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Plongements de polyédres dans le domaine métastable

par C. WEBER (Genéve)

1. Introduction

Soit K un complexe simplicial fini. Soit |K| I’espace topologique sous-jacent. Une
application continue du polyedre |K| dans le polyedre |K’| sera dite semi-linéaire si
elle est simpliciale sur une certaine subdivision de K et de K'. Une application continue
de |K| dans R™ sera dite semi-linéaire si elle est simpliciale sur une certaine subdivision
de K. Une application semi-linéaire injective sera appelée un plongement semi-linéaire.

Soit /=[0, 1]. Un plongement semi-linéaire H: K x I— K’ x I, commutant aves les
projections naturelles sur le second facteur, sera appelé une isotopie semi-linéaire.
Soit h,: K— K’ le plongement semi-linéaire défini par H(x, t)=(h,(x), t). Les plonge-
ments h, et h, sont dits isotopes.

Le probléme central concernant les plongements consiste a déterminer quel est
I’ensemble des classes d’isotopie de plongements de K dans K'. Une premiére attaque
de ce probléme consiste & chercher dans quels cas cet ensemble n’est pas vide. Ceci
semble tres difficile a résoudre si K et K’ sont des polyédres quelconques. Les résultats
que I’on connait actuellement concernent tous le cas ou K’ est une variété semi-linéaire.

On peut distinguer historiquement deux «courants» dans ’étude de ce probléme:

1° L’école anglaise, dont le point de départ a été le célebre P.W.Z. [PENROSE-
WHITEHEAD-ZEEMAN]. Cette école s’intéresse au cas ol K et K’ sont des variétés semi-
linéaires et cherche essentiellement des conditions suffisiantes (et parfois nécessaires)
a P'existence d’un plongement ou d’une isotopie dans la connectivité¢ de K et de K'.
Voir, par exemple, les travaux de HUDSON, IRWIN, LICKORISH, ZEEMAN.

2° Le courant que I’on pourrait appeler du «carré symétrique réduit», et que I’'on
peut faire remonter & VAN KAMPEN. [VAN KAMPEN a)]. Ce courant, dont les principaux
résultats dans le cas combinatoire ont été obtenus indépendamment par SHAPIRO et
WU, s’intéresse au cas ou K est un polyedre et K’ un espace numérique. Il cherche
des conditions nécessaires et suffisantes dans le carré symétrique réduit de K.

Enfin, lorsque K et K’ sont des variétés différentiables, A. HAEFLIGER a trouvé
dans le carré symétrique réduit de K et de K’ des conditions nécessaires et suffisantes
(dans le domaine métastable) pour obtenir une classification complete des plonge-
ments différentiables. [HAEFLIGER a) et b)].

Le principal résultat de ce travail consiste & établir ’analogue du théoréme de
HAEFLIGER dans le cas combinatoire, pour K un polyédre et K’ un espace numérique.
I contient les résultats de SHAPIRO et WU, de méme que certains théorémes de ZEEMAN
et son école, comme cas particuliers.
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Je tiens & remercier tres sincérement M. le Professeur G. DE RHAM, qui a guidé
mes premiers pas en topologie, de la constante et bienveillante attention qu’il m’a
toujours témoignée.

Mes remerciements vont aussi 8 M. le Professeur E. C. ZEEMAN, qui m’a donné
acceés a plusieurs de ses résultats avant leur publication. Les longues conversations
qu’il a bien voulu m’accorder tant a Cambridge qu’a Genéve m’ont été d’un secours
décisif. Je lui dois tout particulierement I'idée de base des arguments développés dans
le no. 6.

Je ne saurais dire combien I'influence de M. le Professeur A. HAEFLIGER a été
primordiale tout au long de I’élaboration de ce travail. En fait, les théorémes qui se
trouvent ici ne sont que la version combinatoire d’une partie de ses résultats sur les
plongements différentiables, dont il m’a longement expliqué les idées et les méthodes.
Enfin, ses conseils et ses encouragements dynamiques ne m’ont jamais fait défaut. Je
le prie de bien vouloir trouver ici I’expression de mes remerciements les plus chaleu-
reux.

2. Enoncé des résultats

Soit E un espace topologique. On envisage le produit E x E. La diagonale 4 est
le sous-espace de E x E constitué par les couples de la forme (x,x) xeE. L’espace
différence E x E— Ay s’appelle le produit réduit de E et sera noté E. Soit s: £ — E définie
par s(x, y) =(y, x); s est une involution sans point fixe. L’espace des orbites sera appelé
produit symétrique réduit de E et noté E*. Désignons par ¢ ’application antipodale
de S™!. On dira qu’une application F: E—S™"! est équivariante si elle commute
avec les involutions s et ¢, c’est-a-dire si:

F(x,y)=—F(y, x) x et yeE x#y.

Une homotopie 4: £x I-»S™1 sera dite équivariante si 'application h,: E—S™ ™!
définie par h,(z)=h(z, t) est équivariante pour tout tel.

Soit K" un polyédre de dimension # et soit f: K— R™ un plongement semi-linéaire.
On vérifie immédiatement que P’application (continue) f: K—S™~! définie par:

. fx)—f() >
Joo )= 0T (s ek
1f(x) = fF I
est équivariante.
En ce qui concerne I’existence de plongements, le théoréme principal de ce travail

est le suivant:

THEOREME 1. Supposons donnée une application continue équivariante F: K"—S™ 1,
Alors, si 2m>3(n+1), (domaine métastable), il existe un plongement semi-linéaire
f:K"->R™ tel que f soit homotope de fagon équivariante a F.
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IDEE DE LA DEMONSTRATION

Soit 7(K) une triangulation de K. Soit g: K"— R™ une application semi-linéaire.
En utilisant les techniques de position générale, on voit que les restrictions de dimen-
sion impliquent largement que g n’a pas de points triples. On dira que des points
doubles de g sont proches (par rapport a T(K)), s’ils proviennent de I'intersection de
I'image par g de deux simplexes de T(K) adjacents. On dira que des points doubles
sont éloignés dans le cas contraire.

Ordonnons les simplexes de T(K) en dimension croissante. En raisonnant par
induction, on peut supposer que K=LU ¢, p<n, et que le plongement f est déja
construit sur L. Le probléme est d’étendre ce plongement a X.

On commence par construire une application semi-linéaire sans points doubles
éloignés. Pour cela, on utilise une version combinatoire de la généralisation par
A. HAEFLIGER du procédé de WHITNEY pour I’élimination des points doubles isolés.
Voir [WHITNEY a)], [HAEFLIGER a) et b)]. Dans notre cas, le procédé consiste a attribuer
des coefficients d’intersection a deux boules semi-linéaires qui s’intersectent de fagon
agréable dans un espace numérique. A ce propos, les noms de A. SHAPIRO et M.
KERVAIRE doivent également étre mentionnés. Voir [KERVAIRE a)]. L’application sans
points doubles éloignés est construite pas a pas, inductivement sur les simplexes de
T(L). Lapplication équivariante F est utilisée essentiellement pour montrer que
chaque fois que 1’on veut éviter un nouveau simplexe de T(L), on peut s’arranger pour
que ses coefficients d’intersection avec I'image de o s’annulent. On pourra alors
séparer complétement I'image de deux simplexes non adjacents, tout en maintenant
les bords fixes, en utilisant a fond le théoréme central de la thése d’IRwiIN, [IRWIN
a) et b)], qui remplace dans le cas combinatoire la construction délicate de
HAEFLIGER, [HAEFLIGER b)]. Les restrictions de dimension (domaine métastable)
sont essentielles.

On élimine ensuite les points doubles proches en utilisant une technique que 1’on
peut considérer comme une généralisation de la «construction de vAN KAMPEN». Voir
[VAN KAMPEN a)]. Cette généralisation m’a été suggérée par la trés bonne description
qu’en donne Wu dans [WuU ¢)]. Le fait que I’on puisse étendre cette construction dans
un domaine de dimensions plus grand vient du théoréme suivant, dii & LICKORISH,
voir [LICKORISH a)]: Soit P un polyédre formé de deux sphéres ayant une boule en
commun. Alors P ne noue pas dans 8™ si m—dim P> 3. Des difficultés techniques m’
ont empéché d’utiliser tout criment ce théoréme et ont nécessité I’argument assez
long développé au no. 6, dont I'idée de base m’a été indiquée par E. C. ZEEMAN.

Remarques: 1° Si n=0, 1, 2 on voit que les restrictions de dimension impliquent
que 3(n+1)/2>2n, de sorte que I’on n’obtient rien de plus que ce que donne la
«position générale». On ne restreint donc pas la généralité en posant n> 3.
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2°Sin>3, alors 2n>3(n+1)/2. Les théorémes de Wu-WEN-TSUN et SHAPIRO sont
ainsi des conséquences de notre résultat. Voir [WU c)] et [SHAPIRO a)].

3° Si n>5, alors 2n—12=3(n+1)/2. Ainsi, notre résultat démontre un théoréme
que SHAPIRO avait annoncé. Voir [SHAPIRO a)].

4° Faisons agir Z, sur KxS™ ! de la fagon suivante: Soit aeZ, I’élément non
trivial. Posons a(x, y) =(sx, ty), xe K, ye S™~'. L’espace quotient pour cette action de
Z,, noté Kx, S™ 1, est un fibré n sur K*, de fibre S™~!, et de groupe Z,. On voit
facilement que I’existence d’une section de ce fibré 5 est équivalente a ’existence d’une
application équivariante de K dans S™~!. Dans le domaine métastable, le probléeme
de P’existence d’un plongement semi-linéaire est ainsi ramené a un probléme de
topologie algébrique. Il est légitime d’appeler «obstructions au plongement» les
obstructions a construire une section du fibré .

On déduit immédiatement du théoréme 1 le corollaire suivant qui présente quelque
intérét depuis le contre-exemple de MILNER & la Hauptvermutung:

THEOREME 2. Dans le domaine métastable, la «plongeabilité» semi-linéaire d’un
polyédre K" dans R™ ne dépend pas de la structure semi-linéaire de K.
Comme corollaire de la méthode utilisée pour démontrer le théoréme 1 on a:

THEOREME 3. Tout plongement topologique g: K"— R™ peut étre approché arbitraire-
ment prés par un plongement semi-linéaire, si 2m>3(n+1).

Les théorémes qui suivent concernent uniquement les variétés semi-linéaires et ont
¢té démontrés pour le cas différentiable dans [HAEFLIGER a)] et [HAEFLIGER-HIRSCH
b)]. Tout découle du théoréme suivant, qui est di & HAEFLIGER, voir [HAEFLIGER a)]:

THEOREME. Soit M" une variété semi-linéaire, close. La premiére obstruction a la
construction d’une section du fibré y sur M* s’annule si et seulement si W'=0 pour
i=m—n. W' désigne la i° classe de STIEFEL-WHITNEY normale de la variété M, dans
les coefficients:

entiers si n est impair et M orientable.

entiers tordus si n est impair et M non-orientable.

entiers mod. 2 si n est pair.

En conséquence, on a:

THEOREME 4. Soit M" une variété semi-linéaire, close, (k—1)-connexe (homologi-
quement). Si 2(k+1)<n, M" peut étre plongée semi-linéairement dans R*"~* si et
seulement si W"™*=0.

Les deux conjectures suivantes font partie du «folklore» depuis plusieurs années.
Voir, par example [ZEEMAN b)]:

a) Toute variété semi-linéaire, orientable, close, de dimension n, peut &tre plongée
semi-linéairement dans R?"~1,
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b) Soit a(n) le nombre de I qui apparaissent dans I'écriture binaire de n. Toute
variété close de dimension n peut étre plongée semi-linéairement dans R*"~*(MW*1,

Nous pouvons démontrer presque complétement I'une et faire un timide pas en
direction de I'autre. Plus précisément:

THEOREME 5. Soit M" une variété close, orientable, de dimension n>=>5. Alors M"
peut étre plongée semi-linéairement dans R*" 1.

Le théoreme est bien connu pour n=2. Pour n=3, il a été démontré par M. HIRSCH,
voir [HIRSCH a)]. Pour n=4, le théoréme a été¢ démontré récemment par WALL et par
HiIRsCH, voir [WALL a)] et [HIRSCH b)].

THEOREME 6. Soit M" une variété close, n=5. Alors, si a(n)=2, M" peut étre
plongée semi-linéairement dans R*"~ 1.

Ici aussi, [WALL a)] permet d’affirmer que le théoréme est vrai pour n>2.

Les théorémes 5 et 6 se déduisent du Théoreme 4 en utilisant les résultats de
MASSEY concernant l'annulation de certaines classes de STIEFEL-WHITNEY d’une
variété. Voir [MASSEY a), b), ¢)].

Le théoréme principal concernant les isotopies est le suivant:

THEOREME 1'. Soient f et g deux plongements semi-linéaires de K" dans R™. Sup-
posons que 2m>3(n+1), (domaine métastable pour les isotopies). Alors, si f et
§:K—S™"1 sont homotopes de fagon équivariante, f et g sont isotopes.

Ce théoréme est démontré au no. 7.

Remarque. 11 est clair que f et § sont homotopes de fagon équivariante si et seule-
ment si les sections correspondantes du fibré # sur K* sont homotopes. Ainsi, dans le
domaine métastable, I’énumération des classes d’isotopie de plongements est équi-
valente & I’énumération des classes d’homotopie de section d’un fibré.

On déduit immédiatement que, dans le domaine métastable, la classification des
plongements semi-linéaires ne dépend pas de la structure semi-linéaire, et que si deux
plongements semi-linéaires sont isotopes topologiquement, ils sont isotopes semi-
linéairement.

Les théorémes de A. HAEFLIGER et les théorémes | et 1’ montrent que, en ce qui
concerne les variétés différentiables, I’existence et la classification des plongements
dans un espace numérique coincident pour les catégories semi-linéaires et différentia-
bles, pour autant que I’on se trouve dans le domaine métastable.

Comme dans le cas de I’existence de plongements, on peut utiliser les calculs de

HAEFLIGER pour déduire quelques conséquences du théoréme principal. Voir [HAEF-
LIGER a)].

THEOREME (HAEFLIGER). Soit V une variété semi-linéaire, close, orientable, homo-
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logiquement k-connexe, k>0. Alors,
HZn—k— 1 (V*, Z(k)) — Hn—k—l (V)

avec coefficients entiers ou mod 2 suivant que (n—k) est impair ou pair. Z,,, désigne
les entiers si k est pair et les entiers tordus par le revétement K— K* si k est impair.

On en déduit immédiatement le théoréme suivant, dont I’analogue différentiable a
été démontré dans [HAEFLIGER a)].

THEOREME 4'. Soit V" une variété close, orientable, et homologiquement k-connexe.
Si 2(k+2)<n, les classes d'isotopie de plongements de V dans R*"~* correspondent
bijectivement aux éléments de H" *~'(V, Z) ou H* *~Y(V, Z,) suivant que (n—k) est
impair ou pair.

Le corollaire suivant est un peu plus faible qu’un théoréme di a HupsoN. Voir
{HUDsoON c)}.

COROLLAIRE. Les classes d’isotopie de plongements de SP x S? dans RP**?*1 cor-
respondent aux entiers ou aux entiers mod 2 suivant que q est pair ou impair. (§=p +2)

(p=1).
Dans le cas non-orientable, HAEFLIGER a le théoréme de topologie algébrique
suivant:

THEOREME (HAEFLIGER). Soit V" une variété semi-linéaire, close, connexe, et non-
orientable. Soit V,, le complémentaire d’un point. Alors,

H*" '(V* Zy)=H"'(Vo, Z)2H" " (V,Z) si n-—gq estpair
=H""'(Vy,Z,) si n—gq estimpair.

On en déduit le théoréme suivant:

THEOREME 4. Soit V" une variété semi-linéaire, close, connexe, non-orientable.
Les classes d’isotopie de plongements de V" dans R*" correspondent aux éléments de

H" ' (V,, 2)2H" " (V,Z) ou H" '(V,,Z,)
suivant que n est pair ou impair.

Nous terminons ce paragraphe en énongant sans démonstration quelques formes
relatives des théoréemes 1 et 1'.

THEOREME 7: a) Supposons 2m23(p+1). Soit P un polyédre de dimension p et soit
Q = P un sous-polyédre. Supposons que I'on ait une application équivariante F:P—S™ !
et un plongement c: Q- R™ tel que ¢ soit homotope de fagon équivariante a F|Q. Alors
¢ s’étend en un plongement f:P— R™ tel que f est homotope de fagon équivariante a F.
b) Supposons 2m>3(p+ 1). Supposons que f et g soient deux plongements de P dans
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R™ tels que f1Q =g| Q. Supposons que f et § soient homotopes de facon équivariante en
maintenant Q fixe. Alors f et g sont isotopes en maintenant Q fixe.

3. Terminologie et notations

Les notes de topologie combinatoire de E. C. ZEEMAN, publiées par 'THES, seront
considérées comme un texte de référence standard. On pourra, en principe, y trouver
la définition des termes utilisés ici, & condition que I’on veuille bien substituer au
qualificatif «semi-linéaire» le préfixe «poly». On peut aussi se référer aux différents
articles de ZEeMAN dans «Topology of 3-manifolds». Enfin, pour beaucoup de
notions, on peut consulter le mémoire original de J. H. C. WHITEHEAD, [WHITEHEAD
a)l.

Soit K un complexe simplicial euclidien fini. L’espace sous-jacent |K| sera appelé
polyedre. En général. nous écrirons indifféremment K ou |K|. Une application semi-
linéaire f: K— R™ est une application qui est simpliciale sur une certaine subdivision de
K. Une application semi-linéaire injective est un plongement semi-linéaire. Une
isotopie semi-linéaire est un plongement semi-linéaire H: K x - R™ x I, qui commute
avec les projections naturelles sur le second facteur.

Nous considérons les notions de:

a) Boule et sphére semi-linéaires.

b) Variété semi-linéaire.

c) Voisinages réguliers.
comme standard.

Si M est une variété, son bord sera noté M ou dM suivant les circonstances.
Rappelons que si M et Q sont des variétés, un plongement f: M— Q est dit propre si
7 dQ)=dM.

En principe, les indices supérieurs désignent la dimension.

4. Coefficients d’intersection

L’étude des coefficients d’intersection a été faite principalement par A. SHAPIRO,
M. KERVAIRE, et A. HAEFLIGER. Voir [KERVAIRE a)] et [HAEFLIGER a)]. En général,
ces auteurs se placent dans la catégorie des applications differentiables et utilisent
abondamment la construction de THOM-PONTRJAGIN.

Nous allons développer ici une théorie des coefficients d’intersection dans la
catégorie des applications semi-linéaires. Nous nous restreindrons au cas ot la codi-
mension est > 3. Les résultats que nous obtenons sont, en un certain sens, équivalents
a ceux du cas différentiable.

Soit B™ = R™ une boule semi-linéaire de dimension m. Soient o” et ¢? des simplexes
dans R” et R? respectivement, avec I’orientation naturelle.
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Soient f: 6?— B™ et g: 67— B™ deux plongements semi-linéaires propres, c’est-a-dire
tels que, si 'on pose dB™=S™"!, on ait:

f—l(sm—l)zd.p g-‘l(sm—l):éq.

D’autre part, on suppose que f(6*)n g(6?) =0 et p<n, g<n,m—n>3.

Le complémentaire de f(67) dans S™~! a le méme type d’homotopie que la sphére
S™~P~1 D’aprés les hypothéses, on a g(6?)=(S™ ' —f(67)). Ainsi, g|6? définit un
élément

I (g’f)e ch— 1 (Sm-p— 1) :

(La définition précise de I(g, f) est donnée au cours de la démonstration de la
proposition 1.)
De fagon analogue, on définit

I(f, g)em,-(S"7171).

D’autre part, comme la boule B™ est plongée dans R™, on peut définir une applica-
tion a, , de d(a” x 6%) dans la sphére unité de R™ en posant:

S(x)—g)
If(x) — gl

Cette application est bien définie en vertu des hypothéeses précédentes. Elle déter-
mine un ¢lément

a(x,y) = (x, y)ed(a? x o%)

O((f, g)E 7rp+q—- 1 (Sm— 1)
Désignons par E la suspension de FREUDENTHAL.

PrROPOSITION 1. (—1)""? E? I(g, f)=0a(f, g)=(—1)"""" a(g, f).

COROLLAIRE. Les suspensions stables de I(f, g) et de I(g,f) sont égales au signe
pres. De facon précise

EpI(g,f) — (___ 1)pq+p+q+mEq](f’ g).

Preuve de la proposition 1

En transformant toute la situation au moyen d’une isotopie ambiante de R™, on
peut supposer que B™ est une boule semi-linéaire standard de R™. (Voir, par exemple,
[GUGENHEIM a)]). Par la suite, il sera utile de se représenter B™ de la fagon suivante:

Soit R™=RPx R™ P, Soit t? un simplexe de R?, de barycentre 1’origine, et soit
7"~ P un simplexe de R"~?, de barycentre I’origine. Nous prendrons pour B™ le joint
tP-7™ P, Son bord ™! sera par conséquent le joint 7+ 1™ 2,

Puisque nous sommes, par hypothése, en codimension >3, on peut, en vertu du
«unknotting balls» de ZEEMAN, (voir [ZEEMAN f)]), trouver une isotopie de R™ qui
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transforme f:67— B™ en un homéomorphisme semi-linéaire de o” sur t?, conservant
’orientation.

Il y a une rétraction par déformation évidente r, de (S™ ' —%?) sur t" 2. Soit
ry=r:(S"" ' —#?)>1""? la rétraction obtenue pour f=1. Si nous identifions ¢? avec
SS9~ 1et t™~P avec S™ P! (par projection radiale, par exemple), ’application
roglg?—1™"? détermine sans ambiguité un élément de m,_,(S""?~') qui sera, par
définition, I(g, f).

Soit g’ ’extension radiale de r.g|é? & o7, en prenant pour centre I’origine de R™.
Il est clair que g’'(67)=t™ 7. En général g’ n’est pas un plongement. Cependant,
I’application a, ,- de d(o” x %) dans la sphere unité de R™ est bien définie. On vérifie
facilement que a(f, g)=a(f, g").

Dans RP x RY, envisageons le produit ¢”x¢? et le joint ¢7-¢? Par projection
radiale a partir du «barycentre» de ¢” x 6%, nous identifions d(a® x 6?) avec 67-¢%. Ce
sera notre modele pour la sphére SP*?7!, La suspension itérée p-fois de I’application
roglé?—1""P n’est rien d’autre que le joint de cette application avec la restriction &
6? de ’homéomorphisme semi-linéaire f:o”—1”. Il est maintenant facile, en appli-
quant strictement les définitions, de voir que (—1)""? E? I(g,f)=a(f, g).

Légalité a(f, g)=(—1)""""a(g,f) découle immédiatement des conventions que
nous avons faites.

Ceci achéve la démonstration de la proposition 1.

Supposons maintenant que (g, f)=0en,_,(S"7?~'). Soit N un voisinage régulier
de f(o?) dans B™, tel que N n S™! soit un voisinage régulier dans S™~! de f(67).
Prenons N suffisamment fin pour que N n g(6?)=0. N est une boule semi-linéaire. On
vérifie facilement que B™— N est homéomorphe semi-linéairement a un tore plein
Sm=P~1x BP*1, L’application g|¢? est homotope a zéro dans B™— N, car, par hypo-
thése, I(g, /) =0. Elle s’étend donc en une application semi-linéaire g,:67—B™— N.

IRWIN, dans sa thése, a démontré le théoréme suivant. Voir [IRWIN a) theorem 1]
et [IRWIN b) theorem 1.1].

THEOREME. Soient X* et Y’ deux variétés semi-linéaires compactes. Soit ¢:X—Y
une application semi-linéaire telle que @|d X soit un plongement de dX dans dY. Alors,
si les trois conditions suivantes sont remplies, @ est homotope d un plongement s, rel dX :

) y—x=3.

2) X est (2x—y)-connexe.

3) Yest(2x—y+ 1)-connexe.

Appliquons ce théoréme d’IRWIN en prenant X =¢?, Y=B"—N, ¢ =g,. Les con-
ditions 1) et 2) sont évidemment satisfaites. La condition 3) sera remplie si m—p—23
2q—m+1.8i p<n, g<n, 'inégalité est vérifiée si 2m>3(n+1). Enfin, il est clair que
'on peut toujours choisir pour ¥ un plongement propre.
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D’autre part, en codimension >3, deux plongements semi-linéaires, propres, d’une
boule dans une autre, qui coincident sur le bord, sont isotopes par une isotopie fixe
sur le bord. [ZEEMAN e) cor. 1 to theorem 9].

En conséquence, on a la

PROPOSITION 2. Dans le domaine métastable, I’annulation de (g, f) est une con-
dition nécessaire et suffisante pour que I’on puisse trouver une isotopie ambiante H, de
B™, fixe sur S™1, et telle que H,°g(c?)n f(c?)=0.

Comme on peut le voir facilement sur des exemples, il y a en général plusieurs

classes d’homotopie mod. 6% dans B™— N, de plongements tels que . Nous allons
étudier ce qui se passe un peu plus en détails.

PROPOSITION 3. Soient f: 07— B™ et g:6%— B™ deux plongements semi-linéaires pro-
pres, tels que f(6?) N g(6%)=0. Supposons que I(g, f)=0. D’aprés la proposition 1, I’ap-
plication a; ;:d(6” x 6%)=S?*1"1>S""! est homotope & zéro. Supposons que I'on se
soit donné une extension A:6”xa?'—>S™" ! de I'application a. Alors, si p<n, g<n,
2m>=3(n+1), il existe une isotopie propre h,:a'— B™, telle que:

1) hy=g.

2) h|6?=g|d% (Autrement dit, I'isotopie est fixe sur ¢7).

3) hy(@%)n f(o") =0.

4) L’application ¢,:d(c” x 6* x I)>S™ 1, définie de la fagon suivante, est homotope
a zéro:

oulo? x6? x {0} = A

P gl _ &)= h(y) % o x g7
©,ld (o xa)x{t}—“f(x)__ht(y)” O<t<l1l (x,y)ed( )
7f(x) —hy ()’)

onlo” x o x {1} = (x, y)eo? x 0.

1f(x) = by )]
Remarque. Les points 1), 2) et 3) ne font que reprendre la proposition 2. Le point
nouveau est le 4).
Avant la démonstration, établissons le lemme suivaint, qui est assez semblable a
la proposition 1.

LemME 1. Soit f:6?— B™ le plongement standard envisagé précédemment (démon-
stration de la proposition 1). Soient g, et g, deux plongements propres de ¢ dans

B™ ™ N, qui étendent g|6?. Soit g5:S%— B™ I'application semi-linéaire dont la restriction
a I’hémisphére Nord est égale a g, et dont la restriction a I’hémisphére Sud est égale d g..
Soit g,: B**1— B™ une application semi-linéaire qui soit une extension de g, telle que
g4(B** )< B™. (Il est clair que g, n’est en général pas un plongement. De plus, g,(B**?)
peut trés bien rencontrer N), Soit fen (S™ ?~') la classe d’homotopie de I'application
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g30r:ST->S™ P71 Soit yem,,,(S™") la classe d’homotopie de I'application ¢, ,,:
d(o” x B 1)~ S™~! définie par:

_ S -l o7 x Bt
C(x’y)_llf(X)—g4(y)ll (& y)edls® x B,

(— )" PEP B =7y.

Alors:

Preuve du lemme 1

Désignons par gs: B1*!— B™ I’extension radiale de rog;: 57— S™ 2~ 1. On vérifie
facilement que I'application c,,, est homotope a l'application c,,,. Le reste se
démontre sans difficultés, comme pour la proposition 1.

Ceci acheve la démonstration du lemme 1.

Preuve de la proposition 3

Soit 7% un g-simplexe appartenanta S™~! — (§™ 1 n N). Il est clair que tout élément
de 7, (B™— N) peut étre représenté par une application semi-linéaire de S dans B™— N,
dont la restriction a ’hémisphére Nord soit un homéomorphisme semilinéaire sur n?.

D’autre part, comme I(g, f)=0, g|d? est homotope & un homéomorphisme semi-
linéaire de ¢7 sur /. En faisant usage de ’extension des homotopies et du théoréme
d’IRWIN cité plus haut, on voit que tout élément de n,(B™— N) peut étre représenté
par une application semi-linéaire de S? (envisagée comme suspension de ¢%) dans
B™— N, telle que:

1) Sa restriction a I’équateur soit égale a g|¢”.

2) Sa restriction a I’hémisphére Nord soit un plongement prope G’, fixe (c’est-a-
dire le méme pour tous les éléments de n,(B™—N).)

3) Sa restriction a I’hémisphére Sud soit un plongement propre.

Soit /; une isotopie propre entre g et G’ et soit e, ,(S™ ') 'élément déterminé
par ¢,’.

D’aprés les théorémes de suspension, on pourra trouver un élément fen, (B™—N)
tel que (—1)""PE?B=—0 si g<2(m—p—1)—1, ce qui est toujours vrai dans le
domaine métastable.

Soit G la restriction & ’hémisphére Sud d’une application de S? dans B"— N, du
type décrit plus haut, et représentant f. Soit 4," une isotopie propre reliant G’ a G.
L’isotopie A, obtenue en effectuant 4/ puis A, est I'isotopie cherchée.

Ceci achéve la démonstration de la proposition 3.

PROPOSITION 4. Soit S? une sphére semi-linéaire de dimension d. Soient S° et S° des

sphéres semi-linéaires de dimension a et b respectivement, plongées semi-linéairement
d . . . r . . »

dans S°. Soit B® une boule semi-linéaire de dimension d, contenue dans S° et telle que:
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1) B*n S*=une boule semi-linéaire B®, plongée proprement dans B°.

B0 S®=une boule semi-linéaire B, plongée proprement dans B°.

2) $°n S°c B

Posons dB*=S""1, dB"=B"n S '=8"""' et dB"=B"n §* "1 =$""1,

On suppose que d— 3> max(a, b).

Alors, on peut trouver une isotopie ambiante h, de B*, fixe sur §*~ 1, telle que:

(i) h (B°)n B*=0. Soit S**=(S"— B*)U h, (B
Ona:S*'nS°=0

(if) S** et S” soient le bord de boules plongées proprement dans B**! et qui n’inter-
sectent pas. En particulier, les coefficients d’enlacement de S*° et S® dans S* seront nuls.

Preuve de la proposition 4

Nous allons choisir pour $* le modéle suivant: S®c R! est composée des points
{+1} et {—1}. Par récurence, a 'aide du plongement standard R"< R"*1, S™ ! est
contenue dans R™*!, S™c R™*! sera alors la suspension de S™ !, de sommets
0,0,...,0,+1)et (0,0, ...,0,—1).

Par homogénéité des variétés semi-linéaires { GUGENHEIM a)}, ou par les théorémes
de ZEeMAN, notes de 'THES chap. 3, on peut supposer que B? est I’hémisphére «droit»
de S? c’est-a-dire I'intersection de S¢ avec le demi-espace x, >0.

En appliquant plusieurs fois les théorémes de «unknotting balls and spheres» de
ZEEMAN, on voit sans difficulté que I’on peut supposer que S° est la sphére standard de
dimension b, c’est-a-dire Iintersection avec S¢ du plan x,,,=x,,;="=x,,,=0.

Soient

B1a=sa__Ba Blb=S _Bb B’dzsd"“Bd.

Par hypothése, B"*n B'*=0. De plus, B’ et B’® sont plongées proprement dans
B, Désignons par B** la boule semi-linéaire contenue dans B, symétrique de B’
par rapport au plan x; =0.

11 est clair que B**n B°=0, et donc, si I’'on pose S**=B’"U B**, on aura $**n S°
=0. On voit maintenant facilement que I’on peut trouver dans la boule B*** de bord
S des boules B¥**! et B**1, de bord S** et respectivement S°, qui ne s’intersectent
pas.

Le fait que 'on puisse passer de B* & B*® par isotopie de B’, fixe sur le bord,
découle immédiatement de [ZEEMAN ¢) cor. 1 to theorem 9].

Ceci acheve la démonstration de la proposition 4.

PROPOSITION 5. Soit S* une sphére semi-linéaire de dimension k, et soit S'< S* une
sous-sphére semi-linéaire de dimension i, avec k—i>3. Soit f: S —(S*— S’) une applica-
tion continue. f détermine un élément aen,(S*"'"1). Soit g: ST —(S** —S") la sus-
pension de I'application f. g détermine un élément fen j+1(S""i).
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Alors: Ea=p.
La preuve est laissée au lecteur.

5. Construction d’une application sans points doubles éloignés

Nous commengons dans ce paragraphe la démonstration du théoreme 1.
Soit K" un polyédre (compact) de dimension n. Choisissons une triangulation 7(K)
de K. Posons:

K=K x K — 4.

T'=Le sous-complexe (cellulaire) de T(K) x T(K) constitué par les cellules de la
forme o x 7, avec o N t=0, o et t étant des simplexes de T(K).

Il est «bien connu» que 7 est un rétracte par déformation de K, et ceci par une
homotopie équivariante. Pour une démonstration correcte, voir [Hu a)]. Sur cette
question, on peut aussi se référer a [PATTY a)].

PROPOSITION 6. Soit F:K"—S™"' une application équivariante, 2m>=3(n+1).
Alors, il existe une application semi-linéaire f,:K"— R™, qui ne posséde aucun point
double éloigné; c’est-a-dire telle que I'intersection de I'image par f, de deux simplexes
de T(K) disjoints soit vide.

De plus, soit f,:T—S™" ! définie par:

N - »fl (x)_'_f}M()_)_),_
fi(x, y) 1f1(x) =fr I

Soit i:T— K Uinclusion naturelle. Alors, on peut construire f, de telle facon que f,
soit homotope de fagon équivariante a Foi.

Preuve de la proposition 6

En raisonnant par récurence sur les simplexes de T(K), ordonnés par dimension
croissante, on voit facilement que I’on peut supposer que:

a) K=LU ¢", o" étant le dernier simplexe de la triangulation T'(K).

b) Il existe une application semi-linéaire ¢': K— R™ telle que:

1) La restriction de ¢’ a chaque simplexe de la triangulation T(K) soit un
plongement.

2) Les images par ¢' de deux simplexes de T(L) non adjacents soient disjointes.

3) Il existe un simplexe ¢° de T(K), non adjacent a ¢", tel que, si ’'on désigne par P
le sous-complexe de T(K) formé des simplexes qui précédent ¢° (celui-ci non compris)
et qui sont non adjacents & ¢" (N.B.: P peut &tre vide), on ait pour tout simplexe teP:

¢'(d")n ¢'(1)=0.
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Posons:
J' =T(L)U {(" x P)uU (P x ¢")} = T(K)
J=TL)U {(¢"x (P U o) U ((PU *) xa")} = T(K)
Définissons y':J'—»S™ ! par:

V) Y E =0

e’ (x) = ¢ I

Cette définition a un sens en vertu des hypothéses précédentes.

4) y'=F|J'.

Le pas principal de la démonstration par récurence est contenu dans ’affirmation
suivante:

Affirmation: On peut modifier, ¢’ en une application ¢, égale a ¢’ sur L, jouissant
toujours des propriétés 1) et 2), et telle que:

3bis) @ (6”)n (t)=0 pour tout simplexe t appartenant & PU ¢°.

On définit y:J—»>S™"! par:

¢(x) —¢(»)
16 (x) — ¢

Y(x, y)=

4bis) Y soit homotope de fagon équivariante a F|J.

Remarque. La construction de I’application f; sans points doubles éloignés sera
évidemment terminée avec ¢°=le dernier simplexe de T(K) non adjacent a ¢".

La démonstration de I’affirmation repose essentiellement sur la technique des
coefficients d’intersection et sur le lemme suivant:

LEMME 2. On peut construire dans R™ une boule semi-linéaire B™, dont I’intersection
avec ¢'(o") est une boule semi-linéaire de dimension n, plongée proprement dans B™, et
dont lintersection avec ¢'(c") est une boule semi-linéaire de dimension s, plongée pro-
prement dans B™ et telle que:

‘l),(a") N ¢'(O'S)CBM
B"nP=9.

Preuve de I’affirmation a I'aide du lemme 2

Soit B™ 1a boule semi-linéaire construite dans le lemme 2. Soit f:¢°— B™ un homéo-
morphisme semi-linéaire de ¢° sur B"n ¢'(¢*). Soit g:0"— B™ un homéomorphisme
semi-linéaire de ¢" sur BN ¢'(¢"). D’aprés le lemme 2, f et g jouissent bien des pro-
priétés nécéssaires pour pouvoir appliquer la théorie développée au no. 4.

Par hypothése de récurence, I’application a, ;:d(¢* x ¢")—>S™ ! est homotope a
zéro. En effet, considérons le diagramme commutatif suivant:
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d{o® x ") >d[(¢""f(e*)) n ¢* x (¢’ (™) n "]
ag, ¢ Sm-—l v'ldf...]

h désignant ’homéomorphisme semi-linéaire évident. Par hypothése, y'|d][...] est
homotope a F|d[...]. F étant définie sur K, a, . est homotope a zéro.

D’apres la proposition 1, on a E°I(g, f)=0. En vertu des théorémes classiques de
suspension, E* est injectif si n—1<2(m—s—1)—1, ce qui est toujours le cas dans le
domaine métastable. En fait, c’est 1a un des points essentiels oul’'inégalité 2m>3(n+1)
est nécessaire.

Les propriétés de la boule B™ et la proposition 2 assurent la validité de 3bis).

La proposition 3 assure la validité de 4bis).

Ceci achéve la démonstration de I’affirmation, et donc de la proposition 6.

Preuve du lemme 2

a) La preuve du lemme 2 repose en majeure partie sur une partie assez banale du
théoréme «d’engulfing» de ZEEMAN. Voir [ZEEMAN d) lemme 2] et [ZEEMAN e) chap. 7].

LEMME 3. Soit B* une boule semi-linéaire de dimension z. Soit Y’ un sous-polyédre
< B. Alors il existe un sous- polyédre C<= B?, de dimension < (y+ 1), contenant Y, et
collapsible.

La preuve de ce lemme, trés facile, est laissée au lecteur. Elle utilise essentiellement
le fait que I’on peut réordonner les collapses en dimension décroissante.

Par hypothése de récurence:

¢'(6") N ¢'(6") =0 =¢"(c") n ¢'(¢°).

Soit Q=¢'(6")n ¢'(6°). Par position générale, [ZEEMAN e) chap. 6], on peut
modifier ¢ de telle fagon que les hypothéses de récurence soient encore satisfaites et
que dimQ<n+s—m.

Pour simplifier les notations, posons:

$'(e")=B" et ¢'(¢°)=PB.

b) D’aprés ce qui précéde, Q = B". On applique le lemme 3 en prenant: B*=B" et
Y=0.

Appelons Q, le polyédre collapsible que I’on obtient. On a dimQ, <n+s—m+1.

c¢) D’aprés ce qui précéde, on a aussi Q< B%. On applique & nouveau le lemme 3 en
posant: B*=B° et Y=0. On obtient un polyédre collapsible Q, et on a dimQ, <
n+s—m+1.

d) Par hypothése de récurence, B"n P=0. Donc Q, N P=0. En revanche, il se
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peut trés bien que B°nN P=T#0. Mais par position générale, on peut s’arranger pour
que dim7T<2s—m.

Par position générale, Tn Q, =0 si (2s—m)+(n+s—m+1)<s ce qui est toujours
le cas dans le domaine métastable.

e) Posons Q;=0, U Q,. OnadimQ;<n+s—m+1. On applique encore le lemme
d’engulfing en prenant:

B?=une boule semi-linéaire de dimension m de R™, contenant Q; dans son

intérieur.
Y = Q3 .

On obtient un polyedre collapsible Q, et 'ona dimQ,<n+s—m+2.

f) Par position générale (plus précisément [ZEEMAN e) chap. 6 theorem 15]), on
pourra s’arranger pour que l'intersection de Q, avec B" soit exactement Q, si:

n+ (n+s—m+2)<m, ce qui est toujours le cas dans le domaine métastable.

g) De fagon semblable, on pourra s’arranger pour que ’'intersection de Q, avec
B’ soit exactement Q,.

h) Encore par position générale, on pourra s’arranger pour que Q4 ne rencontre
pas P si

s+ (n+s—m+2)<m, ce qui est toujours le cas dans le domaine métastable.

k) Il est clair maintenant que I’on peut trouver une triangulation suffisamment
fine de R™ pour que:

(i) Q, soit un sous-complexe «full» dans cette triangulation.

(ii) Le premier voisinage dérivé de Q, dans B" ne rencontre pas dB".

(iii) Le premier voisinage dérivé de Q, dans B® ne rencontre pas dB".

(iv) Le premier voisinage dérivé de Q, dans R™ ne rencontre pas P.

Le premier voisinage dérivé de Q, dans cette triangulation sera la boule B™
cherchée.

Ceci acheve la démonstration du lemme 2.

Nous allons clore ce paragraphe en énongant un théoréme qui donne une condition
nécessaire et suffisante pour qu'une immersion soit régulicrement homotope a un
plongement. La démonstration découle immédiatement des techniques développées
dans ce paragraphe.

Posons auparavant quelques définitions: Une application semi-linéaire f: K"— R™
est dite une immersion semi-linéaire si elle est localement injective. Une homotopie
réguliére est une application semi-linéaire F: K x I— R™ x I, commutant avec les pro-
jections sur Z, et qui est une immersion pour chaque valeur du paramétre. Remarquons
enfin que si f est une immersion, il existe un voisinage équivariant ¥V de 4y dans K x K,
tel que I'application f:(V—A4,)—S™ ! définie ci-dessous ait un sens:

7%, y) = fx)=f(y)

&) =fON
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THEOREME 8. Soit g:K"— R™ une immersion, et soit 2m>3(n+1). Supposons qu’il
existe une application équivariante F:K—S™ ' telle que F|(V— Ay) soit homotope de
fagon équivariante a g. Alors g est réguliérement homotope a un plongement f tel que f
est homotope de facon équivariante a F.

6. Elimination des points doubles proches

COLLAPSES ADMISSIBLES

Dans sa theése, M. C. IRWIN a introduit une précision a la notion de collapse, qui
intervient lorsque I’on travaille avec des variétés & bord. Voir [IRWIN a) et b)]. Soit M
une variété semi-linéaire, de bord dM. Soit X un polyedre contenu dans M et soit Y
un sous-polyeédre de X. On dit qu’il y a un collapse élémentaire de X sur Y, s’il existe
une boule semi-linéaire B"— X et une face B"~! de B" telles que:

YUB'=X YnB'=B""'.

Soit B"~!=dB"—B""!. On dit que ce collapse élémentaire est admissible dans M
si:
BUB"™'ceM ou B'UB"'cdM.

Plus généralement, si ’on peut passer de X & Y par une suite finie de collapses
élémentaires admissibles dans M, on dit que X se collapse sur Y de fagon admissible
dans M. On note ce fait: X \{Y.

Une raison essentielle de I'intérét de cette notion est un théoréme «d’engulfing
admissible» dii & IRwWIN. Voir [IRWIN a) lemme p. 26], [IRWIN b) theorem 4.3] et aussi
[ZEeMAN e) chap. 7]. Nous utiliserons seulement le lemme suivant, dont la démonstra-
tion est assez simple.

LEMME 4. Soit D* une boule semi-linéaire de dimension k, et soit D*~! une face de
D*. Soit X*<=D* un sous-polyédre de D* tel que X*n dD*<D*~*. Alors, il existe un
sous-polyédre C de D, qui jouit des propriétés suivantes:

(i) C se collapse de fagon admissible dans D¥, ¢’est-d-dire: C™X point.

(i) CoX.

(ii) dim C<x+1.

(iv) CndD*cD* !

(v) Sidim(XndD*)<x, alors dim(CndD*)<x+1.

UN THEOREME DE LICKORISH

Si X et Y sont des polyédres, nous désignerons par Iso( X, Y) I’ensemble des clas-
ses d’isotopie ambiante, semi-linéaire, de plongements de X dans Y.

EX désignera la suspension du polyédre X.
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Par suspension, on obtient une application
Iso(X*, §") > Iso(EX, S"*").

Il n’est pas difficile de voir que cette application est toujours injective, utilisant
[HUDSON-ZEEMAN b) theorem 2].

THEOREME (LICKORISH). Cette application est bijective si n—x>3.
Pour la démonstration voir [LICKORISH a)].

Nous revenons maintenant a la démonstration du théoréme 1. En ordonnant les
simplexes de 7(K) en dimension croissante, et en raisonnant par induction, on voit
que le théoréme 1 découlera de la proposition suivante; o ’on suppose 2m>3(n+1).

PrOPOSITION 7. Soit K"=LU o®, p<n. Soit f,:K—R™, une application semi-
linéaire sans points doubles éloignés et telle que f,|L soit un plongement. Soit o le pre-
mier simplexe de T(K) tel que f,(6?)n f,(6%)—f,(6? n 6%) #0. Alors, on peut modifier f,
en f, telle que:

1) f, n’ait pas de points doubles éloignés et f,|L soit un plongement.

2) fo:T—-S™"* soit homotope de fagon équivariante a f,.

3) Si a?' est le premier simplexe de T (K) tel que f,(a®)n £, (¢ )—f, (6" 67') # 9,
alors o précéde o?'.

Le reste du paragraphe 6 est consacré a la démonstration de la proposition 7.

a) CONSTRUCTIONS PRELIMINAIRES

On a done: a?nol=d"#¢ o #a? o #0%.

Choisissons une subdivision 7’(K) de T(K) et une triangulation 7(R™) de R",
pour lesquelles f; est simpliciale. Subdivisons barycentriquement 7(R™) deux fois et
prenons dans cette triangulation 7" (R™) le voisinage simplicial N def, (¢"), mod f; (dc").
Voir [HUDSON-ZEEMAN b)]. N est une boule semi-linéaire de dimension m, contenant
/1(do") dans son bord.

Subdivisons T’(K) barycentriquement deux fois, obtenant ainsi une triangulation
T"(K). f, étant non dégénérée, f,:T"(K)—T"(R™) est simpliciale. Soit #” un simplexe
de dimension r de 7”(K)|o", contenu dans l'intérieur de ¢”. Soient:

v? 7"~ ! = le link de " dans T’ (K)|a”.
v?7""! = le link de " dans T"'(K)|o?.

Ce sont évidemment des boules semi-linéaires.

Soit S"~"~!le link de f; (") dans T"(R™). S™~"~! est une sphére semi-linéaire, de
dimension (m —r—1), contenue dans le bord dN de N, et ne rencontrant pas f; (do").
En fait, dN est homéomorphe semi-linéairement au joint f; (do”)- S™ "1,
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D’autre part, f7'(N)n o?, n’est pas autre chose que le voisinage simplicial de
6" mod do’, dans T"(K)|o?. C’est un voisinage régulier dans 7" (K)|o? de ¢".modds ",
rencontrant le bord de fagon réguliére. Voir [HUDSON-ZEEMAN b)]. De méme pour
f1'(N)n o% dans ¢% Posons:

fl_l(N) n o = B} flnl(N) n ¢ = Bj

o’ — B = B} 6! — B% = B}

B:n By =v"! BinBi=v"",
Tous ces polyédres sont des boules semi-linéaires. Il est clair que:
1) vp-r-—lcvp-l vq-—r—-lcvq—l.
2) v?~! est homéomorphe semi-linéairement au joint v* "~ 1-do".
v1~! est homéomorphe semi-linéairement au joint v¥~"~!-do".

3) fl-l(sm—r—l)n6p=vp—-r—-l‘fl—1(sm—r—l)na.qz__vq—r~l.
Soit #" le barycentre de n". Posons:

T;{-r=ﬁr'vp—r—1 T(;-r_:ﬁr.vq—r—-l‘
b) MODELE DECRIVANT LA SITUATION

Soit u? un simplexe de dimension p. Soit u" une face de u?, avec 0<r<p—1. Soit
AP~ 1 ]a face de uP opposée a u". Soit /i" le barycentre de y", et soit AP ""=f"-AP"" "1,
Envisageons maintenant la premiére subvision barycentrique de u?. Dans cette
triangulation, soit DY le voisinage simplicial de yx’, mod.dyu’. C’est un voisinage
régulier de 4" moddy", rencontrant le bord de fagon régulieére. Soient:
D = u” — D} ”™' =Di n D
AT =2""n DY AA""=AP""n D}
wp—-r—-l — lp—r n wp—l ]

En utilisant les théorémes d’unicité des voisinages réguliers de {HUDSON-ZEEMAN
b)}, il est facile de voir que ’on peut trouver un homéomorphisme semi-linéaire
h: uP—o?, surjectif, tel que:

) h(g)=a"

2) h(AP7" "N =1P7r"1  (face de o” opposée A d").

3) (A7) =1’

4) h(DY)=Bf h(D3)=B} h(w"™")=v""".

5) h(li)—r)__::ri)-r h(wp—r-—l):vp—r-—l-

Choisissons un tel 4 et posons:

PP =h(AP7") T =h(A57).

Enfin, posons $?~"~2 =f; (dv*~"~!). Si p—r—1 =0, nous conviendrons que 77"~ 2
est vide. De méme, posons S "~ 2=f, (dvi"""1).
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D’aprés les hypotheses sur f; et d’apres le choix de o? et 6%, on a:
Sp—r—2 - Sm—r—-l SQ"‘r—'Z P Sm—r—l
HOTTHASTTI=0 £(67TT) 0 ST =0

Le lecteur est invité & se reporter aux figures.

P-.?,-r‘so

¢) CONSTRUCTION D’UNE CERTAINE BOULE SEMI-LINEAIRE

LEMME 5. On peut construire une boule J™, située dans R™—N et jouissant des pro-
priétés suivantes:
a) Son intersection avec dN est une boule semi-linéaire J™~1, située dans le bord de J™.
b) Son intersection avec f,(15™") est une boule de dimension (q—r), plongée proprement.
c) Son intersection avec f,(B%) est une boule de dimension p, plongée proprement.
d) J™ et J™~1 ne contiennent pas I'image par f, des simplexes de T(K) non adjacents a
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o®, ni f,(Q). Par définition, Q est I'ensemble des simplexes de st(a", T(K)) qui précédent
0% (dimQ <q).
O (@A BHImY I,
f) Il existe une boule B"~"~'<J™~1n S™ """ ! telle que:
1) B*""1-f,(do")cJ™ 1.
FACAEDIACSEDIS:
3) B* "1 f,(v?"""Y)=boule B*~""* plongée proprement.
4) B" "0 f,(v*" " Y)Y =boule B* "~ plongée proprement.

Preuve du lemme 5

(i) Envisageons la variété semi-linéaire R™— N, de bord dN. f,|t%™" est un plonge-
ment de 7%4~" dans cette variété. Par construction, f; (t37") n dN =f; (v*~"'). De méme,
f11B2 est un plongement semi-linéaire de B% dans R"—N. On a: f;(B5)n dN =, (v*™ ).
Par position générale, (voir [ZEEMAN e) theorem 15, corollary 3]) on a:

dim {f,(B) N fi(x¥")} <p+q—r—m,
et

dim {f,(BO)nfi (x5 )ndN}<p+q—-r—-m-—1.
(i) Appliquons maintenant le lemme 4 & la situation suivante:

D* =fi1(z5" D*1 =f1 (Vr“l) X =f,(B3)nfi(z5 "

Onax<p+q-—r—m.

On vérifie sans peine que, par construction, les hypotheses du lemme 4 sont satisfaites.
Soit C; un polyédre collapsible de fagon admissible, jouissant des propriétés (i) a (v)
du lemme 4. On a:

dmC, <p+g—-r—-m+1 et dim{C,nfi(V " )<p+qg—-r—m.
(iii) Appliquons une seconde fois le lemme 4, 3 la situation suivante:

D'=f,(B}) D '=f(""") X =fi(BE)nfi(§7)
Onax<p+qg—r—m.

Soit C, un polyédre collapsible de fagon admissible. jouissant des propriétés (i) a (V)
du lemme 4. On a:

dmC,<p+q—-r—-m+1 et dim{C,nf,(0* )<p+q—r—m.

(iv) Utilisons maintenant le lemme 3 pour la situation suivante:
B*=Une boule de dimension (m—r—1), contenue dans S™ "~!, et contenant Y=
{Cn A(PHIU{C, n £ (¥~ 1)}. Soit C; un polyédre collapsible situé dans ™",
contenant Y, obtenu en utilisant le lemme 3.
OnadimC;<p+q—r—m+1.
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(v) Appliquons une troisiéme fois le lemme 4, a la situation suivante:
D*=R™—N, compactifié, si I’on veut, en ajoutant le «point a I'infini.»
D*~'=dN— (un voisinage d’un point ne rencontrant pas C; U C,U Cj.)

X*=C; U C,U C;.

On ax<p+q—r—m+1.
Soit C4: polyedre collapsible de fagon admissible, jouissant des propriétés (i) a (iv).
On a: dmC,<p+q—-r—m+2.

(vi) Rappelons que Q est ’ensemble des simplexes de s#(o”, T(K)) qui précedent
o?. dimQ <gq.
Soit V=I1k(n", T"(K)|Q). dim¥V<g—r—1.
On a, d’aprés les constructions du début de ce paragraphe, 7 '(S" "~ )n Q=V.
Par position générale dans S™ "~!, on voit que, dans le domaine métastable, on
pourra toujours s’arranger pour que:

Cinfi(V)=0.

Un calcul analogue montre que ’on peut également s’arranger pour que:

Csnfi(F H=Confi(v7Y).
C:nfi( ™ H=Cinfi (V).

(vii) Par position générale dans R™—N, on pourra obtenir que:

1) C, ne rencontre pas f; (Q), ni 'image par f; des simplexes de 7(K) non adjacents a
o’.
2) Can f1(z557)=C1 C,4 ﬂafl (B3)=C,.

(viii) Triangulons R™—N de telle fagon que C, soit un sous-complexe de cette
triangulation. Prenons le deuxi¢me voisinage dérivé barycentrique de C,. Par con-
struction, ce voisinage est une boule semi-linéaire E™ de dimension m, dont l'inter-
section avec dN est une boule semi-linéaire E™~!, On a:

E™n fi(v*~!)=une boule semi-linéaire EP~1, située a I'intérieur de f; (v*~1).

Prenons dans R™"—N un voisinage dérivé suffisamment fin de f,(v?~!)—EP~!
modf, (dv?~'). La réunion de ce voisinage dérivé avec E™ fournit la boule semi-
linéaire J™.

Ceci achéve la démonstration du lemme 5.

d) UNE PREMIERE MODIFICATION DE L’APPLICATION f;

LEMME 6. On peut modifier I'application f, en une application f,, telle que les bonnes
propriétés de f, (cf. proposition 1, énoncé) soient conservées et que, de plus:

D f2(BY)N f2(BY)=f3(0").

2) f2(BEN f2(x37")=0.
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Preuve du lemme 6

Soit 0t =Qudletsoit ¥V =Vuyvi "1,

D’apres le théoréme de LICKORISH énoncé au début de ce paragraphe, on peut, par
une isotopie ambiante de R™, s’arranger pour que:

fi (Q+) n dN =f1(V+)'f1 (da"), fi (d"p—l) =fi (d"p—rﬂ)'fi (da")

si I’on envisage dN comme le joint S™~"~'- £, (do").
Appliquons la proposition 4 en prenant:

S'=dJ", S'=d{fi(B)nJ"}, S'=d{fi(z")nJ"}
Bd=Bm—r—l'f1(d0'r).

I1 est facile de voir que toutes les hypothéses de la proposition 4 sont satisfaites. En
conséquence, nous pouvons modifier le plongement de B?~"~!- £, (do"). en maintenant
le bord fixe, de telle fagon que les deux spheres S° et S° aient des coefficients d’enlace-
ment nuls dans S*.
D’aprés la proposition 5, on pourra choisir comme nouveau plongement de B? "~ 1.
f1(dao"), le joint par f;(ds") d’un plongement de B*~"~! dans B™ "' si le groupe
d’homotopie m,_,_,(S™"""2TUTrm D =g (S™971) est stable, ce qui est
toujours le cas dans le domaine métastable.

Définissons un nouveau plongement de ¢” de la fagon suivante:

a) Sur do”, le plongement sera le méme que f;|do”.

b) Sur BY, on prend I’extension conique sur f; (") du nouveau plongement de v 1
que I’on vient de définir.

Ceci implique que 6” et 6? n’auront pas de points de branchement a I'intérieur de

o'.

p—r—1

¢) On choisit sur B} un plongement qui ne rencontre pas f; (1% "). Ceci est possible
grice 4 la proposition 4.

D’apres la construction elle-méme, on peut passer de I’ancien au nouveau plonge-
ment de 6 par une isotopie de R™, fixe en dehorsde J™ U {J™ ' -f,(f")}. Cetteisotopie
fournit un nouveau plongement de st(a”, T(K)).

On définit £, : K— R™ comme étant égal a4 ce nouveau plongement sur st(o?, T(K))
et €gal 4 f; en dehors.

Ceci acheve la démonstration du lemme 6.

€) CONSTRUCTION DE L’APPLICATION CHERCHEE

Nous allons achever la construction de I’application f, annoncée dans la proposi- -
tion 7 a I’aide d’une démonstration par récurence. Pour cela, nous revenons 4 1a nomen-
clature et au modéle du début de ce paragraphe.

Nous envisageons la subdivision de ¢” que I’on obtient en prenant 'image par ’ho-
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méomorphisme semi-linéaire 4 de la premiére subdivision barycentrique du simplexe
modele uP. Nous désignerons par ¢ I'image par 4 de tels simplexes. Nous procédons
de méme avec ¢ et nous désignons les images par un homéomorphisme analogue a
h des simplexes de la premiere subdivision barycentrique de pu? par &.

Par construction de f3, il est clair que si é = B, alors: £5(6) n f5 (%) =£5(5 n &9).

De méme, si ec BY, on a: f;(¢)n f5(a?)=f,(en o).

Supposons maintenant que é = B} soit un simplexe dont I'image par f, rencontre
I’'image par f, d’un simplexe ¢ = B, non adjacent a . Nous allons indiquer un procédé
qui permet de pousser cette intersection dans un simplexe ¢’ = B, adjacent a 6. Pour
commencer, nous pouvons supposer inductivement que lintersection de f;(g) avec
£5(8)setrouve dans f; (&), et dans f; (5), (grice a la deuxiéme partie du lemme 6). En uti-
lisant la méme technique que dans le lemme 2, nous pouvons trouver une boule B™ de
dimension m dans R™, qui rencontre f; (¢) et f; () selon des boules plongées proprement
dans B™, situées dans f; () et f;(3), et contenant I’intersection de f; (&) avec f;(8) dans
son intérieur. Par position générale, (cf. la démonstration du lemme 2), nous pouvons
nous arranger pour que B™ évite tout ce qu’il est souhaitable d’éviter. Ensuite, on
peut choisir un chemin dans f; (¢) qui relie le bord de la boule B™ & une face de dimen-
sion (dim ¢—1), adjacente & un simplexe ¢’ = B, lui-méme adjacent a 4. En pipant
Pintersection le long d’un petit voisinage régulier du chemin, on obtient la situation
désirée.

En deux mots, le «piping» consiste, dans notre cas, a effectuer ’opération sui-
vante: On a une boule D™ contenant une boule D" et une boule D° plongées propre-
ment, avec dD" N dD*®=0.

De plus D" =1la réunion de deux boules D] et D, collées le long d’une face com-
mune.

On a: T=D"n D’cD,.

Il est clair que 1’on peut trouver une isotopie ambiante de D', fixe sur le bord dD",
amenant T dans D’,.

Comme on est en codimension >3, le «unknotting balls» de ZEEMAN implique
que 'on peut étendre cette isotopie en une isotopie ambiante de D™, fixe sur dD™.

Ici, D" =B™U un voisinage régulier du chemin.

1=D"nfi(e) Dy=D"nfr(e) D°=f3(9).

Ainsi, I'intersection de f; (6¥) avec £, (6?) se trouve concentrée dans des simplexes
adjacents et dont la face commune est de dimension au plus (r—1). En itérant les
constructions décrites dans ce paragraphe, nous arrivons a des intersections con-
centrées en des simplexes ayant exactement un seul sommet en commun. En appli-
quant une derniére fois les constructions, nous éliminons complétement les points
singuliers de ¢” avec ¢%.
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Enfin, puisque ¢” ne rencontre jamais 'image de simplexes non adjacents lors des
isotopies, il est clair que I’application f, finalement obtenue sera telle que f, est homo-
tope de fagon équivariante a f;.

Ceci acheve la démonstration de la proposition 7 et donc du théoréme 1.

7. Démonstration du théoréme concernant les isotopies

La démonstration du théoréme 1’ se fait en deux parties. Dans la premiére partie,
al’aide du lemme 7 et d’une relativisation du théoréme 1, on construit une concordance
entre les deux plongements. Dans la deuxieéme partie, on passe de concordance a
isotopie grace a un théoréeme de LICKORISH.

LEMME 7. Soit h: K x I-S™™! une homotopie équivariante. Alors, il existe une appli-
cation équivariante H du carré réduit de K x I dans S™ telle que, si j; désigne I’inclusion
naturelle de K x {i} dans le carré réduit de K x 1(i=0, 1), on ait le diagramme commuta-

tif suivant .
hlk x {i}
- Sm— 1

Ji l l inclusion naturelle

Carré réduit
de K x I. H

—->S"

Preuve du lemme

Supposons que 1’on ait une application équivariante w: K x K—R™ telle que w™!
(0)=4k. Comme R™— {0} se rétracte par déformation de fagon équivariante sur S™~?,
on déduit une application équivariante W:K—S™"1,

On définit ainsi une application ¥ de I’ensemble des classes d’homotopie équi-
variante d’applications équivariantes w de Kx K dans R™ telles w™1(0)=4y dans
’ensemble des classes d’homotopie équivariante d’applications équivariantes de K
dans ™1,

Or, cette application y est une bijection. En effet, d’aprés [Hu a)], K se rétracte
par déformation équivariante sur T (voir définition au début du parapgraphe 5) et le
bord de T est le bord d’un «voisinage régulier » équivariant de la diagonale A,.

Ainsi, on peut considérer # comme une homotopie équivariante h: K x K x I-R™
telle que A~ (0)=Ag x I.

Définissons H:(K x I) x (KxI)—-R™*! en posant.

t+t
H(x,t,x',t")= (h (x, . ——Zm), t — t’).

On vérifie immédiatement que H a toutes les propriétés requises.
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Ceci acheve la démonstration du lemme 7.

Appliquons maintenant le théoréme 7.

Si 'on prend P=Kx1I, Q=Kx{0}uU Kx {1} et F=H, et si 2(m+1)>3(n+2)
c’est-a-dire si 2m>3(n+1), on voit que le lemme 7 et la forme relative du théoréme 1
permettent d’affirmer 'existence d’un plongement:

@:K xI—>R"x1 tel que ¢@(x,00=(f(x),0) ¢(x,1)=(g(x)1).
En utilisant des cols, on peut toujours supposer que
e "(R"x{0}))=K x{0} et ¢ "(R"x{1})=K x{1}.

@ est ainsi une concordance entre les plongements f et g.

Le théoréme 6 de [LiCKORISH a)] affirme que:

Si m-n>3 (ce que I’on peut toujours supposer dans le domaine métastable) deux
plongements semi-linéaires de K" dans S™ (ou R™) qui sont concordants sont isotopes
par une isotopie ambiante.

Ceci acheve la démonstration du théoréme 1’.
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