V)
and for j=1,2 two oriented envelopes I'; and I'; of o,( T;) with respect to V; such that
the open set bounded by I'; contains I';. Then by (1) with c=(2ni)™7,

2()0@) - 2(/ 5)= 3. 4, @

where

A1—0f[f(/11,00)g(00 ) + f (0, ) g(41, ) = (f g) (A1, )] R(4, Ty) di,

Ay =c f[f(oo 22) g(00, ) + £ (00, 0) g(c0, A) — ( £) (00, A,)] R(Ag, T)

Ay=c’ f(}m ) g1y, ) R(4y, Ty) R(py, Ty) dAy dp,
;1 ;'1'
Ag=¢* f (0, 1;) g(0, t2) R(4,, T2) R(uy, Tp) dd, dp,
;2 ;z'
[
As = [ [ 1 (00, 42) 8041 ) + 1 (i, 0) (a0, 12) + £ (o0, 0) 8, o)
Iy I's

+ f (415 42) (0, 0) = (f 8) (41, 42)] R(A1, Ty) R(4,, T;) d4, dA,
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A= [ [ [ U (s 0) 8t 1) + £ (11 22) 801 o]

Iy Iy I's

X R(/ll, Tl) R(ﬂl, Tl) R(lz, T2) dll dﬂl d/lz

A= [ [ [ U 0 801 22) + £ (s 1) g0, )]

Iy rary

X R(4y, Ty) R(42, T3) R(p,, T;) diy dA, dp,

Ag =c* f f f f f (A1, 43) g (w15 12) R(Ay, Ty) R(A;, T5) R(py, T))

ry I ry ra’

X R(uy, T,) diy dAy dpy du, .

In some terms we have changed the order of integration and used the commutativity
of the resolvents (Lemma 1). By [11, p. 196] we have for j=1, 2 and any he H (V)
as a result of the method of residues

h(u;, -
cj (’i’ A)d,uj=h(ij, )—h(o0,), A;el;
g Hi—4j

and

h(uj’.)
cju-_lj dpj=—h(c0,), A;el;.

J
ry

Using this and the resolvent equation (u;—4,) R(4;, T}) R(py, Ty)=R(4;, T})—
R(p, Ty) we get

g(ula OO)
By — Ay

Ay = f R(hs, T)) £ (b, o0) di, f dus

Iy ry

f(Ay, ©
+c? J- R (ny5 Ty) g(1y, 00) dpy 7(“1““—)‘”1
g o 1~ M

=—A,

and similarly A,= — A4,. In the same manner we obtain

Ag = ¢ f f f [f (A1, 42) g (ug, Az) = f (A1, 0) g1y, A2) = f (A1, 42) g (11, )]

ry ry r,

X R(Ay, Ty) R(uy, Ty) R(4z, Ty) dAy dpy di,,
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hence
~op
Ag+ Ag=¢? ] ff('ln A2) (115 42) R(41, Ty) R(py, Ty) R(Ay, Ty) dAy dpy di,
;1 ry r;
r‘ I
= ¢’ [(f g) (’11’ 12) b i (oo, )»2) 8(11, }»2) - F (}m lz) g(OO, /12)]
ry rp

x R(Ay, T)) R(A,, T,) dA, dA,.

Since analogously

Ay = [ [ 1= 1 (00, 1) g0, ) = 1 (hy ) 8(60, 42) = f (20, 0)

X g(lls '12) - f(}‘l’ '12) g(OO, OO)
+ £ (0, 4;) g(A1, 45) + f (A1, 4;) g(00, 4,)] R(4y, Ty) R(4,, Ty) dAy dA,,

we have A,4+A45=—As— Ag, so that the right-hand side of (2) vanishes and
(/8)=2(f) 2(2).

Next, to prove (i) we write down two well-known relations from the operational
calculus in one variable [7, Theorem 5.11.2]

: f R(L T)) dA; = [1 — z9,(00)] 1 3)

r;

and [11, Theorem 7.4] (after deforming the path of integration)

J

cf(z—a,.)-lzz(xj, T)di,=R(LT), A¢V,. @)
ry
Using equations (1), (3) and (4) we get
¢ [(A = ll)‘l XV(}‘IS Az)] == XV2(°°) R(A, Tl) + [1 - sz(oo)] R(A, Tl) = R(A, Tl)

and

o4 - A)7! 1y (A1s 22)1 = 2y, R(4, To) + [1 = xy, 0] R(4, T2) = R(4, Ty).
From (1) and (3) it is clear that the unit element in the subalgebra ®[H (V)] of
B(X) is

D (1) = {15 + sty [1 = vy 0] + Ay [1 = dyyeo]
+[1 = xvi] [1 = 2y ]} 1
=1,

therefore @ is a proper homomorphism.
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Now we take a pair {y,, pu,} of finite points of C>— V. For ge H(V) we have by (1)
2@)=¢* [ [ 80 1) [0 = 1) (ha = )™ 1= (b4 = 1) 'Rk, T) -

ry rs

- (},2 - ﬂz)—l R(A.l, Tl) + R(Al, Tl) R(Az, Tz)] dll dﬂ.z .

Let f,,e H (V) converge uniformly to fe H (V)on I’y x I',. Thenlim, | ®( f,)— ®(f)| =0,
since I'; x I', is compact and the expression in the square brackets is bounded on
I'y x I'y. This proves the continuity property (ii).

In order to prove the uniqueness of (1) we take a homomorphism of H (V) into
B(X) which satisfies properties (i) and (ii). Then we show that & has the desired
representation (1). Due to (ii) we have in the uniform operator topology
o (f)=Ilim,®(f,), if there exists a sequence f, in H (V) converging pointwise and
uniformly to fe H (V) on each compact subset X of V. But by Cauchy’s formula
we have on X=X, x X,:

f (A1, 42) = f(00,0) + ¢ Mdh +c | — —dp,

Uy — Ay »“2"/12

ry
czf J I (s 12) duy dpt,
r,r'(ﬂl“M)(ﬂz“iz) ?

where I'’; are oriented envelopes of X;ua,(T;) with respect to V; containing A= oo
in its interior if V; is unbounded. By V; we denote the Cauchy domain enclosed by
I';. Since X; U, (T;)is closed and the boundary I'; of V; is compact, the distance ¢;
between X;U0,(T;) and I'; is positive. I'; may be chosen such that the greatest
distance between I'; and the points of I'; is less than imin{d;, 1/M;}, where
M;=sup{||R(4;, T))ll|A;e V;—V,}. Hence there exist suitably chosen sequences of
points pi;y,..., i, =pj, on I'; and v;y,..., v;,=v;, on I';, such that |pu;—p;4_4|—0
uniformly with respect to k for n—oco and |v;;—p | <imin{é;, 1/M;} for all k. To
simplify notation the dependence on n of the points u;; and v;, is not indicated.
Since the integrals are limits of Riemann sums we have for each ¢>0 an m such that
on X forn=m

Hig — Uy k-
If (A Ag) = f (0, 00) —¢ ) 2250 f (g4, )
ik — A
k=1
Y o
P21 — 4,

Z (k= Ba,k-1) (Ba1 — Ba,1- l)f(ulkHuZI) <e

(1 — A1) (21— A2)
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Unfortunately, this approximation for f does not belong to H (V'), so that we have
to move the singularities out of V. But |(v;,—u;)/(v;i.—4;)| <}on X; for each k.
Hence there is an m; such that on X; for n; > m;

- v_]k Mjk)
H i
1( ik~ J) Z(vjk—}'])+1
where L; is the length of I'; and N=sup{| f(4,, 4,)| A,€I'}, 2,€I';}. Thus
| £ (A1, 43) = fu(Ais A) | <3 e+ &%N

on X, where n>max{m, m;, m,} and

2Tme
LN’

oAy, A2) = xv (445 45) {f (00, 0) + ¢ kz——:1 (1 = M1, k=1) f (1 % ©)

n

P " (va1— m22)
<) iyt e G s @ "2‘)2( NEE

i=0

“Z (Hu - #1,k—1) (ﬂzl "Ilz,l—1)f(111k, Hzl)
Ji=1
(Vl Kk My k)i(VZI - Hzt)Aj_}
(Vie — /11)[“("21 - /12)1+1

i,j=0

Clearly f, is a sequence with the required property and by (i) we have in the
uniform operator topology

0() = (2 0) I+ limde 3 (= ,0m) S )

(Vi = ) RO T Z (21— H2,1-1) (0, p21)

X

"M= ip1=

(sz #2) R(vyp, ) + €2 121 (16— My, k-1) (21 — H2,1-1)

-~

X f (i1 Ha,1) Z 1k = #1021 = #20)’ X R(vy 4 T1)" ' Rz Tz)j“},

i, j=0

From the resolvent equation we easily get

5_4:0 (vik - ”jk)iR(ij’ Tj)i+1 = R(.ujk’ Tj) {I- [(ij - #jk) R(ij, Tj)]”+1}
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SO that, since ”(ij""ﬂjk) R(ij, T.',)“ < '}a

B(f) = f (0, ) [+ [ (o) RO T dhy +e [ (0, 42) RO T diy

+c2f ff(,ll,lz)R(Al, T,) R(A;, Ty) dA, dA,

ry ry

and the proof of Theorem 2 is complete.

3. Polynomials, resolvents and spectra of sums and products of operators

In view of an application to polynomials in bounded linear operators we have
the following

COROLLARY 3. Let V; be bounded and let {T, T,}e & (X, V). Then for j=1,2 we
haVC ¢[)~ny(ll, ).2)] = ’T"".
Proof. Since T; is bounded it immediately follows from (1) and (3) that

1
D[ v, A2)] = EEJ‘ A; R(4;, T;) dA;
ry

= —2_11;J‘ [I+T;R(4;,T)]dA;=T;. qed.
r;
For the sum of T, and T, we obtain
THEOREM 4. Let {Ty, T,}€ ®(X, V). Then for each ¢V, +V, we have
O[(A—A —2) " tv(A, 42)] =R(A, Ty + T).
Proof. Clearly (A=A, —4,) " xy (41, 4,)eH(V) if there is a A¢V;+V,. Applying

the method of residues we get by (1)

1
@[(l - Al - 2'2)—.1 XV(A'I’ ’12)] = mj R(}‘la Tl) R(A‘ - '11’ TZ) d;tl . (5)

r,

If V, is unbounded, then, according to our assumptions, ¥, must be bounded and vice
versa. On X we then have
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(}. I"‘ Tl - Tz) f R(Al, Tl) R(A - Al, Tz) X dll

Iy

= [).1 I"‘ Tl +(). - )&1) I— T2] f R(Al, Tl)R(). - A‘l’ Tz)x dll

ry

.-:_-J‘R(A—- A‘l’ TZ)XdAI + J‘ R(Als Tl)xdj’l

ry Iy

=_le(oo)fR(,l— Ay, Tp) x ddy + 2mi[1 = xy, (0)] x

Cy

= 1,(0) [ RGu T xdu+ 2701 = 25, (00)] x

Cy

=2mnix,

where we have used the fact that T; and T, commute with the integral, C, is a posi-
tively oriented circle of sufficiently large radius around the origin, and u has been
substituted for A—4,. Hence the convolution (5) equals R(4, T, + T3), q.e.d.

COROLLARY 5. Let T, or T, be bounded and {T,, T,}€C(X). Then
0.(Ty + T;) < 0.(Ty) + 0.(T>).

Proof. If 6,(T,)+0.(T,)=C the statement is trivial. Otherwise we have for each
complex A¢o.(T,)+0.(T,) a neighborhood ¥V (in the sense of Section 2) of
0.(T)) x0.(T,) such that (A—4;—4,)"'xy(4;, A)eH(V) and the resolvent
R(A, T, + T,) is given by (5). But since A— A, ¢0,.( T,), the integrand in (5) is bounded
on I'; and, since I'; is compact, R(4, T, + T},) is also bounded. Hence A¢o, (T; + 7).
This implies o.( Ty, + T,) = 6,.(Ty)+0.(T,), q.e.d.

In a manner similar to that used in Theorem 4 we obtain for the product of T;
and T,:

THEOREM 6. Let {Ty, T,}e & (X, V). Then for each A¢V, -V, we have
PL(A -4y )~2)—1 Xy (A4, /12)] =

1
- L f R(iy, Ty) R (A, Ty)
Tl

ry

dA
—1—3 =R(A, T, T,). (6)

1

The proof of this theorem parallels that of the preceding theorem. Here we have
to show that on X



96 J. T. MARTI

dA
('l I-T, Tz) J R('ll’ Tl) R(}‘/’ll’ Tz)x _A'l
ry

1

=”:,1 -4 Tz——(;—l— Tz)(Al I—T1)+;T(/11 I- TJ]

1
Iy

dA
x R(A;, Ty) R(AfAy, T,) X 7—‘
1

1 1
ry ry ry

di di
= J‘ R(Al, Tl) X dll —_ J‘—iu! x + AJ‘ R(A/A,l, TZ) X -—i}{

=2nill —yy,(0)]x —2mi[xy, (0) — xv,(0)] x

dA , di
+ v, (0) A j R(2/A, Ty) x _}:; — 2y, (00) 4 J R(AjAy, T,) x 131
C> ' C; :
=2ni[l =1y, (0)]x + xv,-(0) j R(u, T;) x dp = xy, () J R(u, T;) x du,
Ci C,

where I'; is chosen such that it does not contain the point A=0, V| is the Cauchy
domain enclosed by I'y, C, is a sufficiently small positively oriented circle around the
origin, and p has been substituted for A/A;. If x,,(0)=1, then A=0is in V}, V, is
bounded and, according to (3), the first integral in the last expression is 27nix. If
xv,(0)#0, then 1=0 is not in ¥, and the last integral vanishes. Hence the whole
expression equals 2nix and this shows that R(4, T T;) is given by (6).

CoROLLARY 7. Let {T;, T,}€®(X) and let the point A=0 not be contained in the
spectrum of one operator if the other is unbounded. Then ¢,(T, T,) < 0,(T}) 0.(T).

Again the proof is similar to that for Corollary 5 with a few changes in signs.

Remark. Corollaries 5 and 7 have been proved by FOGUEL [5, Corollary 1] for the
special case of two commuting scalar operators whose spectra are finite point sets
in C. More generally, using the fact that there exists a complex commutative Banach
algebra containing 7, T; and T,, Corollaries 5 and 7 for two commuting bounded
linear operators T; and T, on X follow from the GELFAND theory [6, Satz 6 and § 5].
A convolution integral similar to (5) for the resolvent of the sum of two bounded
commuting linear operators has been established by BIANCHI and FAVELLA [1] in
connection with problems in scattering theory.
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