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Sur certaines singularités d’applications de variétés topologiques

Par ARMAND WYLER, Zurich et Stanford University

L’exposé fait par le professeur H. HopF a I’Université de Rome en avril 1962 et publié
dans les Rendiconti di Matematica (27) est & I’origine de ce travail [3].

Une des questions proposées concerne les applications algébriquement essen-
tielles de variétés dont je rappelle la définition: ’application continue f: X™—Y" ou
X™ et Y" sont des variétés topologiques compactes et orientables est dite algébrique-
ment essentielle sil’homomorphisme f,, : H,(X™)— H,( Y") est surjectif. La question est
alors: si 4 est un ensemble fermé de Y”, que peut-on dire des groupes de cohomologie
de I’ensemble £~ (A)?

Avant de parler de la solution de ce probléme, je mentionne I’homomorphisme
inverse, introduit par H. HopF dans «Zur Algebra der Abbildungen von Mannig-
faltigkeiten » (J. reine angew. Math. 163 (1930)) et défini pour toute application con-
tinue f: X"— Y" de deux variétés combinatoires compactes et orientables [2]. Cet homo-
morphisme inverse, défini pour ’homologie,

‘p*:Hi(Yn)“*Hi(X")

est construit grace a la dualité de POINCARE: de méme, dans le cas d’une application
continue f: X™—Y" de deux variétés topologiques compactes et orientables, je con-
struis, en employant la formulation donnée par A. DoLD du théoréme de dualité
d’ ALEXANDER-LEFSCHETZ, un homomorphisme inverse

T*Ihi+m—"(f—1A)—?hi(A)

ol A est un fermé de Y" et h(A4) sa cohomologie de CecH et ou Y*=D"'f, D, D
étant I’'isomorphisme de dualité

D:h(A)=H,_;(Y", Y"— A)
et fx ’homomorphisme induit
fe i H(X™, X™ —f "1 A)— H(Y", Y" — A).

Le théoréme 1 dit que P*:A*™ "(f~! A)—-h'(A) est surjectif si I'application
f:X™— Y" est algébriquement essentielle, ce qui permet, danslecasou A=Y" et m=n,
de retrouver un théoréme de H. Hopr disant que

pi(X") = pi(Y")

ou p;(X™) et p;(Y") désignent les nombres de BETTI de X" et de Y™.
On déduit du théoréme 1 quelques corollaires dont le plus important est: si
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f:X™—Y" est algébriquement essentielle, la dimension cohomologique de I'image
inverse f ~!(y)de tout point y de Y” est supérieure ou égale & m—n.

Je rappelle, a titre de comparaison, le théoréme que I’on peut démontrer dans le
cas général (HUREWICZ et WALLMAN: Dimension Theory, p. 91):

Soit f une application continue de deux espaces métriques compacts, f: X— Y, et
soit dim X—dim Y=k>0. Alors il existe au moins un point de Y tel que son image
inverse ait une dimension supérieure ou égale a k.

Dans la deuxiéme partie de ce travail, j’étudie les points injectifs d’applications
f:X™— Y" de variétés topologiques compactes (m>n); un point y de Y" est dit injectif
si f~1(y) est formé d’un seul point.

Je démontre a ce sujet que si f possede au moins un point injectif, on peut con-
struire une application g: X™— Y" homotope a f, identique a f dans le complément
X™—U%¥(d) d’un voisinage sphérique U7 (5) du point injectif J, et telle que dans un
voisinage sphérique U,(8)<= U7 (6), g soit identique a la suspension d’une application
de sphéres S™ 18" 1,

J’associe ainsi a tout point injectif 6 d’une application continue f: X™— Y" unindice
a€em,_,(S""*) qui est la classe d’homotopie de I’application g|S™ ~'—S"~!; dans le
cas d’une application f: X™—S” non homotope a I’application triviale et possédant au
moins un point injectif, I’indice associé a ce point ne peut &tre 1’élément nul de
Tm—1(S""!):d’o0 un critére pour l’existence de points injectifs d’une application
f: X" S"

Pour une application f:S™—S" possédant au moins un point injectif, on obtient
que f est homotope & la suspension de I’application S™ ~'—S"~! mentionnée plus
haut et on retrouve ainsi un résultat de H. FREUDENTHAL [5]. Si, d’autre part, d,
et d, sont deux points injectifs différents de f:S™ — S”, les éléments associés «, et o,
ne seront pas nécessairement les mémes, mais ils seront dans la méme classe résiduelle
du groupe 7,,_,(S""!) par rapport au noyau de I’homomorphisme de suspension
S:Ty_ 1 (S" H)>m, (S™).

Gréce 4 la factorisation de PONTRJIAGIN [6] et au théoréme 1 de la premiére partie,
on obtient dans les cas particuliers suivants des résultats bien plus précis:

Une application continue, essentielle f:53—S? ne peut avoir de singularité coho-
mologique (point ye S? tel que ' (£ ~'y)=0). Une application continue, essentielle
f:X3-8? d’une variété combinatoire X dans une sphére S? a de méme cette pro-
priété de ne point posséder de singularité cohomologique.

Une application continue, essentielle f:S*—S3 a au plus deux points injectifs; si
elle a deux points injectifs, aucun autre point de S ne peut étre singularité cohomo-
logique.

Dans le cas d’une application simpliciale de deux complexes, f: K— L, 'ensemble
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des points injectifs est un sous-complexe. On démontre alors que si dans I’application
simpliciale f: S™—S" I’ensemble des points injectifs contient un simplexe de dimension
r, la classe d’homotopie de f est contenue dans I'image de I’homomorphisme

St e (ST Yo, (ST).

1. Sur les applications algébriquement essentielles

DEFINITION. Soit R un anneau commutatif avec élément unité. Une application
continue f: X™— Y" de deux variétés topologiques X™ et Y"(m>n) est dite algébrique-
ment essentielle relativement & ’anneau R si ’homomorphisme

fa:H,(X";R) > H,(Y"; R)
est surjectif. On suppose toujours les variétés compactes orientables sans fronticre.

(les indices m et n désignent les dimensions de X™ et Y")
Je me propose de démontrer le théoréme:

THEOREME 1. Soit f une application continue, algébriquement essentielle relativement a
un anneau de coefficients R, de deux variétés topologiques, compactes, orientables, X™
et Y"

Soient A un ensemble fermé de Y" et f ~'(A), image inverse, qui est un fermé de X™;
on suppose A connexe.

Soit W* I’homomorphisme inverse, pour la cohomologie de CECH,

q/*:hi+m—n(f—1 (A)) - ht(A)
obtenu par la composition des homomorphismes:
R (£ (A) S, (X7 X" —f " (A) S H,_ (Y, Y" = A) 2>k (4)

ou D est I'isomorphisme de dualité et f, I’homomorphisme induit par I’application f.

Alors W* est un épimorphisme pour tous les i.

CoroLLAIRE 1. Gardons les hypothéses du théoréme.
Alors, si p;(X™) et p,(Y") sont les nombres de BETTI de X™ et de Y" pour I'homologie

singuliére, on a: m n
& pi+m—n(X ) = Pi(Y )

Démonstration du corollaire.
Prenons dans le théoréme 1 4 =Y". Comme X™ et Y" sont des variétés, la cohomo-
logie de CecH est isomorphe 2 la cohomologie singuliére, donc le théoréme 1 dit que

I’homomorphisme Wr: (XM s HE(Y)

Pism—-n(X") = p(Y").
Démonstration du théoréme 1. Nous prendrons la formulation suivante du théoréme
de dualité, donnée par A. DoLD [4]:

est surjectif, d’ou
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Si Y™ est une variété topologique compacte, orientable, on a:
D:h(A)= H,_,(Y", Y"— A)

ou I'isomorphisme D est obtenu de la fagon suivante:
soit ¥ un voisinage de A4; le cap-produit donne I’application

H(WV)®H,(V,V — A)—-H,_;(V,V—A)

et par excision
H(V)® H,(Y", Y" — A)—H,_,(Y", Y" — A).

On peut considérer cette application comme un homomorphisme
H' (V)5 H,_,(Y", Y" - A)

obtenu en formant le cap-produit de chaque élément de H'(V) avec le cycle fondamen-
tal o, de H,(Y", Y"—A). Si V' est un voisinage de A4 tel que V> V' on a le diagramme

H'(V) - H,_;(Y", Y"— A)
R i
H'(V')—H,_;(Y", Y" — 4).

I'(A) étant le systéme des voisinages de A, le cap-produit donne a la limite I’homo-
morphisme
lim H'(V)—H,_;(Y", Y" — A).

Vel(A)

Le terme de gauche est le groupe de cohomologie de CEcH K'(A) et le théoréme de
dualité dit que cet homomorphisme

N o4 h'(A)—H,_,(Y", Y" — A)

est un isomorphisme que nous désignerons par D.
Apres ce rappel, commengons la démonstration proprement dite du théoréme 1.
Prenons un cycle n,_;eH,_;(Y", Y" — A) et suivons le dans les homomorphismes
du diagramme commutatif

H, (X", X" —f "1 A) S H,_ (Y", Y" - A)
t ]

f#

H(f"'V)«———H'(¥)

ou f et f* sont les homomorphismes induits en homologie et en cohomologie, et ol ¥
est un voisinage de 4 obtenu de la fagon suivante.
Comme ’homomorphisme de la limite inductive lim H'(V)dans H,_;(Y", Y"— A)
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est un isomorphisme, il existe un voisinage ¥ de A4 et un cocycle n'e H (V') tel que
n : n 04 = Np—i-

Démontrons que Papplication f:H,(X™, X" —f"14)->H,(Y", Y"— A) est sur-
jective.
Considérons le diagramme commutatif

H,(X™ > H,(X™, X" —f 1 4)
fml/ ‘Lf'
H,(Y"™) 5> H,(Y", Y" — A).

Comme, par hypotheése, ’homomorphisme
f*:Hn(Xm)-—>H"(Y")

est surjectif pour I’anneau de coefficients considéré, il existe un cycle &, H,(X™)
tel que

f* (gn) = Oy

Or, par construction, ’homomorphisme
JiH,(Y")-> H,(Y", Y"— A)

est un isomorphisme, car Y” est orientable et 4 connexe. Donc jf,(&,)=0,, ce qui
signifie que I’homomorphisme jf, est surjectif.
Comme le diagramme est commutatif, on a:

f *j (én) =0y4.
L’homomorphisme
f*j:Hn(Xm)éHn(Yn’ Y" — A)

est donc un épimorphisme de méme que ’homomorphisme
feoHy(X™, X" ~f "' A) > H,(Y", Y" — A).
Donc il existe un cycle {,e H,(X™, X™—f "1 A) tel que

f*(Cn)= 04

On a donc:
Mo =00 04=10" 0 fx((s)

Or 1a naturalité du cap-produit donne:

' 0 fa(Cn) =f*(f*('7i) N &)



Sur certaines singularités d’applications de variétés topologiques 33

F*()n L estuncyclede H, (X", X™ —f~ ! A)carlecap-produitestun homomorphisme
indépendamment de toute hypothése de variété, en employant comme précédemment
I’excision:

H(f ' V)QH,(X", X" —f "' A)=» H,_;(X", X" - f "' 4).
Nous obtenons donc, sans avoir utilisé I’hypothése que X™ est une variété:

Nn—i =f*(f*(’7i) n Cn)'

Comme 1, _; était un cycle quelconque de H, _;,(Y", Y"— A4), nous avons le résul-
tat suivant: ’homomorphisme

feiH (X", X" —f""A)>H,_,(Y", Y" — A)
est surjectif pour les i.
Appliquons maintenant le théoréme de dualité dans la variété X™ pour I’ensemble
compact f "1 A:
D:hmMNf T A 2 H, (X7, X" — T A).

L’homomorphisme inverse ¥*, défini par la composition des homomorphismes

W (f T A) > Hy (XM X" —f THA) > Hy (Y, YT — A) > (A)

P* =D 'f, D
Y* =D f D: T (f T A) - B (A)

est surjectif.

Remargque sur la démonstration. Nous avons obtenu, sans employer le fait que X™
est une variété, que I’homomorphisme

fet Hi(X™, X" —f "1 A) > H,(Y", Y" A)
est surjectif. On a donc le théoréme:

THEOREME 1'. Soit X un espace topologique compact; soient, d’autre part, Y" une

variété topologique compacte, orientable, et f: X— Y" une application continue. Suppo-
sons que I’homomorphisme

f* : Hn(X) =¥ Hn(Y")
est surjectif pour un certain anneau R de coefficients. Alors, I'homomorphisme
forHi(X, X —f "1 A)> H(Y", Y" — A)

ou A est un ensemble fermé de Y", est surjectif, pour tout i. En particulier, si A=Y",
on a: I’homomorphisme

fa: Hi(X) - H(Y")

est un épimorphisme pour tous les i.
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Nous nous proposons d’étudier quelques exemples et cas particuliers du théoréme

DErFINITION. Soit f: X— Y une application de deux ensembles.

Un élément ye fX est dit injectif si son image inverse f ~ ! y est formée d’un seul é1¢é-
ment.

xe X est dit injectif si fx est injectif.

COROLLAIRE 2 DU THEOREME 1. Soit f: X™— Y" une application continue, algébrique-
ment essentielle de deux variétés topologiques compactes, orientables (m> n).

[fne peut alors avoir de points injectifs et, pour tout point ye Y", la dimension cohomo-
logique de I’ensemble compact f ~ ' y est supérieure ou égale Am—n et h™~"(f ~1(y)) 0.

Démonstration. Nous employons la propriété suivante de la dimension coho-
mologique d’un compact C: cette dimension est supérieure ou égale a tout i tel qu’il
existe un fermé B de C avec h'(B)#0. En employant le théoréme 1 pour A=y, on
obtient

'P*: hm—n(f—l y)__’ hO(y) =R

est surjectif, donc la dimension cohomologique de f ~! y est supérieure ou égale 3 m —n.

A fortiori, il ne peut y avoir de point injectif.

qed.

Remargue 1. Si X™ et Y" sont des variétés triangulables et si f est une application
simpliciale, alors f ~'y est un complexe et la cohomologie de CECH est isomorphe 4 la
cohomologie singuli¢re, elle-méme isomorphe a la cohomologie simpliciale.

Donc la dimension de £~y est >m—n.

Remarque 2. Ni le théoreme 1, ni le corollaire 2, ne valent si X™ est une pseudo-
variété. En effet, considérons I’exemple suivant: soit p la projection de S!x S! sur
S1; identifions une fibre s' 4 un point. L’espace S* x S!/s! ainsi obtenu est une pseudo-
variété, et p est algébriquement essentiel.

Le point avec lequel s est identifié est un point injectif de I’application.

COROLLAIRE 3 DU THEOREME 1. Soit f:X"—Y" une application continue de deux
variétés topologiques compactes, orientables avec d=degré(f)=1. Alors I’endomor-

Dhisme ‘I’*f*:H‘(Y") - H'(Y")

s’obtient en multipliant tout cocycle de H'(Y™) par d. D’autre part, si on prend comme
coefficients le corps des nombres rationnels, I’homomorphisme

P* h(f 1 A) > H(A)

est surjectif pour tout fermé connexe A de Y".
Démonstration. Soit n un cocycle de H'(Y"); comme ¥*=D"1f,D,ona

'Il*f*(ﬂ) = D—lf*Df*('T) = D—lf*(f*(’?) n OX)’
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En employant la propriété du cap-produit

W *m)=D""(nnfaox)=dD"'(nn oy)=dn
car fy(ox) =doy.

Dans la seconde partie de ce corollaire, il suffit de remarquer que f,(0x)=doy
implique dans le corps des rationnels que f: X"— Y" est algébriquement essentiel, d’ou
la surjectivité de

Y*:h'(f 1 A) - K (A).

Remarque. Dans ce cas ou m=mn, il peut naturellement y avoir des points injec-
tifs. Si application f est simpliciale, I’ensemble D des points injectifs est un complexe
de dimension n—2 et on a le résultat suivant de H. Hopr [3]:

THEOREME. Soit f: X"— Y" une application simpliciale de degré d> 2 de deux variétés
combinatoires.

Supposons d premier avec I’ordre du groupe de torsion a une dimension de X",
Alors on a I'inégalité pour les nombres de BETTI de X" et de D

Pn-2(D) < 1+ py(X") + p2(X").

Exemple 1 du théoréme 1. Soient M" et M ® deux variétés triangulables, compactes,

orientables, M"x M* leur produit cartésien et
p:M" x M°—> M?®

la projection sur M°.

L’application p est algébriquement essentielle; on peut donc appliquer le théo-
reme 1.

Prenons un complexe 4 de M?*; p‘l(A)=A X M" est un complexe de M"x M S
donc la cohomologie de CECH est isomorphe a la cohomologie simpliciale.

Le théoréme 1 dit que ’homomorphisme

T*:Hi-l-r(p_lA)—’Hi(A)
est surjectif, donc que H'(A) est isomorphe a un facteur direct de H'*"(p~!4).

Nous pouvons retrouver ce résultat par la formule de KUNNETH. Dans un corps de
coefficients, cette formule donne, pour les groupes d’homologie

Hi+,(p—1A)§ z Hu(A)®Hv(Mr)
ptv=itr
le produit tensoriel étant effectué par rapport au corps F.
Or un des éléments de cette somme est

H,(4) ®¢H,(M")
Comme H,(M")=F,on a

H;(4) ® H,(M") = H;(4) ® F = H;(4).
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Donc H;(A) est isomorphe a un facteur direct de H;,,(p~! A) pour tout i.
Exemple 2 du théoréme 1. Soit f: X™— Y" une application continue de deux variétés
topologiques compactes, orientables.

Supposons que H'(f ~'y)=0 pour tout ye Y et pour i=1, ... n.

Employons le théoréme de BEGLE-VIETORIS qui dit que si f/: X— Y est une applica-
tion de deux espaces topologiques telle que

Hi(f‘- 1 y) =0
pour tout ye Y et pour 0<i<n, alors ’homomorphisme

f*zHi(X)"Hi(Y)
est bijectif, i=1, ..., n.
Donc, dans notre cas:
futHy(X™) - H,(Y")

est bijectif; I’application f est algébriquement essentielle d’ou en prenant dans le
théoréme 1 A=y, on obtient que le groupe de cohomologie A"~ "(f ~'y) n’est pas
trivial.

Si I’application f est simpliciale ,f ~'y est un complexe, donc la cohomologie de
CecH de f ™'y est isomorphe aux cohomologies singuliéres et simpliciales; la com-
paraison du résultat H™ "(f ~'y) non trivial et de ’hypothése H'(f ~'y)=0 pour
0<i<n donne m—n>n, d’ou m>2n.

Du point de vue heuristique, la démonstration du théoréme 1 a été précédée par la
démonstration du théoréme suivant:

THEOREME 2. Soit f: X™— Y" une application simpliciale, algébriquement essentielle de
deux variétés triangulables, orientables (m > n).
Alors il ne peut y avoir de point ye Y" tel que

N
-1
fTyelUe
i=1
lese(i=1, ..., N) étant des simplexes @ m dimensions de X™, et tels que &N &;=0 pour
i#j.
COROLLAIRE DU THEOREME 2. Dans les hypothéses du théoréme 2, f ne peut avoir de

point injectif.
Démonstration du théoréme 1. Comme I’homomorphisme

fa: Hy(X™) > H,(Y")

est un épimorphisme, il existe au moins un cycle £, que nous pouvons supposer
réalisé par un complexe, tel que

f* (ﬁn) = Oy
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oy étant le cycle fondamental de la variété Y".
Supposons qu’il existe un point ye Y” tel que

N
fTlyelUe
i=1

les e; étant des simplexes a m dimensions, disjoints deux a deux.
Nous nous proposons de construire un cycle £, homologue a &, et tel que

N
6:, n Uei::@'
i=1

Donc f, (¢,) ne peut représenter le cycle fondamental oy de la variété Y". Or £, (&)
est homologue a £, (&,); notre hypothése sur I’existence d’un point ye Y" tel que

N
-1
f yc U €;
i=1
se révele ainsi fausse.

Construisons le cycle &,: pour chaque i 'intersection de £, avec de; =Z; est un cycle
»_1; ce cycle borde dans X; un complexe {}. Prenons pour {.:

N N
ged.
2. Sur les points injectifs d’applications de variétés

Soient X™ et Y" deux variétés topologiques compactes (m>n) et soit f: X™—Y"
une application continue essentielle, c’est a dire non homotope a I’application triviale
t: X" —>yeY" Désignons par 4<X™ I’ensemble des points injectifs de X et par D=
f(4) 'ensemble des points injectifs de Y.

Supposons D #0 et soit de4, d=f(9).

Nous appellerons voisinage sphérique V,(d) de d 'image par un homéomorphisme
i de l'intérieur e” d’une sphére S"~ 1. Soit dV,(d) la frontiére de V,(d).

D’exemple de la suspension Sf d’une application f:S™— S" ou d serait un des
poles de suspension nous améne 4 étudier 'image inverse f ~! V,(d). Est-ce un voisinage
sphérique de 6?

Nous n’avons, dans le cas ou f est continu, que la formule

R si g=0
HY(0) = lim H(f ' V)=
( ) YV ad (f ) {0 si q> 1
R étant 'anneau de coefficients.
Nous verrons (chapitre 5) que, si fest une application simpliciale de deux variétés
combinatoires, on peut construire V,(d) de telle maniére que f ' V,(d) soit un voisi-
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nage sphérique de d. Dans le cas général d’une application continue, nous nous propo-
sons de démontrer le théoréme:

THEOREME 3. Soit f:X™— Y" une application continue de deux variétés topologiques et
soit & un point injectif de f(X™ et Y" sont compactes). On peut alors construire deux
voisinages sphériques U ¥ () et U,(8) avec U¥(8)> U,(8) tels qu’il existe une application
g:X™— Y" ayant les propriétés suivantes:

a) g|X"—UX(8)=/1X"~U2(3);

b) g(U(9)) est un voisinage sphérique V,(d) de d et g~ 'V (d)=U,(5), goU,(d)=
og U,(9);

c) g est homotope a f.

Pour la démonstration de ce théoréme, nous aurons besoin du lemme suivant:

LEMME. Soit f: X™—Y" une application continue de deux variétés topologiques
compactes et soit d= Y”" un point injectif.

Alors, a tout ouvert Usd=f"1d, il existe un voisinage sphérique V,(d) tel que
Usf ™1 (V(d)).

Démonstration du lemme. Supposons qu’il n’existe pas de tel voisinage sphérique
de d. Alors, pour tout voisinage sphérique V,(d) de rayon 1/i, il existe un point x'e X™
tel que x'¢ U et f(x')eV,(d).

La suite {f(x')} converge vers d; d’autre part la suite {x'} a un point d’accumula-
tion dans X™— U puisque X™— U est compact. Or il est impossible que I'image de ce
point d’accumulation soit d car d est un point injectif.

Donc il existe bien un voisinage sphérique V,(d) tel que f~!(V,(d))< U. qed.

Démonstration du théoréme 3. Prenons dans X™ un voisinage sphérique U¥ () qui
soit tel que U (8) soit contenu dans un voisinage euclidien de d; ceci est possible car f
est continu.

D’apres le lemme nous pouvons construire un voisinage sphérique V,(d) tel que
fTHV(@) = Ug(9).

Naturellement, V,(d)cfU¥(8) et fU¥(5) est un ouvert de Y". Que peut donc dire
de I'image par I'application f de la frontiére dUY(8)=2% 1?

Un point intérieur de fU¥(5) peut étre 'image d’un point de X3 ! mais un
point de dfUJ(5) n'a pas dans son image inverse de point de UX(5); donc
fIe 1o0fUX(9).

D’autre part 0fUY(8)n V,(d)=0 et fZ73 ',d, puisque d est un point injectif. Ceci
permet de construire la projection 7 de ’ensemble 2%~ ! sur la spheére (de centre d)
Il =0V,(d).

La composition des applications f et # donne donc une application

nf: It pnt,

Prenons maintenant un voisinage sphérique U,(d) de § qui soit contenu dans /'~ V,(d).
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Construisons ’application g: X™— Y" mentionnée dans I’énoncé du théoréme.
Prenons g(x) =f(x) sur ensemble fermé X™—UZ(§).

Pour xe U¥(8)— U,(8), menons le rayon dx qui coupe les sphéres ™ et Z71!
respectivement en x,; et x,.

Menons le rayon df(x,); il coupe la sphére 2"~ ! =0V,(d) en un point que nous
nommerons g(x,).
Nous définissons g(x) comme le point divisant le segment g(x,) f(x,) dans le méme

rapport que x divise x; x,.

Pour xe U,(9), le rayon 5x coupe la sphére ™~ ! en un point x,; g(x) est le point

divisant le segment dg(x,) dans le méme rapport que x divise le segment 5x1

L’application g: X™— Y" ainsi obtenue est continue et admet toujours é et d comme
points injectifs.

Par construction, les propriétés a) et b) énoncées dans le théoréme 3 sont remplies
par I’application g.

Démontrons que f est homotope & g: pour cela il faut construire une homotopie
D,(x): X" x I- Y" telle que &,(x) =f(x), ¢,(x)=g(x). Prenons f=g dans le complé-
ment X™ — U () dela cellule U} (5); on peut donc utiliser la structure euclidienne dans
SfUX(8) avec d comme origine de ’espace vectoriel.

Considérons I'application @,(x)=f(x)+t(g(x)—f(x)),xe U¥(5)

Cette application est continue et posséde les propriétés suivantes.

@o(x)=/(x))

@, (x)=g(x)§

®,(x)=f(x)=g(x) pour tout tel et pour xedU;(d)=25"".

Donc, pour xeX™—UZX(5), on peut bien étendre ’homotopie @,(x) en posant
@, (x)=f(x) pour tout .

Nous avons ainsi la propriété c): g est homotope a f. ged.

Nous nous proposons maintenant d’étudier le probleme: si ’application f: X™— Y™"
est essentielle, en est-il de méme de ’application g: 2™~ 12"~ 1?

Supposons que g:Z™ 1 2""! soit homotope a I’application triviale £:Z™ ' ye
Z"~1; sous quelles hypothéses peut-on en déduire que g: X™— Y™ et par suite f: X™—
Y", homotope a g d’apres le théoréme 3, est homotope a ’application triviale ¢: X™—
ye Y™ Pour pouvoir employer la théorie de I'obstruction, supposons que X™ et Y"
sont des variétés combinatoires, orientables.

Nous cherchons a construire une homotopie ¥,(x): X™ x I- Y" telle que ¥ (x)=
g(x) et ¥, (x)=1(x).

Par hypothése, g: 2™~ ' 2"~ ! n’est pas essentielle, donc ¥,(x) est déja défini sur
le complexe ™~ !; on peut naturellement étendre cette homotopie a I'intérieur U(J)
de la sphére 2™ 1,

pour xe U (d)
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En étendant 'homotopie ¥,(x) a X™— U,(d), on rencontre des cocycles d’obstruc-
tion contenus dans les groupes

HY(X™ — U,(8), 2" Y m(Y" = ¥,(d))

ol V,(d) est Pintérieur de la sphére £"~*; ensemble X™— U,(5) est une variété com-
binatoire & bord Z™~1: on peut donc appliquer le théoréme de dualité

HY(X™— U,(8), Z" ' m(Y" = Vi(d)) = H,— (X" — U, (8); m;(Y" = V,(d)))

Si la variété Y” est une sphére S”, S”"— V,(d) est une cellule e": donc, comme =;
(¢")=0 pour tout i, il n’y a pas d’obstruction et g: X" —S" est homotope a I’application
triviale £ si g: 2™ 152" ! I’est elle-méme.

Par contre, si X™ est une sphére S™ et Y" une variété quelconque, le groupe

H™(S™ = U,(3), 2" " m, (Y" — V,(d)))

n’est pas trivial puisqu’il est isomorphe a

Ho (8™ = Uy(8); 1 (Y" — V()

et il peut donc y avoir une obstruction.
Nous obtenons ainsi le théoréme

THEOREME 4. Soient X™ une variété combinatoire et f:X™—S"(m>n) une application
continue, essentielle, ayant au moins un point injectif. Alors I'application g: X™ 1 »x"~1
obtenue dans le théoréme 3 est essentielle.

COROLLAIRE. Soit X™ une variété combinatoire de dimension m>2; une applica-
tion f: X™—S? continue, essentielle, ne peut avoir de point injectif. Il en est de méme
pour X225510,

Démonstration du corollaire.

S’il y avait un point injectif, on pourrait lui associer une application g: X" !'—-x1
essentielle d’aprés le théoréme 4. Or le groupe d’homotopie =,,_(S') est nul et de
méme 7,,(S%)=0.

Remarque. 1 application g: 2™ ! - X"~ n’est pas nécessairement essentielle: nous
allons donner I’exemple d’une application essentielle f: X™— Y" ayant des points in-
jectifs tels que les applications g:X™ '—X""! soient homotopes & I’application
triviale.

Pour cela, nous aurons besoin de la proposition
PrOPOSITION. Soit f:4A—B une application continue, essentielle, de deux espaces
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topologiques. Alors, I’application

fxfitAxA->BxB
est essentielle.

Démonstration. Supposons que f X f ne soit pas essentielle: soit alors @ une homotopie
P:AxAxI->-BxB

telle que P|Ax Ax0=fxfet ®|4x A x 1=t (application triviale).
Projetons sur les facteurs A x I et B:

AxAfo—;BxB
p AN

AxI - B

Y|Ax0=fet Y|4 x1=t;donc ’application f: 4— B n’est pas essentielle, ce qui est en
contradiction avec I’hypothése. ged.
Revenons a la construction de I’exemple: prenons la suspension Sa de la fibration
de HOPF a: S —S?; S« est essentiel d’aprés le théoréme de FREUDENTHAL et posséde
deux points injectifs.
Considérons le produit cartésien

(Su)*:8* x S* x §* x §* > 8% x §? x §% x §°

(S«)* est une application essentielle d’aprés la proposition précédente et posséde 16
points injectifs.

Pour chacun de ces points on peut construire selon le théoréme 4 une application
g: 2121 Or g est homotope 4 ¢ car le groupe m,5(S!'!) est nul.

3. Sur les points injectifs d’applications de sphéres

Soit f: S™—S"(m>n) une application continue, essentielle de deux sphéres. Que
peut-on déduire de I’existence de points injectifs?

Les théorémes 3 et 4 du chapitre précédent donnent:s’il existe au moins un point
injectif de Y", on peut lui associer une application g: S™—S" homotope a f et telle que
g: 2™ 15 3m~1 50it essentielle. Nous nous proposons de démontrer le théoréme.

THEOREME 5. La classe d’homotopie d’une application f:S™—S", possédant au
moins un point injectif, est dans I'image de I’homomorphisme de suspension S:m,,_,
(S"" -, (S").

Plus précisément, la suspension de I'application g:E™~'—X""! est dans la classe
d’homotopie de f:S™—S™.

COROLLAIRE 1. Si d,; et d, sont deux points injectifs de I'application f:8™—S" les
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classes d’homotopie [g,] et [g,] des deux applications g,: Z™ ' 3" et g, Zm 1531
sont dans la méme classe résiduelle du groupe =, _,(S"™') par rapport au noyau de
I"’homomorphisme de suspension S:n,,_,(S""")- =, (S")

Dans la démonstration du théoréme 5, nous aurons besoin du lemme suivant
(ALEXANDROFF-HOPF p. 502)

LEMME. Soient f; et f, deux applications d’un espace métrique compact dans la sphére
S"; supposons qu’il existe un ensemble ouvert G de S” possédant la propriété suivante:
en chaque point ye G, les images inverses fg ' () et f{ ! () sont identiques.

Alors les applications f;, et f; sont homotopes.

Démonstration du théoréme. Considérons I’application g:S™—S" construite dans le
théoreme 3; elle est homotope a I’application f.

A lintérieur de 2™ !, c’est-a-dire dans le voisinage sphérique U,(9), 'application g a
été construite comme la suspension de I'application g: X"~ ! X"~ 1,

Faisons de méme pour le complément S™— U, (5) de U,(6); on obtient ainsi une
application h:S™—S" qui est par construction la suspension de g:X™ !-x""1
L’application A est telle que A~ '(y)=g!(y) pour tous les points y du voisinage
sphérique V,(d). Donc, d’aprés le lemme, les applications g et 4 sont homotopes: fet g
étant homotopes, f est homotope a A. ged.

Remarque. 11 peut y avoir des applications f:.S™—S" qui ne sont pas essentielles
mais qui possédent des points injectifs tels que I’application associée g:Z™ "1 —»x"~!
soit essentielle.

I1 suffit de prendre la suspension d’une application g:S™~'—S"~! comprise dans
le noyau de ’homomorphisme de suspension, si ce noyau est différent de zéro.

COROLLAIRE 2. Soit f:S™—S" une application continue avec m<2n—2: quelle
que soit la classe d’homotopie de f, il y a dans cette classe des applications possédant
des points injectifs.

Si m<2n-—2, les applications g;:Z™ " 1-2""1 et g,:Z™ 152" ! associées a
deux points injectifs d; et d, définissent le méme élément du groupe =,,_(S"™1).

Démonstration. D’apreés le théoréme de FREUDENTHAL, ’homomorphisme de
suspension S:7,,_,(S"~!)—n,, (S") est surjectif si m<2n—2 et bijectif si m<2n—2,
ce qui démontre le corollaire.

CoROLLAIRE 3. Désignons par 7, ,_,(S"), le sous-groupe de n,,_(S") formé par
les éléments d’invariant de HOPF nul.

Si I’application continue f: S2"~1— S§" a des points injectifs, la classe d’homotopie
de f est nécessairement un élément de 7, ,_;(S")o.

Démonstration. D’apréslethéoréme de FREUDENTHAL, S5, _,(S" ™) =7, ,_1(S")os
donc comme une application f:§2"~1—-S$" avec au moins un point injectif est dans la
classe d’homotopie d’une suspension, f est nécessairement dans le sous-groupe 7, ,_,

(S™o- qed.
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Remarque. Si 'application f:S2"~!—S" est simpliciale, I'invariant de HOPF est
défini par

Y=V )T ()

ou y, et y, sont deux points différents de S".

I ne peut donc y avoir de point injectif si y #0, ni de point y tel que £~ () soit
d’homologie triviale.

4. Sur des cas particuliers d’applications de variétés

Pour certaines valeurs de m et de n dans une application f: X™—S", on peut donner
des résultats plus précis sur les images inverses f ~!(y) des points de S”.

Considérons une application continue f: X™—S! ou X™ est une variété combina-
toire. Si cette application est essentielle, elle est algébriquement essentielle (ALEXAN-
DROFF-HOPF, p. 517).

On peut donc appliquer le corollaire 2 du théoréme 1 et on obtient le résultat

THEOREME 6. Dans une application continue, essentielle f: X™—S' d’une variété
combinatoire, orientable X™ dans un cercle S, le groupe de cohomologie de CECH
W™= 1(f~1(y)), ot y est un point quelconque de S, n’est pas trivial et la dimension
cohomologique de f ~ ' () est donc supérieure ou égale d m—1.

Le théoréme 4 du chapitre 2 donne: une application essentielle f:S3—S? ne
peut avoir de point injectif, car s’il y avait un tel point, on pourrait lui associer une
application essentielle g: Z2—X! ce qui est impossible puisque le groupe d’homotopie
n,(S!) est nul. Ce raisonnement vaut pour f: X™—S2,

Rappelons le théoréme de factorisation de PONTRIAGIN (Recueil mathématique
de 'université de Moscou, T. 9, 1941) [6].

THEOREME. Si une application continue f: K™ —S? d’un complexe de dimension
m>2 dans une sphére S? n’est pas algébriquement essentielle, on peut factoriser f par
la fibration de HoPF a:S3—S?

Km_g;s3
\ a
VAN lsz

Grace a ce résultat de PONTRJAGIN, nous nous proposons de démontrer le théoreme

THEOREME 7. Dans une application essentielle f:S>—S?, le groupe de cohomologie
de CecH h'(f ~1(y)), ot y est un point quelconque de S*, est différent de zéro.

Dans une application essentielle f:S™— S?*(m>3), I'image inverse de tout point y de
S? est formée d’un nombre infini de points.

Démonstration. Lapplication f:S™—S? remplit les hypothéses du théoréme de
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PONTRIJAGIN: on a donc la factorisation de f: S™— S? par les applications ¢:S™— S et
a:S3-S2.

sm 4 g3

N

L’application f=a ¢ étant essentielle, de méme que la fibration a: 53— S?2, ’appli-
cation ¢:S™—S3 est essentielle.

Comme I'image inverse o™ !(y) est un cercle, f ~'(») sera formé d’un nombre
infini de points.

Si m=3, le degré de ¢:S3—S? est supérieur ou égal a 1 et on peut appliquer le
corollaire 3 du théoréme 1 en prenant 4=S", d’ou le résultat. ged.

On peut aussi combiner le théoreme 1 et la factorisation de PONTRJIAGIN pour
obtenir le théoréme

THEOREME 8. Pour une application continue essentielle f: X —S? d’une variété com-
binatoire X3 dans une sphére S?, le groupe de cohomologie de Cecu h'(f ~(»)) n’est
pas trivial.

Démonstration. 11 faut distinguer deux cas:

a) f:X3*—>S? est algébriquement essentielle et on peut alors employer le corollaire
2 du théoréme 1.

b) f:X3>—>S? n'est pas algébriquement essentielle, ce qui permet d’appliquer la
factorisation de PONTRIAGIN

x*4s3
N2
\SZ

L’application ¢:X?—S? est algébriquement essentielle et le corollaire 3 du thé-
oréme 1 ot on prendra 4=S"' donne le résultat cherché. ged.

Dans le cas d’une application f:S*—S?3, comme n,(S*)=Z,, il y a une seule
classe d’homotopie non triviale et cette classe est engendrée par la suspension de la
fibration a: S3—S2.

Nous pouvons démontrer grice a la factorisation de PONTRIAGIN le résultat
suivant

THEOREME 9. Une application essentielle f;S*—S?> a au plus deux points injectifs.
Si elle posséde deux potnts injectifs d, et d,, le groupe de cohomologie de CEcH h* (f ~*(»))
est différent de zéro pour tout y de S* différent de d, et d,.

Démonstration. Supposons que ’application f:S*—S? ait au moins deux points
injectifs; nous nous proposons de démontrer que pour tout point y différent de d,

et dy, h'(f 71 (1)) #0.
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Raisonnons par ’absurde et supposons qu’il existe un point y différent de d, et d,
tel que A1(f~'(y))=0.

Faisons simultanément en d, et d, la construction décrite dans le théoréme 3:
prenons les voisinages sphériques U (5,) et U¥(5,) dans le complément de £ ~!(y).

On obtient ainsi une application g:S* — S continue, homotope 4 f:S* > S?3, possé-
dant aussi les deux points injectifs d, et d, et telle que:

£(x)=g(x) pour xeS*— UX(8,)U UX(5,)

g ' (Vy(d))=U(6,)i=1,2 0u V,(d,) et V,(d,) sont des voisinages sphériques de d, et d,.

D’aprés le théoréme de PONTRIAGIN, on peut factoriser g: 23— 22 ot 23 =0U,(6,),
par la fibration «:S%—S?2.

Considérons la suspension Sa de poles d, et d, : dans le complément S*— U (J,)
U U,(8,), S« est une fibration ce qui nous permet d’étendre & S*— U(5,)U U,(6,)
la factorisation définie sur X?>=0U(6,) qui est un deformation-retract du cylindre
S4_ Us(él) U Us(52)

Comme g et Su sont définies a I'intérieur de U,(J;) par la suspension des applica-
tions g:X*—X?% et a:53—>S?, on peut étendre la factorisation sur toute la sphére S*.
On obtient donc

S4£>S4
t Sa
\f\ ¢S3

Le point y considéré est par construction dans > — V,(d,) U V,(d,) donc (Sa) ()
est un cercle S1; lapplication ¢:S*—S* étant essentielle, puisque Sa et f=Su-¢
le sont, on peut employer le corollaire 3 du théoréme 1, en prenant 4A=S". qed.

5. Etude des points injectifs d’applications simpliciales

Prenons une application essentielle simpliciale f:S*—S?2. Elle ne peut avoir de
point injectif et sa suspension Sf:S*— S aura comme points injectifs les poles de
suspension. Par itération, I’application S"f:S>*"—S2* " qui est aussi simpliciale, aura
comme ensemble de points injectifs une sphére 2"~ !, complexe de S2*".

Réciproquement, nous nous proposons de démontrer que si une application sim-
pliciale f: S™— S™" posséde un simplexe, a r dimensions, de points injectifs, alors f est
homotope & une (r+ 1)éme suspension.

LEMME. Soit f: M™— N" une application simpliciale de deux complexes M™ et N”,
respectivement a m et & n dimensions (m>n).

Alors ’ensemble 4 des points injectifs dans M™ est un complexe de M™, dans la
triangulation initiale et A K1 (M™

o K"~ 1( M™) est le squelette & (n—1) dimensions de M.
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Démonstration. Comme f est une application simpliciale
f:K°(M™)— K°(N")

et, si xy, X, ..., X, sont les sommets d’un simplexe de K*~'(M™), f(x,), ..., f(x,) sont
les sommets d’un simplexe de K?~!(N"), qui ne sera d’ailleurs pas nécessairement de
dimension g —1.

Je me propose de démontrer qu’un point intérieur d’un simplexe a n» dimensions de
K"(N™) ne peut €tre un point injectif de f et, plus généralement, si d est un point in-
jectif intérieur d’un simplexe a ¢ dimensions, alors tout ce simplexe est formé de
points injectifs.

Soient yy, ..., ¥,+1 les sommets du simplexe o en question.

Soient 67, ..., 64", ..., ... les simplexes de K™(M™), qui seront de dimension
supérieure ou égale a g, qui sont appliqués sur le simplexe o.

Tous les simplexes ¢, ..., 6f*!, ... ont en commun le point £ ~!d. Or dans un
complexe les simplexes sont tous disjoints, donc il n’y a qu’un seul simplexe ¢? a étre
appliqué sur o.

Les A, étant les coordonnées barycentriques, on a pour ’application f|¢?

F(ZAix;) = ZAf (x;).

L’image inverse d’un point intérieur est donc toujours a ¢’ —q dimensions; or f ~'d
est formée d’un seul point.

Par suite, g’ =q et f|6? est un homéomorphisme.

Nous avons donc démontré que si de D est un point d’un simplexe ¢? de K/(N"),
alors ¢?c D.

Etudions le cas ou g=n.

Plus généralement, on a:

L’ensemble D<= Y™ des points injectifs d’une application continue f: X™—Y" de
deux variétés topologiques X™ et Y"(m>n) ne peut contenir de cellule e".

En effet, la frontitre de” de e" sépare Y" en deux parties connexes alors que f/ ~ ! de"
qui est une sphére topologique de dimension n— 1 ne sépare pas la variété X™ qui est
une variété de Cantor. Cette démonstration vaut pour m>n.

Pour m =n, il faut supposer que le degré de I’application f soit supérieur ou égal a 2.

Donc en revenant a la démonstration du lemme, on voit que D ne peut contenir
de simplexes a n dimensions.

C’est-a-dire, Dc K"~ (N"). qed.

Soit f:X™—Y" une application simpliciale de deux variétés combinatoires; soit
de Y" un point injectif de f.

D’aprés le lemme précédent, on a d= K" !(Y"); désignons par @, I’ensemble des
simplexes de K"(Y") tels que d soit dans 'un de ces simplexes ou leur fermeture.

Définissons de méme ¥, pour §=f "1d.
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Y" étant une variété, nous pouvons construire un voisinage sphérique V,(d), sim-
plicial, convexe et tel que

V,(d) c Lia et f '(Vi(d))c L’.,), o,

La frontiére 0V,(d) est une sphére X"~ ! de centre d.
Nous nous proposons de démontrer le théoréme

THEOREME 10. Le complexe f ~' X"~ est une sphére, I'application f-f 1" " 1xr~!
étant naturellement simpliciale.

Si I'application f est essentielle et si la variété Y" est une sphére S", alors f:f ~1 2"~ 1
— X" 1 est aussi essentielle.

Démonstration. L’application étant simpliciale, 0f ~'V,(d) est un complexe.
Menons avec 6 comme origine les rayons dans (J,.,, o et considérons leur image
dans ’application f.

Cette application étant linéaire en chacun des simplexes o, I'image de chacun de
ces rayons sera un rayon issu de d et compris dans |, o, 0.

Chaque rayon coupe la sphére 2"~ ! en un seul point; il en est de méme pour
Iintersection des rayons issus de é et de 'ensemble 0f ™! V,(d) qui est donc une sphére
Y™~ 1 et naturellement ’application f: 2™~ ' X"~ ! est simpliciale.

Pour la deuxi¢me partie du théoreme, supposons maintenant que Y" est une
sphere S".

Nous pouvons alors, pour démontrer que I’application f:X™ ! —X"~1 est essen-
tielle si f: X™— Y" I’est, répéter le raisonnement fait dans le chapitre 2. En effet, 1’ob-
struction

H{(X™ = f 'V, (d), 2" ' m,(S" — &)
est toujours nulle. ged.

COROLLAIRE. Si dans l'application simpliciale f:S™—S" I'ensemble D des points
injectifs contient un simplexe ¢" de dimensionr, alors la classe d’homotopie de f est dans
I'image de I’homomorphisme

Sr+1 ey 1 (Sn—r-— 1) — 7_,:m(sn)
obtenu en itérant I’homomorphisme de suspension

Tp—r—1 (S”_r—l) d nm—r(Sn—r) e nm(sn) -

Démonstration. Pour r =0, le théoréme précédent donne le résultat; en effet, ’ap-
plication f: S™—S" est homotope a la suspension de I'application f: X"~ !> X"~ car f
et la suspension que nous appellerons 4 satisfont aux hypothéses du lemme (chap. 3).

Pour r>>1, prenons un point d intérieur au simplexe ¢".

La sphére 2"~ ! qui intervient dans le théoréme précédent coupe le simplexe ¢" en
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deux complexes ¢! et 65! qui forment I’ensemble injectif de ’application f: ™1
""Z” -1 .

L’application f:S™—S" est dans la classe d’homotopie de la suspension de
f.zm—l_)zn—lo

Nous sommes donc ramenés au cas r— 1. On voit en particulier que la dimension
de D est inférieure ou égale a n—3(si m>n). ged.

Exemple. Une application simpliciale f:52%—S!3 ne peut avoir, si elle est essen-
tielle, de simplexe de points injectifs a 3 dimensions.

En effet, si c’était le cas, on aurait que I’application f:S2°—S!? est dans 'image

de ’homomorphisme
P §*:m1 (8) = mas (S1)

ce qui est impossible, puisque 7,,(S%)=0.

Remarque. Une application essentielle /: S™*!—S™ est toujours homotope a une
application A:S™*!—S™ ayant pour ensemble injectif une sphére 4 m— 3 dimensions
et cela sans hypothese de simplicialité pour f. En effet, on a le résultat d¢e FREUDENTHAL :
M1 (S7)=8""213(S?).
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