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Sur certaines singularités d'applications de variétés topologiques

Par Armand Wyler, Zurich et Stanford University

L'exposé fait par le professeur H. Hopf à l'Université de Rome en avril 1962 et publié
dans les Rendiconti di Matematica (21) est à l'origine de ce travail [3].

Une des questions proposées concerne les applications algébriquement essentielles

de variétés dont je rappelle la définition: l'application continue f:Xm^> Yn où
Xm et Yn sont des variétés topologiques compactes et orientables est dite algébriquement

essentielle si rhomomorphisme/*://n(Xm)-+//„( Yn) est surjectif. La question est

alors: si A est un ensemble fermé de Yn, que peut-on dire des groupes de cohomologie
de l'ensemble/"l(A)ï

Avant de parler de la solution de ce problème, je mentionne l'homomorphisme
inverse, introduit par H. Hopf dans «Zur Algebra der Abbildungen von Mannig-
faltigkeiten » (J. reine angew. Math. 163 (1930)) et défini pour toute application
continue/: Xn-* Yn de deux variétés combinatoires compactes et orientables [2]. Cet homo-

morphisme inverse, défini pour Fhomologie,

est construit grâce à la dualité de Poincaré: de même, dans le cas d'une application
continue f:Xm->Yn de deux variétés topologiques compactes et orientables, je
construis, en employant la formulation donnée par A. Dold du théorème de dualité
d'ALEXANDER-LEFSCHETZ, un homomorphisme inverse

où A est un fermé de Yn et h(A) sa cohomologie de Cech et où W*=D~1fH.D, D
étant l'isomorphisme de dualité

D:hi(A)^Hn.i(Y\Yn-A)
et/* l'homomorphisme induit

f*:Hi(Xm,Xm-f-1A)->Hi(Y\ Yn-A).
Le théorème 1 dit que xF'k:hi+m~n(f~1A)-^hi(A) est surjectif si l'application

/: Xm-+ Yn est algébriquement essentielle, ce qui permet, dans le cas où A Yn et m =n9
de retrouver un théorème de H. Hopf disant que

Pi(Xn)>Pi(Yn)

oixpi(Xn) ctpi(Yn) désignent les nombres de Betti de Xn et de Yn.

On déduit du théorème 1 quelques corollaires dont le plus important est: si
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f:Xm-+Yn est algébriquement essentielle, la dimension cohomologique de l'image
inverse f~1(y) de tout point y de Yn est supérieure ou égale àm — n.

Je rappelle, à titre de comparaison, le théorème que l'on peut démontrer dans le

cas général (Hurewicz et Wallman: Dimension Theory, p. 91):

Soit/une application continue de deux espaces métriques compacts, /: X-* Y, et

soit dim X— dim Y=k>0. Alors il existe au moins un point de F tel que son image
inverse ait une dimension supérieure ou égale à k.

Dans la deuxième partie de ce travail, j'étudie les points injectifs d'applications
f:Xm-+ Yn de variétés topologiques compactes (m^ri); un point y de Yn est dit injectif
si/"1 (y) est formé d'un seul point.

Je démontre à ce sujet que si/possède au moins un point injectif, on peut
construire une application g:Xm-+Yn homotope à/ identique à/dans le complément
Xm— U*(Ô) d'un voisinage sphérique U*(ô) du point injectif Ô, et telle que dans un
voisinage sphérique Us(ô)c:U* (ô), g soit identique à la suspension d'une application
de sphères S"1'1 -+S""1.

J'associe ainsi à tout point injectif ô d'une application continue/: Xm-> Yn un indice

ae7lm-1 (Sn~ *) qui est la classe d'homotopie de l'application g\Sm ~l -+Sn~ *
; dans le

cas d'une application/: Xm-+Sn non homotope à l'application triviale et possédant au
moins un point injectif, l'indice associé à ce point ne peut être l'élément nul de

nm-i(Sn~1):d'oix un critère pour l'existence de points injectifs d'une application
f:Xm->Sn.

Pour une application f:Sm-*Sn possédant au moins un point injectif, on obtient
que/est homotope à la suspension de l'application Sm~1^Sn~1 mentionnée plus
haut et on retrouve ainsi un résultat de H. Freudenthal [5]. Si, d'autre part, dt
et d2 sont deux points injectifs différents def:Sm->Sn, les éléments associés oc1 et a2

ne seront pas nécessairement les mêmes, mais ils seront dans la même classe résiduelle
du groupe tcw_1(5"1"1) par rapport au noyau de l'homomorphisme de suspension

s-.rt.-iOs11-1)-^").
Grâce à la factorisation de Pontrjagin [6] et au théorème 1 de la première partie,

on obtient dans les cas particuliers suivants des résultats bien plus précis:
Une application continue, essentielle/:S3->S2 ne peut avoir de singularité

cohomologique (point yeS2 tel que h1 (f~1y)=0). Une application continue, essentielle

f:X3->S2 d'une variété combinatoire X3 dans une sphère S2 a de même cette
propriété de ne point posséder de singularité cohomologique.

Une application continue, essentielle/:S4-+S3 a au plus deux points injectifs; si
elle a deux points injectifs, aucun autre point de S3 ne peut être singularité cohomologique.

•
Dans le cas d'une application simpliciale de deux complexes, f:K-+L, l'ensemble
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des points injectifs est un sous-complexe. On démontre alors que si dans l'application
simpliciale /: Sm~* Sn l'ensemble des points injectifs contient un simplexe de dimension

r, la classe d'homotopie de / est contenue dans l'image de l'homomorphisme

1. Sur les applications algébriquement essentielles

Définition. Soit R un anneau commutatif avec élément unité. Une application
continue/:Xm-> Yn de deux variétés topologiques Xm et Yn(m^n) est dite algébriquement

essentielle relativement à l'anneau R si l'homomorphisme

est surjectif. On suppose toujours les variétés compactes orientables sans frontière.

(les indices m et n désignent les dimensions de Xm et Yn)

Je me propose de démontrer le théorème:

Théorème 1. Soit f une application continue, algébriquement essentielle relativement à

un anneau de coefficients R, de deux variétés topologiques, compactes, orientables, Xm

et Yn.

Soient A un ensemble fermé de Yn etf ~ l(A), image inverse, qui est un fermé de Xm ;

on suppose A connexe.
Soit W* lfhomomorphisme inverse, pour la cohomologie de Cech,

obtenu par la composition des homomorphismes :

hi+m-"{f-l{A))^Hn_i (Xm, Xm -f-l(A))^Hm.,(Y", Y" - A) -Xhl{A)
où D est Visomorphisme de dualité et f* Vhomomorphisme induit par Vapplication f.

Alors W* est un épimorphisme pour tous les i.

Corollaire 1. Gardons les hypothèses du théorème.

Alors, sipi(Xm) etPi{Yn) sont les nombres de Betti de Xm et de Yn pour Vhomologie

singulière, on a:
Pi + m-n\A ^ PiK1 )•

Démonstration du corollaire.
Prenons dans le théorème 1 A Yn. Comme Xm et Yn sont des variétés, la cohomologie

de Cech est isomorphe à la cohomologie singulière, donc le théorème 1 dit que
l'homomorphisme ^ ^+m_„^
est surjectif, d'où /yB,P (X
Démonstration du théorème 1. Nous prendrons la formulation suivante du théorème

de dualité, donnée par A. Dold [4] :
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Si Yn est une variété topologique compacte, orientable, on a:

Dih'MzÊH^iiY", Y" - A)

où l'isomorphisme D est obtenu de la façon suivante:
soit F un voisinage de A; le cap-produit donne l'application

Hi{V)®Hn(V,V-A)^Hn__i(V,V-A)

et par excision

Hi(V)®Hm(Y"9Yn-A)-+HH-i(YH,Yn-A).

On peut considérer cette application comme un homomorphisme

obtenu en formant le cap-produit de chaque élément de H\V) avec le cycle fondamental

oA de Hn(Yn, Yn-A). Si V est un voisinage de A tel que Fd V on a le diagramme

Hl(V) ->#„_,( Y", Yn - A)
I il

Hi(V')->Hn_i(Y\Yn-A).

F (A) étant le système des voisinages de A, le cap-produit donne à la limite l'homo-
morphisme

VeT(A)

Le terme de gauche est le groupe de cohomologie de Cech h1 (A) et le théorème de
dualité dit que cet homomorphisme

noA;hi(A)-+Hn_i(Y\Yn-A)

est un isomorphisme que nous désignerons par D.
Après ce rappel, commençons la démonstration proprement dite du théorème 1.

Prenons un cycle rçrt_ie//fI_f(yn, Yn — A) et suivons le dans les homomorphismes
du diagramme commutatif

iin_iyA A — J A) —>tin-i\Y i — A)
t t

où/* et/* sont les homomorphismes induits en homologie et en cohomologie, et où V
est un voisinage de A obtenu de la façon suivante.

Comme l'homomorphisme de la limite inductive lim #''(F)dans #„_,-( F1, Yn-A)
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est un isomorphisme, il existe un voisinage V de A et un cocycle rfeH^V) tel que

tf'n oA !/,_,.

Démontrons que l'application /*:#„(JT\ Zm-/-M)->///J(FM, y"-/*) est sur-
jective.

Considérons le diagramme commutatif

Hm(Xm)±Hm(Xm9Xm-f-1A)

Hn{Yn)±Hn{Y\Yn-A).

Comme, par hypothèse, l'homomorphisme

est surjectif pour l'anneau de coefficients considéré, il existe un cycle ÇneHn(Xm)
tel que

Or, par construction, l'homomorphisme

est un isomorphisme, car Yn est orientable et A connexe. Donc//**(£,,)=oA, ce qui
signifie que l'homomorphisme jf+ est surjectif.

Comme le diagramme est commutatif, on a:

f*j(Q oA.
L'homomorphisme

fJ:Hn{Xm)->Hn{Y\Yn-A)

est donc un épimorphisme de même que l'homomorphisme

UHn(Xm,Xm-f-1A)^Hn(Yn,Yn-A).

Donc il existe un cycle ÇneHn(Xm, A""-/"1 A) tel que

On a donc:

Or la naturalité du cap-produit donne:

ri' n/<,(£„) =/„(/*(>;•¦) ne)
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^pf1",Xm-f~lv4)carlecap-produitestunhomomorphisme
indépendamment de toute hypothèse de variété, en employant comme précédemment

l'excision :

Hi(f-lV)®HM(Xm,Xm-f-1A)->HH-l(Xm,Xm-f-1A).

Nous obtenons donc, sans avoir utilisé l'hypothèse que Xm est une variété:

?„-! =/•(/•(*') ne,,).

Comme rjn-t était un cycle quelconque de //„_,•( Yn, Yn — A), nous avons le résultat

suivant: l'homomorphisme

f.:Hn-AXm,Xm-f-1A)-*HH_l{Y\Y'-A)
est surjectif pour les /.

Appliquons maintenant le théorème de dualité dans la variété Xm pour l'ensemble

compact/"1^:
D:ti + m-n{f-1A)*LHn_i{Xm,Xm-f-lA).

L'homomorphisme inverse ¥*, défini par la composition des homomorphismes

hi+m-"(f-lA)-^Hn_i(Xm,Xm-f-1A)-+Hn_i(Y\ Yn - A)-^hi(A)

est surjectif.
Remarque sur la démonstration. Nous avons obtenu, sans employer le fait que Xm

est une variété, que l'homomorphisme

Xm-f~lA)-* Ht(Y\ Yn A)

est surjectif. On a donc le théorème:

Théorème Y. Soit X un espace topologique compact; soient, d'autre part, Yn une
variété topologique compacte, orientable, et f:X^>Yn une application continue. Supposons

que l'homomorphisme

est surjectifpour un certain anneau R de coefficients. Alors, l'homomorphisme

UHi(X9X-f-iA)-+Hi{Y\Yn-A)
où A est un ensemble fermé de Yn, est surjectif, pour tout L En particulier, si A Ynt

on a: l'homomorphisme

est un épimorphisme pour tous les i.
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Nous nous proposons d'étudier quelques exemples et cas particuliers du théorème
1.

Définition. Soit /: X-> Y une application de deux ensembles.

Un élément yefX est dit injectif si son image inverse/"* y est formée d'un seul
élément.

xeX est dit injectif si/je est injectif.

Corollaire 2 du théorème 1. Soit f:Xm-* Yn une application continue, algébriquement

essentielle de deux variétés topologiques compactes, orientables (m>n).
fne peut alors avoir depoints injectifs et, pour toutpoint ye Yn, la dimension cohomo-

logique de l'ensemble compactf~l y est supérieure ou égale à m— net hm~n(f~l (y)) ^0.
Démonstration. Nous employons la propriété suivante de la dimension coho-

mologique d'un compact C: cette dimension est supérieure ou égale à tout i tel qu'il
existe un fermé B de C avec h\B)^0. En employant le théorème 1 pour A —y, on
obtient

V*:hm-n(f-ly)->h°(y) R

est surjectif, donc la dimension cohomologique de/ ~1 y est supérieure ou égale hm—n.
A fortiori, il ne peut y avoir de point injectif.

qed.
Remarque 1. Si Xm et Yn sont des variétés triangulables et si/est une application

simpliciale, alors/"1y est un complexe et la cohomologie de Cech est isomorphe à la
cohomologie singulière, elle-même isomorphe à la cohomologie simpliciale.

Donc la dimension àsf~~ly est "^m—n.
Remarque 2. Ni le théorème 1, ni le corollaire 2, ne valent si Xm est une pseudovariété.

En effet, considérons l'exemple suivant: soit p la projection de S1 xS1 sur
S *

; identifions une fibre s1 à un point. L'espace S1 xS1^1 ainsi obtenu est une pseudovariété,

et p est algébriquement essentiel.

Le point avec lequel s1 est identifié est un point injectif de l'application.

Corollaire 3 du théorème 1. Soit f:Xn-+Yn une application continue de deux
variétés topologiques compactes, orientables avec d=degré(f)^\. Alors Vendomor-

Phisme w*f*t
s*obtient en multipliant tout cocycle de H\Yn) par d. D'autre part, si on prend comme
coefficients le corps des nombres rationnels, Vhomomorphisme

est surjectifpour tout fermé connexe A de Yn.

Démonstration. Soit rj un cocycle de H\Yn)\ comme W*=D~1f*D, on a

Vf*(ri) D-'ADnr,) D'1/^/*^) fl ox),
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En employant la propriété du cap-produit

V*f*(rt) D-l(rK)f*ox) dD-i(nÇ)oY) drl

car Mox)=doY.
Dans la seconde partie de ce corollaire, il suffit de remarquer que f*(ox)=doY

implique dans le corps des rationnels que/: Xn-* Yn est algébriquement essentiel, d'où
la surjectivité de

V*:ht(f'1A)^hî(A).
Remarque. Dans ce cas où m=n, il peut naturellement y avoir des points injec-

tifs. Si l'application fest simpliciale, l'ensemble D des points injectifs est un complexe
de dimension n — 2 et on a le résultat suivant de H. Hopf [3]:

Théorème. Soitf: Xn-> Y" une application simpliciale de degré d> 2 de deux variétés

combinatoires.

Supposons d premier avec Vordre du groupe de torsion à une dimension de Xn.

Alors on a l'inégalité pour les nombres de Betti de Xn et de D

Exemple 1 du théorème 1. Soient Mr et Ms deux variétés triangulables, compactes,
orientables, Mr x M5 leur produit cartésien et

p:Mr xMs-+Ms
la projection sur Ms.

L'application/? est algébriquement essentielle; on peut donc appliquer le théorème

1.

Prenons un complexe A de Ms; p~1(A)=AxMr est un complexe de MrxMs,
donc la cohomologie de Cech est isomorphe à la cohomologie simpliciale.

Le théorème 1 dit que Fhomomorphisme

est surjectif, donc que H1 {A) est isomorphe à un facteur direct de Hi+r(p~1A).
Nous pouvons retrouver ce résultat par la formule de Kùnneth. Dans un corps de

coefficients, cette formule donne, pour les groupes d'homologie

H+v=i+r
le produit tensoriel étant effectué par rapport au corps F.

Or un des éléments de cette somme est

Ht(A)®FHr(Mr)
Comme Hr(Mr)=F, on a

FHr(Mr) Ht{A) ®FF Ht{A).
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Donc Hi{A) est isomorphe à un facteur direct de Hi+r(p~iA) pour tout i.

Exemple 2 du théorème 1. Soit f:Xm-*Yn une application continue de deux variétés

topologiques compactes, orientables.

Supposons que Hi{f~xy)=0 pour toutyeYet pour i l, n.

Employons le théorème de Begle-Vietoris qui dit que si/:X-* F est une application

de deux espaces topologiques telle que

pour tout y g Y et pour 0</<w, alors l'homomorphisme

UHt(X)-+Ht(Y)
est bijectif, /=1, n.

Donc, dans notre cas:

f+:HH(Xm)-+Hn(Yn)

est bijectif; l'application / est algébriquement essentielle d'où en prenant dans le

théorème 1 A=y, on obtient que le groupe de cohomologie hm~n{f~iy) n'est pas
trivial.

Si l'application/est simpliciale ,/"*>> est un complexe, donc la cohomologie de

Cech àef~1y est isomorphe aux cohomologies singulières et simpliciales; la
comparaison du résultat Hm~n{f~1y) non trivial et de l'hypothèse Hi(f~1y)=0 pour
0<i</i donne m — n>n, d'où m>2n.

Du point de vue heuristique, la démonstration du théorème 1 a été précédée par la
démonstration du théorème suivant:

Théorème 2. Soitf: Xm-* Yn une application simpliciale, algébriquement essentielle de

deux variétés triangulables, orientables (m>n).
Alors il ne peut y avoir de point ye Y" tel que

lesei(i=l9 N) étant des simplexes à m dimensions de Xm, et tels que ëi f) êi 0 pour

Corollaire du théoîième 2. Dans les hypothèses du théorème 2,f ne peut avoir de

point injectif.
Démonstration du théorème 1. Comme l'homomorphisme

U.Hn{Xm)-+Hn{Y«)

est un épimorphisme, il existe au moins un cycle £n que nous pouvons supposer
réalisé par un complexe, tel que
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oY étant le cycle fondamental de la variété Yn.

Supposons qu'il existe un point yeYn tel que

les et étant des simplexes à m dimensions, disjoints deux à deux.

Nous nous proposons de construire un cycle ^ homologue à Çn et tel que

Donc/Hc(^) ne peut représenter le cycle fondamental oY de la variété Y". Or /*
est homologue à/*(<!;„); notre hypothèse sur l'existence d'un point ye Yn tel que

se révèle ainsi fausse.

Construisons le cycle £B: pour chaque i l'intersection de Çn avec 5^=2^ est un cycle
Cn—i ; ce cycle borde dans 2^ un complexe ÇB. Prenons pour £B:

£ («„-UMaÛCi-
i =1 i=l

qed.

2. Sur les points injectifs d'applications de variétés

Soient Xm et Yn deux variétés topologiques compactes (m^n) et soit/:Arm->7n
une application continue essentielle, c'est à dire non homotope à l'application triviale
t: Xm-+ye Yn. Désignons par AczXm l'ensemble des points injectifs de X et par D
f{A) l'ensemble des points injectifs de Yn.

Supposons Z)^0 et soit ôeA, d=f(ô).
Nous appellerons voisinage sphérique Vs(d) de d l'image par un homéomorphisme

i de l'intérieur en d'une sphère S"1"1. Soit dVs(d) la frontière de Vs(d).

L'exemple de la suspension Sf d'une application f:Sm^> Sn où d serait un des

pôles de suspension nous amène à étudier l'image inverse/ ~1 Vs(d). Est-ce un voisinage
sphérique de ô

Nous n'avons, dans le cas où/est continu, que la formule

=ii^(riK)={o i
R étant l'anneau de coefficients.

Nous verrons (chapitre 5) que, si/est une application simpliciale de deux variétés
combinatoires, on peut construire Vs(d) de telle manière que/"1 Vs(d) soit un voisi-
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nage sphérique de <5. Dans le cas général d'une application continue, nous nous proposons

de démontrer le théorème:

Théorème 3. Soit f:Xm-+ Yn une application continue de deux variétés topologiques et
soit ô un point injectif de f{Xm et Yn sont compactes). On peut alors construire deux

voisinages sphériques U*(ô) et Us(ô) avec U*(ô)zdUs(ô) tels qu'il existe une application
g:Xm-+ Yn ayant les propriétés suivantes:

a) g\Xm-UUô)=f\Xm-U:(ô);
b) g(Us(8)) est un voisinage sphérique Vs(d) de d et g~l Vs(d) Us(ô), gdUs(<>) —

8gUs(ô);
c) g est homotope àf.
Pour la démonstration de ce théorème, nous aurons besoin du lemme suivant :

Lemme. Soit/:Xm->rn une application continue de deux variétés topologiques
compactes et soit de Yn un point injectif.

Alors, à tout ouvert U3Ô=f~1d, il existe un voisinage sphérique Vs(d) tel que

Démonstration du lemme. Supposons qu'il n'existe pas de tel voisinage sphérique
de d. Alors, pour tout voisinage sphérique Vs(d) de rayon 1//, il existe un point x'eXm
tel que x^U etf(x?)eVa(d).

La suite {/(x1)} converge vers d; d'autre part la suite {x*} a un point d'accumulation

dans Xm— U puisque Xm— U est compact. Or il est impossible que l'image de ce

point d'accumulation soit d car d est un point injectif.
Donc il existe bien un voisinage sphérique Vs(d) tel que/~1(Ks(</))c: U. qed.
Démonstration du théorème 3. Prenons dans Xm un voisinage sphérique U*(ô) qui

soit tel que/t/*(<5) soit contenu dans un voisinage euclidien de d; ceci est possible car/
est continu.

D'après le lemme nous pouvons construire un voisinage sphérique Vs(d) tel que

Naturellement, Vs(d)cfU*(ô) etfU*(ô) est un ouvert de Yn. Que peut donc dire
de l'image par l'application /"de la frontière 3l/*(5)=IÏ"1?

Un point intérieur de fU*{8) peut être l'image d'un point de I^"1 mais un
point de dfU*(S) n'a pas dans son image inverse de point de U*(ô); donc

D'autre part ôfU*(ô)f\ Vs(d)=Q etfZ*~\d, puisque d est un point injectif. Ceci

permet de construire la projection n de l'ensemble /X*"1 sur la sphère (de centre d)

La composition des applications/et n donne donc une application

n/iEZ'1-*!*-1.
Prenons maintenant un voisinage sphérique Us(ô) de ô qui soit contenu dans/" * Vs(d).
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Construisons l'application g:Xm-+Yn mentionnée dans l'énoncé du théorème.
Prenons g(x)=f(x) sur l'ensemble fermé Xm- U*(ô).

-+

Pour xeU*(ô)— Us(ô), menons le rayon ôx qui coupe les sphères Im~l ttl%~1
respectivement en xt et x2.

Menons le rayon df(x2)\ il coupe la sphère I""1 =dVs(d) en un point que nous
nommerons gix^.

Nous définissons g(x) comme le point divisant le segment g(xl)f(x2) dans le même

rapport que x divise xlx2.

Pour xe Us(8)y le rayon ôx coupe la sphère Im~1 en un point x1 ; g(x) est le point
divisant le segment dg(xl) dans le même rapport que x divise le segment ôxv

L'application g: Xm-+ Yn ainsi obtenue est continue et admet toujours <5 et dcomme
points injectifs.

Par construction, les propriétés a) et b) énoncées dans le théorème 3 sont remplies

par l'application g.
Démontrons que/est homotope à g: pour cela il faut construire une homotopie

<Pt (x):XmxI-+YH telle que $0(x)=f(x), <Pi(x)=g(x). Prenons f=g dans le complément

Xm — U* (ô) de la cellule U* (<5) ; on peut donc utiliser la structure euclidienne dans

fU*(ô) avec d comme origine de l'espace vectoriel.

Considérons l'application <Pt(x) =/(x) 4- t(g(x) -f(x)),xe U* (ô)
Cette application est continue et possède les propriétés suivantes.

4>r(x)=/(x)=g(x) pour tout tel et pour xedU*(ô)=Z™~1.
Donc, pour xeXm— U*(ô), on peut bien étendre l'homotopie $t(x) en posant

<Pt(x)=f(x) pour tout t.

Nous avons ainsi la propriété c): g est homotope à/. qed.
Nous nous proposons maintenant d'étudier le problème : si l'application/: Xm-> Yn

est essentielle, en est-il de même de l'application g:Im"1->I'n~1?
Supposons que g:Im~ l-*Zn~ l soit homotope à l'application triviale t:Em~i->ye

I""1; sous quelles hypothèses peut-on en déduire que g:Xm-> Yn et par suite/:Xm-+
Yn, homotope à g d'après le théorème 3, est homotope à l'application triviale t: Xm-+

ye Ynl Pour pouvoir employer la théorie de l'obstruction, supposons que Xm et Yn

sont des variétés combinatoires, orientables.
Nous cherchons à construire une homotopie xFt{x)\Xm x I-> Yn telle que W0(x)

*(*) et yt (*) *(*).
Par hypothèse, g:Zm~l-+Zn~l n'est pas essentielle, donc Wt(x) est déjà défini sur

le complexe I1""1; on peut naturellement étendre cette homotopie à l'intérieur U5(ô)
de la sphère Z1""1.
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En étendant l'homotopie Wt(x) à Xm— l/A(<5), on rencontre des cocycles d'obstruction

contenus dans les groupes

w{xm - i/s(<)),ri-1;7rl.(r - vs{d)))

où Vs(d) est l'intérieur de la sphère E"'1; l'ensemble Xm- Us(ô) est une variété com-
binatoire à bord Im~x: on peut donc appliquer le théorème de dualité

H\Xm-UM{8)9*m~UMr- Va(d)))*Hm-î(Xm-Ua(ô);nt(Ym- K(d)))

Si la variété Yn est une sphère S", Sn-Vs(d) est une cellule en: donc, comme 7rf

(e") =0 pour tout i, il n'y a pas d'obstruction et g: Xm-^Sn est homotope à l'application
triviale / si g;Zm~1-*Zn~1 l'est elle-même.

Par contre, si Xm est une sphère 5"" et Yn une variété quelconque, le groupe

Hm(Sm - 17,(5), Im-i;nm(Y" - Vs(d)))

n'est pas trivial puisqu'il est isomorphe à

H0(Sm-Us(ô);nm(Yn-Vs(d)))

et il peut donc y avoir une obstruction.
Nous obtenons ainsi le théorème

Théorème 4. Soient Xm une variété combinatoire et f'.Xm-+Sn(m^ri) une application
continue, essentielle, ayant au moins un point injectif. Alors Vapplication g\lm~l-*ln~l
obtenue dans le théorème 3 est essentielle.

Corollaire. Soit Xm une variété combinatoire de dimension m>2; une application/:

Xm->S2 continue, essentielle, ne peut avoir de point injectif. Il en est de même

pourX22->S10.
Démonstration du corollaire.
S'il y avait un point injectif, on pourrait lui associer une application g:I'm~1->I<1
essentielle d'après le théorème 4. Or le groupe d'homotopie 7rm_1(S'1) est nul et de

même tt21(»S'9)=O.

Remarque. L'application g:Im~1->I/l~1 n'est pas nécessairement essentielle: nous
allons donner l'exemple d'une application essentielle f:Xm^> Yn ayant des points in-
jectifs tels que les applications g\Im~1-^In~1 soient homotopes à l'application
triviale.

Pour cela, nous aurons besoin de la proposition
Proposition. Soit f:A-*B une application continue, essentielle, de deux espaces



Sur certaines singularités d'applications de variétés topologiques 41

topologiques. Alors, l'application

/ xf:A x A-+B x B
est essentielle.

Démonstration. Supposons que/x/ne soit pas essentielle: soit alors 0 une homotopie

®\A x A xI-+B x B

telle que <P\A x^xO =/x/et <P\A xAxl=t (application triviale).
Projetons sur les facteurs A x / et B :

A x A xiXbxB

AxI --> B

T\A x 0=/et *F\A x\=t; donc l'application/: A-+B n'est pas essentielle, ce qui est en
contradiction avec l'hypothèse. qed.

Revenons à la construction de l'exemple: prenons la suspension 5a de la fibration
de Hopf <x:S3->S2; Soc est essentiel d'après le théorème de Freudenthal et possède
deux points injectifs.

Considérons le produit cartésien

(Sa)4: S4 x S4 x S4 x S4 -» S3 x S3 x S3 x S3

(Sa)4 est une application essentielle d'après la proposition précédente et possède 16

points injectifs.
Pour chacun de ces points on peut construire selon le théorème 4 une application

g:!15-*!1*. Or g est homotope à t car le groupe nl5(S11) est nul.

3. Sur les points injectifs d'applications de sphères

Soitf:Sm->Stt(m^n) une application continue, essentielle de deux sphères. Que

peut-on déduire de l'existence de points injectifs?
Les théorèmes 3 et 4 du chapitre précédent donnent :s'il existe au moins un point

injectif de Yn, on peut lui associer une application g: Sm-+Sn homotope à/et telle que
g:Zm~1->Z"~1 soit essentielle. Nous nous proposons de démontrer le théorème.

Théorème 5. La classe d'homotopie d'une application f:Sm-+Sn, possédant au
moins un point injectif, est dans l'image de l'homomorphisme de suspension S:nm-t

Plus précisément, la suspension de l'application g:Im 1-*Zn J est dans la classe

d'homotopie def\Sm-*Sn.

Corollaire 1. Si dt et d2 sont deux points injectifs de l'application f:Sm-+Sn les
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classes d'homotopie [gt] et \g2] des deux applications g\ :Zm i->Zn l et g2Zm l-+Zn~l
sont dans la même classe résiduelle du groupe nm_1(Sn~i) par rapport au noyau de

Vhomomorphisme de suspension S:nm_i(Sn~l)-+7im(Sn)
Dans la démonstration du théorème 5, nous aurons besoin du lemme suivant

(Alexandroff-Hopf p. 502)

Lemme. Soientft et/0 deux applications d'un espace métrique compact dans la sphère
Sn; supposons qu'il existe un ensemble ouvert G de Sn possédant la propriété suivante:
en chaque pointyeG, les images inverses/^1 (y) stfll{y) sont identiques.

Alors les applications/0 et/x sont homotopes.
Démonstration du théorème. Considérons l'application g:Sm-+Sn construite dans le
théorème 3; elle est homotope à l'application/.
A l'intérieur de Zm~l, c'est-à-dire dans le voisinage sphérique Us(ô), l'application g a
été construite comme la suspension de l'application g:Zm~l-+Zn~~l.

Faisons de même pour le complément Sm — Us(ô) de l/s(<5); on obtient ainsi une
application h:Sm-*Sn qui est par construction la suspension de g:Zm~i-*Zn~1.
L'application h est telle que h~1(y)=g~1(y) pour tous les points y du voisinage
sphérique Vs(d). Donc, d'après le lemme, les applications g et h sont homotopes :/et g
étant homotopes, / est homotope à h. ged.

Remarque. Il peut y avoir des applications f:Sm->Sn qui ne sont pas essentielles

mais qui possèdent des points injectifs tels que l'application associée g:Zm~1-+Zn~1
soit essentielle.

Il suffit de prendre la suspension d'une application g:Sm~î-*Sn~1 comprise dans

le noyau de Fhomomorphisme de suspension, si ce noyau est différent de zéro.

Corollaire 2. Soit f:Sm-+Sn une application continue avec m^2n — 2: quelle

que soit la classe d'homotopie de/, il y a dans cette classe des applications possédant
des points injectifs.

Si m<2n-2, les applications gî:Zm~1-+Zn~1 et g2:Zm~i->Zn~l associées a
deux points injectifs dt et d2 définissent le même élément du groupe nm^i(Sn"i).

Démonstration. D'après le théorème de Freudenthal, l'homomorphisme de

suspension S:nm_1(Sn~1)-+nm(Sn) est surjectif si m<2« —2 et bijectif si m<2n — 2,

ce qui démontre le corollaire.

Corollaire 3. Désignons par n2„_ t (Sn)0 le sous-groupe de n2„_ t (Sn) formé par
les éléments d'invariant de Hopf nul.

Si l'application continue/: S2n~1->Sn a des points injectifs, la classe d'homotopie
de/est nécessairement un élément de n2n^1(Sn)0.

Démonstration. D'après le théorème de Freudenthal, Sn2n_2(Sn~l)=n2n_l (Sn)0,
donc comme une application/: S2n" 1-*Sn avec au moi#ns un point injectif est dans la
classe d'homotopie d'une suspension,/est nécessairement dans le sous-groupe 7r2n-i
(S% qed.
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Remarque. Si l'application/:S2n~1->Sn est simpliciale, l'invariant de Hopf est

défini par

où yt et y2 sont deux points différents de Sn.

Il ne peut donc y avoir de point injectif si y ^0, ni de point y tel que/"1 (y) soit
d'homologie triviale.

4. Sur des cas particuliers d'applications de variétés

Pour certaines valeurs de m et de n dans une application/: Xm-+Sn9 on peut donner
des résultats plus précis sur les images inverses/~1(y) des points de Sn.

Considérons une application continue/: Xm-+S1 où Xm est une variété combina-
toire. Si cette application est essentielle, elle est algébriquement essentielle (Alexan-
droff-Hopf, p. 517).

On peut donc appliquer le corollaire 2 du théorème 1 et on obtient le résultat

Théorème 6. Dans une application continue, essentielle f:Xm-> S1 d'une variété

combinatoire, orientable Xm dans un cercle S1, le groupe de cohomologie de Cech

hm~l(f~1(y)), où y est un point quelconque de S1, n'est pas trivial et la dimension

cohomologique def~l(y) est donc supérieure ou égale à m— 1.

Le théorème 4 du chapitre 2 donne: une application essentielle /:S3->S2 ne

peut avoir de point injectif, car s'il y avait un tel point, on pourrait lui associer une

application essentielle g\Z2-+Zx ce qui est impossible puisque le groupe d'homotopie
7r2(5'1) est nul. Ce raisonnement vaut poxxïf:Xm-*S2.

Rappelons le théorème de factorisation de Pontrjagin (Recueil mathématique
de l'université de Moscou, T. 9, 1941) [6].

Théorème. Si une application continue f:Km-+ S2 d'un complexe de dimension

ra>2 dans une sphère S2 n'est pas algébriquement essentielle, on peut factoriser/par
la fibration de Hopf a:,?3-^2

Grâce à ce résultat de Pontrjagin, nous nous proposons de démontrer le théorème

Théorème 7. Dans une application essentielle f: S3-+S2, le groupe de cohomologie
de Cech hl(f~1(y)), où y est un point quelconque de S2, est différent de zéro.

Dans une application essentiellef: Sm-> S2 (m^3), l'image inverse de tout point y de

S2 est formée d'un nombre infini de points.
Démonstration. L'application f:Sm-+S2 remplit les hypothèses du théorème de
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Pontrjagin: on a donc la factorisation de/: Sm->S2 par les applications cp : Sm^>S3 et
<x:S3-*S2.

L'application/= acp étant essentielle, de même que la fibration a: S3-* S2, l'application

(p:Sm-+S3 est essentielle.

Comme l'image inverse a'1(y) est un cercle, f~i(y) sera formé d'un nombre
infini de points.

Si m 3, le degré de <p:S3->S3 est supérieur ou égal à 1 et on peut appliquer le

corollaire 3 du théorème 1 en prenant A=S1, d'où le résultat. qed.
On peut aussi combiner le théorème 1 et la factorisation de Pontrjagin pour

obtenir le théorème

Théorème 8. Pour une application continue essentiellef: X3 -^ S2 d'une variété corn-
binatoire X3 dans une sphère S1, le groupe de cohomologie de Cech hl{f~x{y)) n'est

pas trivial.
Démonstration. Il faut distinguer deux cas:
a) f:X3-+S2 est algébriquement essentielle et on peut alors employer le corollaire

2 du théorème 1.

b) f:X3-+S2 n'est pas algébriquement essentielle, ce qui permet d'appliquer la
factorisation de Pontrjagin

Y i
s'\C2

L'application <p:X3-*S3 est algébriquement essentielle et le corollaire 3 du
théorème 1 où on prendra A =Sl donne le résultat cherché. qed.

Dans le cas d'une application/:S4->S3, comme 7i4(5'3)=Z2, il y a une seule

classe d'homotopie non triviale et cette classe est engendrée par la suspension de la

fibration a:S3-+S2.
Nous pouvons démontrer grâce à la factorisation de Pontrjagin le résultat

suivant

Théorème 9. Une application essentielle/; S4 -+S3 a au plus deux points injectifs.
Si ellepossède deuxpoints injectifs dt et d2, le groupe de cohomologie de Cech h1 (/ " * (y))
est différent de zéro pour tout y de S3 différent de dt et d2.

Démonstration. Supposons que l'application f-.S^^S3 ait au moins deux points
injectifs; nous nous proposons de démontrer que pour tout point y différent de dt



Sur certaines singularités d'applications de variétés topologiques 45

Raisonnons par l'absurde et supposons qu'il existe un point y différent de dt et d2

Faisons simultanément en dx et d2 la construction décrite dans le théorème 3:

prenons les voisinages sphériques C/f (<5X) et U*(ô2) dans le complément def~1(y).
On obtient ainsi une application g: S4 — S3 continue, homotope à/: S4->S3, possédant

aussi les deux points injectifs dx et d2 et telle que :

f(x)=g(x) pour xeS4-17*(^)U t/*(52)
g~ l(Vs(di)) Us(ôi) i 1,2 où Vs(di) et K4(rf2) sont des voisinages sphériques de dt et d2.

D'après le théorème de Pontrjagin, on peut factoriser g: Z3-+Z2 où I2=dUs(ô^)9
par la fibration <x:S3->S2.

Considérons la suspension Sa de pôles dt et d2 : dans le complément S4—Cs(Si)
U £7S(<52), ^a est une fibration ce qui nous permet d'étendre à S*—Us(ài)U Us(ô2)
la factorisation définie sur Z3=5L/S((51) qui est un deformation-retract du cylindre

Comme g et S'a sont définies à l'intérieur de (7s(<5j) par la suspension des applications

g:E3-*£2 et a:S3-*S2, on peut étendre la factorisation sur toute la sphère S4.

On obtient donc
S4 X5*

Le point y considéré est par construction dans S3 — Vs{d^) U Vs(d2) donc (Soc)
1 (y)

est un cercle S1; l'application (p:S4-*S4~ étant essentielle, puisque S'a ctf=Soc(p
le sont, on peut employer le corollaire 3 du théorème 1, en prenant A=Si. qed.

5. Etude des points injectifs d'applications simpliciales

Prenons une application essentielle simpliciale/:*S3->»S2. Elle ne peut avoir de

point injectif et sa suspension Sf'.S^-tS3 aura comme points injectifs les pôles de

suspension. Par itération, l'application Srf: S3 + r-+S2 + r qui est aussi simpliciale, aura
comme ensemble de points injectifs une sphère Z1""1, complexe de S2+r.

Réciproquement, nous nous proposons de démontrer que si une application sim-

pliciale/:Sm-»»Sn possède un simplexe, à r dimensions, de points injectifs, alors/est
homotope à une (r+ l)ème suspension.

Lemme. Soit/: Mm-+Nn une application simpliciale de deux complexes Mm et TV",

respectivement àmetàn dimensions (m^ri).
Alors l'ensemble A des points injectifs dans Mm est un complexe de Mm, dans la

triangulation initiale et
A Kn~x(Mm)

où Kn~1(Mm) est le squelette à (n-1) dimensions de M.
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Démonstration. Comme/est une application simpliciale

f:K°(Mm)-*K°(Nn)

et, si Xj, x2,..., xq sont les sommets d'un simplexe de Kq~1(Mm),f(x1), ,f(xq) sont
les sommets d'un simplexe de Kq~1(Nn), qui ne sera d'ailleurs pas nécessairement de

dimension q—1.
Je me propose de démontrer qu'un point intérieur d'un simplexe à n dimensions de

Kn(Nn) ne peut être un point injectif de/et, plus généralement, si d est un point in-
jectif intérieur d'un simplexe à q dimensions, alors tout ce simplexe est formé de

points injectifs.
Soient yl9 yq+1 les sommets du simplexe a en question.
Soient oq, c|+1, les simplexes de Km(Mm), qui seront de dimension

supérieure ou égale à q, qui sont appliqués sur le simplexe a.
Tous les simplexes af, exf+1, ont en commun le point f~id. Or dans un

complexe les simplexes sont tous disjoints, donc il n'y a qu'un seul simplexe oq à être

appliqué sur a.
Les Xl étant les coordonnées barycentriques, on a pour l'application f\oq>

L'image inverse d'un point intérieur est donc toujours à q' — q dimensions; or f~ld
est formée d'un seul point.

Par suite, q'=q ttf\aq' est un homéomorphisme.
Nous avons donc démontré que si deD est un point d'un simplexe aq de Kq(Nn),

alors aqdD.
Etudions le cas où q=n.
Plus généralement, on a:
L'ensemble DcYn des points injectifs d'une application continue f:Xm~* Yn de

deux variétés topologiques Xm et Yn(m>ri) ne peut contenir de cellule en.

En effet, la frontière den de en sépare Yn en deux parties connexes alors que/ ~1 den

qui est une sphère topologique de dimension n — 1 ne sépare pas la variété Xm qui est

une variété de Cantor. Cette démonstration vaut pour m>n.
Pour m =«, il faut supposer que le degré de l'application/soit supérieur ou égal à 2.

Donc en revenant à la démonstration du lemme, on voit que D ne peut contenir
de simplexes à n dimensions.

C'est-à-dire, DaKn-\Nn). qed.

Soit/:Xm-»7" une application simpliciale de deux variétés combinatoires; soit
de Yn un point injectif de/.

D'après le lemme précédent, on a dczKn~i(Yn); désignons par 4>d l'ensemble des

simplexes de Kn(Yn) tels que d soit dans l'un de ces simplexes ou leur fermeture.
Définissons de même Wô pour ô=f~xd.
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Yn étant une variété, nous pouvons construire un voisinage sphérique Vs(d), sim-

plicial, convexe et tel que

Vs(d)cz U* et rl{V.{d))<= U «r,

La frontière dVs(d) est une sphère I""1 de centre d.

Nous nous proposons de démontrer le théorème

Théorème 10. Le complexeZ"1!""1 est une sphère, l'application f:f~x Zn~x-+Zn~l
étant naturellement simpliciale.

Si Vapplicationfest essentielle et si la variété Yn est une sphère Sn, alorsf:/'1 Zn~l
-*Zn~~l est aussi essentielle.

Démonstration. L'application étant simpliciale, df~lVs(d) est un complexe.
Menons avec ô comme origine les rayons dans (Jae{j/6 o et considérons leur image
dans l'application/.

Cette application étant linéaire en chacun des simplexes cr, l'image de chacun de

ces rayons sera un rayon issu de d et compris dans {Ja<B<s>d o.

Chaque rayon coupe la sphère Zn~l en un seul point; il en est de même pour
l'intersection des rayons issus de ô et de l'ensemble df "1 Vs{d) qui est donc une sphère
Zm~l et naturellement l'application f:Zm~l->Zn~1 est simpliciale.

Pour la deuxième partie du théorème, supposons maintenant que Yn est une
sphère S".

Nous pouvons alors, pour démontrer que l'application f\Zm~l-*ln~l est essentielle

si/:Xm-> Yn l'est, répéter le raisonnement fait dans le chapitre 2. En effet,
l'obstruction

Hl(Xm -f~l Vs{d\ r1"1;*,^" - en))

est toujours nulle. qed.

Corollaire. Si dans Vapplication simpliciale f:Sm-> S" l'ensemble D des points
injectifs contient un simplexe ar de dimension r, alors la classe d'homotopie def est dans

l'image de l'homomorphisme

obtenu en itérant l'homomorphisme de suspension

Démonstration. Pour r=0, le théorème précédent donne le résultat; en effet,

l'application/: Sm-+Sn est homotope à la suspension de l'application/:I"*" i-+En~19 car/
et la suspension que nous appellerons h satisfont aux hypothèses du lemme (chap. 3).

Pour r^ 1, prenons un point d intérieur au simplexe ar.

La sphère Z"'1 qui intervient dans le théorème précédent coupe le simplexe ar en
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deux complexes o\~x et or2~l qui forment l'ensemble injectif de l'application/:Im~1

L'application f:Sm-+Sn est dans la classe d'homotopie de la suspension de

f:Zm-i->Ztt-1.
Nous sommes donc ramenés au cas r— 1. On voit en particulier que la dimension

de D est inférieure ou égale à n — 3(si m>ri). qed.

Exemple. Une application simpliciale f:S25->S13 ne peut avoir, si elle est essentielle,

de simplexe de points injectifs à 3 dimensions.
En effet, si c'était le cas, on aurait que l'application/:S25-*S13 est dans l'image

de l'homomorphisme 4 9 13S :n2l(S )-+n25{S

ce qui est impossible, puisque n2i(S9)=0.
Remarque. Une application essentielle f:Sm+l-*Sm est toujours homotope à une

application h:Sm+1-+Sm ayant pour ensemble injectif une sphère km —3 dimensions
et cela sans hypothèse de simplicialité pour/. En effet, on a le résultat de Freudenthal :

nm+1(Sm)=Sm-2n3(S2).
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