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Uber die Wachstumsordnung eines linearen Systems von

Differentialgleichungen mit ganzen Funktionen als Koeffizienten

Walter Hengartner, Zurich

Einleitung

Dièse Arbeit befasst sich mit linearen Systemen von Differentialgleichungen 1-ter

Ordnung

W; (1)

Dièses System besitzt genau n linear unabhângige Lôsungsvektoren. Es existiert somit
zu jeder «-reihigen quadratischen Koeffizientenmatrix A eine w-reihige quadratische
regulâre Matrix W (d.h. die Déterminante verschwindet nicht identisch) mit

W' _ A W O\VV — /% VV \L)

Jeder Lôsungsvektor von (1) ist eine Linearkombination der Spaltenvektoren von W.

Die lineare Differentialgleichung

ist équivalent dem System (1) mit

k 0

0 1 0....
0 0 10.

an-n-lj »

(3)

und wir sprechen dann von einem Wronskischen System.
Im folgenden sind die Elemente der Koeffizientenmatrix A komplexwertige ganze

Funktionen einer komplexen Variabeln. Wir sprechen von A als einer ganzen Matri-
zenfunktion. Dann ist àuch jede regulâre Lôsungsmatrix von (2) eine ganze Matrizen-
funktion.
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Sind die Koeffizienten eines Wronskischen Systems Polynôme, so ist nach Unter-
suchungen von Valiron [4] und Wittich [5], [6], [7] das allgemeine Intégral von (3)
eine ganze transzendente Funktion. Ihre Ordnung ist positiv und rational. Dièses
Résultat kann nicht auf das System (1) verallgemeinert werden, demi die Gleichung

besitzt nur Lôsungen von der Form

wo C eine konstante 2x2 Matrix ist. Ist anderseits A eine nxn Matrix ûber dem

Ring der Polynôme in z und Weine transzendente Lôsung des Systems (1), so ist jedes
transzendente Elément wik von W vom Mitteltypus einer rationalen Ordnungk^\/n.

Besitzt ein Wronskisches System (3) mindestens einen transzendenten Koeffizienten

ak, so ist nach M. Frei [1] das allgemeine Intégral von unendlicher Wachstumsordnung.

Insbesondere gilt fur die Wachstumsordnung X der allgemeinen Lôsung von
(3) die Beziehung

A (log T (r, w)) max À (ak). (4)
k

Ueberdies ist es M. Freï gelungen, eine obère Schranke fur die Anzahl linear un-
abhângiger Lôsungen endlicher Ordnung anzugeben. Auch dièse Resultate sind, wie

wir zeigen werden, fur lineare Système (1) nicht gûltig.
In der vorliegenden Arbeit vergleichen wir mit Hilfe der Werteverteilungslehre

von R. Nevanlinna [3] das Wachstum der Koeffizienten mit dem Wachstum der

Lôsungsvektoren des Systems (1). In einem ersten Paragraphen ûbertragen wir den

Begriff der Wachstumsordnung auf meromorphe Vektor- und Matrizenfunktionen.
In § 2 betrachten wir lineare Système, deren Koeffizientenmatrix eine beliebige ganze

Matrizenfunktion ist. Die Sâtze 2.1 und 2.2 sind Verallgemeinerungen von Resultaten,
die M. Frei [1] fur lineare Differentialgleichungen bewiesen hat. Setzen wir von der

Koeffizientenmatrix A voraus, dass die aik mit i<k-\ identisch verschwinden, so

liefert unser Hauptresultat (§ 3) eine Aussage ûber die maximale Anzahl linear unab-

hângiger Lôsungsvektoren endlicher Ordnung. Satz 3.2 ergibt ûberdies eine untere

und obère Schranke fur das Anwachsen einer regulâren (d.h. mit nicht identisch ver-
schwindender Déterminante) Lôsungsmatrix W.

Einen Teil meiner Ergebnisse habe ich schon 1965 in [2] verôffentlicht.

An dieser Stelle spreche ich meinem hochverehrten Lehrer, Herrn Prof. Dr.
A. Pfluger fur sein wohlwollendes Interesse und fur seine wertvollen Anregungen

wâhrend der Ausfûhrung dieser Arbeit meinen verbindlichsten Dank aus.
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§ 1* Die Wachstumsordnung meromorpher Vektor- und Matrizenfunktionen

Es sei w eine in der z-Ebene meromorphe Funktion: z^w(z). Die Schmiegungs-
funktion m der Funktion w ist definiert durch

(1,1)

0

Es bezeichnet n(t, w) die Anzahl Pôle von w im abgeschlossenen Kreis |z|</.
r
Ç n(t,w)~ n(0,w)AfZ_Li_i</f + w(0, w)-log r (1,2)

o

definiert die Anzahlfunktion der Pôle von w. Die charakteristische Funktion T von w
ist gegeben durch

T(r9w) N(r,w) + m(r9w). (1,3)

Fur eine ganze Funktion w ist

T(r,w) in(r,iv). (1,4)

1°^^w) (1,5)
logr

ist die Wachstumsordnung der meromorphen Funktion w, d.i. die Wachstumsordnung
ihrer charakteristischen Funktion T.

Im folgenden werden einige Eigenschaften der oben definierten Grôssen zusammen-
gestellt.

a) Fur T und m gelten die Ungleichungen :

T (r, wx + w2)^T (r, wx) + T (r, w2) + O (1)

T(r,wl-w2) < T (r, Wj) + T (r, w2)

T(r,l/w) <T(r,w)-f 0(1), falls w^O (1,6)

m (r, wt + w2) < m (r, Wj) + m (r, w2) + O (1)

m (r, wt • w2) < m (r, wt) 4- m (r, w2)

b) r(r, w) ist eine mit r strikte wachsende und in log r konvexe Funktion, ausser

es sei w eine Konstante.
c) Aus

folgt
(1,7)
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und daraus

sowie

a(wi ± w2) 2(w1)

A(w1-w2) A(w1), fUr A(w1)>A(w2), w2^0.
(1'9)

d) Fur die logarithmische Ableitung von w gilt

m(r,w7w) O(log(r-r(r,w))), (1,10)

wenn r ausserhalb einer r-Menge Ar9 auf der jAr rk~l dr9 k^ 0, endlich ist, gegen un-
endlich strebt.

Ist w von endlicher Ordnung, so gilt:

m(r,w'lw) O(logr) fiir aile r,r~>oo. (1,11)

e) Ist w' die Ableitung von w, so gilt

2(vv') A(w). (1,12)

f) Der erste Hauptsatz der Nevanlinna'schen Théorie [3] lautet: Fur aile Kon-
stanten a ist

T(r, w) JV(r, l/(w - a)) + m(r9 l/(vv - a)) + 0(1) (1,13)

g) Ist w eine ganze Funktion und

M (r, w) max | w (z)|,
\z\=r

so gilt

und

T(r,w) <log+ M (r, w) ^ T(R,w), fUr r</?,

log log M (r, w)
A(w) limsup - *—?—1.L i. (1,14)

logr

Nun betrachten wir /î-tupel (ai,...,an) von Funktionen «!,..., an, die in der z-
Ebene meromorph sind, und nennen sie meromorphe Vektorfunktionen a. Wir
betrachten ferner nxn Matrizen A (aik) ûber dem Ring der meromorphen
Funktionen (die Elemente aik sind in der z-Ebene meromorphe Funktionen) und nennen sie

meromorphe Matrizenfunktionen. Ist die Matrix regulâr, d.h. die Déterminante

AA(z) verschwindet nicht identisch, so sprechen wir von einer regulâren Matrizen-
funktion. Es existiert dann die inverse Matrix ^t"1, die wieder meromorph ist.

Définition 1.1: Die Wachstumsordnung eines meromorphen Vektors
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a (au a2,..., art) resp. einer meromorphen Matrix A (aik) wird definiert durch

À (a) max A(ak)

(11

Wird die charakteristische Funktion T von A durch

T(r,i) maxr(r,^) (1,16)

definiert, so gilt analog zu (1,5)

1^T^l). (1,17)

Sind die Komponenten von a resp. die Elemente von A ganze Funktionen, und setzt

man
M(r,a) max max |ak(z)|

\z\=r k

M(r9A) max max |aifc(z)|,
|z|=r i,k

so gilt entsprechend (1,14)

3/_. r log log M(r, a)
A (a) hmsup ——

logr
x log log M (r, y4)

X{A) limsup-^- i6—^^ ;. (1,18)
r->oo logr

Fur meromorphe Matrizenfunktionen folgt aus (1,8) und (1,15)

a(A-B) < max

aus (1,9) und (1,14), fur À(A)>A(B),

X{A±B)-X{A)
A(A-B) k{B-A) À(A), falls B regulâr ist. v ' ;

Hilfssatz 1.1: Die Wachstumsordnung einer regulâren meromorphen Matrix A

ist gleich der Wachstumsordnung ihrer inversen Matrix A'1.
Beweis: Sei A (aik) regulâr und meromorph, und sei (Aik) die zu A adjungierte

Matrix, d.h. A~1'A{A) {Aik). Dann folgt aus (1,6), (1,8) und (1,15):

maxA(a,k)
i,k

Da A zu A'1 invers ist, folgt
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und damit

Définition 1.2: Unter r(A) einer meromorphen Matrix A verstehen wir die maximale

Anzahl linear unabhângiger Linearkombinationen endlicher Wachstumsordnung,

gebildet aus den Spaltenvektoren von A.
Âquivalent zur Définition 1.2 ist
Définition 1.2': Es sei Vm der durch die Spalten von A erzeugte w-dimensionale

Vektorraum tiber dem Kôrper der komplexen Zahlen, O^m^n. Unter r(A) verstehen

wir die Dimension des durch die Vektorfunktionen endlicher Ordnung gebildeten
Unterraumes Ur von Vm9 O^r^m.

Zu Vm und Ur gibt es einen Unterraum Wj von Vm mit

Vm=Ur®Wj und j m-r.
Da Wj keine nicht identisch verschwindende Vektorfunktion endlicher Ordnung ent-
hâlt, gilt

Hilfssatz 1.2: A sei eine regulâre meromorphe Matrix und besitze j
Spaltenvektoren, von denen jede nicht triviale Linearkombination von unendlicher Wachstumsordnung

sei. Dann gilt
r(A)^n-j.

Hilfssatz 1.3: Sind A und B regulâre meromorphe Matrizen, und ist die

Wachstumsordnung von B endlich, so gilt

r(B-A) r(A).

Beweis: Seien âl9â29...,ân die Spalten von A und cuc29...,cn diejenigen von
(B-A). Dann gilt fur aile i:

Nach Hilfssatz 1.1 ist À(B) À(B-1)<oo, und daher gilt nach (1,8) und (1,15)

i 1,2,..., n.
Also ist

r(B-A) r(A).

§ 2. Die Wachstumsordnung der Lôsungsvektoren eines linearen Systems

mit ganzen Funktionen als Koeffizienten

Es sei A eine n x n Matrix ûber dem Ring der ganzen Funktionen, d.h. die Elemente

aik der Matrix A (aik) seien ganze Funktionen; wir sprechen von A als einer ganzen
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Matrizenfunktion. W=(wik) sei eine regulâre Lôsungsmatrix des linearen Systems

W'(z)=*A(zyw(z), d.i.
n

</(*) I <iik(z)'Wkj(z), ï 1,2,...,«, j l,2,...,n. (2,1)

Jeder Lôsungsvektor w des Systems (2,1) ist eine Linearkombination der Spalten-
vektoren von W. Ist A ganz transzendent, d.h. ist ein Elément von A ganz transzen-
dent, so braucht W, im Gegensatz zu einem Wronskischen System, nicht von unend-
licher Wachstumsordnung zu sein.*) Aus (1,12), (1,19), Hilfssatz 1.1 und der Relation
A(z) =W'{z)W-x (z) folgt aber

(2,2)

Wie das folgende Beispiel (2.1) zeigt, kann das Gleichheitszeichen angenommen
werden.

Beispiel (2.1): Zur Koeffizientenmatrix

W(z)

eine regulâre Lôsungsmatrix von (2,1).
Eine obère Abschâtzung fur das Anwachsen einer regulâren Lôsungsmatrix W

des Systems (2,1) erhalten wir aus den Ungleichungen

max|w-y(z)| < n-max|alJk(z)|-max|wJk/(z)|

resp.
und

M(r9 W')^n-M(r,A)- M{r, W)

d

dr
Es gilt

0 < d log M(r, W) < n-M(r9A)'dr9 fur aile r > 0. (2,3)

Durch Intégration folgt unter Yerwendung des Maximumprinzipes fur aile R>0 die

Ungleichung
log M(R,W) < n-M(R,A)'R + 0(1). (2,4)

Ist A nicht konstant, so ist M(R, A) nicht beschrânkt, und dann folgt aus (2,4) fur aile

*) Siehe Einleitung.
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genûgend grossen R die Ungleichung

loglogM_(«L»0< _logR_
log M(R, A) ^ log M(R,A)

oder

log log M(R9 W)^(K + o(l))-log M(R,A), K<oo, (2,5)

fur aile genûgend grossen R. Ist A transzendent, so kann K=l gewàhlt werden. Es

folgt aus (2,4)

Satz 2.1 *): Ist A eine ganze n-reihige Matrizenfunktion, so gilt fiir jede regulâre
Lôsungsmatrix W des Systems (2,1) die Ungleichung

insbesondere gilt die Abschâtzung

Es folgen einige Resultate ûber die Wachstumsordnungen einzelner Lôsungs-
vektoren des Systems (2,1).
Die Hauptunterdeterminanten von A, die Déterminante von A nicht inbegriffen, seien

in einer beliebigen Art angeordnet und mit dj(A) bezeichnet, und es sei w (w1? w2,
wn) ein nicht trivialer Lôsungsvektor des Systems (2,1). Dann besitzt das homogène

lineare Gleichungssystem

t [«ik-KM)5|Jwt= t bikwk 0, f l,2,...,n, (2,6)
K=l K=l

eine nicht triviale Lôsung. Ist die Komponente Wj{z) des Losungsvektors >v identisch

Null, so lautet diey-te Gleichung:
ii

Die bik(z) sind in der z-Ebene meromorph, und die Déterminante ^d(^) der Matrix
B=(bik) ist identisch Null. Daraus folgt

a(b)=(- îr-nw/w,) +£/»,- n w*d+¦¦¦ +
i ht=l i±hi

+ I /», *,...*,- Il W/W0+-+ (2,7)
hi<ti2<"<hr iïhi,ti2,...,hr

wo dicfhih2 hrbis auf das Vorzeichen Hauptunterdeterminanten von A sind.

*) Satz 2.1 ist eine Verallgemeinerung eines Résultâtes von M. Frei [1] S. 205.
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Hat der Lôsungsvektor w endliche Wachstumsordnung, so folgt daraus gemâss

(1,6) und (1,11) fur die Schmiegungsfunktion m die Ungleichung

m (r, A (A)) < 2n • max m (r, ds (A)) + 0 (log r) (2,8)

und gemâss (1,4) und (1,7)

X(A(A))^X(dj(A)),
fur mindestens ein y.

Dies ergibt

Satz 2.2: ht die {endliche oder unendliche) Wachstumsordnung der Déterminante

von A grôsser als die Wachstumsordnungen aller ihrer Hauptunterdéterminanten dj{A),
so ist jeder nicht triviale Lôsungsvektor des linearen Systems (2,1) von unendlicher

Wachstumsordnung.
Aus (2,7) folgt ûberdies

Satz 2.3: Es sei die {endliche oder unendliche) Wachstumsordnung einer Haupt-
unterdeterminanten von A grôsser als die Wachstumsordnungen der ubrigen Hauptunter

determinanten von A und der Déterminante von A selbst, und es sei w(z) ein

Lôsungsvektor endlicher Ordnung des Systems (2,1), der keine konstanten Komponenten
enthâlt. Dann existiert eine Komponente wp von vv, die unendlich viele Nullstellen besitzt,
und es gïlt ûberdies

limsup n (r, l/wp) - n (r, l/w'p) oo
r-*oo

Den Beweis fûhren wir indirekt. Es sei w{z) ein Lôsungsvektor von (2,1) mit
folgenden Eigenschaften :

a) Die Komponenten Wj von w sind von endlicher Ordnung und nicht konstant,
b) es gilt \n{r, l/wj)-n(r9 l/w,)|<J£fûr aile r>0 und7=1, 2,..., n.

Nach dem ersten Hauptsatz der Théorie der meromorphen Funktionen und nach

(1,11) gilt
m{r9WjlWj) O(logr)

und

m{r,Wjlw'j) 0(log r).
Es sei nun

X {dm {A)) > max [A (A {A% X {dj {A))\ fur aile jïm.
Wird die Gleichung (2,7) nach dm{A) aufgelôst, so erhâlt man aus (1,6)

m (r, dm {A)) < 2" • max [max m (r, dj {A)), m (r, A {A))] + 0 (log r),
j*m

und aus (1,4) und (1,7) die Ungleichung

X {dm {A)) < max [max X {dj {A% X {A {A))],
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die zu den Voraussetzungen des Satzes im Widerspruch steht. Ein weiteres Résultat
ûber das Wachstum der Lôsungsvektoren gibt

Satz2.4: Es besitze jede Spalte von A{z) ein nicht identisch verschwindendes

Elément aim(z) mit i^m. Hat ein Lôsungsvektor w die Ordnung À(w)>A(A), so haben

mindestens zwei Komponenten von w die Ordnung A(w).
Beweis: Sei ajm(z)^O undj^m. Die Gleichung w'j Yjkajk wk nacn wm aufgelôst

ergibt
wm - [ Z ajk ™k - w}] • l/ajm.

Daraus folgt gemâss (1,6)

T (r, wm) ^ T (r, w}) + £ T (r, wk) + S T (r, ajk) + 0(1),

daraus

T(r, wj < 2n-max[T(r, w}), max T(r,wfc), max T(r,ajk)'] + 0(1),

und zusammen mit (1,7)

A(wm) ^ max [a(w}), max A(wfc), max À(ajk)~].

Wegen (1,12) und j^m, ist dann

A(wm) ^ max [^(^4), max A(wfc)].

Dièse Ungleichung gilt nach Voraussetzung fur aile m. Aus À(w)>À(A) folgt dann
die Behauptung des Satzes.

Satz 2.5: Gibt es filr A ein Indexpaar (j, m) mit

Kajm) > Hajk) fur alle ^m'
so ist fur jeden Lôsungsvektor w (wl9 w2,..., wn), dessen m-te Komponente wm nicht
identisch verschwindet, die Wachstumsordnung grôsser oder gleich der Wachstumsordnung

von ajm.
Beweis: Die Gleichung w) Y^kajkwk nacn ajm aufgelôst ergibt

ajm - [ E ajk Wfc - W}] • 1/Wm,
kïm

und man erhâlt analog zum vorangehenden Beweis

À(ajm) < max [A(w}), max À(wk), max Â(ajfc)].

Aus A(w)) A(wy) und der Voraussetzung des Satzes folgt dann

À(ajm) ^ max À(wk) A(w).
k

Die Anwendung der Sâtze 2.2 und 2.5 auf eine lineare Differentialgleichung w-ter
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fûhrt zu
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(2,9)

Satz 2.6: Vbersteigt die Wachstumsordnung eines Koeffizienten am(z) jene der

ubrigen Koeffizienten, so ist jedes partikulâre Intégral w(z) von (2,9) mit endlicher

Wachstumsordnung entweder eine ganze transzendente Funktion mit unendlich vielen

Nullstellen und mit X(w)^À(am), oder w(z) ist ein Polynom vom Grade kleiner n.

§ 3. Hauptresultat

Fur ein Wronskisches System hat M. Frei [1] folgenden Satz bewiesen:

Wenn bei einer linearen Differentialgleichung «-ter Ordnung mit ganzen Funk-
tionen als Koeffizienten n_x

w<w> £ ak-w(k)
k=0

die Wachstumsordnung eines Koeffizienten am(z) die Wachstumsordnungen der
Koeffizienten ak(z) mit k>m ûbersteigt, so existieren hôchstens m linear unab-

hângige partikulâre Intégrale von endlicher Wachstumsordnung.
Wir werden im folgenden dièses Résultat auf solche lineare Differentialgleichungs-

systeme

(2,1)
k=l

verallgemeinern, wo die Koeffizienten aik(z) fur i<k— 1 identisch verschwinden, die

Koeffizientenmatrix also die Gestalt

Pi
s2

an-l,2
<*n,2

0

Pi 0

n-1 Pn-l
(3,1)

hat; dabei sind die s^z),p^z)und aik(z)mit i>k ganze Funktionen endlicher Ordnung.
Es werden zwei Hilfssâtze vorausgeschickt. Aus der Gestalt der Matrix (3,1) folgt

unmittelbar

Hilfssatz 3.1 : Ist im System (2,1) die Matrix A von der Form (3,1) und ist keinpt
identisch Null, so besitzt jeder nicht triviale Lôsungsvektor w (w1? w2,... wn) eine

nicht identisch verschwindende erste Komponente wt.
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Hilfssatz 3.2: Es sei A eine Matrix von der Form (3,1), und es sei kein pt identisch
Null. Ist iï=(uu w2>- -¦> un) e*n nicht trivialer Lôsungsvektor von (2,1), so gilt fiir aile

m=l, 2,..., n— 1

(- l)m>m+1/Ml)* f[ Pj Det[aJjk - (u'JuùÔh, î,fc 1,2,... m] (3,2)

Wir bezeichnen die rechte Seite kurz mit

Der Beweis wird gefuhrt durch vollstândige Induktion nach m.

a) Aus (2,1) erhalten wir fur m= 1

6i{A,û) - pl-u2lui st - tii/ii!.
b) (3,2) gelte fur m= 1, 2,..., A:— 1. Dann gilt sie auch fur m fc. Die Entwicklung

der Déterminante Qk(A, û) nach der letzten Zeile ergibt*ïïund man erhâlt nach der Induktionsvoraussetzung

Qk(A,u) [(- l)*-1 .(1/uO-*fl Py]'[(s* " «i/«»)«* + 'l «*»•«»]
J-1 ft=l

Wir bezeichnen die (n +1 —j) Hauptunterdeterminanten von der Form

1

"- Pk 0 0

s*+i Pk+i 0 °

mit hjk,j=l, 2,..., n, ^=1, 2,..., /i+l—y, und setzen

(3,3)

(3,4)

Wird hok(A) O gesetzt, so lautet das Hauptergebnis dieser Untersuchung

Satz 3.1: Es sei A(z) eine Matrix von der Form (3,1). Wenndie Wachstumsordnung

eines Hm(A) die Wachstumsordnungen der hjk(A) mit j<m und k=l, 2,..., n+l-j
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ubersteigt, so besitzt (2,1) hôchstens n — m linear unabhângige Lôsungsvektoren von
endlicher Wachstumsordnung.

Beweis: Im Falle m= 1 gilt der Satz allgemein, d.h. auch fur Matrizen A, die nicht
von der Form (3,1) sind. Denn ist die Spur von A(z) eine ganze transzendente Funk-
tion, so wird die Déterminante von jeder regulâren Lôsungsmatrix W{z) des Systems

(2,1) von unendlicher Wachstumsordnung. Es existieren somit hôchstens n—\ linear
unabhângige Lôsungsvektoren, die von endlicher Ordnung sind.

Fur m n reduziert sich Satz 3.1 auf Satz 2.2, da bei Matrizen von der Gestalt (3,1)
jede Hauptunterdeterminante vom Grad/ durch ein Produkt der hik(A)mit i^j dar-
gestellt werden kann.

Es verbleibt also, den Beweis zu fûhren fur 1 <m<n, und dies tun wir zunâchst
fur den Fall, dass kein pt(z) identisch verschwindet. Wir beschreiben vorerst einen

Reduktionsprozess von n auf n — 1.

Es sei u (u1, u2,...9 un) ein nichttrivialer Lôsungsvektor von endlicher Ordnung
und W eine regulâre Lôsungsmatrix, die û als ersten Spaltenvektor enthâlt. Nach
Hilfssatz 3.1 ist w1(z)^0. Daher hat die Matrix

(3,5)

Setzen wir

so ist V von der Form

«1

tnor]

l/«i
-«2

0
1

0

o

0

0

0

0

1

3he Matrixfunktion

/«i

F

0
1

0

0

0

0

0

0

0

1

0 v12

V

(3,6)

(3,7)

(3,8)

Jnnj
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Aus W'^AWfolgtdann
V' U'^AU- U')V.

Dies ist ein lineares System fur V mit der gegebenen Matrix

B= \J-\AU- l/'),
und eine kleine Rechnung ergibt

0 a12/ui al3lui
0

0

73

(3,9)

(3,10)

(3,11)

mit
p29 0

53, p3

0

0

an3,

(3,12)

Die Matrix BY ist wieder von der Form (3,1), ihre Elemente sind aber jetzt mero-
morphe Funktionen.

Setzt man analog

V
0

0

so genûgt die meromorphe Matrizenfunktion Yt dem System

(3,13)

(3,14)

wo Yt und Bt nur noch n — 1 reihige Matrizen sind und Bx wiederum von der Form
(3,1) ist.

Ferner ist

»ir= Ê(fli*/«iKr, r 2,3,...,n, (3,15)

und daraus lassen sich die i;lr mit Hilfe einer Lôsungsmatrix Yt von (3,14) durch
Intégration berechnen.

Wir werden nun die analog zu (3,3) fur Bi definiertenhjk(B1)J=l9 2,...9n-l und

k=2, 3,...,«+l-j, durch die hjk(A), j=l, 2,..., n und k=l, 2,..., «+1-J, aus-
drûcken. Aus (3,12) folgt fûry=l, 2,..., n-2 und /:>2

hjk(Bl) hjk(A). (3,16)

Ist â: 2, so erhâlt man durch Entwickeln der Déterminante hj2(B^nach der ersten
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Zeilefûry=l,2,...,«-1

hj2(Bi) hj2(A)+ £ Pl> p2 Pk-iiik+JuJi- lf-hj-kt2+k(A) +

+(-iy-p1-p2-Pj(uj+1iul), 7 1,2 n-i. (3>17)

Hilfssatz 3.2 ergibt

MB0 hJ2(A) + £ et(^iî)-^_k,2+(t(A) + QMiO-

Entwickelt man die Determinanten Qk(A, iï) analog zu (2,7), so erhâlt man

hJ2(B,) fcJ2(4) + *,!(^) + P[(uj/ti,);fcrà(X), r < f] *). (3,18)

Zwischen den zum System (2,1) und den zum um 1 reduzierten System (3,14)
gehôrigen Hj besteht die Beziehung

Hj(Bt) Hj(A) + Pl(u'ilui);Kk(A),r<n9 j 1,2,...,n - 1, (3,19)

Da nach Voraussetzung der Lôsungsvektor û von endlicher Wachstumsordnung ist,
folgt fur die maximale Anzahl linear unabhângiger Linearkombinationen endlicher
Wachstumsordnung von Spaltenvektoren von JFund Yt nach Def. 1.2, (3,7), (3,14),
(3,15) und Hilfssatz 1.3:

(3,20)

Nach diesen Vorbereitungen kehren wir zurûck zum Beweis von Satz 3.1 : Es sei

fur \<m<n:

X(Hm(A))>X(hjk(A)) fur j < m und h l,2,...,n + 1 - j
und es seien aile Elemente /?f(z)^0. Wir nehmen an, es existieren n — m linear un-
abhângige Lôsungsvektoren iïi9 u2,..., utt-m des Systems (2,1), die aile von endlicher
Wachstumsordnung seien, und wir werden zeigen, dass jeder weitere linear unab-
hângige Lôsungsvektor von unendlicher Ordnung ist. (Es kann durchaus vorkommen,
dass kein Lôsungsvektor von endlicher Ordnung existiert.)

Mit Hilfe von iït fûhren wir die oben erwâhnte Reduktion durch und erhalten das

System

«-Bi-Yi. (3,14)

Nach (3,20) ist 1 +r(Yi)=r(W). Es existieren somit nach unserer Annahme (w—m-1)
linear unabhângige Lôsungsvektoren yu y2,..., yn-m-i des Systems (3,14), die von
endlicher Ordnung sind. Da nach (3,12) Bt wieder von der Form (3,1) ist, kann das

*) Im folgenden bezeichnet P[ ] ein Polynom in den angegebenen Variabeln. (Nicht immer
dasselbe.)
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System (3,14) mit Hilfe von yt weiter reduziert werden. Dièse Opération kann n—m
Mal durchgefûhrt werden. Wir erhalten das Differentialgleichungssystem

Y^m Bn-m-Yn-m (3,21)
und es folgt

(3,22)

Fur die analog zu (3,3) definierten Determinanten hJk(Bn-m), y=l,2,...,m und
k n-m +1, «-w+ 2,..., n-j+1, gilt nach (3,16) und (3,18)

hjk(Bn-m) hjk(A), k n-m + 2,n-m + 3,..., n -
j 1,2,...,m- 1

und

^(^)^<;)], j i,2,...,m,

wobei die/f(z) meromorphe Funktionen endlicher Ordnung sind. Fur die analog zu
(3,4) definierten Hj(Bn_m) gilt

Hj(Bn.m) H,(A) + P[(fllft);hrk(A)9r<j]9 j 1,2, ...,m - 1 (3,25)

Aus (3,23) und (3,24) folgt gemâss (1,6) und (1,7)

m(r, hjk(Bn _ m)) ^ X-max m(r,hik(A)) + O(log r)
le

und analog aus (3,25)

m(r,Hm(A)) < K max [m(r,Hm(Bn.m))9 max m(r, Alik(A))] + O(log r)
k

Jede Hauptunterdeterminante von Bn_m lâsst sich durch ein Produkt der hjk(Bn-m)
darstellen. Besitzt das System (3,21) einen nicht trivialen Lôsungsvektor endlicher

Ordnung, d.h. ist r(W)>n — m9 so folgt nach Satz 2.2

m(r9Hm(Bm-j) ^ K-max m(r,hjk(Bn^m)) + O(log r)
k

j<m
und daraus

was im Widerspruch zur Voraussetzung des Satzes steht.

Bisher wurde angenommen, dass die Pi(z) nicht identisch verschwindende ganze
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Funktionen seien. Sind nun/^,/^,...,/?^ identisch Null, so hat A die Gestalt

At 0

A

0

0
0

(3,26)

mit
0
0

Plj-l

0= ï0 < ï"i < ii < -" < ir< h+i n-

Dann existiert zu (2,1) eine regulâre Lôsungsmatrix Wo von der Form

(3,27)

Wl 0

w2 o

0

0

(3,28)

*

Wr+lJ

wobei die Wh i=l, 2,..., r+1, regulâre Lôsungsmatrizen der Differentialgleichungs-
systeme

(3,29)
sind.*) Ist nun

À(Hm(A))>A(hjk(A)) fur aile ;<m und k 1,2, ...,n + 1 -;,
so folgt unmittelbar aus der Darstellung (3,28)

und es existiert ein ^4P mit

X{Hm{Ap)) > X(hjk(Ap)) fur aile j < m und aile k.

Da ^4p von der Form (3,1) ist und aile Elemente/?f(z) von Ap nicht identisch Null sind,

gibt es hôchstens (jp—jp-ï-m) linear unabhângige Lôsungsvektoren des Systems

*) Man findet Wo, indem man nacheinander inhomogene Système der Form W\ A\Wx + F<

auflôst.
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W'p Ap'Wp, die von endlicher Wachstumsordnung sind. Es existieren also in der
Lôsungsmatrix Wo m linear unabhângige Spaltenvektoren mit der Eigenschaft, dass

jede nicht triviale Linearkombination von unendlicher Ordnung ist. Nach Hilfssatz
1.2 ist daher r(W0) <n~m, d.h. es existieren hôchstens n-m linear unabhângige
Lôsungsvektoren des Systems (2,1), die von endlicher Ordnung sind. Somit ist unser
Hauptsatz 3.1 bewiesen.

Im folgenden seien die Lôsungsvektoren wl9 w2,..., wn ein Fundamentalsystem des

Systems (2,1), dessen Koeffizientenmatrix A von der Gestalt (3,1) sei, und es werde
mit Hilfe der Vektoren vvl5 iv2,..., wn_m das im Beweis von Satz 3.1 beschriebene
Reduktionsverfahren n~ m mal auf (2,1) angewendet, und man erhàlt das lineare
System

Y;_m Bn.m-Yn_m (3,21)

mit den linear unabhângigen Lôsungsvektoren yl9 y2,..., ym.
Wie man aus der Darstellung (3,7) leicht sieht, sind die Komponenten yjp9

j,p=l, 2,..., m, rationale Funktionen der Komponenten wik, z=l, 2,..., «, k=l9 2,

n — m, n — m+j. Daraus folgtfur ailej,p= 1, 2,... m

T (r, yjp) O (max T (r, wik)) O(T (r, W))
/ l,2,...,n k l,2,...,n - m,n - m +j ^' '

und nach (1,10)
m (r, y'JplyJP) O (log r-T(r, W)) (3,31)

ausserhalb einer r-Menge Ar, auf der die Variation von rk/k, k>0, endlich ist. Es gilt
somit ausserhalb dieser r-Menge Ar nach (1,6), (1,11), (2,7), (3,23), (3,24) und (3,25)
fur ra l, 2,..., n— 1 die Beziehung

T (r, Hm (A)) O (max T (r, hJk(A))) + O (log T (r, W)). (3,32)
j<m

k

Da Hm(A) eine ganze transzendente Funktion endlicher Ordnung ist, so existiert nach
M. Frei [1] fur jeden Ausnahmewert r' ein regulârer Wert r, r<r'9 mit

T (r', Hm (A)) T (r, Hm (A)) + 0(1). (3,33)

Somit gilt die Beziehung (3,32) fur aile r. Wird zudem vorausgesetzt, dass

k(Hm(A))>maxX(hJh(A))9
j<m

k

so folgt aus (3,32) die Ungleichung

log T(r,Hm(A)) loglog T(r9 W)
hmsup ^-^ ^ hmsup

r-^oo lOgr r^oo log T

Es gilt somit
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Satz 3.2: Es sei A(z) eine n-reihige ganze Matrizenfunktion endlicher Ordnung von
der Form (3,1)- Vbersteigt die Wachstumsordnung eines Hm(A) die Wachstumsord-

nungen der hJk(A),j<m undk — l, 2,..., w-f 1 —j, sogilt

X(Hm(A))<X(logT(r,W))^X(A).

Es existieren hôchstens (n — m) linear unabhângige Lôsungsvektoren w mit

X(logT(r99))<X(Hm(A)).

Wie die zwei folgenden Beispiele zeigen, kônnen die Gleichheitszeichen angenommen
werden.

Beispiel 3.1: Es sei

und

Umgeformt in eine Differentialgleichung 2. Ordnung fur Wj ergibt dies

wï 2ezw\ + wt-(e2 - e2z + Ize'1).
Es gilt

X(H2(A)) KX(hlk(A)),
X(H1(A)) l>0,

X(A) 2,

und nach einem Satz von M. Frei (4) ist

X(logT(r,W)) 2.
Beispiel 3.2: Ist

(e\2z-ez\

so ist

eine regulàre Lôsungsmatrix des Systems (2,1). Dabei ist

X(A) - 2

X(H1(A)) l
X(logT(r,W)) l.
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Dièse zwei Beispiele zeigen, dass im Gegensatz zu einem Wronskischen System

X(log T{r,W))<X(A)

À(log T(r,W))>X{Hj(A))
fur aile y vorkommen kann.

Wir bezeichnen die (") verschiedenen, in beliebiger Art angeordneten Haupt-
unterdeterminanten vom Grade j

und

sh Ph

2, il

lij, ii

0

Ph 0
1 < /j < i2 < ••• < î,<n, (3,34)

mitdjk(A),j=h2,...in,k=U2,...,(']).
Ferner sei

o
DM) ldjk(A) (3,35)

und
dok(A) 0.

Da jedes djk(A) durch ein Produkt der hip(A) mit /<y darstellbar ist, gilt

Dm(A) //m(A) + Plhjk(A);j < m].

Unser Hauptsatz 3.1 ist âquivalent zu

Satz 3.T: Es sei A(z) eine Matrix von der Form (3,1). Wenn die Wachstums-

ordnung eines Dm(A) die Wachstumsordnungen der djk(A) mit j<m und &= 1,2,..., (")
ubersteigt, so besitzt (2,1) hôchstens n — m linear unabhângigde Lôsungsvektoren,
die von endlicher Wachstumsordnung sind.

Fur m=l und m n ist Satz 3.T fur beliebige ganze Koeffizientenmatrizen gûltig.
Beispiel 3.3 zeigt aber, dass weder Satz 3.1 noch Satz 3.T fur allgemeine ganze
Koeffizientenmatrizen richtig ist.

Beispiel 3.3: Zur Koeffizientenmatrix

0

ez-e5

ist

W(z)
ri »

ez e

e2z9 e

2z 2z

o J

6ez

6e3z + 3e*
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eine regulâre Lôsungsmatrix von (2,1). Obwohl D2(A)~ -2e2z9 H2(A) e*z + e2z und
aile dlk(A)=hlk(A)=0 sind, ist dennoch jeder Lôsungsvektor von endlicher Ordnung.
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