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Uber die Wachstumsordnung eines linearen Systems von
Differentialgleichungen mit ganzen Funktionen als Koeffizienten

WALTER HENGARTNER, Ziirich

Einleitung

Diese Arbeit befasst sich mit linearen Systemen von Differentialgleichungen 1-ter
Ordnung

n

W:= Za,-kwk, i=1,2,...,n. (1)

k=1

Dieses System besitzt genau » linear unabhingige Losungsvektoren. Es existiert somit
zu jeder n-reihigen quadratischen Koeffizientenmatrix 4 eine n-reihige quadratische
reguldre Matrix W (d.h. die Determinante verschwindet nicht identisch) mit

W =A4-W. Q)

Jeder Losungsvektor von (1) ist eine Linearkombination der Spaltenvektoren von W.
Die lineare Differentialgleichung
n—1

o™ =Y g, o®
k=0

ist dquivalent dem System (1) mit

(0 1 O0.............. 0)
0 01 0........... 0
PR E ) . 3)
[ J 1
\ao Ay ovviv i, a,,__lJ,

und wir sprechen dann von einem Wronskischen System.

Im folgenden sind die Elemente der Koeffizientenmatrix 4 komplexwertige ganze
Funktionen einer komplexen Variabeln. Wir sprechen von A als einer ganzen Matri-
zenfunktion. Dann ist auch jede regulire Lésungsmatrix von (2) eine ganze Matrizen-
funktion.
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Sind die Koeffizienten eines Wronskischen Systems Polynome, so ist nach Unter-
suchungen von VALIRON [4] und WITTICH [5], [6], [7] das allgemeine Integral von (3)
eine ganze transzendente Funktion. Ihre Ordnung ist positiv und rational. Dieses
Resultat kann nicht auf das System (1) verallgemeinert werden, denn die Gleichung

2
W'=(Z 1 Z>°W
1 -z

besitzt nur Losungen von der Form

W@):C“z j)c

wo C eine konstante 2 x 2 Matrix ist. Ist anderseits A eine n xn Matrix liber dem
Ring der Polynome in z und W eine transzendente Lésung des Systems (1), so ist jedes
transzendente Element w;, von W vom Mitteltypus einer rationalen Ordnung A > 1/n.

Besitzt ein Wronskisches System (3) mindestens einen transzendenten Koeffizien-
ten a,, so ist nach M. FrEl [1] das allgemeine Integral von unendlicher Wachstums-
ordnung. Insbesondere gilt fiir die Wachstumsordnung A der allgemeinen Losung von
(3) die Beziehung

A(log T (r,w)) = max i(a,). 4)

Ueberdies ist es M. FRrEI gelungen, eine obere Schranke fiir die Anzahl linear un-
abhingiger Losungen endlicher Ordnung anzugeben. Auch diese Resultate sind, wie
wir zeigen werden, fiir lineare Systeme (1) nicht giiltig.

In der vorliegenden Arbeit vergleichen wir mit Hilfe der Werteverteilungslehre
von R. NEVANLINNA [3] das Wachstum der Koeffizienten mit dem Wachstum der
Losungsvektoren des Systems (1). In einem ersten Paragraphen iibertragen wir den
Begriff der Wachstumsordnung auf meromorphe Vektor- und Matrizenfunktionen.
In § 2 betrachten wir lineare Systeme, deren Koeffizientenmatrix eine beliebige ganze
Matrizenfunktion ist. Die Sdtze 2.1 und 2.2 sind Verallgemeinerungen von Resultaten,
die M. Frel [1] fiir lineare Differentialgleichungen bewiesen hat. Setzen wir von der
K oeffizientenmatrix 4 voraus, dass die a;;, mit i<k—1 identisch verschwinden, so
liefert unser Hauptresultat (§ 3) eine Aussage liber die maximale Anzahl linear unab-
hingiger Losungsvektoren endlicher Ordnung. Satz 3.2 ergibt iiberdies eine untere
und obere Schranke fiir das Anwachsen einer reguldren (d.h. mit nicht identisch ver-
schwindender Determinante) Losungsmatrix W.

Einen Teil meiner Ergebnisse habe ich schon 1965 in [2] veroffentlicht.

An dieser Stelle spreche ich meinem hochverehrten Lehrer, Herrn Prof. Dr.
A. PFLUGER fiir sein wohlwollendes Interesse und fiir seine wertvollen Anregungen
wihrend der Ausfithrung dieser Arbeit meinen verbindlichsten Dank aus.
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§ 1. Die Wachstumsordnung meromorpher Vektor- und Matrizenfunktionen

Es sei w eine in der z-Ebene meromorphe Funktion: z~w(z). Die Schmiegungs-
funktion m der Funktion w ist definiert durch

2n
1 .
m(rw)= j log* w(re'?) do Wy
0

Es bezeichnet n(t, w) die Anzahl Pole von w im abgeschlossenen Kreis |z| <t.

N(r,w) = J"(” ») - 1O 4t + n (0, w)-log r (1,2)

definiert die Anzahlfunktion der Pole von w. Die charakteristische Funktion 7 von w
ist gegeben durch

T(r,w)=N(r,w)+ m(r,w). (1,3)
Fiir eine ganze Funktion w ist
T(r,w)=m(r,w). (1,4)
log T (r,
A(w) = limsup log T (r. w) (1,5)
r—o logr

ist die Wachstumsordnung der meromorphen Funktion w, d.i. die Wachstumsordnung
ihrer charakteristischen Funktion 7.

Im folgenden werden einige Eigenschaften der oben definierten Gréossen zusammen-
gestellt.

a) Fiir T und m gelten die Ungleichungen:

T (r,wy, +wy) < T(r,w,) + T(r,w;)+ 0(1)

T (r,wy'wy) <T(r,wy)+ T(r,w,)

T(r1/w)  <T(r,w)+0(1), falls w#0 (1,6)
m(r,wy + w,) <m(r,wy) + m(r,w,) + 0(1)

m(r,wywy) <m(r,wy) + m(r,w,)

b) T'(r, w) ist eine mit r strikte wachsende und in log r konvexe Funktion, ausser
es sei w eine Konstante.
c) Aus
T(r,w) < T(r,w,)+ O(logr)
folgt
A(w1) < A(w2) 1,7
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und daraus
A(wy £ w,y) < max [A(wy), 2(w,)]
< max [A (w1), ’I(Wz)] (L.8)

Alwy = wy)

sowie
A(wy £ wy) = A(wy) 1.9
Awiowy) = A(wy), fir  A(w,)>A(w,), w,#0. (1.9)

d) Fiir die logarithmische Ableitung von w gilt
m(r,w'[w) = O(log(r- T (r,w))), (1,10)

wenn r ausserhalb einer r-Menge 4,, auf der [, r*~ ! dr, k > 0, endlich ist, gegen un-
endlich strebt.
Ist w von endlicher Ordnung, so gilt:

m(r,w'[w)=0(logr) fiir alle r,r > 0. (1,11)
e) Ist w' die Ableitung von w, so gilt
Aw) = A(w). (1,12)

f) Der erste Hauptsatz der Nevanlinna’schen Theorie [3] lautet: Fiir alle Kon-
stanten a ist

T(r,w)=N(r,1/(w — a)) + m(r,1/(w — a)) + O(1) (1,13)
g) Ist w eine ganze Funktion und

M (r,w) = max|w(z)l,

|z} =r

so gilt
R + .
T (r,w)<log" M(r,w)< - — T(R w), fir r<R,

und

log log M (r,w

A(w) = limsup - g log M(r.. )~ (1,14)
— log r

Nun betrachten wir n-tupel (ay,..., a,) von Funktionen ay,..., a,, die in der z-
Ebene meromorph sind, und nennen sie meromorphe Vektorfunktionen d. Wir
betrachten ferner nxn Matrizen 4=(a;;) liber dem Ring der meromorphen Funk-
tionen (die Elemente a;, sind in der z-Ebene meromorphe Funktionen) und nennen sie
meromorphe Matrizenfunktionen. Ist die Matrix reguldr, d.h. die Determinante
A4 A(z) verschwindet nicht identisch, so sprechen wir von einer reguliren Matrizen-
funktion. Es existiert dann die inverse Matrix 4~', die wieder meromorph ist.

Definition 1.1: Die Wachstumsordnung eines meromorphen Vektors
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di=(a,, a,, ..., a,) resp. einer meromorphen Matrix 4=(a;,) wird definiert durch

A(d) = max A(ay)

A(A) = max A(a;,). (L13)
i,k
Wird die charakteristische Funktion T von 4 durch
T(r,A)=max T(r,a;) (1,16)
i,k
definiert, so gilt analog zu (1,5)
log T(r, A
A(4) = limsup 28 T (4, (1,17)

s log r

Sind die Komponenten von d resp. die Elemente von 4 ganze Funktionen, und setzt
man
M (r,d@) = max max |a,(z)|

jzl=r &
M (r, A) = max max |a;(2),
lzl=r ik

so gilt entsprechend (1,14)

log log M (r, d
A(d) = limsup log log M (r, 4)

r— o lOg r
log log M (r, A
A(A) = limsup i (r ~)—. (1,18)
oo logr
Fiir meromorphe Matrizenfunktionen folgt aus (1,8) und (1,15)
A(A £ B) < max [4(4),1(B)] 10
A(A-B) < max [A(4), A(B)]., (1,19)
aus (1,9) und (1,14), fiir A(4)>A(B),
AM(A+B)=4i(4
(4 + B) = i(4) (1.20)

A(A*B)=Ai(B-A)=i(A), falls B regulir ist.

HiLrssATz 1.1: Die Wachstumsordnung einer reguliren meromorphen Matrix A
ist gleich der Wachstumsordnung ihrer inversen Matrix A~

Beweis: Sei A=(a;;) reguldr und meromorph, und sei (4;,) die zu A4 adjungierte
Matrix, d.h. 471+ 4(4)=(4;;). Dann folgt aus (1,6), (1,8) und (1,15):

AAT) = A[(4)l4(A)] < n}i"‘i(aik) = A(4).

Da A4 zu A~ ! invers ist, folgt
MA)<A(47h)
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und damit
A(A) = A(A”‘).

DEFINITION 1.2: Unter r(A4) einer meromorphen Matrix 4 verstehen wir die maxi-
male Anzahl linear unabhingiger Linearkombinationen endlicher Wachstums-
ordnung, gebildet aus den Spaltenvektoren von A.

Aquivalent zur Definition 1.2 ist

DEFINITION 1.2°: Es sei ™ der durch die Spalten von A erzeugte m-dimensionale
Vektorraum iiber dem Korper der komplexen Zahlen, 0 <m <n. Unter r(A4) verstehen
wir die Dimension des durch die Vektorfunktionen endlicher Ordnung gebildeten
Unterraumes U" von V™, 0<r<m.

Zu V™ und U’ gibt es einen Unterraum W/ von V™ mit

Vr=U@®W und j=m-—r.

Da W/ keine nicht identisch verschwindende Vektorfunktion endlicher Ordnung ent-
halt, gilt

HILFSSATZ 1.2: A sei eine regulire meromorphe Matrix und besitze j Spalten-
vektoren, von denen jede nicht triviale Linearkombination von unendlicher Wachstums-
ordnung sei. Dann gilt

r(A)<n-—j.

HiLrssATZ 1.3: Sind A und B regulire meromorphe Matrizen, und ist die Wachs-
tumsordnung von B endlich, so gilt

r(B-A) =r(A).
Beweis: Seien d,, d,,..., d, die Spalten von 4 und ¢,, é,,..., ¢, diejenigen von
(B A). Dann gilt fir alle i:
éi == B'Zii

Zii =B 1 .éi .
Nach Hilfssatz 1.1 ist 1(B)=A(B~')< oo, und daher gilt nach (1,8) und (1,15)

A(a;) <o A(E)<w, i=12,.,n.
Also ist
r(B-A4) = r(A).

§ 2. Die Wachstumsordnung der Losungsvektoren eines linearen Systems
mit ganzen Funktionen als Koeffizienten

Es sei A4 eine n x n Matrix iiber dem Ring der ganzen Funktionen, d.h. die Elemente
a;,, der Matrix 4 =(a;,) seien ganze Funktionen; wir sprechen von 4 als einer ganzen
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Matrizenfunktion. W=(w;,,) sei eine regulire Losungsmatrix des linearen Systems
W (z2)=A(z)-W(z), d.i.

wii(z)= ) au(@)w;(z), i=12,..,n,j=12,..,n. 2,1
k=1
Jeder Losungsvektor w des Systems (2,1) ist eine Linearkombination der Spalten-
vektoren von W. Ist A ganz transzendent, d.h. ist ein Element von 4 ganz transzen-
dent, so braucht W, im Gegensatz zu einem Wronskischen System, nicht von unend-
licher Wachstumsordnung zu sein.*) Aus (1,12), (1,19), Hilfssatz 1.1 und der Relation
A(2)=W'(z)- W~ 1(z) folgt aber

A(4)<A(w). 2,2)

Wie das folgende Beispiel (2.1) zeigt, kann das Gleichheitszeichen angenommen
werden.

Beispiel (2.1): Zur Koeffizientenmatrix
—z-e& z*e + 1)

e z:e

A(z)=<
W(z)= (z z-€ — 1)

1 €

ist

eine regulire Losungsmatrix von (2,1).
Eine obere Abschitzung fiir das Anwachsen einer reguliren Losungsmatrix W
des Systems (2,1) erhalten wir aus den Ungleichungen

max |w; ;(z)| < n-max|a;;(z)|-max|w, ;(z)|
i,J ik k,j

resp. M(r, W)<n-M(r, A)- M(r, W)

und .

d
M W) S M (W),
r

Es gilt
0<dlogM(r,W)<n-M(r,A)-dr, firalle r>0. (2,3)

Durch Integration folgt unter Verwendung des Maximumprinzipes fiir alle R>0 die
Ungleichung
log M(R,W)< n-M(R,A)'R + O(1). (2,4)

Ist A nicht konstant, so ist M (R, 4) nicht beschrinkt, und dann folgt aus (2,4) fiir alle

*) Siehe Einleitung.
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geniigend grossen R die Ungleichung

log log M(R, W log R
log log M (R, W) <14 — 8 +0(1)
log M(R, A) log M(R, )
oder
log log M(R, W) < (K + 0o(1))-log M(R,4), K<oo, (2,5)

fiir alle geniigend grossen R. Ist A transzendent, so kann K=1 gewihlt werden. Es
folgt aus (2,4)

SATZ 2.1*): Ist A eine ganze n-reihige Matrizenfunktion, so gilt fiir jede regulire
Losungsmatrix W des Systems (2,1) die Ungleichung

log M(R,W)< n-M(R,A)-R + 0(1),
insbesondere gilt die Abschdtzung
A(log T (r, W)) < A(A4).

Es folgen einige Resultate iiber die Wachstumsordnungen einzelner L&sungs-
vektoren des Systems (2,1).
Die Hauptunterdeterminanten von A, die Determinante von A4 nicht inbegriffen, seien
in einer beliebigen Art angeordnet und mit d;(A4) bezeichnet, und es sei w=(wy, w,,
..., w,) ein nicht trivialer Losungsvektor des Systems (2,1). Dann besitzt das homogene
lineare Gleichungssystem

Z [aik“(W;/Wi)‘sik] Wy = Z biyyw,=0, i=12,..,n, (2,6)
K=1 K=1

eine nicht triviale Losung. Ist die Komponente w;(z) des Losungsvektors # identisch
Null, so lautet die j-te Gleichung:

n
Z ajka=0.
K=1

Die b;,(z) sind in der z-Ebene meromorph, und die Determinante 4(B) der Matrix
B=(b;,) ist identisch Null. Daraus folgt

48) = (= 0 TIGiw) + 3 S TT (i) + - +
+ DI T | (wilwy) + -+ + 2,7)
hi1<hy<-*<h, i#hy,ha,...,h,

+4(4) =0,

wo die f, . 5 bis auf das Vorzeichen Hauptunterdeterminanten von 4 sind.

*) Satz 2.1 ist eine Verallgemeinerung eines Resultates von M. Fret [1] S. 205.
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Hat der Losungsvektor w endliche Wachstumsordnung, so folgt daraus gemadss
(1,6) und (1,11) fiir die Schmiegungsfunktion m die Ungleichung

m(r,4(4)) < 2"-max m(r,d;(4)) + O(logr) (2,8)

J
und gemdss (1,4) und (1,7)
A(4(4) < A(d;(4)),
fir mindestens ein j.
Dies ergibt

SATZ 2.2: Ist die (endliche oder unendliche) Wachstumsordnung der Determinante
von A grosser als die Wachstumsordnungen aller ihrer Hauptunterdeterminanten d;(A),
so ist jeder nicht triviale Losungsvektor des linearen Systems (2,1) von unendlicher
Wachstumsordnung.

Aus (2,7) folgt tiberdies

SATz 2.3: Es sei die (endliche oder unendliche) Wachstumsordnung einer Haupt-
unterdeterminanten von A grésser als die Wachstumsordnungen der iibrigen Haupt-
unterdeterminanten von A und der Determinante von A selbst, und es sei W(z) ein
Lésungsvektor endlicher Ordnung des Systems(2,1), der keine konstanten Komponenten
enthdlt. Dann existiert eine Komponente w, von W, die unendlich viele Nullstellen besitzt,
und es gilt iiberdies

limsup n(r,1/w,) — n(r,1/w,) = .

Den Beweis fiihren wir indirekt. Es sei w(z) ein Losungsvektor von (2,1) mit
folgenden Eigenschaften:

a) Die Komponenten w; von # sind von endlicher Ordnung und nicht konstant,

b) es gilt |n(r, 1/w;)—n(r, 1/w;)| <K fiir alle r>0 und j=1, 2,..., n.

Nach dem ersten Hauptsatz der Theorie der meromorphen Funktionen und nach
(1,11) gilt

m(r,wj/w;) = O(log r)
und
m(r,w;/wj) = O(logr).
Es sei nun
A(d,(4)) > max [A(4(4)),A(d;(4))] firalle j#m.

Wird die Gleichung (2,7) nach d,,(A4) aufgelost, so erhdlt man aus (1,6)
m(r,d,(4)) < 2"-max [max m(r,d;(4)),m(r,4(A4))] + O(log r),
J¥m

und aus (1,4) und (1,7) die Ungleichung
4(dp (4)) < max [max A(d;(4)), A(4 (4))]
J¥Em
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die zu den Voraussetzungen des Satzes im Widerspruch steht. Ein weiteres Resultat
iiber das Wachstum der Lésungsvektoren gibt

SATZ 2.4: Es besitze jede Spalte von A(z) ein nicht identisch verschwindendes
Element a;,,(z) mit i#m. Hat ein Losungsvektor w die Ordnung 2.(w)> A(A), so haben
mindestens zwei Komponenten von W die Ordnung A(W).

Beweis: Sei a;,,(z)# 0 und j#m. Die Gleichung w;=) a;, w, nach w,, aufgelost
ergibt
Wn =— [k§ Aj Wi — wil*1/a;,.

Daraus folgt gemass (1,6)
T(r,w) <T(r,w)+ Y T(r,w)+ Y T(r,a;)+0(1),
k#m k
daraus

T(r,w,) < 2n-max[T (r,w}), max T (r,w,), max T (r,a;)] + O(1),
und zusammen mit (1,7) o k
A(W,,) < max [A(w}), max A(w,), max A(a;;)].
Wegen (1,12) und j#m, ist dann o :
A(w,,) < max[4(4), max A(wp)]-
Diese Ungleichung gilt nach Voraussetzung fiir alle m. Aus A(W)>A(4) folgt dann
die Behauptung des Satzes.
SATZ 2.5: Gibt es fiir A ein Indexpaar (j, m) mit
Aa;,) > Alaj) firalle k+#m,

so ist fiir jeden Losungsvektor Ww=(wy, w,,..., w,), dessen m-te Komponente w,, nicht
identisch verschwindet, die Wachstumsordnung grosser oder gleich der Wachstums-
ordnung von a;,,.
Beweis: Die Gleichung wj=) ,a;,w, nach a;, aufgelost ergibt
Ajm = — [ Z AW — Wil 1/ Wy,
k¥m

und man erhélt analog zum vorangehenden Beweis

A(a;,) < max [A(w}), max A(w,), max i(a)].
k k#m

Aus A(w})=2(w;) und der Voraussetzung des Satzes folgt dann
Aa;,) < max A(w,) = A(W).
k

Die Anwendung der Sitze 2.2 und 2.5 auf eine lineare Differentialgleichung n-ter
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Ordnung n—1
w?(z) = ¥ a,(2)-w*(2) (2,9)
k

=0
fahrt zu

SATz 2.6: Ubersteigt die Wachstumsordnung eines Koeffizienten a,(z) jene der
iibrigen Koeffizienten, so ist jedes partikulire Integral w(z) von (2,9) mit endlicher
Wachstumsordnung entweder eine ganze transzendente Funktion mit unendlich vielen
Nullstellen und mit A(w)=A(a,,), oder w(z) ist ein Polynom vom Grade kleiner n.

§ 3. Hauptresultat

Fiir ein Wronskisches System hat M. Frel [1] folgenden Satz bewiesen:
Wenn bei einer linearen Differentialgleichung n-ter Ordnung mit ganzen Funk-
tionen als Koeffizienten

n—1
w® =Y g,-w®
k=0

die Wachstumsordnung eines Koeffizienten a,(z) die Wachstumsordnungen der
Koeffizienten a,(z) mit k>m iibersteigt, so existieren hochstens m linear unab-
hingige partikuldre Integrale von endlicher Wachstumsordnung.

Wir werden im folgenden dieses Resultat auf solche lineare Differentialgleichungs-
systeme

W= Y apwe, i=1,2,..,n, 2,1)
k=1

verallgemeinern, wo die Koeffizienten a;,(z) fiir i<k —1 identisch verschwinden, die
Koeffizientenmatrix also die Gestalt

f
Sy P1 O .................. 01
as, S, p, O ... 0
A=
a,,_l,l an_l’z .......... Sp—1 Pn—-1
.1 Auz e, Sn ) (3,1)

hat; dabei sind die 5;(z), p;(z) und a; (z) mit i > k ganze Funktionen endlicher Ordnung.
Es werden zwei Hilfssdtze vorausgeschickt. Aus der Gestalt der Matrix (3,1) folgt
unmittelbar

HiLrssATz 3.1: Ist im System (2,1) die Matrix A von der Form (3,1) und ist kein p;,
identisch Null, so besitzt jeder nicht triviale Losungsvektor Ww=(wy, w,,... w,) eine
nicht identisch verschwindende erste Komponente w,.
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HILFSSATZ 3.2: Es sei A eine Matrix von der Form (3,1), und es sei kein p; identisch
Null. Ist i=(uy, u,, ..., u,) ein nicht trivialer Lésungsvektor von (2,1), so gilt fiir alle
m=1,2,...,n—1

(“ 1)m'(”m+1/“1)' H1 pj= Det[aik - (u:'/ui)éiks i,k=12,.. m] 3,2)
I

Wir bezeichnen die rechte Seite kurz mit

0. (A,1).

Der Beweis wird gefiihrt durch vollstindige Induktion nach m.
a) Aus (2,1) erhalten wir fiir m=1

Ql(Asﬁ) = — py-uyfu; = sy —ujfuy.

b) (3,2) gelte fiir m=1, 2,..., k—1. Dann gilt sie auch fiir m=k. Die Entwicklung
der Determinante Q,(4, ii) nach der letzten Zeile ergibt

k-1 k-1 k—1
Qi (4,i) = (- 1)k_l'ak,l' Hl pj+ ,,22(— l)k_h'ak,h'Qh—l(A,ﬁ)' I—Ih pj+
j= = Jj=
+ (s — /) Qu—1 (4, 4),

und man erhélt nach der Induktionsvoraussetzung

k-1

0u(, ) = [(= 1" (1) TT pJ [(ox = i) + %, o]

= ("‘ l)k'(uk+1/u1)' l;llpj'

Wir bezeichnen die (n+ 1 —j) Hauptunterdeterminanten von der Form

Sk Dk 0 o 0
Ar+1,1 Sp+1 Pr+1 0 ........ 0
Ar+j-1,1 Ap+j—1,2  rorreorcesee Sk+j-1 (3,3)

mit h;,, j=1,2,...,n, k=1,2,...,n+1—j, und setzen

n+i-—j

H(A)= Y h(4). (3,4)
k=1
Wird A, (4)= O gesetzt, so lautet das Hauptergebnis dieser Untersuchung

SATZ 3.1: Es sei A(z) eine Matrix von der Form (3,1). Wenn die Wachstumsordnung
eines H,(A) die Wachstumsordnungen der h;,(A) mit j<m und k=1,2,...,n+1—j
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iibersteigt, so besitzt (2,1) hochstens n—m linear unabhdngige Ldsungsvektoren von
endlicher Wachstumsordnung.

Beweis: Im Falle m=1 gilt der Satz allgemein, d.h. auch fiir Matrizen A4, die nicht
von der Form (3,1) sind. Denn ist die Spur von 4(z) eine ganze transzendente Funk-
tion, so wird die Determinante von jeder reguldren Losungsmatrix W(z) des Systems
(2,1) von unendlicher Wachstumsordnung. Es existieren somit hochstens n—1 linear
unabhdngige Losungsvektoren, die von endlicher Ordnung sind.

Fiir m=n reduziert sich Satz 3.1 auf Satz 2.2, da bei Matrizen von der Gestalt (3,1)
jede Hauptunterdeterminante vom Grad j durch ein Produkt der 4;,(4) mit i< dar-
gestellt werden kann.

Es verbleibt also, den Beweis zu fiihren fiir 1 <m <n, und dies tun wir zunichst
fiir den Fall, dass kein p;(z) identisch verschwindet. Wir beschreiben vorerst einen
Reduktionsprozess von n auf n—1.

Es sei il =(u,, u,,..., u,) ein nichttrivialer Losungsvektor von endlicher Ordnung
und W eine regulire Losungsmatrix, die #i als ersten Spaltenvektor enthélt. Nach
Hilfssatz 3.1 ist u; (z)#0. Daher hat die Matrix

(u, 0 ........ 0)
u, 1 0 0
v= |- : 0 (3.5)
0
u, 0 ........ 1)

(1/u, 0 ......... 0)
- uz/ul 1 0 ..... 0
U'l= ' ‘ D (3,6)
0
—Ufuy O ... 0 1
Setzen wir
V=U'w 3,7
so ist ¥V von der Form
(1 v, e, vy, )
0 1)22 ....... UZ"
V=1 ’ ) (3,%)
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Aus W'=A W folgt dann

V' =U'(AU-U)-V. (3,9)
Dies ist ein lineares System fiir ¥ mit der gegebenen Matrix
B=U'(4U- U, (3,10
und eine kleine Rechnung ergibt
0 apfuy  agfu; ..l aynfty
0
B = : B, 3,11)
0
mit
Sz—pl'llz/ul, D2, 0 ... .. 0
B, = 5:32 — pyousfug,  ss, ps, 0 ...... 0 (3,12)
Ay — Py Up[Uys  Apzs cveeiinennennn.. Sy

Die Matrix B, ist wieder von der Form (3,1), ihre Elemente sind aber jetzt mero-
morphe Funktionen.
Setzt man analog

V=|. (3,13)

so genligt die meromorphe Matrizenfunktion Y; dem System

Y, =B,Y,, (3,14)
wo Y; und B; nur noch n—1 reihige Matrizen sind und B, wiederum von der Form
(3,1) ist.

Ferner ist

vllrz Z (alk/ul)'vkra r=2’3=“'an’ (3=15)
k=2

und daraus lassen sich die v,, mit Hilfe einer Losungsmatrix Y; von (3,14) durch
Integration berechnen.

Wir werden nun die analog zu (3,3) fiir B, definierten /;,(B,),j=1, 2,..., n—1und
k=2,3,...,n+1—j, durch die h;(4), j=1,2,...,n und k=1,2,...,n+1—j, aus-
driicken. Aus (3,12) folgt fir j=1, 2,...,n—2 und k>2

hjk(Bl) = hjk(A)° (3,16)

Ist k=2, so erhdlt man durch Entwickeln der Determinante h;,(B,)nach der ersten
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Zeile fiir j=1,2,...,n—1

Jj—1

hjz(B1) = hjZ(A) + kZIPsz ---Pk'(“k+1/“1)(" l)k‘hj—k,zn(A) +

+(- 1) pyps e pi(Ugeqfuy), j=12,..,n—1.
Hilfssatz 3.2 ergibt

(3.,17)

i1
h;2(By) = h;,(4) + kZI Qi (A, @) hj_, 24+ (4) + Q;(4, ).

Entwickelt man die Determinanten Q,(4, ii) analog zu (2,7), so erhédlt man
hj,(B,) = hjZ(A) + h;, (A) + P[(uifu;); bk (A),r < j] "). (3,18)

Zwischen den zum System (2,1) und den zum um 1 reduzierten System (3,14)
gehdrigen H; besteht die Beziehung

H;(By) = H;(A) + P[(ui/u;)); h,i (A),r <j], j=12,...,n—1, (3,19)

Da nach Voraussetzung der Losungsvektor # von endlicher Wachstumsordnung ist,
folgt fiir die maximale Anzahl linear unabhingiger Linearkombinationen endlicher
Wachstumsordnung von Spaltenvektoren von W und Y; nach Def. 1.2, (3,7), (3,14),
(3,15) und Hilfssatz 1.3:

14 r(Y)=r(V)=r(W). (3,20)

Nach diesen Vorbereitungen kehren wir zuriick zum Beweis von Satz 3.1: Es sei
fir l<m<n:

A(H,(A)) > A(h;(4)) fir j<m wund k=12,.,n+1—j

und es seien alle Elemente p;(z)#0. Wir nehmen an, es existieren n—m linear un-
abhéngige Losungsvektoren ii,, i, ..., i,_,, des Systems (2,1), die alle von endlicher
Wachstumsordnung seien, und wir werden zeigen, dass jeder weitere linear unab-
hingige Losungsvektor von unendlicher Ordnung ist. (Es kann durchaus vorkommen,
dass kein Losungsvektor von endlicher Ordnung existiert.)
Mit Hilfe von i, fiihren wir die oben erwdhnte Reduktion durch und erhalten das
System
Y, =B,'Y,. 3,14)

Nach (3,20) ist 1 +r(Y,)=r(W). Es existieren somit nach unserer Annahme (n—m—1)
linear unabhingige Losungsvektoren J;, $5,eee, Ju_m—1 des Systems (3,14), die von
endlicher Ordnung sind. Da nach (3,12) B, wieder von der Form (3,1) ist, kann das

*) Im folgenden bezeichnet P[ ] ein Polynom in den angegebenen Variabeln. (Nicht immer
dasselbe.)
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System (3,14) mit Hilfe von j, weiter reduziert werden. Diese Operation kann n—m
Mal durchgefiihrt werden. Wir erhalten das Differentialgleichungssystem

Yim= By e Ypom (3,21)
und es folgt

(n—m)+ r(Y,_,) =r(W). (3,22)

Fiir die analog zu (3,3) definierten Determinanten h;;(B,-,), j=1,2,...,m und
k=n—m+1,n—m+2,...,n—j+1, gilt nach (3,16) und (3,18)

hix(By-m) =h; (4), k=n-m+2,n—-m+3,..,n—j+1,

ji=12,..m-1 (3,23)
und
n—-m+1
biems o) = 3, (8 o0

+ P[(filfish(A),r <j)], Jj=1,2,...m,

wobei die f;(z) meromorphe Funktionen endlicher Ordnung sind. Fiir die analog zu
(3,4) definierten H;(B,_,,) gilt

Hj(Bn—m)=Hj(A)+P[(fi’/fi);hrk(A)!r<j], J= 192’-"9m_ 1 (3’25)
Aus (3,23) und (3,24) folgt gemiss (1,6) und (1,7)

m(r,h; (B, - m)) < K-max m(r, h;; (A)) + O (log r)
k
i<j
und analog aus (3,25)
m(r, H, (A)) < K max [m(r, H,(B,-,)), max m(r, h;,(A))] + O(log r)
ifm
Jede Hauptunterdeterminante von B,_,, ldsst sich durch ein Produkt der 4;;(B,- )

darstellen. Besitzt das System (3,21) einen nicht trivialen Losungsvektor endlicher
Ordnung, d.h. ist #(W)>n—m, so folgt nach Satz 2.2

m(r, H,(B,-,)) < K-max m(r, h;;(B,-,)) + O(log r)
k
Jj<m

und daraus

A(H,,(4)) < max A(h;,(4)),

i<m
was im Widerspruch zur Voraussetzung des Satzes steht.
Bisher wurde angenommen, dass die p;(z) nicht identisch verschwindende ganze
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Funktionen seien. Sind nun p,, p;,, ..., p;, identisch Null, so hat 4 die Gestalt

r =
A, 0 0
A, 0 ...l 0
A=
(3,26)
*
L Ar+1J
mit
fsij-l‘*'l pij—l+1 0 .. 0 )
Aij_1+2,ij-1+1 Sij_i+2  Pij_y+2 0 ool 0
; Pij-y
Lalj’l'j_l.'.l -------------------------------- S"j J
0=i0<i1<i2<...<i,.<i,+1==n. (3,27)
Dann existiert zu (2,1) eine reguldre Losungsmatrix W, von der Form
(W, 0  ........... 0 )
w, 0 ....... 0
W, = . : (3,28)
L " Wit

wobei die W, i=1, 2,..., r+1, reguldre Losungsmatrizen der Differentialgleichungs-
systeme

W/ =A4;W,. (3,29)
sind.*) Ist nun

A(H,(A)) > A(h;(4)) firalle j<m wund k=12,...,n+1—j,
so folgt unmittelbar aus der Darstellung (3,28)
m<max[i;—i;—y], j=12,..,r+1,
und es existiert ein A, mit
A(H,(A4,) > A(h;(4,)) firalle j<m undalle k.

Da A, von der Form (3,1) ist und alle Elemente p;(z) von 4, nicht identisch Null sind,
gibt es hochstens (j,—j,—;—m) linear unabhingige Losungsvektoren des Systems

*) Man findet W,, indem man nacheinander inhomogene Systeme der Form W' = AiW; + F;
auflost.
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W,=A, W, die von endlicher Wachstumsordnung sind. Es existieren also in der
Losungsmatrix W, m linear unabhingige Spaltenvektoren mit der Eigenschaft, dass
jede nicht triviale Linearkombination von unendlicher Ordnung ist. Nach Hilfssatz
1.2 ist daher r(W,) <n-m, d.h. es existieren hochstens n-m linear unabhingige
Lésungsvektoren des Systems (2,1), die von endlicher Ordnung sind. Somit ist unser
Hauptsatz 3.1 bewiesen.

Im folgenden seien die Losungsvektoren w,, w,, ..., W, ein Fundamentalsystem des
Systems (2,1), dessen Koeffizientenmatrix 4 von der Gestalt (3,1) sei, und es werde
mit Hilfe der Vektoren w,, w,,..., w,_,, das im Beweis von Satz 3.1 beschriebene
Reduktionsverfahren n—m mal auf (2,1) angewendet, und man erhilt das lineare
System

Y m=Bym Yiim (3,21)
mit den linear unabhéingigen Loésungsvektoren y,, y,,..., ¥,
Wie man aus der Darstellung (3,7) leicht sieht, sind die Komponenten y;,,
j,p=1,2,..., m, rationale Funktionen der Komponenten w;,, i=1,2,...,n, k=1, 2,
..., n—m, n—m+j. Daraus folgt fiir alle j, p=1, 2,... m

T(r,y;p) = O(max T (r,w;)) = O(T (r,W)) (3.30)

i=1,2,...n k=12,...n—mmn—m-+j ’
und nach (1,10)

m(r,y,ly;p) = O(log r-T (r, W)) (3,31)

ausserhalb einer r-Menge 4,, auf der die Variation von r*/k, k>0, endlich ist. Es gilt

somit ausserhalb dieser r-Menge 4, nach (1,6), (1,11), (2,7), (3,23), (3,24) und (3,25)
fiir m=1, 2,..., n—1 die Beziehung

T(r,H,,(A)) = O(max T (r,h;,(A))) + O(log T (r, W)). (3,32)

Jj<m

Da H,,(A) eine ganze transzendente Funktion endlicher Ordnung ist, so existiert nach
M. Frei [1] fiir jeden Ausnahmewert r’ ein reguldrer Wert r, r <r’, mit

T(r',H,(4)) = T(r,H,(4)) + 0(1). (3,33)
Somit gilt die Beziehung (3,32) fiir alle r. Wird zudem vorausgesetzt, dass

A(H,(A)) > max A(h;(4)),

so folgt aus (3,32) die Ungleichung

log T (r,H,(4)) .. loglog T (r, W
limsup og T (r, Hn(4)) < limsup glog T( ).

r—+o lOg r r—o IOg r

Es gilt somit
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SATZ 3.2: Es sei A(z) eine n-reihige ganze Matrizenfunktion endlicher Ordnung von
der Form (3,1). Ubersteigt die Wachstumsordnung eines H,(A) die Wachstumsord-
nungen der h;,(A), j<mund k=1,2,...,n+1—j, so gilt

A(H,(A)) < A(log T (r, W)) < A(A4).
Es existieren hochstens (n—m) linear unabhingige Losungsvektoren w mit
A(log T (r, W) < A(H,(4)).

Wie die zwei folgenden Beispiele zeigen, konnen die Gleichheitszeichen angenommen
werden.
Beispiel 3.1: Es sei

und

z 22
W'(Z)= ¢ +2:e2 ’ 1z z
—e*, e —e

z) ‘W (Z) .
Umgeformt in eine Differentialgleichung 2. Ordnung fiir w; ergibt dies
wy = 2w} + wy (" — e** + 2z¢”).
Es gilt
A(Hy(A)=1>0,

A(4)=2,
und nach einem Satz von M. FRrer (4) ist

A(log T(r,W)) =2,

A(z) = <(e) ,,22'32 ),

e

= (1, €
W(z)=e <0’ 1)

eine reguldre Losungsmatrix des Systems (2,1). Dabei ist

Beispiel 3.2: Ist

so ist

A(A) =2
A(H,(4)) = )'(hlk(A))
A(Hi(4)=1>0

A(log T(r,W))=1.
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Diese zwei Beispiele zeigen, dass im Gegensatz zu einem Wronskischen System

A(log T (r, W)) < A(4)
und
A(log T (r,W)) > A(H,;(4))
fiir alle j vorkommen kann.
Wir bezeichnen die () verschiedenen, in beliebiger Art angeordneten Haupt-
unterdeterminanten vom Grade j

5;, P, 0 ... 0
aiz’ is siz pl'z 0 ....... 0

: ) 1<i1<i2<"'<i1<n, (3,34)
aij' i aij’ i3  rreeceeeseuiseaen Sij
mlt djk(A)a ]= 1, 2,..., n, k= 1, 2, cony (;).

Ferner sei
()
D;(4) = 2. d;(4) (3,35)
und
dok(A) = O.

Da jedes d;,(A4) durch ein Produkt der 4;,(4) mit i< darstellbar ist, gilt
D,.(4) = H,(A) + P[h;(4);j < m].
Unser Hauptsatz 3.1 ist dquivalent zu

SATZ 3.1': Es sei A(z) eine Matrix von der Form (3,1). Wenn die Wachstums-
ordnung eines D, (A) die Wachstumsordnungen der d;;(A) mit j<m und k=1,2,...,(j)
ubersteigt, so besitzt (2,1) hochstens n—m linear unabhdngigde Losungsvektoren,
die von endlicher Wachstumsordnung sind.

Fiir m=1 und m=n ist Satz 3.1’ fiir beliebige ganze Koeffizientenmatrizen giiltig.
Beispiel 3.3 zeigt aber, dass weder Satz 3.1 noch Satz 3.1’ fiir allgemeine ganze Koeffi-
zientenmatrizen richtig ist.

Beispiel 3.3: Zur Koeffizientenmatrix

0 , —ée , 1
A(z)=|e—e* , 0 , e*
0

3eZz+e4z’ _e3:_ez’

ist

W(z)=|e, e +2ze"—2¢", e**+3* -3

1, e*+2z , e + 6é
e
eZz

, e 42z 42, €463 +3e
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eine regulire Losungsmatrix von (2,1). Obwohl D, (A)= —2¢*?, H,(A4)=e**+¢** und
alle d, ,(4)=h, ,(4)=0sind, ist dennoch jeder Losungsvektor von endlicher Ordnung.
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