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Plongements de polyèdres dans le domaine métastable

par C. Weber (Genève)

1. Introduction

Soit Kun complexe simplicial fini. Soit \K\ l'espace topologique sous-jacent. Une

application continue du polyèdre \K\ dans le polyèdre \K'\ sera dite semi-linéaire si

elle est simpliciale sur une certaine subdivision de Ket de K'. Une application continue
de \K\ dans Rm sera dite semi-linéaire si elle est simpliciale sur une certaine subdivision
de K. Une application semi-linéaire injective sera appelée un plongement semi-linéaire.

Soit /=[0, 1]. Un plongement semi-linéaire H:KxI-+Kf xi, commutant aves les

projections naturelles sur le second facteur, sera appelé une isotopie semi-linéaire.
Soit ht:K-+Kr le plongement semi-linéaire défini par H(x, t)=(ht(x), t). Les plongements

hotthl sont dits isotopes.
Le problème central concernant les plongements consiste à déterminer quel est

l'ensemble des classes d'isotopie de plongements de ATdans K'. Une première attaque
de ce problème consiste à chercher dans quels cas cet ensemble n'est pas vide. Ceci
semble très difficile à résoudre si Ket K' sont des polyèdres quelconques. Les résultats

que l'on connait actuellement concernent tous le cas où K' est une variété semi-linéaire.
On peut distinguer historiquement deux «courants» dans l'étude de ce problème:
1 ° L'école anglaise, dont le point de départ a été le célèbre P.W.Z. [Penrose-

Whitehead-Zeeman]. Cette école s'intéresse au cas où ^et K' sont des variétés semi-
linéaires et cherche essentiellement des conditions suffisiantes (et parfois nécessaires)
à l'existence d'un plongement ou d'une isotopie dans la connectivité de K et de K'.
Voir, par exemple, les travaux de Hudson, Irwin, Lickorish, Zeeman.

2° Le courant que l'on pourrait appeler du «carré symétrique réduit», et que l'on
peut faire remonter à van Kampen. [van Kampen a)]. Ce courant, dont les principaux
résultats dans le cas combinatoire ont été obtenus indépendamment par Shapiro et

Wu, s'intéresse au cas où K est un polyèdre et K' un espace numérique. Il cherche
des conditions nécessaires et suffisantes dans le carré symétrique réduit de K.

Enfin, lorsque K et K' sont des variétés différentiables, A. Haefliger a trouvé
dans le carré symétrique réduit de K et de K' des conditions nécessaires et suffisantes
(dans le domaine métastable) pour obtenir une classification complète des plongements

différentiables. [Haefliger a) et b)].
Le principal résultat de ce travail consiste à établir l'analogue du théorème de

Haefliger dans le cas combinatoire, pour K un polyèdre et K' un espace numérique.
Il contient les résultats de Shapiro et Wu, de même que certains théorèmes de Zeeman
et son école, comme cas particuliers.
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2. Enoncé des résultats

Soit E un espace topologique. On envisage le produit Ex E. La diagonale AE est

le sous-espace de Ex E constitué par les couples de la forme (x,x) xeE. L'espace
différence ExE—AE s'appelle le produit réduit de E et sera noté E. Soit s:E-+ E définie

par s(x,y)=(y, x); s est une involution sans point fixe. L'espace des orbites sera appelé

produit symétrique réduit de E et noté E*. Désignons par/l'application antipodale
de S"1'1. On dira qu'une application FiE-^S"1'1 est équivariante si elle commute
avec les involutions s et t> c'est-à-dire si :

F(x, y) -F(y, x) x et ysE x^y.
Une homotopie hiExI-^S"1'1 sera dite équivariante si l'application /*,:£-> S"""1

définie par ht(z)=h(z, t) est équivariante pour tout te/.
Soit Kn un polyèdre de dimension n et soit/:Â->JRm un plongement semi-linéaire.

On vérifie immédiatement que l'application (continue) JiR^S"1"1 définie par:

est équivariante.

En ce qui concerne l'existence de plongements, le théorème principal de ce travail
est le suivant:

Théorème 1. Supposons donnée une application continue équivariante F:^"-^5m"1.
Alors, si 2m^3(n+l), (domaine métastable), il existe un plongement semi-linéaire

f:Kn-+Rm tel que /soit homotope de façon équivariante à F.
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Idée de la démonstration

Soit T(K) une triangulation de K. Soit g:Kn-+Rm une application semi-linéaire.

En utilisant les techniques de position générale, on voit que les restrictions de dimension

impliquent largement que g n'a pas de points triples. On dira que des points
doubles de g sont proches (par rapport à T(K)), s'ils proviennent de l'intersection de

l'image par g de deux simplexes de T(K) adjacents. On dira que des points doubles

sont éloignés dans le cas contraire.
Ordonnons les simplexes de T(K) en dimension croissante. En raisonnant par

induction, on peut supposer que K=L[) ap,p^n, et que le plongement / est déjà
construit sur L. Le problème est d'étendre ce plongement à K.

On commence par construire une application semi-linéaire sans points doubles

éloignés. Pour cela, on utilise une version combinatoire de la généralisation par
A. Haefliger du procédé de Whitney pour l'élimination des points doubles isolés.

Voir [Whitney a)], [Haefliger a) et b)]. Dans notre cas, le procédé consiste à attribuer
des coefficients d'intersection à deux boules semi-linéaires qui s'intersectent de façon
agréable dans un espace numérique. A ce propos, les noms de A. Shapiro et M.
Kervaire doivent également être mentionnés. Voir [Kervaire a)]. L'application sans

points doubles éloignés est construite pas à pas, inductivement sur les simplexes de

T(L). L'application équivariante F est utilisée essentiellement pour montrer que
chaque fois que l'on veut éviter un nouveau simplexe de T(L), on peut s'arranger pour
que ses coefficients d'intersection avec l'image de ap s'annulent. On pourra alors
séparer complètement l'image de deux simplexes non adjacents, tout en maintenant
les bords fixes, en utilisant à fond le théorème central de la thèse d'iRWiN, [Irwin
a) et b)], qui remplace dans le cas combinatoire la construction délicate de

Haefliger, [Haefliger b)]. Les restrictions de dimension (domaine métastable)
sont essentielles.

On élimine ensuite les points doubles proches en utilisant une technique que l'on
peut considérer comme une généralisation de la «construction de van Kampen». Voir
[van Kampen a)]. Cette généralisation m'a été suggérée par la très bonne description
qu'en donne Wu dans [Wu c)]. Le fait que l'on puisse étendre cette construction dans

un domaine de dimensions plus grand vient du théorème suivant, dû à Lickorish,
voir [Lickorish a)] : Soit P un polyèdre formé de deux sphères ayant une boule en
commun. Alors P ne noue pas dans Sm si m-dim P^ 3. Des difficultés techniques m'
ont empêché d'utiliser tout crûment ce théorème et ont nécessité l'argument assez

long développé au no. 6, dont l'idée de base m'a été indiquée par E. C. Zeeman.

Remarques: 1 ° Si n=0, 1, 2 on voit que les restrictions de dimension impliquent
que 3(/î+1)/2>2/î, de sorte que l'on n'obtient rien de plus que ce que donne la
«position générale». On ne restreint donc pas la généralité en posant
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2° Sin^3, alors 2n^3(n+l)/2. Les théorèmes de Wu-Wen-Tsun et Shapiro sont
ainsi des conséquences de notre résultat. Voir [Wu c)] et [Shapiro a)].

3° Si «^5, alors 2n— 1^3(«+l)/2. Ainsi, notre résultat démontre un théorème

que Shapiro avait annoncé. Voir [Shapiro a)].
4° Faisons agir Z2 sur KxSm~l de la façon suivante: Soit aeZ2 l'élément non

trivial. Posons a(x, y)=(sx, ty), xeK, yeS™'1. L'espace quotient pour cette action de

Z2, noté Rx^ST'1, est un fibre n sur K*, de fibre Sm~\ et de groupe Z2. On voit
facilement que l'existence d'une section de ce fibre n est équivalente à l'existence d'une
application équivariante de K dans S1""1. Dans le domaine métastable, le problème
de l'existence d'un plongement semi-linéaire est ainsi ramené à un problème de

topologie algébrique. Il est légitime d'appeler «obstructions au plongement» les

obstructions à construire une section du fibre n.

On déduit immédiatement du théorème 1 le corollaire suivant qui présente quelque
intérêt depuis le contre-exemple de Milner à la Hauptvermutung:

Théorème 2. Dans le domaine métastable, la «plongeabilité» semi-linéaire d'un

polyèdre Kn dans Rm ne dépendpas de la structure semi-linéaire de K.
Comme corollaire de la méthode utilisée pour démontrer le théorème 1 on a:

Théorème 3. Tout plongement topologique g; Kn-+Rm peut être approché arbitrairement

près par un plongement semi-linéaire, si 2m^3(n+l).
Les théorèmes qui suivent concernent uniquement les variétés semi-linéaires et ont

été démontrés pour le cas différentiable dans [Haefliger a)] et [Haefliger-Hirsch
b)]. Tout découle du théorème suivant, qui est dû à Haefliger, voir [Haefliger a)]:

Théorème. Soit Mn une variété semi-linéaire, close. La première obstruction à la
construction d'une section du fibre rj sur M* s'annule si et seulement si ffîl=§ pour
i^m—n. ffî1 désigne la i'° classe de Stiefel-Whitney normale de la variété M, dans
les coefficients:

entiers si n est impair et M orientable.
entiers tordus si n est impair et M non-orientable.
entiers mod. 2 si n est pair.
En conséquence, on a :

Théorème 4. Soit Mn une variété semi-linéaire, close, (k—l)-connexe (homologi-
quement). Si 2(&4-l)<«, Mn peut être plongée semi-linéairement dans R2n~k si et
seulement si Wn~k=0.

Les deux conjectures suivantes font partie du «folklore» depuis plusieurs années.

Voir, par example [Zeeman b)] :

a) Toute variété semi-linéaire, orientable, close, de dimension n, peut être plongée
semi-linéairement dans jR2""1.
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b) Soit a(«) le nombre de / qui apparaissent dans l'écriture binaire de n. Toute
variété close de dimension n peut être plongée semi-linéairement dans y?2"-^")*1.

Nous pouvons démontrer presque complètement l'une et faire un timide pas en
direction de l'autre. Plus précisément:

Théorème 5. Soit Mn une variété close, orientable, de dimension n^5. Alors Mn

peut être plongée semi-linéairement dans R2n~l.

Le théorème est bien connu pour n =2. Pour n 3, il a été démontré par M. Hirsch,
voir [Hirsch a)]. Pour n =4, le théorème a été démontré récemment par Wall et par
Hirsch, voir [Wall a)] et [Hirsch b)].

Théorème 6. Soit Mn une variété close, n^5. Alors, si a(w)^2, Mn peut être

plongée semi'linéairement dans R2"'1.
Ici aussi, [Wall a)] permet d'affirmer que le théorème est vrai pour n^2.
Les théorèmes 5 et 6 se déduisent du Théorème 4 en utilisant les résultats de

Massey concernant l'annulation de certaines classes de Stiefel-Whitney d'une
variété. Voir [Massey a), b), c)].

Le théorème principal concernant les isotopies est le suivant:

Théorème Y. Soient f et g deux plongements semi-linéaires de Kn dans Rm.

Supposons que 2m>3(n+l), (domaine métastable pour les isotopies). Alors, si / et
g:K-+Sm~1 sont homotopes de façon équivariante, f et g sont isotopes.

Ce théorème est démontré au no. 7.

Remarque. Il est clair que/et g sont homotopes de façon équivariante si et seulement

si les sections correspondantes du fibre r\ sur K* sont homotopes. Ainsi, dans le
domaine métastable, l'énumération des classes d'isotopie de plongements est
équivalente à l'énumération des classes d'homotopie de section d'un fibre.

On déduit immédiatement que, dans le domaine métastable, la classification des

plongements semi-linéaires ne dépend pas de la structure semi-linéaire, et que si deux
plongements semi-linéaires sont isotopes topologiquement, ils sont isotopes semi-
linéairement.

Les théorèmes de A. Haefliger et les théorèmes 1 et T montrent que, en ce qui
concerne les variétés différentiables, l'existence et la classification des plongements
dans un espace numérique coincident pour les catégories semi-linéaires et différentiables,

pour autant que l'on se trouve dans le domaine métastable.

Comme dans le cas de l'existence de plongements, on peut utiliser les calculs de

Haefliger pour déduire quelques conséquences du théorème principal. Voir [Haefliger

a)].

Théorème (Haefliger). Soit V une variété semi-linéaire, close, orientable, homo-
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logiquement k-connexe, k>0. Alors,

avec coefficients entiers ou mod 2 suivant que (n — k) est impair ou pair. Z(k) désigne
les entiers si k est pair et les entiers tordus par le revêtement R-+K* si k est impair.

On en déduit immédiatement le théorème suivant, dont l'analogue différentiable a

été démontré dans [Haefliger a)].

Théorème 4'. Soit Vn une variété close, orientable, et homologiquement k-connexe.

Si 2(k+2)^n, les classes d'isotopie de plongements de V dans R2n~k correspondent

bijectivement aux éléments de Hn~k~1(V9Z) ou Hn~k~i(V, Z2) suivant que (n — k) est

impair ou pair.
Le corollaire suivant est un peu plus faible qu'un théorème dû à Hudson. Voir

{Hudson c)}.

Corollaire. Les classes d'isotopie de plongements de SpxSq dans RP+2q + i

correspondent aux entiers ou aux entiers mod 2 suivant que q est pair ou impair. (q^p + 2)

Dans le cas non-orientable, Haefliger a le théorème de topologie algébrique
suivant:

Théorème (Haefliger). Soit Vn une variété semi-linéaire, close, connexe, et non-
orientable. Soit Vo le complémentaire d'un point. Alors,

H2n~l(V*, Ziq)) H""1 (Fo, Z)\2En~l(V, Z) si n-q est pair
Hn~i(V0,Z2) si n — q est impair.

On en déduit le théorème suivant:

Théorème 4". Soit Vn une variété semi-linéaire, close, connexe, non-orientable.
Les classes d'isotopie de plongements de V" dans R2n correspondent aux éléments de

Hn~l (V09 Z)l2Hn~1 (V, Z) ou H»-1 (Vo, Z2)

suivant que n est pair ou impair.

Nous terminons ce paragraphe en énonçant sans démonstration quelques formes
relatives des théorèmes 1 et 1'.

Théorème 7 : a) Supposons 2m^3(/?+l). Soit P un polyèdre de dimension p et soit

QaP un sous-polyèdre. Supposons que l'on ait une application équivariante F'.P-^S"1'1
et un plongement c:Q-*Rm tel que c soit homotope de façon équivariante à F\Q. Alors
c s'étend en un plongement f:P-^Rm tel que / est homotope de façon équivariante à F.

b) Supposons 2m>3(p+1). Supposons quefet g soient deux plongements de P dans
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Rm tels quef\Q=g\ Q. Supposons que J et g soient homotopes de façon équivariante en

maintenant Qfixe. Alorsf et g sont isotopes en maintenant Qfixe.

3. Terminologie et notations

Les notes de topologie combinatoire de E. C. Zeeman, publiées par l'IHES, seront
considérées comme un texte de référence standard. On pourra, en principe, y trouver
la définition des termes utilisés ici, à condition que l'on veuille bien substituer au
qualificatif «semi-linéaire» le préfixe «poly». On peut aussi se référer aux différents
articles de Zeeman dans «Topology of 3-manifolds». Enfin, pour beaucoup de

notions, on peut consulter le mémoire original de J. H. C. Whitehead, [Whitehead
a)].

Soit K un complexe simplicial euclidien fini. L'espace sous-jacent \K\ sera appelé

polyèdre. En général, nous écrirons indifféremment K ou \K\. Une application semi-

linéaire/: K-+Rm est une application qui est simpliciale sur une certaine subdivision de

K. Une application semi-linéaire injective est un plongement semi-linéaire. Une
isotopie semi-linéaire est un plongement semi-linéaire H:KxI->Rmx I, qui commute
avec les projections naturelles sur le second facteur.

Nous considérons les notions de:
a) Boule et sphère semi-linéaires.

b) Variété semi-linéaire.
c) Voisinages réguliers.

comme standard.
Si M est une variété, son bord sera noté tiî ou dM suivant les circonstances.

Rappelons que si M et g sont des variétés, un plongement/: M-» Q est dit propre si

f~i(dQ)=dM.
En principe, les indices supérieurs désignent la dimension.

4. Coefficients d'intersection

L'étude des coefficients d'intersection a été faite principalement par A. Shapiro,
M. Kervaire, et A. Haefliger. Voir [Kervaire a)] et [Haefliger a)]. En général,
ces auteurs se placent dans la catégorie des applications differentiables et utilisent
abondamment la construction de Thom-Pontrjagin.

Nous allons développer ici une théorie des coefficients d'intersection dans la
catégorie des applications semi-linéaires. Nous nous restreindrons au cas où la codi-
mension est ^3. Les résultats que nous obtenons sont, en un certain sens, équivalents
à ceux du cas différentiable.

Soit BmcRm une boule semi-linéaire de dimension m. Soient ap et aq des simplexes
dans Rp et Rq respectivement, avec l'orientation naturelle.
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Soient/: op-*Bm et g:aq->Bm deux plongements semi-linéaires propres, c'est-à-dire
tels que, si l'on pose dBm—Sm~1, on ait:

D'autre part, on suppose que/(<xp)n g(àq) Q etp^n, q^n, m —

Le complémentaire de/(<rp) dans S1""1 a le même type d'homotopie que la sphère
Sm-P-i D'après ^s hypothèses, on a g(ô«)c:(5m"1-f((Tl>)). Ainsi, g\àq définit un
élément

(La définition précise de I(g,f) est donnée au cours de la démonstration de la

proposition 1.)

De façon analogue, on définit

D'autre part, comme la boule Bm est plongée dans Rm, on peut définir une application

aftg de d(ap x aq) dans la sphère unité de Rm en posant:

Cette application est bien définie en vertu des hypothèses précédentes. Elle détermine

un élément

a(f,g)enp+q.1(S"-i)

Désignons par E la suspension de Freudenthal.

Proposition 1. (~l)m-p Ep I(gJ)=a(f,g)=(~l)pq+m a(g,f).

Corollaire. Les suspensions stables de /(/, g) et de I(g,f) sont égales au signe

près. De façon précise

Preuve de la proposition 1

En transformant toute la situation au moyen d'une isotopie ambiante de Rm, on

peut supposer que Bm est une boule semi-linéaire standard de Rm. (Voir, par exemple,
[Gugenheim a)]). Par la suite, il sera utile de se représenter Bm de la façon suivante:

Soit Rm=RpxRm~p. Soit xp un simplexe de Rp, de barycentre l'origine, et soit
Tm-P un sjmpiexe (}e Rm~P9 de barycentre l'origine. Nous prendrons pour Bm le joint
ip'Xm~p. Son bord Sm~i sera par conséquent le joint ip-im~p.

Puisque nous sommes, par hypothèse, en codimension ^ 3, on peut, en vertu du

«unknotting balls» de Zeeman, (voir [Zeeman f)]), trouver une isotopie de Rm qui
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transforme/:ap-»#m en un homéomorphisme semi-linéaire de op sur tp, conservant
l'orientation.

Il y a une rétraction par déformation évidente rt de (S™"1— xp) sur im~p. Soit

rx =r:(Sm~l — ip)-*Tm~~p la rétraction obtenue pour t l. Si nous identifions àq avec
Sq-1 et im~p avec sm~p~1 (par projection radiale, par exemple), l'application
rog\àq-+im~p détermine sans ambiguité un élément de nq-\{Sm~p~l) qui sera, par
définition, /(g,/).

Soit g' l'extension radiale de rog\àq à aq, en prenant pour centre l'origine de Rm.

Il est clair que g'(cq)c:xm~'p. En général g' n'est pas un plongement. Cependant,
l'application af tg. de d{ap x oq) dans la sphère unité de Rm est bien définie. On vérifie
facilement que a(f,g) a(f,g').

Dans JRpxR*, envisageons le produit apxaq et le joint àp-âq. Par projection
radiale à partir du «barycentre» de op x aq, nous identifions d(ap x aq) avec àp-àq. Ce

sera notre modèle pour la sphère Sp+q~l. La suspension itéréep-iois de l'application
rog\àq-+in~p n'est rien d'autre que le joint de cette application avec la restriction à

àp de l'homéomorphisme semi-linéaire f:op-+xp. Il est maintenant facile, en appliquant

strictement les définitions, de voir que (— \)m~p Ep I(g9f) ct(f,g).
L'égalité a(/, g)=(— \)pq+m a(g,f) découle immédiatement des conventions que

nous avons faites.
Ceci achève la démonstration de la proposition 1.

Supposons maintenant que I(g,f)=0enq.l(Sm~p~1). Soit TV un voisinage régulier
de/((7p) dans Bm, tel que N f] 5m~1 soit un voisinage régulier dans S"1'1 de/(dp).
Prenons N suffisamment fin pour que TV n g{àq) 0. N est une boule semi-linéaire. On

vérifie facilement que Bm — N est homéomorphe semi-linéairement à un tore plein
gm-p-i X£P+i L'application g\àq est homotope à zéro dans Bm — N, car, par hypothèse,

/(g,/)=0. Elle s'étend donc en une application semi-linéaire gl:oq-j>Bm — N.

Irwin, dans sa thèse, a démontré le théorème suivant. Voir [Irwin a) theorem 1]

et [Irwin b) theorem 1.1].

Théorème. Soient Xx et Yy deux variétés semi-linéaires compactes. Soit ç : X-> Y
une application semi-linéaire telle que q>\dX soit un plongement de dX dans dY. Alors,
si les trois conditions suivantes sont remplies, (p est homotope à un plongement i//, rel dX:

2) X est (2x—yyconnexe.
3) Y est (2 x-y +1 \connexe.

Appliquons ce théorème d'ÏRWiN en prenant X=<jq, Y=Bm-N, (p=gi. Les
conditions 1) et 2) sont évidemment satisfaites. La condition 3) sera remplie si m—p — 2^
2 q — m +1. Si p < n, q ^ n, l'inégalité est vérifiée si 2 m > 3 (n +1). Enfin, il est clair que
l'on peut toujours choisir pour \j/ un plongement propre.
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D'autre part, en codimension > 3, deux plongements semi-linéaires, propres, d'une
boule dans une autre, qui coïncident sur le bord, sont isotopes par une isotopie fixe

sur le bord. [Zeeman e) cor. 1 to theorem 9].
En conséquence, on a la

Proposition 2. Dans le domaine métastable, l'annulation de l(g,f) est une
condition nécessaire et suffisante pour que Von puisse trouver une isotopie ambiante Ht de

Bm,fixe sur Sm~\ et telle que Hx °g(aq) n f(<rp) Q.

Comme on peut le voir facilement sur des exemples, il y a en général plusieurs
classes d'homotopie mod.er*, dans Bm-N, de plongements tels que \j/. Nous allons
étudier ce qui se passe un peu plus en détails.

Proposition 3. Soient/:ap-+Bm et g:aq->Bm deux plongements semi-linéaires

propres, tels quef(àp) (1 g(àq) 0. Supposons que I(g,f)=0. D'après la proposition I,
l'application affg:d(apXGq)=Sp+q~1->Sm~1 est homotope à zéro. Supposons que l'on se

soit donné une extension A:op xaq-*Sm~x de l'application a. Alors, si p^n,
),il existe une isotopie propre ht:oq-*Bm, telle que:

2) ht\àq=g\àq. (Autrement dit, l'isotopie est fixe sur àq).

3) *iMn/(er')=0.
4) L'application (ph:d(<rp xaqx /)->S"n-1, définie de la façon suivante, est homotope

à zéro:

cph\ap xaq x {0} A

cph\d{op x aq) x {t} ^llM^ 0<t<i (x, y)ed{ap x aq)

Remarque. Les points 1), 2) et 3) ne font que reprendre la proposition 2. Le point
nouveau est le 4).

Avant la démonstration, établissons le lemme suivaint, qui est assez semblable à

la proposition 1.

Lemme 1. Soitf:ap-^Bm le plongement standard envisagé précédemment (démonstration

de la proposition \). Soient gt et g2 deux plongements propres de aq dans

Bm~N, qui étendent g\àq. Soit g3:Sq-+Bm l'application semi-linéaire dont la restriction
à l'hémisphère Nord est égale à gt et dont la restriction à l'hémisphère Sud est égale à g2.
Soit g4:Bq+1->Bm une application semi-linéaire qui soit une extension de g3, telle que

g4 (Èq+1)c Èm. (Il est clair que gA n'est en généralpas un plongement. De plus, g4 (Bq+*)
peut très bien rencontrer N), Soit penq{Sm~p~~l) la classe d'homotopie de l'application



Plongements de polyèdres dans le domaine métastable 11

g3Or:Sq-+Sm~p~l. Soit yenp+q(Sm~'1) la classe d'homotopie de l'application cfg4:
d(apxBq+l)-+Sm-1 définie par:

Alors :

Preuve du lemme 1

Désignons par g5:Bq+l-+Bm l'extension radiale de rog3:Sq-+Sm~p~l. On vérifie
facilement que l'application cftg4 est homotope à l'application cf>g5. Le reste se

démontre sans difficultés, comme pour la proposition 1.

Ceci achève la démonstration du lemme 1.

Preuve de la proposition 3

Soit tf un #-simplexe appartenant à 5m~ *
— (Sm~ * n N). Il est clair que tout élément

de nq(Bm — N) peut être représenté par une application semi-linéaire de Sq dans Bm — N,
dont la restriction à l'hémisphère Nord soit un homéomorphisme semilinéaire sur rf.

D'autre part, comme I(g,f)=0, g\àq est homotope à un homéomorphisme semi-
linéaire de àq sur r\q. En faisant usage de l'extension des homotopies et du théorème

d'iRWiN cité plus haut, on voit que tout élément de nq(Bm — N) peut être représenté

par une application semi-linéaire de Sq (envisagée comme suspension de àq) dans

Bm-N9 telle que:
1) Sa restriction à l'équateur soit égale à g\àq.

2) Sa restriction à l'hémisphère Nord soit un plongement prope G\ fixe (c'est-à-
dire le même pour tous les éléments de nq{Bm-N).)

3) Sa restriction à l'hémisphère Sud soit un plongement propre.
Soit h't une isotopie propre entre g et G1 et soit 0G7ip+g(5'm~1) l'élément déterminé

par q>h'.

D'après les théorèmes de suspension, on pourra trouver un élément /5enq(Bm—N)
tel que {-\)m~pEpp= -9 si q^2(m-p-l)-l, ce qui est toujours vrai dans le
domaine métastable.

Soit G la restriction à l'hémisphère Sud d'une application de Sq dans Bm—N, du
type décrit plus haut, et représentant fi. Soit h" une isotopie propre reliant G' à G.

L'isotopie ht obtenue en effectuant h\ puis h" est l'isotopie cherchée.
Ceci achève la démonstration de la proposition 3.

Proposition 4. Soit Sd une sphère semi-linéaire de dimension d. Soient Sa et Sb des
sphères semi-linéaires de dimension a et b respectivement, plongées semi-linéairement
dans S Soit Bd une boule semi-linéaire de dimension d, contenue dans Sd et telle que:
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1) Bd() Sa une boule semi-linéaire Ba, plongée proprement dans Bd.

Bd n Sb une boule semi-linéaire Bb, plongée proprement dans Bd,

2) Sa()Sbc:Êd.
Posons dBd Sd-\dBa=BanSd-i=Sa-1 et dBb=BbÇ) S1*"1 =Sb~l.
On suppose que d— 3^max(a, b).

Alors, on peut trouver une isotopie ambiante ht de Bd,fixe sur S*1"1, telle que:
(0 hi(Ba)Ç)Bb 0. Soit S*a=(Sa-Ba)[) h^B")

Ona:S*anSb &

(ii) S*a et Sb soient le bord de boules plongées proprement dans Bd+i et qui n'inter-
sectent pas. En particulier, les coefficients d'enlacement de »S*fl et Sb dans Sd seront nuls.

Preuve de la proposition 4

Nous allons choisir pour Sd le modèle suivant: S°cR1 est composée des points
{ + 1} et {-1}. Par récurence, à l'aide du plongement standard RmczRm+1, S"1"1 est

contenue dans Rm+1, SmaRm'hi sera alors la suspension de Sm~\ de sommets

(0,0, ...,O,+ l)et(O,O, ...,0,-1).
Par homogénéité des variétés semi-linéaires {Gugenheim a)}, ou par les théorèmes

de Zeeman, notes de l'IHES chap. 3, on peut supposer que Bd est l'hémisphère «droit»
de Sd, c'est-à-dire l'intersection de Sd avec le demi-espace x^O.

En appliquant plusieurs fois les théorèmes de «unknotting balls and sphères» de

Zeeman, on voit sans difficulté que l'on peut supposer que Sb est la sphère standard de

dimension b, c'est-à-dire l'intersection avec Sd du plan xb+2=xb+3 --
Soient

Bfa Sa - Ba B'b Sb - Bb Bfd Sd ~ Br.

Par hypothèse, B'fln Brb Q. De plus, Bra et Bfb sont plongées proprement dans
B'd. Désignons par B*a la boule semi-linéaire contenue dans Bd, symétrique de B'a

par rapport au plan xx =0.
Il est clair que B*a{) Bb=0, et donc, si l'on pose S*a=B/a\j B*fl, on aura S*a0 Sb

=0. On voit maintenant facilement que l'on peut trouver dans la boule Bd+1 de bord
Sd, des boules B*a+1 et Bb+1, de bord S*fl et respectivement Sb, qui ne s'intersectent

pas.
Le fait que l'on puisse passer de Ba à B*a par isotopie de Bd, fixe sur le bord,

découle immédiatement de [Zeeman e) cor. 1 to theorem 9].
Ceci achève la démonstration de la proposition 4.

Proposition 5. Soit Sk une sphère semi-linéaire de dimension k, et soit SlczSk une
sous-sphère semi-linéaire de dimension i, aveck — i^3. Soitf:Sj->(Sk — Sl) une application

continue, f détermine un élément (xenJ(Sk~i~1). Soit g:Si+1-+(Sk+1 — Sl) la
suspension de l'application/, g détermine un élément Penj+1(Sk~i).



Plongements de polyèdres dans le domaine métastable 13

Alors: Ea=fi.
La preuve est laissée au lecteur.

5. Construction d'une application sans points doubles éloignés

Nous commençons dans ce paragraphe la démonstration du théorème 1.

Soit Kn un polyèdre (compact) de dimension n. Choisissons une triangulation T(K)
de K. Posons:

K=K xK-AK.

r=Le sous-complexe (cellulaire) de T(K)x T(K) constitué par les cellules de la
forme g x t, avec a f) t =0, a et t étant des simplexes de T(K).

Il est «bien connu» que f est un rétracte par déformation de K, et ceci par une
homotopie équivariante. Pour une démonstration correcte, voir [Hu a)]. Sur cette

question, on peut aussi se référer à [Patty a)].

Proposition 6. Soit F:Kn->Sm~1 une application équivariante,
Alors, il existe une application semi-linéaire /1:^"->i?m, qui ne possède aucun point
double éloigné; c'est-à-dire telle que l'intersection de l'image par ft de deux simplexes
de T(K) disjoints soit vide.

De plus, soit ft : T-» Sm~l définie par :

r( ï_ /i(*)-/iO0_Jl(x'y) Ï/.W-/.6ÔIT

Soit i\T-^K l'inclusion naturelle. Alors, on peut construire fx de telle façon que /t
soit homotope de façon équivariante à Foi.

Preuve de la proposition 6

En raisonnant par récurence sur les simplexes de T(K), ordonnés par dimension
croissante, on voit facilement que Ton peut supposer que :

a) K=L{j an, on étant le dernier simplexe de la triangulation T(K).
b) II existe une application semi-linéaire (j)f:K-+Rm telle que:
1) La restriction de 0' à chaque simplexe de la triangulation T(K) soit un

plongement.
2) Les images par $' de deux simplexes de T(L) non adjacents soient disjointes.
3) II existe un simplexe as de T(K), non adjacent à an, tel que, si l'on désigne par P

le sous-complexe de T(K) formé des simplexes qui précèdent as (celui-ci non compris)
et qui sont non adjacents à an (N.B. : P peut être vide), on ait pour tout simplexe teP:
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Posons:
Jf f(L) U {(<rn x P) u (P x *")} c f(K)

J f(L) U {(an x (P U <rs)) U ((P U <rs) x an)} c f(X)

Définissons ^':Jr/-»Sm~1 par:

Cette définition a un sens en vertu des hypothèses précédentes.

Le pas principal de la démonstration par récurence est contenu dans l'affirmation
suivante:

Affirmation: On peut modifier, $' en une application <£, égale à $' sur £, jouissant
toujours des propriétés 1) et 2), et telle que:

3bis) $ (<7n) n (t)=0 pour tout simplexe t appartenant à P U as.

On définit ^:/->S"B-1 par:

,/ % <t>(*)-<l>(y)

4bis) ^ soit homotope de façon équivariante à F\J.
Remarque. La construction de l'application /i sans points doubles éloignés sera

évidemment terminée avec <rs=le dernier simplexe de T(K) non adjacent à cr".

La démonstration de l'affirmation repose essentiellement sur la technique des

coefficients d'intersection et sur le lemme suivant:

Lemme 2. On peut construire dans Rm une boule semi-linéaire Bm, dont l'intersection
avec <j)'{pn) est une boule semi-linéaire de dimension n, plongée proprement dans Bm, et
dont l'intersection avec <J>'(gs) est une boule semi-linéaire de dimension s, plongée

proprement dans Bm et telle que:
(t>'(as)c:Èm

Èm(] P 0.

Preuve de l'affirmation à l'aide du lemme 2

Soit Bm la boule semi-linéaire construite dans le lemme 2. Soit f:as-*Bm un homéo-

morphisme semi-linéaire de a* sur Bm(] $'(crs). Soit g:on-*Bm un homéomorphisme
semi-linéaire de an sur Bm n $'(ffw). D'après le lemme 2, /et g jouissent bien des

propriétés nécessaires pour pouvoir appliquer la théorie développée au no. 4.

Par hypothèse de récurence, l'application affg:d(asx<jn)-+Sm~1 est homotope à

zéro. En effet, considérons le diagramme commutatif suivant:
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d(<rs xan)->d\

h désignant l'homéomorphisme semi-linéaire évident. Par hypothèse, il/'\d[...] est

homotope à F|d[...]. Fêtant définie sur K, af g est homotope à zéro.

D'après la proposition 1, on a EsI(g,f)=0. En vertu des théorèmes classiques de

suspension, Es est injectif si w — 1 <2(m — s— 1)— l,ce qui est toujours le cas dans le

domaine métastable. En fait, c'est là un des points essentiels où l'inégalité 2 m ^ 3 («+1)
est nécessaire.

Les propriétés de la boule Bm et la proposition 2 assurent la validité de 3bis).
La proposition 3 assure la validité de 4bis).
Ceci achève la démonstration de l'affirmation, et donc de la proposition 6.

Preuve du lemme 2

a) La preuve du lemme 2 repose en majeure partie sur une partie assez banale du
théorème «d'engulfing» de Zeeman. Voir [Zeeman d) lemme 2] et [Zeeman e)chap. 7].

Lemme 3. Soit Bz une boule semi-linéaire de dimension z. Soit Yy un sous-polyèdre
aÈz. Alors il existe un sous- polyèdre CczÈz, de dimension < (y+ 1), contenant Y, et
collapsible.

La preuve de ce lemme, très facile, est laissée au lecteur. Elle utilise essentiellement
le fait que l'on peut réordonner les collapses en dimension décroissante.

Par hypothèse de récurence:

Soit Q 0'(an)n (f>r(as). Par position générale, [Zeeman e) chap. 6], on peut
modifier $' de telle façon que les hypothèses de récurence soient encore satisfaites et

que dimQ^n+s-m.
Pour simplifier les notations, posons:

Bn et

b) D'après ce qui précède, QczÊ". On applique le lemme 3 en prenant: Bz=Bn et

Appelons Q1 le polyèdre collapsible que l'on obtient. On a àmiQl ^n+s—m +1.
c) D'après ce qui précède, on a aussi QcÈs. On applique à nouveau le lemme 3 en

posant: BZ=BS et Y=Q. On obtient un polyèdre collapsible Q2 et on a di

d) Par hypothèse de récurence, Bn(]P=0. Donc g1ni>=0. En revanche, il se
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peut très bien que Bsf)P T^0. Mais par position générale, on peut s'arranger pour
que â\mT^2s — m.

Par position générale, Tf] Q2=0 si (2s — m) + (n + s~ m+ l)<5-ce qui est toujours
le cas dans le domaine métastable.

e) Posons Ô3==6i U Q2> OnadimQ3^n + s — m+l. On applique encore le lemme

d'engulfing en prenant:
2?z=une boule semi-linéaire de dimension m de J?m, contenant Q3 dans son

intérieur.

On obtient un polyèdre collapsible Q4 et l'on a dim Q4^n + s—m+ 2.

f) Par position générale (plus précisément [Zeeman e) chap. 6 theorem 15]), on

pourra s'arranger pour que l'intersection de Q4 avec Bn soit exactement Qx si:

n+ (n + s — m + 2)<m, ce qui est toujours le cas dans le domaine métastable.

g) De façon semblable, on pourra s'arranger pour que l'intersection de Q4 avec
Bs soit exactement Q2.

h) Encore par position générale, on pourra s'arranger pour que Q4 ne rencontre

pas P si

s+ (n + s — m +2)<m, ce qui est toujours le cas dans le domaine métastable.

k) II est clair maintenant que l'on peut trouver une triangulation suffisamment
fine de Rm pour que:

(i) Q4 soit un sous-complexe «full» dans cette triangulation.
(ii) Le premier voisinage dérivé de Qx dans Bn ne rencontre pas dBn.

(iii) Le premier voisinage dérivé de Q2 dans Bs ne rencontre pas dBs.

(iv) Le premier voisinage dérivé de Q4 dans Rm ne rencontre pas P.

Le premier voisinage dérivé de Q4 dans cette triangulation sera la boule Bm

cherchée.

Ceci achève la démonstration du lemme 2.

Nous allons clore ce paragraphe en énonçant un théorème qui donne une condition
nécessaire et suffisante pour qu'une immersion soit régulièrement homotope à un
plongement. La démonstration découle immédiatement des techniques développées
dans ce paragraphe.

Posons auparavant quelques définitions: Une application semi-linéaire f:Kn-*Rm
est dite une immersion semi-linéaire si elle est localement injective. Une homotopie
régulière est une application semi-linéaire F:KxI-+RmxI, commutant avec les

projections sur /, et qui est une immersion pour chaque valeur du paramètre. Remarquons
enfin que si/est une immersion, il existe un voisinage équivariant F de AK dans KxK,
tel que l'application f:(V-AK)->Sm~i définie ci-dessous ait un sens:

/W-/O0f(x,y) II/W-/WII'
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théorème 8. Soit g:Kn-->Rm une immersion, et soit 2m^3(n+l). Supposons qu'il
existe une application équivariante F:K-*Sm~l telle que F\(V—AK) soit homotope de

façon équivariante à g. Alors g est régulièrement homotope à un plongementf tel que}
est homotope de façon équivariante à F.

6. Elimination des points doubles proches

COLLAPSES ADMISSIBLES

Dans sa thèse, M. C. Irwin a introduit une précision à la notion de collapse, qui
intervient lorsque Ton travaille avec des variétés à bord. Voir [Irwin a) et b)]. Soit M
une variété semi-linéaire, de bord dM. Soit X un polyèdre contenu dans M et soit Y

un sous-polyèdre de X. On dit qu'il y a un collapse élémentaire de X sur Y, s'il existe

une boule semi-linéaire BnczX et une face B"~l de Bn telles que:

Y [) Bn X Y D Bn Bn~l.

Soit B'n~l =dBn — Èn~1. On dit que ce collapse élémentaire est admissible dans M
si:

Èn[) Êfn~l czjÇf ou Èn[) Èfn~l czdM.

Plus généralement, si l'on peut passer de X à Y par une suite finie de collapses
élémentaires admissibles dans M, on dit que X se collapse sur Y de façon admissible
dans M. On note ce fait: X^Y.

Une raison essentielle de l'intérêt de cette notion est un théorème «d'engulfing
admissible» dû à Irwin. Voir [Irwin a) lemme p. 26], [Irwin b) theorem 4.3] et aussi

[Zeeman e) chap. 7]. Nous utiliserons seulement le lemme suivant, dont la démonstration

est assez simple.

Lemme 4. Soit Dk une boule semi-linéaire de dimension k, et soit Dk~x une face de

Dk. Soit XxaDk un sous-polyèdre de Dk tel que Xx0 dDkczÔk~1. Alors, il existe un

sous-polyèdre C de Dk, qui jouit des propriétés suivantes:

(i) C se collapse de façon admissible dans Dk, c'est-à-dire : C^ point.
(ii) CzdX.

(iii) dimC<x+l.
(iv) Cç\dDkczÙk~1
(v) Si dim(Xn dDk)<x, alors dim(Cn dDk)<x+l.

Un théorème de Lickorish
Si Xet Y sont des polyèdres, nous désignerons par Iso(X, Y) l'ensemble des classes

d'isotopie ambiante, semi-linéaire, de plongements de X dans Y.

EX désignera la suspension du polyèdre X.
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Par suspension, on obtient une application

Il n'est pas difficile de voir que cette application est toujours injective, utilisant
[Hudson-Zeeman b) theorem 2].

Théorème (Lickorish). Cette application est bijective si n — x^3.
Pour la démonstration voir [Lickorish a)].

Nous revenons maintenant à la démonstration du théorème 1. En ordonnant les

simplexes de T{K) en dimension croissante, et en raisonnant par induction, on voit
que le théorème 1 découlera de la proposition suivante; ow l'on suppose 2m^3(n+l).

Proposition 7. Soit Kn=L\jap, p^n. Soit fx:K-+Rm9 une application semi-
linéaire sans points doubles éloignés et telle queft\L soit un plongement. Soit aq le
premier simplexe de T(K) tel quefx (ap) n fx (aq) -fx (ap n oq) ^0. Alors, on peut modifier fx
enf2 telle que:

1) f2 n'ait pas de points doubles éloignés et fx\L soit un plongement.
2) J2'-T-+Sm~l soit homotope de façon équivariante àfx.
3) Si oqi est le premier simplexe de T{K) tel quefx (ap) n fx {oq%) -fi (<rp n o*x) # 0,

alors aq précède oq

Le reste du paragraphe 6 est consacré à la démonstration de la proposition 7.

a) Constructions préliminaires

Onadonc:
n _ ^^ ^#<tp ^^

Choisissons une subdivision T'{K) de T(K) et une triangulation T(Rm) de Rm,

pour lesquelles/t est simpliciale. Subdivisons barycentriquement T(Rm) deux fois et

prenons dans cette triangulation T"{Rm) le voisinage simplicial Nàtft (cf), mod/i (dar).
Voir [Hudson-Zeeman b)]. N est une boule semi-linéaire de dimension m, contenant

fi{d(f) dans son bord.
Subdivisons T'{K) barycentriquement deux fois, obtenant ainsi une triangulation

T"{K).fx étant non dégénérée,/!:T"(K)-+T"(R") est simpliciale. Soit rf un simplexe
de dimension r de T"(K)\ar, contenu dans l'intérieur de ar. Soient:

vt>-'-1 le link de nr dans T"(K)\op.

vq'r~i le link de tf dans T" {K)\aq.

Ce sont évidemment des boules semi-linéaires.
Soit S1"-1"1 le link àcfx{rf) dans T"(Rm). Sm~r~l est une sphère semi-linéaire, de

dimension (m — r— 1), contenue dans le bord dN de N, et ne rencontrant pas fx(dar).
En fait, dN est homéomorphe semi-linéairement au joint fx(dor)-Sm~r"~1.
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D'autre part, /^(tyf) ep, n'est pas autre chose que le voisinage simplicial de

ar mod do\ dans T"(K)\op. C'est un voisinage régulier dans T"{K)\ap de ar.moddar,
rencontrant le bord de façon régulière. Voir [Hudson-Zeeman b)]. De même pour

<j*, dans cf. Posons:

ap ~B\ Bp2 aq - B\ B\

B\ n Bp2 vp~l B[ n Bq2 vq~l.

Tous ces polyèdres sont des boules semi-linéaires. Il est clair que :

1) yP-'-içzv*'1 V^-'-'ciV*"1.
2) vp~i est homéomorphe semi-linéairement au joint vp"r~1-dor.
\q~l est homéomorphe semi-linéairement au joint vq~r~l-dor.

3) f;1(Sm-r-1)(]ôp vp-r-Kf;1(Sm-r-l)Oaq vq~r~1.

Soit ff le barycentre de rf. Posons:

b) Modèle décrivant la situation
Soit fip un simplexe de dimension p. Soit // une face de fip, avec O^r^p— 1. Soit

Ap"r"1 la face de /ip opposée à /. Soit flr le barycentre de //, et soit Ap"r=/tr-Ap~r"1.
Envisageons maintenant la première subvision barycentrique de jup. Dans cette

triangulation, soit Dp le voisinage simplicial de fir,mod.d//. C'est un voisinage
régulier de tf moddf/, rencontrant le bord de façon régulière. Soient:

Dp2 np~ Dp

Xp~r kp~r n Dp

C0P-r-i Ap-rn œp-i

En utilisant les théorèmes d'unicité des voisinages réguliers de {Hudson-Zeeman
b)}, il est facile de voir que l'on peut trouver un homéomorphisme semi-linéaire
h: jup-xtp, surjectif, tel que:

2) h(Xp-r-1)=xp-r'i (face de op opposée à ar).
3) W=T
4) h(Dp)=Bp h{Dp2)=Bp2 AK"1) vp-1.

5) h{k[-r)=x[-r h(œp-r-l)~vp-r-\
Choisissons un tel h et posons:

Enfin, posons sp~r~2 =f1(dvp~~r~i). Si/?-r-1 =0, nous conviendrons que sp~r~2
est vide. De même, posons Sq~r~2==fi(dvq~r~l).
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D'après les hypothèses sur/i et d'après le choix de <rp et aq, on a:

Sp-r-2<=sm-r-l S""'"2 C S"""'" *

Le lecteur est invité à se reporter aux figures.

o-r-i

c) Construction d'une certaine boule semi-linéaire

Lemme 5. On peut construire une boule Jm, située dans Rm—ÏÏ et jouissant des

propriétés suivantes:

a) Son intersection avec dN est une boule semi-linéaire Jm~l, située dans le bord de Jm.

b) Son intersection avecf± (t|~r) est une boule de dimension (q — r), plongéeproprement.
c) Son intersection avecft{B^) est une boule de dimension p, plongée proprement.
d) Jm et jm~x ne contiennent pas l'image parfx des simplexes de T(K) non adjacents à
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op, nifx(Q). Par définition, Q est l'ensemble des simplexes de st((f, T(K)) qui précèdent
aq. (dim Q^q).

f) // existe une boule Bm~r~x czjm~l n S"1'1"1 telle que:

3) J?"1"1*"1 n/i(vp"r~1)=6owfe Bp~r~x plongée proprement.
4) Bm~r~x n fi (vq~r~l)=boule Bq'r~x plongée proprement.

Preuve du lemme 5

(i) Envisageons la variété semi-linéaire Rm—N9 de bord dN.fY\xq2"r est un plonge-
ment de x\~r dans cette variété. Par construction, ft {x\~r) 0 dN=ft (vq~r~1). De même,

fx\Bl est un plongement semi-linéaire de Bp2 dans Rm-N. On a:/i(5f) n dN^f^'1).
Par position générale, (voir [Zeeman e) theorem 15, corollary 3]) on a:

dim {ft (Bp2) n fx {xYr)} <p + fl-r-m,
et

dim {f^Bl) n fi(tq2-r) ndN}^p + q-r-m-l.
(ii) Appliquons maintenant le lemme 4 à la situation suivante:

Dk =h {A~r) Dk~ * =/x (v*-'- >) x« =A (B5) n A (trr)
On a x^p + q — r — m.
On vérifie sans peine que, par construction, les hypothèses du lemme 4 sont satisfaites.
Soit Cx un polyèdre collapsible de façon admissible, jouissant des propriétés (i) à (v)
du lemme 4. On a:

dimC1 **p + q -r- m + l et dim {Ct n /i(vq~r~1)} ^p + g-r-m.
(iii) Appliquons une seconde fois le lemme 4, à la situation suivante:

On zx^p+q-r-m.
Soit C2 un polyèdre collapsible de façon admissible, jouissant des propriétés (i) à (v)
du lemme 4. On a:

dim C2 ^ p + q - r - m + 1 et dim {C2 n/iK"1)} ^p + q-r-m.
(iv) Utilisons maintenant le lemme 3 pour la situation suivante:

2?z=Une boule de dimension (m —r—1), contenue dans 5rlw~r~15 et contenant Y=
{C2 n /Kv*-1)} u {Q n ft (v9'1"1)}- Soit C3 un polyèdre collapsible situé dans S"""1-1,
contenant 7, obtenu en utilisant le lemme 3.
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(v) Appliquons une troisième fois le lemme 4, à la situation suivante :

Dk Rm — N, compactifié, si l'on veut, en ajoutant le «point à l'infini.»
Dk~1 =dN— (un voisinage d'un point ne rencontrant pas Ct U C2 U C3.)

Xx Ct U C2 U C3.
On ax<p +q-r-m+l.
Soit C4: polyèdre collapsible de façon admissible, jouissant des propriétés (i) à (iv).

dim C4^ p + q ~ r — m -h 2.

(vi) Rappelons que Q est l'ensemble des simplexes de st(<f, T(K)) qui précèdent
o*. àimQ^q.
Soit V=lk(rir, T"(K)\Q). d\mV^q-r-\.
On a, d'après les constructions du début de ce paragraphe,/^ 1(Sm"r~1)n Q V.

Par position générale dans 5m"r~15 on voit que, dans le domaine métastable, on

pourra toujours s'arranger pour que:

Un calcul analogue montre que l'on peut également s'arranger pour que:

(vii) Par position générale dans Rm—N, on pourra obtenir que:
1) C4 ne rencontre pas/i (Q)9 ni l'image par/i des simplexes de T(K) non adjacents à

2) c4n/1(trr)=Q cA(\MBï)=c2.
(viii) Triangulons Rm—N de telle façon que C4 soit un sous-complexe de cette

triangulation. Prenons le deuxième voisinage dérivé barycentrique de C4. Par
construction, ce voisinage est une boule semi-linéaire Em de dimension m, dont
l'intersection avec dN est une boule semi-linéaire E™'1. On a:
£'mn/1(vp~1)=une boule semi-linéaire Ep~x, située à l'intérieur de/^v""1).

Prenons dans BT—È un voisinage dérivé suffisamment fin de fi(vp~1) — Ép~1

modfl(dvp~1). La réunion de ce voisinage dérivé avec Em fournit la boule semi-

linéaire Jm.

Ceci achève la démonstration du lemme 5.

d) Une première modification de l'application/x
Lemme 6. On peut modifier l'application fa en une application f2f, telle que les bonnes

propriétés deft (cf. proposition 1, énoncé) soient conservées et que, de plus:
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Preuve du lemme 6

Soit Q+=Qi)aq et soit V+ V[jvq~r~K
D'après le théorème de Lickorish énoncé au début de ce paragraphe, on peut, par

une isotopie ambiante de Rm, s'arranger pour que:

h{Q+)Ç\dN =/1(K + )-/1(^r), W-X)=h{W-'-iyfl{d<0
si l'on envisage dN comme le joint Sm~r~i 'fi(dar).

Appliquons la proposition 4 en prenant:

sd dr, sa d {/, (Bp2) nf}, sb d {f, (Tq2~r) n r]
Il est facile de voir que toutes les hypothèses de la proposition 4 sont satisfaites. En
conséquence, nous pouvons modifier le plongement de Bp~r~x-fl(dor). en maintenant
le bord fixe, de telle façon que les deux sphères Sa et Sb aient des coefficients d'enlacement

nuls dans S"*.

D'après la proposition 5, on pourra choisir comme nouveau plongement de Bp~r~l-
fi(dor), le joint par/1(Jar) d'un plongement de Bp~r~l dans B"1'1"1 si le groupe
d'homotopie np^r.l(Sm~r~2~iq~r~2)~1)=np.r.l(Sm~q~1) est stable, ce qui est

toujours le cas dans le domaine métastable.
Définissons un nouveau plongement de ap de la façon suivante :

a) Sur dap, le plongement sera le même qL\xtfl\dop.
b) Sur Bp9 on prend l'extension conique sur/i (fjr) du nouveau plongement de vp-1

que l'on vient de définir.
Ceci implique que ap et oq n'auront pas de points de branchement à l'intérieur de

or.

c) On choisit sur Bp un plongement qui ne rencontre pas /i (x|~r). Ceci est possible
grâce à la proposition 4.

D'après la construction elle-même, on peut passer de l'ancien au nouveau plongement

de ap par une isotopie de Rm, fixe en dehors de Jm U {Jm ~l-f1 (ff)}. Cette isotopie
fournit un nouveau plongement de st(ap, T(K)).

On définitf2'.K-+Rm comme étant égal à ce nouveau plongement sur st(ap, T{K))
et égal à/t en dehors.

Ceci achève la démonstration du lemme 6.

e) Construction de l'application cherchée

Nous allons achever la construction de l'application f2 annoncée dans la proposition

7 à l'aide d'une démonstration par récurence. Pour cela, nous revenons à la nomenclature

et au modèle du début de ce paragraphe.
Nous envisageons la subdivision de op que l'on obtient en prenant l'image par l'ho-
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méomorphisme semi-linéaire h de la première subdivision barycentrique du simplexe
modèle jap. Nous désignerons par <5 l'image par h de tels simplexes. Nous procédons
de même avec aq et nous désignons les images par un homéomorphisme analogue à

h des simplexes de la première subdivision barycentrique de fiq par e.

Par construction de/2', il est clair que si 3czBp, alors:/2((5)n/2(<x*)=/2(<5n oq)-

De même, si ecBf, on a:/2(e)n/2^P)=/2(efi ap).

Supposons maintenant que ôcB2 soit un simplexe dont l'image par f2 rencontre
l'image par/2 d'un simplexe ec=i?f, non adjacent à <5. Nous allons indiquer un procédé

qui permet de pousser cette intersection dans un simplexe e'cjÇf, adjacent à b. Pour

commencer, nous pouvons supposer inductivement que l'intersection de f2 (e) avec

f2 (8) se trouve dans/2' (£), et dans/2 (<5), (grâce à la deuxième partie du lemme 6). En
utilisant la même technique que dans le lemme 2, nous pouvons trouver une boule Bm de

dimension m dans Rm, qui rencontre/2' (s) et/2 (^) selon des boules plongées proprement
dans Bm, situées dans/2(ê) et/2(<5), et contenant l'intersection de f2(e) avec/2(<5) dans

son intérieur. Par position générale, (cf. la démonstration du lemme 2), nous pouvons
nous arranger pour que Bm évite tout ce qu'il est souhaitable d'éviter. Ensuite, on
peut choisir un chemin dans/2 (e) qui relie le bord de la boule Bm à une face de dimension

(dime—1), adjacente à un simplexe e'czB2, lui-même adjacent à <5. En pipant
l'intersection le long d'un petit voisinage régulier du chemin, on obtient la situation
désirée.

En deux mots, le «piping» consiste, dans notre cas, à effectuer l'opération
suivante : On a une boule Dm contenant une boule Dr et une boule Ds plongées proprement,

avec dDr n dDs=0.
De plus Dr=la réunion de deux boules D\ et Dr29 collées le long d'une face

commune.

On a: T=Dr(]DsczÔ2.
Il est clair que l'on peut trouver une isotopie ambiante de Dr, fixe sur le bord dDr,

amenant Tdans Ù\.
Comme on est en codimension ^3, le «unknotting balls» de Zeeman implique

que l'on peut étendre cette isotopie en une isotopie ambiante de Dm, fixe sur dDm.

Ici, Dm =Bm U un voisinage régulier du chemin.

D\ Dm n fi (e') Dr2 Dm n fi (s) D* =/2' (ô).

Ainsi, l'intersection de/2(<rp)avec/2/(<T<ï) se trouve concentrée dans des simplexes

adjacents et dont la face commune est de dimension au plus (r— 1). En itérant les

constructions décrites dans ce paragraphe, nous arrivons à des intersections
concentrées en des simplexes ayant exactement un seul sommet en commun. En
appliquant une dernière fois les constructions, nous éliminons complètement les points
singuliers de ap avec o*.
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Enfin, puisque ap ne rencontre jamais l'image de simplexes non adjacents lors des

isotopies, il est clair que l'application f2 finalement obtenue sera telle que/2 est homo-

tope de façon équivariante à fx.
Ceci achève la démonstration de la proposition 7 et donc du théorème 1.

7. Démonstration du théorème concernant les isotopies

La démonstration du théorème 1' se fait en deux parties. Dans la première partie,
à l'aide du lemme 7 et d'une relativisation du théorème 1, on construit une concordance
entre les deux plongements. Dans la deuxième partie, on passe de concordance à

isotopie grâce à un théorème de Lickorish.

Lemme 7. Soit h'.Kx /-> Sm ~ l une homotopie équivariante. Alors, il existe une
application équivariante H du carré réduit de Kxl dans Sm telle que, sij\ désigne l'inclusion
naturelle de Kx {/} dans le carré réduit de Kx /(/=0, 1), on ait le diagramme commuta-

tif suivant:

K x {/} >Sm~1
I

inclusion naturelle

Carré réduit
de K x I. H

Preuve du lemme

Supposons que l'on ait une application équivariante v/:KxK-+Rm telle que w~x

(0) =AK. Comme Rm — {0} se rétracte par déformation de façon équivariante sur S"1'1,
on déduit une application équivariante W'.R-ïS™'1.

On définit ainsi une application xj/ de l'ensemble des classes d'homotopie
équivariante d'applications équivariantes w de KxK dans Rm telles w"1(0)=^lK dans
l'ensemble des classes d'homotopie équivariante d'applications équivariantes de K
dans S"1-1.

Or, cette application \j/ est une bijection. En effet, d'après [Hu a)], K se rétracte

par déformation équivariante sur f (voir définition au début du parapgraphe 5) et le
bord de f est le bord d'un «voisinage régulier » équivariant de la diagonale AK.

Ainsi, on peut considérer h comme une homotopie équivariante h: KxKxI-*Rm
telle quQ h~1(0) AKxI.

Définissons H:(^x/)x(^x/)->JRm+1 en posant.

H(x, t, x\ tf) (h(x, *'/-y^-\ ' ~

On vérifie immédiatement que H a toutes les propriétés requises.
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Ceci achève la démonstration du lemme 7.

Appliquons maintenant le théorème 7.

Si l'on prend P KxI, Q=Kx{0}[) Kx{l} et F=H, et si 2(m+l)^3(«
c'est-à-dire si 2m>3(n +1), on voit que le lemme 7 et la forme relative du théorème 1

permettent d'affirmer l'existence d'un plongement:

<p:K x I^Rm x / tel que <p(x9O) (/(*), 0) q>(x, 1) (g(jc), 1).

En utilisant des cols, on peut toujours supposer que

(p'l(Rm x{0}) K x {0} et (p-x(Rm x {1}) K x{l}.
<p est ainsi une concordance entre les plongements /et g.
Le théorème 6 de [Lickorish a)] affirme que:
Si m~n^3 (ce que l'on peut toujours supposer dans le domaine métastable) deux

plongements semi-linéaires de Kn dans Sm (ou Rm) qui sont concordants sont isotopes

par une isotopie ambiante.
Ceci achève la démonstration du théorème V.
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