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More Characteristic Classes for Spherical Fibre Spaces

by James Stasheff

The object of this paper is to continue Milnor's compilation of H*(BG; Zp) [2],
which is :

Theorem A. In dimensions less thon 2/?(/7— 1) — 1 the cohomology ring H*(BG; Zp)
is isomorphic to a free commutative algebra generated by the Wu classes q{ and the

Bockstein coboundaries Pq(.

Milnor computes using a Postnikov System for BG. He dénotes by B10'*'11 the

space obtained by killing ail the homotopy groups ni{BSG) for ïàzt.

Theorem B (Milnor). If2^m<p, andr=2(p-l), the algebra H*(B10'"""11; Zp)
is isomorphic in dimensions less than pr 2p(p— 1) to the free commutative algebra on

generators

md

where q corresponds to thefirst Wu class and where km is the p primary component of
the (mr+ \\dimensionalk-invariant. Ifm<p-l, ((m+1)^* jS-rajg^1)km 0.

In the présent paper we extend Milnor's computations, first by Computing
H*(Bi0>mrl; Zp) for m<p in dimensions <2pr and next in this range of dimensions

for m < 2p. The change in dimensions must proceed the change in m in order to com-
pute the ^-invariants. The reason for stopping at level 2pr is partly expository ; certain

new ideas are fairly simple as needed forp^m<2p but might be much more obscure

if lost in the welter of bookkeeping required in higher dimensions.

Theorem 1. For n<2pr, the algebra H*(Bl0'ni; Zp) is isomorphic in dimensions

<2pr to a free commutative algebra. The subalgebra which survives to H*(BG) has

generators which can be obtained by suitable éléments ofthe Steenrod algebra A acting
on generators

q of dimension r if n ^ r
y of dimension pr if n^2r
ex of dimensionpr—l if n^pr—l.

In,proving the theorem, there will be given a spécifie set of generators modulo the

image of later ^-invariants.

Theorem 2. In dimensions <2pr, H*(BG) is isomorphic to a free commutative

algebra on the Wu classes qu their Bocksteins Pqt and certain exotic classes Qe± where 9

ranges over an additive basis 1
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1. Milnor's machine

Our method of attack is to use Milnor's approach as much as possible, feeding in
additional information (such as secondary cohomology opérations) when forced to.
In the hopes that the présent paper does not represent the limits of this approach, we

identify components of the machine that seem conceptually significant.
In broadest outline, Milnor's approach is, inductively, to identify the A>invariant,

compute the action of the Steenrod algebra on it and hence compute the transgression
in the fibring and then compute H* of the total space using the Serre spectral séquence.
The latter step is, for Milnor, always of the following form.

Proposition. Let F-^E-^B be afibration. Assume F connectée, B simply connected,
both with homology offinite type. Let H* (F) andH*(B) befree commutative algebras on

generatorsfh /=1,..., m andbj9j=l,..., n such that z(f^ bii=li..., r and T(/f) 0,

/=r-f-1,..., m. Then H*(E) isfree commutative on generators p*(bi) i=r+ 1,..., n and

ei9i=r+l9...9m such that /*(*?.)=/.. [Toda, 3, p. 105].

Since we areconcernedwith the fibrings K(nm r, m r) -+ i?co> m r] -» BlOf m r), thegenerators
of the fibre are easily labelled in terms of the Steenrod algebra acting on the funda-
mental class. The corresponding non-zero transgressions are helpfully labelled in terms
of the Steenrod algebra acting on the Â>invariant. In the range Milnor computes, the

essence of his argument is that the generating classes which restrict non-trivially to
the fibre at each stage are precisely the transgressions of generating classes in the fibre
at the next stage. Certain exact séquences of Toda are relevant hère. As we extend the

range, we find this remains true most of the time; a major problem is that of keeping
books on the few classes which are not disposed of so neatly. Let us look at Bi0t2rl

in détail.

According to Milnor, the first fc-invariant h2 is (2 ^5l/?-/?^>1) q and the second,

h3, restricts to (30*1 /7-2/J^1) u2 where q is the fundamental class in K(Zp, r) and u2

is the fundamental class in K(Zp9 2r). According to Toda [4; I: Prop. 1.5], if A repre-
sents the Steenrod algebra the séquence Aï^JL-2^^ A-*^!^* A is exact, where the

maps indicate a->a(2^1j8-j5^>l), etc. We compare this with our fibrings by

^îl A

where the vertical arrows are oc->awmm=l, 2, 3, u1 q. Thus generating classes in
£[o,2r] which restrict non-trivially to the fibre K(Zp92r) are the transgressions of
generating classes in K(Zp9 3r) except possibly when the class survives for unstable
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reasons, e.g.

x{0>p-2u2) p&p~xPq - p0>p-lq - P(qp) 0.

Let jbea class which restricts to 0>p~2u1. In dimensions <2pr, we find that
and p&ly restrict to &p~~lu2 and P@>p~iu1 and that thèse are the only classes in
BlOi2rl which restrict non-trivially mod transgression from K(Zp9 3r).

On the other hand, there are classes in K(Zp9 r) which survive to BiOf2rl. Specifi-
cally in dimensions less than/?2r we hâve

J<P~l pjSiS(p-l) (j + 1)

J<P~l
o < j < p - 1

In dimensions <2pr this reduces to

We call thèse classes Wu generators; their relation to Wu classes is given by Milnor
in dimensions <pr and in the remaining cases will be given in § 9. We hâve thus
verified Theorem 1 for Bl0'2rl and listed the generators which survive to j5[O'3r].

3. The inductive step

Considerthe fibring K(Zp, mr)^Bi0>mr^Bl0Am-1)rl for m<p. According to
Milnor, the ^-invariant hmeHmr+1(Bi0'mrl; Zp) restricts to

1)um^1 inK(Zp,(m-l)r). According to Toda

> A

is exact, so in the stable range the generating classes in Bl°'mrl which restrict non-
trivially to K(Zp, (m—l)r) are precisely those in the image of transgression from
K(Zp9 mr). By the stable range hère we mean dimensions less than p(m — 1) r. This
is the standard "stable range mod p" in the sensé of ^-theory for K(Zp, (m — l) r)
since that space is (m — l)r—1-connected. Equivalently, this is the range in which

A-»H*(Zp9(m— l)r;Zp)givenbya-*aw(w_1)r is a monomorphism, and onto a generating

set.

This observation together with the basic Proposition gives Theorem 1 for Bi0*w],

n<(p— l)r. The generators which survive are in fact precisely those already listed
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4. The first exotic class

The next homotopy group after n(p-l)r is not npr but rather npr-1. Gitler and

Stasheff [1] hâve shown the fc-invariant is zéro, i.e. Bi0>pr~l^~Bl0Ap~l)r^x

K(Zpipr — 1). Agenerator in cohomology corresponding to the fondamental class in
K(Zp,pr-l)has been called ex. Thus for B10'^'11, Theorem 1 is true if it is true
forj5[0,(p-l)r]

5. The A-invariant hp

The homotopy group npr is Zp2. We wish to show that hpeHpr + 1(Bi0>pr~l}; Zp2)
cornes from a class which reduced mod/? restricts to P0^lup-^ in K(Zp9 (p — l) r).
Let us go down to Bi0Ap~2)rl and look at p^lhp^v Since hp^1 restricts to

— ^P-\-2p^1) wp_2, P^hp-i restricts to zéro and hence cornes from a primitive
élément in H*(Bi0Ap~~3) r]; Zp). The only primitive éléments are generators and their
y-powers; thèse never occur in dimensions congruent to 2 mod r. (This remark will
continue to be true up to at least dimensionp2r.) Thus P^iihp_1=O. Let Vp be a class

which restricts to ft&xu^. Since Hpr+l(Bi0>pr-u; zp)«jFPr+1(J3[0'(p-1)r]; Zp) via
the projection map, Milnor's proof (3.10) goes through to show Vp can be chosen so

that hp reduced mod/? is the image of Vp.

Because npr is Zp2, we find it necessary to pay attention to higher order torsion.
In particular we are interested in the second order Bockstein P2hp. p2 can be thought
of as a secondary opération based on Pp O. Alternatively we make use of the intégral
Bockstein p for the séquence 0-»Z->Z-»Zp->0 and the intégral secondary Bockstein p2.

That is p2 \/pp when such division by p is possible. Of course p2 is well defined only
modulo p. The mod p secondary Bockstein p2 is just the mod p réduction of P2 and
is well defined modulo p. Since the homotopy groups of BG are ail finite, H* (Bi0> mr] ; Z)
contains no éléments of infinité order. Every élément therefore has non-trivial pt for
some / or is in the image of pt for some i.

The next section will be devoted to Computing p2hp. The reader who wishes to
proceed to section 7 should take our word for it that:

Theorem. In the fibring K(ZP, (p-\)r)-+Bi0Ap-1)r}->Bi0Ap-2)r\ we hâve

6. Computation of p2hp

The following resuit is of some use in Computing secondary Bocksteins.

Proposition. 2>* K(Zp, q)-^Y^>Xbe afibre space inducedby veHq+1(X; Zp). Let
ueHn(X; Zp) be a class such that /?*/}w=0. Let 9 be a stable primary cohomology

opération suchthat6v~PueHn+\X\Zp).Theni* p2p*u~p9iqmoduloi* pHn{Y\Zp).
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Proof.K(Zp2, «)canbe représentée! as a fibre space K(Zp,n)-+K(Zp29 n)-*K(Zp, n)
induced by pin. Since p* Pu O, a map representing u can be lifted to give a map of
fibrings :

Y >K(Zp2, n)%K(Zp, n + \)

X—--+K(Zp,n)
The map p2 is characterized by the commutativity of the triangle. Let w be the induced

map of fibres. From the diagram we see i*p2p*u=Pw. Transgression is natural with
respect to maps of fibrings, so Tw u*Tin u*Pin Pu 0v. On the other hand

t iq v so t (0 iq) 6 v. Thus w — 9 iq pulls back to H * Y; Zp). Now p2p* u *s well defined
modulo i*PH*(Y; Zp). On the other hand we hâve shown pw p0iq modulo

pi*H*(Y; Zp) so we are done.

This resuit may well be known to the practitioners of the art of secondary opérations.
Of course it is true of more gênerai secondary opérations. If p2 is replaced by an

opération if/ based on the relation ay 0 in the Steenrod algebra, then we assume

p*yu 0 and 6v yu and conclude i*\l/p*u oi0iq modulo i*otH*(Y; Zp).
We apply the proposition to K(Zp9 2r)-+Bi0>2rl-^Bl°>rl with u 0>p~lpq. We

conclude i*p2p*0>p-1 pq=p0>p~2fiu2.
In lower dimensions, the torsion is easy to handle. Milnor lists explicit generators

for H*(Bl°*mrl) and we can see they are paired by /?, i.e. as far as generators are con-
cerned: ker/? image p. Thus the first higher order torsion is ^2(^rp)4=0. In BiOt2r} we
hâve y which restricts to &p~2u2 and py which restricts to P&p~2u2. However in
Bi0>2r\ the restriction of the transgression of 0>p~3u3 is -2p0>p~2u2 so that in
Bi0-3r\ py must corne from £[0'r].

Lemma. y can be chosen so that in Bi0'3rl Py can be used in place of 0ip~1 pq as

a generator.
Proof. In BG we hâve the Wu formula pqp=0lp~1Pq1+poly(qi9 Pqi9i<p). We

know that qp must be of the form Ày + fxpet + poly (qi9 Pqi9 /<p). By changing

our choice of y we can assume qp ^y + fiPe1. Since Pqp + 0 or since #p4=0 in BUt

we know X can be assumed to be 1. Thus we hâve

Py ^P~XPqx + polyGZf, pqh i < p). (*)

This establishes the lemma.
We study this relation further. Since in Bi0>2r}, py restricts to p0>p~2u2, this

relation (*) does not hold in #°'2r] but must hold in B[0>3r\ Therefore in Bi0*3rl we
hâve p^p ~1 pqt= —fi poly (qh p qi9 i <p). Since the left hand side is primitive, the right
hand side must be also and therefore is zéro \§ofi&p~1p ql lifts to zéro in i?co'3 r]. Now
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in Bi0t2r* we hâve seen p2&p~lPq restricts to P&p~2pu2. In other words,
is/?timessomething,callitz, whichrestricts to À2fiéPp~2pu2 where k2 is not divisible
byp. For fi0*p~1Pqto lift to zéro in B10'3 r], it must be killed by the transgression ofsome
multiple of P^p~3u3, since there is no other potential assassin. Now P&p~2 Pu2 is
killed by 0>p~ 3 pu3 but there is no intégral class in K(Zp, 3 r which can kill p&p~2pu2
so z survives to Bi0'3rl but its mod p réduction lifts to zéro, i.e. z lifts to p times
something which must restrict non-trivially to the fibre, which is to say to À3 p£P~ 3 p u3
for some k3 not divisible by p.

Lemma. P2&p~mhm restricts to lm-lp^p~m+lPum.l for A#0eZp.
Proof. 0>p-mhm restricts to P^p~m+ium.i, but p^p~m+1um^l transgresses to

-.1 which by induction is non-trivial. Therefore 0>p~mhm is not the
réduction of an intégral class and so p0>p~mhm must be non-trivial. Since P&p~mhm is

zéro, P0ip~mhm must be divisible by p. In this dimension, the image of Bl°'(m~2)rl is
ail of order^Q? times/?2^p~m+1/?„,_! has been killed by /?^)p~m+1wm_1) so theonly
classes which can possibly hâve order greater than p are those which restrict non-
trivially to the fibre, i.e. to Am__lfi0>p~m+1 Pum-t. Since the fibre has no more than
/7-torsion in this dimension, the class in BiOtim"1)rl has order at most/?2. Therefore
P20>p~mhm is non-zero and restricts to Àm_1p^p~m+lPum^v

For m =/?, we hâve a slight modification due to the fact that hp is a class of 2?co> pr ~1],

not Bi0Ap~1)r\ We can still show P2VP restricts to Àp^lp0>lup.l. Since some choice
of Vp lifts to hp, p2hp is the image of P2 Vp.

7. H*(Bl0>nl) for w (p-l) r andpr-1

So far we hâve used Toda's exact séquence for the Steenrod algebra and the fact
that the Steenrod algebra approximates H*{Zpi n; Zp). What of H*(Zp2, n; Zp)l The
description is formally the same as for (Zp, n) except that for every élément 0 of the
Steenrod algebra such that 0Pin is a generator of H*(Zp,n; Zp), the class Op2in

appears as a generator of H*(Zp2, n; Zp), which thus stably is additively isomorphic
)p2. Consider

H*(Zp2,pr)^H*(Zp9(p - 1) r)^H*(Zp,(p - 2) r)

where the vertical maps are as before except for the first which is (<xl9 <x.2)^>0L1ipr —

l/àp-1(<x2p2ipr). Our computations of hp_u hp and p2hp give commutativity of the

diagram. The top line is exact by Toda. [There is a crucial misprint in Toda but the
dual séquence (Proposition 1.1) is correct and gives the above.] We conclude that in
the stable range (i.e. dimension less thanp(p— 1) r) the generators in Bi0'(p~1)r] which
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restrict non-trivially to the fibre are the transgressions of generators in K(Zp2,pr).
Thus we hâve verified Theorem 1 for « (/? — 1) r, and the surviving generators remain
the same. Since the À>invariant for npr-i is trivial, we easily check Theorem 1 for
n=pr— 1.

8.

In BiOt(p~1)rl we can compute directly that the restrictions of &l P2hp and

ùp-iP^hp agrée. Milnor's remarks again apply to show (^l p2-^P-iP^1)hp 0.

We set Vp+1=0*ip2up-Xp-lp0>îup and would like to show that hp+l restricts to a

non-zero multiple of Vp+1.

Unfortunately the next homotopy group is not 7r(p+1)r but rather n(p+ 1)r_2. If P is

a generator of npr-x and at is a generator of the stable group nn+r_1(Sn)9 then

n(p+1)r-2(BG) îs generated by Poct [4, II: Theorem 4.15]. Since oct is detected by 0*ly

thefc-invariantfor 7T(p+1)r_2 must restrict to ^^ in^(Zp,/?r—1). [A direct cohomo-
logical argument can be derived from Toda.] Since H*(Bl°'pr^) has no cohomology
in dimensions congruent to — 1 mod r except for classes involving el9 &Ye± and qex

are the only classes in dimension (/?+1) r— 1. Since the /^-invariant is primitive and

et is, the /c-invariant must be &lev
Modulo classes which restrict non-trivially to K(Zp2,pr) or K(Zp9 (/?+1) r — 2),

H*(Bl0Ap+l)r~2) is freely generated by the images of generators of H*(Bi0>ip~i)r*)
and classes corresponding to an additive basis of (A/A&*1) ev

Now let us look at hp+1, the fc-invariant for n(p+l)r.
Lemma. hp+1 can be used as a generator of H*(Bi0yip+l)r~2^) in place of a class

which restricts to Vp+i.
Proof. We apply Milnor's argument (3.10) after first noting that

H(p+1)r+1(K(Zp,(p+l) r-2) 0 so that hp+1 is in the image of Bl0>pr\ If hp+l were
not the image of Vp+i for some Fp+1 which restricts to {£?1 Pi^^-p-iP^1) uP-> &

would be the image of a primitive class in BlOtPr~11. The only such classes are
P&1 pex and possibly polynomials in P^y and the other Wu generators. Since

hp+l is in dimension Cp+1) r+1, every term of the polynomial must contain a

bockstein. In2?(JMp+1)T~1\ Bocksteins are zéro in dimensions <(/?+l) r since they
are zéro in 2^ and in dimension (p +1) r as observed by Milnor. Milnor's argument
(Lemma 3) again shows hp+i does not go to zéro in Bl£Ap+l)r~u so the lemma
follows.

To compute H*(BiOf pr}), we turn to Toda's exact séquence

and conclude in the stable range that the generators in Bi0>prl which restrict non-
trivially to K(Zp ,pr) are the transgressions of generators of K(Zp, (p+1) r). From
hère on the argument is very similar to Milnor's for BL0'mrl9 2^m<p, simplified by
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being in the stable range and by using Toda's séquence. In gênerai for 2^m<p, hp+m

restricts to some non-zero multiple of

- (m - 1)fi0*) up+m^ in K(Zp,(p + m - 1) r).

Finally we consider the exo tic group n2 p r _ 3 generated byppt where /? i e 7tp r _ 2 + „ (S"1)

corresponds to p. pt is detected by a secondary opération cp based on the relation
@>p-l0>1 =0. Since &xe± has been killed by n(p+l)r^2, (pet is defined and is the only
primitive class in this dimension (congruent to — 1 mod r). It is therefore the ^-invariant.

From Toda's exact séquence [4; I: Prop. 1.6]

A->A

we can conclude that in dimensions less than 2pr, H*(BlOf 2 pr~3]) is freely generated by

0>{q i<p-\ 0>l0>xq l^
and {0e{\ where 6 runs over an additive basis of A/A&*1. Since the next homotopy
group is n2pr, the same statement holds for H*(BG) in dimensions <2pr.

9. Wu classes

Theorem 2. In dimensions <2pr, H*(BG) is freely generated by the Wu classes qi9

their Bocksteins Pqt and {6et} where 0 runs over an additive basis of A/A&*1.
Proof. As Milnor has observed, qj+1 can replace &*jq as a generator for y <p — 1.

By the same reasoning, qi+j+i can replace 0*0*1q for j<p—\ since 0tlqj+l
(—iy(O'+n(p-i)-i^ ^.+j.+ 1 + polynomial in lower qk and the binomial coefficient is

non-zero for pj^i<(p—l)(j+l), j<p—\. This gives us^rfc for l^k^p—\ and

p + 2igk^2p-\. The Wu class qp is independent of qt for i<p in Bv and hence must
be of the form ky + poly(^f, Pqi9 Pe^ with A 4=0, so qp can replace y. Again 0*iqp qp+i
modulo lower qk so qp+1 can be used in place of 0*1 y. Similar computations show that
0>l0*jpqt can be replaced byPqi+j+ x so as to give us Pqkîor\^k ^P and/? + 2 ^ k ^ 2p.
The remaining pqp+i appears to replace P0*vy.

10. The case/? 3

Certain modifications are necessary when/? 3. The computation ofH* (Bi0> 2 r] ; Zp)
is altered because pV3 0 and j82F3 must be used instead, but the gênerai remarks
about hp still apply and the classes y, 0fly9 P&xy appear just as for p>3. The results

are isomorphic.
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