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Quelques questions d'espaces vectoriels topologiques

par Alain Robert

0. Introduction et espaces semi-complets

0.1 Notations générales et conventions

Les espaces uniformes intervenant sont toujours supposés séparés sauf mention
explicite du contraire (Chap. 3).

Si E est un espace uniforme, on note toujours Ê son complété (éventuellement
muni de structures additionnelles, par exemple espace vectoriel,

Les espaces vectoriels seront toujours des espaces vectoriels sur K R ou C.

Lorsqu'on parle d'elc. (espace localement convexe) on sous-entend toujours séparé

d'après ce qui précède.

(#") (resp. (^), {Jg^)) dénotera un espace de Fréchet (resp de Schwarz, limite
inductive non née. stricte d'une suite d'espaces de Fréchet).

Sur L(E, F) (E, F elc, espace des applications E-+Flinéaires continues) lorsqu'on
parle de <S-topologie, on sous-entend que <S est un recouvrement de E formé de

parties bornées. (On peut toujours supposer les A e <5 disques - i.e. convexes et
équilibrés - fermés, que tout disque fermé Bcz A e<3 est encore dans <S et que toute réunion
finie d'ensembles de <S est contenue dans un ensemble de <2>.)

Si E, F sont des elc, on note 23 (E, F) l'ensemble des formes bilinéaires séparément
continues sur Ex F (avec différentes topologies en indice...) et B(E, F) l'espace des

formes bilinéaires continues sur Ex F.

Les notations d'espaces normes associés à un E elc. : EB (B borné disque, espace

engendré par B muni de la norme jauge de B), Ev (V voisinage de 0 disque, espace

séparé associé à la semi-norme jauge de F), sont aujourd'hui courantes. On dit que
B est complétant lorsque EB est complet (rappelons que B semi-complet => B
complétant).

Puisqu'une partie importante du travail qui suit consiste en l'étude de la quasi-

complétion d'un espace localement convexe séparé, il n'est peut-être pas inutile de

rappeler les résultats classiques sur les espaces semi-complets d'abord, où la situation

présente certaines analogies, et d'indiquer ensuite les raisons principales de l'intérêt
des espaces quasi-complets.

0.2 Espaces semi-complets

(Pour de plus amples détails, cf. [19].)
Dans une optique constructive des mathématiques - ne faisant pas intervenir

l'axiome du choix - on est amené à définir et à utiliser les espaces semi-complets où
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la convergence des filtres quelconques est remplacée par la convergence des seules

suites de Cauchy

(0 2 1) Définition E espace uniforme

E semi-complet o Toute suite de Cauchy de E converge
Les exemples d'espaces semi-complets (même non complets) sont nombreux:
(0 2 2) Soit / un ensemble non dénombrable et soit.

Y\' R {(*,)/1 jc, 0 sauf pour un ensemble dénombrable au plus} a Y[ R
/ i

muni de la topologie induite par le produit
Cet espace est semi-complet puisqu'une réunion dénombrable d'ensembles

dénombrables est dénombrable, mais n'est pas complet son complété est l'espace

produit ]~]R entier (l'ensemble des suites à support au plus fini ©R étant déjà dense
i i

dans le produit

(0 2 3) Prenons encore.
E= {/ R-»R |/mesurable pour la mesure de Lebesgue}

Cet espace est semi-complet en vertu du théorème d'Egoroff (cf [4] p 175) pour
la topologie de la convergence simple

Son complète, comme dans l'exemple précèdent (0 2 2) s'identifie à l'ensemble de

toutes les fonctions réelles:

(0 2 4) Les espaces semi-complets ont les propriétés de stabilité habituelles et

triviales à vérifier.
a) {E) famille d'espaces uniformes non vides

Y[ Ex semi-complet o Et semi-complet V/

b) E espace uniforme semi-complet, F sous-espace fermé => F semi-complet (La
réciproque n'est pas vraie comme le montrent les exemples qui précèdent

c) L'intersection d'une famille de sous-espaces semi-complets d'un espace est semi-

complète
L'intérêt de la semi-complétion en elc provient des deux propriétés suivantes:

a) E elc Les parties bornées disquées semi-complètes de E sont absorbées par tout

tonneau

b) E semi-complet, F elc Toute partie simplement bornée de L(E9 F) est bornée

pour toute ^-topologie (cf [3] p 34 Ex 10)

0 3 Semi-complétés

Soit E un espace uniforme On peut définir de plusieurs façons le semi-complété
Ë de E, plus petit sous-espace semi-complet contenant E De façon plus précise :

(0 3.1) L'intersection des sous-espaces semi-complets de Ê contenant E est appelé
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semi-complété de E (0.2.4.c). On peut aussi le définir comme solution d'un problème
universel:

(0.3.2) II existe un espace uniforme Ë semi-complet et une application E-^->Ë
uniformément continue (uniques à isomorphisme unique près) solution du problème
universel suivant.

V'X semi-complet et Vf:E-+X uniformément continue, 3/ unique, factorisation def
par iE:

L'existence d'une telle solution découle des propriétés de permanence citées ci-
dessus (0.2.4), et du fait que l'adhérence d'une partie A d'un espace uniforme a un
cardinal majoré par:

(cf. Bourbaki, Ens. Structures).
(0.3.3) De façon constructive, on peut définir E(0) E,

E(l) {xeÊ | x limx,, où (xn) suite de Cauchy de E}

et comme E(1) n'est en général pas semi-complet, on est conduit à recommencer
l'opération par induction :

£(n+1) (£(n))(1) VneN

II arrive encore parfois que la réunion des En ne soit pas semi-complète. On pose
alors par induction transfinie, Va ordinal

£(a) (£(a -i))(i) si a a un prédécesseur a — 1

E(a) (J JE^ si a est ordinal limite

Le plus petit ordinal a tel que E(a) E(a+l) (II y en a pour des raisons de cardinal
de E est appelé ordre de semi-complétion de E.

De façon plus précise, on a même toujours E((ûl) E((O1+1) (où œ1 dénote le premier
ordinal non dénombrable). En effet si (xn) est une suite de Cauchy de E(c0l), on a

xneE^n) et puisque la suite dénombrable d'ordinaux (£„) ne saurait être cofinale à

œl9 il y a un ordinal £>£>n V«, £><œi d'où V« xneEi0 et x=)imxnEE^+1)cz Ei(ûi).

0.4 Exemples de semi-complétion

(0.4.1) Prenons pour E l'espace des fonctions numériques réelles continues sur
muni de la topologie induite par le produit RR (fournissant donc la
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structure uniforme de la convergence simple). Dans la thèse de Baire figure explicitement

- pour la première fois - une fonction feE2,f$Et, dite fonction de classe (de
Baire) 2. Dans un article ultérieur (Acta Math. 1906) il cite une fonction de classe 3.

(Ultérieurement, Melle. Keldych cite une fonction de classe 4.)
Pour son compte, Lebesgue - dans son mémoire sur les fonctions représentables

analytiquement (1905) - donne l'existence de fonctions de toutes les classes <œ1 et
démontre donc par là que l'espace E considéré est d'ordre de semi-complétion
maximum œv (Sa démonstration n'est plus constructive et utilise l'axiome du choix)
(cf. [5]).

(0.4.2) Banach en 1932, dans [1], donne une manière inductive de construire des

parties de /^ qui soient d'ordre de semi-complétion - pour la topologie faible de dual
de (c0) arbitrairement grand <œx (cf. [1]: appendice).

0.5 Espaces localement convexes quasi-complets

La. semi-complétion en elc. s'utilise assez peu, car elle ne se laisse pas caractériser

par dualité, de sorte que les techniques habituelles d'elc. ne s'appliquent pas. D'autre
part les espaces semi-complets habituels, ont des propriétés (de complétion)
supplémentaires. On introduit alors la notion plus forte (plus forte car les suites de Cauchy
d'un elc. sont toujours bornées)

(0.5.1) Définition Eelc.
E quasi-complet <=> Tout fermé borné de E est complet.
(0.5.2) Donnons quelques propriétés principales des elc. quasi-complets.
Puisqu'un elc. quasi-complet est semi-complet, on a d'abord:
E quasi-complet => les bornés de L@ (E, F) sont les mêmes pour toutes les Q-topo-

logies. En particulier, on parle de borné du dual E' sans précisier la topologie.
Propriétés de permanence:
a) (Et) famille d'elc. :

Yi quasi-complet o Et quasi-complet Vz

© Et quasi-complet <=> Et quasi-complet V*

b) Tout sous-espace fermé d'un espace quasi-complet est quasi-complet.

c) Toute intersection d'une famille de sous-espaces quasi-complets d'un elc. est

quasi-complète.

Signalons encore le théorème: [3] p. 31

E tonnelé, F quasi-complet => Le(E, F) quasi-complet V&-topologie.

En particulier les duals faibles de tonnelés (ou duals forts de tonnelés, mais ils

sont souvent complets) sont des exemples d'espaces quasi-complets. Plus particulièrement,

les duals faibles des espaces de Banach sont quasi-complets, et non complets
s'ils sont de dimension infinie.
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1. Quasi-complétion d'un elc

1.1 Existence et construction

Soit E un elc, on va montrer comme en (0.3.2) l'existence d'un «plus petit» quasi-
complet contenant E.

Soit I la structure d'elc. quasi-complet avec pour morphismes a, les applications
linéaires continues (automatiquement uniformément continues) et prenons pour
a-applications les applications linéaires continues d'un elc. dans un elc. quasi-complet.
Le problème universel relatif à ces données admet une solution (unique à isomor-
phisme unique près, comme on voit catégoriquement)

E->F
<Pe\/( $

FE

(L'adhérence de cp(E) est une partie I-permise de F, de cardinal < 22card£, et on
peut appliquer le résultat de théorie des ensembles cité en (0.3.2), grâce aux propriétés
(0.5.2). (cf. [18] p. 298)

(1.1.1) Proposition. cpE est un homéomorphisme dans Ê et donc FE s'identifie au

sous-espace de Ê, intersection des quasi-complets contenant E.

Démonstration. Prenant F=K, le théorème de Hahn-Banach indique que (pE est

injective, puis prenant F=Ê on voit que çE est un homéomorphisme dans.

Pour voir que FE a bien la topologie induite par Ê9 on remarque que Ê est aussi

le complété de FE puisqu'on vérifie facilement qu'il jouit de la propriété universelle
le définissant.

(1.1.2) Construction. On définit EQ E puis par induction transfinie, pour tout
a ordinal:

/ [J Eç si a est ordinal limite
E*= i<x

\ réunion des adh. dans Ê des bornés de Ea_i si a a un prédécesseur a— 1

(On peut se borner à définir an^ sur le segment des ordinaux < un ordinal
plus grand que l'ordinal initial relatif au cardinal d'une base algébrique de E.)

Il est clair - pour des raisons de cardinal - qu'on a finalement

£a £a+1 U£a
et que: Ea Ea+1oEa quasi-complet.

(1.1.3) Proposition. E, F elc. f:E-+F linéaire continue, a ordinal, 3!/a continue
rendant commutatif le diagramme suivant:
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Démonstration. Par induction transfinie. Le seul cas à examiner est celui où a

admet un prédécesseur et dans ce cas on applique la Prop. 8 p. 10 de [3].
(1.1.4) Proposition. [jEa est le quasi-complété de E.

Démonstration. On vient de dire que {jEa est quasi-complet, vérifions la propriété
universelle: soit F un elc. quasi-complet, f\E-+F linéaire continue. Alors / fournit
univoquement/a:isa-+Fa jFd'où la proposition.

Le plus petit ordinal a tel que Ex Ea+l est appelé ordre de quasi-complétion de

E (ou simplement ordre dans ce travail)
E d'ordre OoE=E0 EloE quasi-complet.
Les espaces métrisables sont tous d'ordre ^ 1 (quasi-complété complété, car les

suites de Cauchy fournissent déjà la complété). Le quasi-complété d'un espace E sera

noté E.

(1.1.5) Proposition, a) E elc infratonnelé => E tonne lé.

b) E bornologique => E ultrabornologique (donc tonnelé)
Démonstration, a) On remarque d'abord que si F est un sous-espace de Ê

contenant E9 et si E est infratonnelé, F est infratonnelé, d'où le résultat car les bornés

faibles du dual de E quasi-complet sont bornés forts.
b) Trivial d'après les définitions (cf. [3] p. 34 Ex. 11).

1.2 Exemples

(1.2.1) Ensemble d'indices A.
Définissons un ensemble d'indices A qui va réapparaître dans ce travail.
Considérons d'abord:

J*= {(Xn) | (Àn) suite strictement croiss. d'entiers >0}
et munissons-le de la relation d'ordre (comparaison forte) :

fVa > 0,3N t.q. si n^ N alors akn< \in

i bien (Xn) (fin)

On remarque que (Àn) <(fin)=>Va >0, a (An) (odn) <(/!„), ou bien (An) (jun)

Soit A une partie totalement ordonnée maximale de ^ (Zorn).

Lemme :

(aA)Agyl famille de R*^ 3A (Àn)e88, neN arb. grand, t.q.

{ixn)e@ \<*x\'K>Hn

Par conséquent {aA-A | leA) n'est pas un ensemble borné de

Démonstration. Sinon on aurait | aA |*An<^M Vn^NÀ. On pourrait construire

v (vn) telle que (nn)<(vn). Une telle suite satisferait alors | <xA | • A<v, VAeyl contraire

à la maximalité de A.

Lemme. A n'est pas dénombrable.

Démonstration. En effet un procédé diagonal judicieux (Th. de Du Bois-Reymond)
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permet de construire pour toute famille dénombrable de suites Xm (A™), une suite
X^>Xm Vm. En pratique on utilisera souvent une partie Ao bien ordonnée cofinale à A,
partie qui a le type d'ordre de oj1 s [0, œl [ si l'on admet l'hypothèse du continu,
puisque coi n'a pas de partie cofinale dénombrable et que:

Cardyl0 ^ CardNN 2Ko Kj

(1.2.2) Ordre 2. Soit F l'espace f]R x f|R muni de la topologie produit E, le sous-
N Ao

espace engendré par les ((#„), (px) où cpx dénote la suite égale à 0 sauf au point X où
elle vaut 1, et (an) une suite (variable) finissant comme X : 3 N an Xn V« ^ N (X (>!„) e ^l0).
Il est clair que E est un sous-espace vectoriel dense de F et que le point ((0), (1)) n'est

pas adhérent à une partie bornée de E (1.1.1).
Plus précisément:

Et {((*„),/) I 3AoeA) t.q. f (X) 0 VA > Xo, XeA0)

Tous les points de F sont adhérents à des bornés de Ex donc E2 F, Ë=Ê et E est

d'ordre 2.

Examinons maintenant quelques espaces de fonctions continues.

(1.2.3) Proposition. X espace topologique complètement régulier. E=(£S(X\ R)
*€s (X), espace des fonctions continues (réelles) sur X, muni de la topologie de la

convergence simple.
Alors El {féRx | 3g semi-cont. inf. finie t.q. \f\ ^g]
E2 E=Ê 1LX. E est d'ordre < 2.

Démonstration. SifeEî,fe{fi} borné, ft continues et bornées dans leur ensemble

en chaque point, donc g Sup \ft \ satisfait aux conditions.
Inversement, il suffit de montrer qu'une fonction positive f^g semi-cont. inf.

finie, est dans Ex (décomposition en partie positive et négative d'une fonction
quelconque). Montrons qu'on peut approcher/par des fonctions continues positives <g.
*!,..., xneX, £>0 donnés. On peut trouver fx continue positive égale à/en les xt et
des gk continues positives<g telles que gk(xk)^g(xk) — s (S est l'enveloppe supérieure
des fonctions continues qui lui sont inférieures) g Supgfc est continue, ^g et donc
Inf(/i, g) est continue, <g, approche/à e près en les xt.

Pour la seconde affirmation, si/eRx, soit /= ensemble des parties finies de x, et

posons Vie/:
/f (x) si xei

\ 0 si x#i

{fî} t£i est borné et l/^I^Supl/^^Const <oo, semi-cont. inf. finie, donc
xei

fieE1 et comme évidemment/e{/J on &feE2.
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Remarque: Lorsque X est localement compact et lorsqu'il existe une/eR* non
majorée sur tout ouvert non vide, alors Et^Rx (et plus précisément/^Z^).

Par exemple pour X=R on peut prendre:

,0 si x irrationnel

\j si x p/q fraction réduite.

Soit en effet xeX, F un voisinage compact de x;/non majorée dans fi, donc, pour
approcher/simplement dans fi, il faut prendre une fonction continue <pn, ^n+\ en

un point xne fi. q>n sera encore ^n dans un Vna V, voisinage compact de xn. Par induction,

on définit une suite de compacts emboîtés Vn^>Vn+i => dont l'intersection
contient un point x en lequel on a Sup q>n (x) 00. Donc si <P est un ensemble de fonctions

continues et fe $, 3(pne&,xeXt.q. Supcpn (x) 00 montrant que # est non borné.
(1.2.4) Proposition. X complètement régulier.
E=<%C(X) l'espace des fonctions continues (réelles) muni de la topologie de la

convergence compacte.
Alors Ë=Ê= {f:X-*R\ V# compact f\ K continue} et E est d'ordre <2.
Démonstration. Remarquons d'abord que si K est compact dans X et F fermé,

FnK=<D, il existe f\X-*[0,1] continue, égale à 1 sur Ket nulle sur F. Toute fonction
continue sur Kse prolonge en fonction continue sur X. (Il suffit de passer au compacti-
fié de Stone-Cech fiX de X et d'appliquer les résultats correspondants des espaces

compacts, car K sera encore compact dans fiX et Ffix nK=0.) Ceci montre que
<€c (X)A est bien l'espace annoncé.

1) Si/est positive, a des restrictions aux compacts continues et si/est majorée par
/continue, alors fe<^c(X)1.

En effet si Kcst un compact, cp continue positive, égale à/sur K, {Inf((p,/)} est

un ensemble borné de ^C(X) contenant/dans son adhérence.

2) Si / est positive et appartient à %\ (X), ^K compact choisissons cpK continue

égaleà/sur K. Alors {Inf(/, cpK)} est un ensemble borné de (&c{X)l contenant /dans
son adhérence. Le théorème est alors démontré puisqu'une fonction quelconque de

^C{X)A a ses parties positives et négatives dans C€C(X)1, donc est elle-même dans cet

espace.

Ici, on n'a pas de caractérisation des éléments de <£c(X)l, mais on a néanmoins la

Proposition:
(1.2.5) Proposition. X complètement régulier

fe^c(XY positive. Les propriétés suivantes sont équivalentes:

i) Propriété (P):
Vse^pf), VA: compact t.q. g\K<f\K
3VK voisinage de K t.q. g\vK<f\vK

iï)f est enveloppe supérieure de fonctions continues positives,
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m)/ est semi-cont inf
et toutefy satisfaisant est dans <&c(X)l

Démonstration i)=>in) Prendre K={x} et g const
in)=î>i) Raisonnement facile utilisant la compacité
11)0111) Classique
Quant à la dernière affirmation, il suffit de la vérifier comme précédemment pour

les fonctions positives, et d'utiliser par exemple 11) et la compacité
(1 2 6) Ordre n (eN)
Un exemple d'ordre 2, quoique légèrement plus complique figure dans [18] p 299

L'idée sous-jacente nous a néanmoins permis de citer un exemple d'espace d'ordre
fini arbitrairement grand (La question de trouver de tels espaces, sans figurer
explicitement dans [18], se trouve néanmoins à la base de questions comme celle de p 311)

Proposition E elc d'ordre on Le sous espace F de Ex ©]^[RW engendré par les
E n

(x, ex n) (où ex n désigne la famille double nulle saufà l'endroit (x, n) où elle vaut l) est

d'ordre ^ 1 +a (donc ^a si ce est 00)
Démonstration Un borné B de F a une seconde projection sur la somme directe,

contenue dans une somme directe finie, donc (a fortiori) sa projection sur le premier
facteur est de dimension finie (vu la liaison) La première projection de l'adhérence
B de B dans F sera encore de dimension finie et contenue dans E D'autre part
(x,exn)n^(x,0)eFi et (0,exn)eFi d'oùF^Ex Ordre (Ft)^Ordre (E)puis

Ordre (F)^l+ Ordre (E)

Partant d'un espace d'ordre^ 1, cette proposition permet de construire des espaces

d'ordre ^n9 V«eN

1 3 Propriétés générales de l'ordre

(1 3 1) Proposition (£",) famille d'elc d'ordres respectifs Çlf Ç^n ordinalfini
Alors E=YiEi est tordre Sup <Jt (fini)
Démonstration Par induction (finie), il suffit de voir.

Or: x=(xl)eY\(E,)1<^iixleBl où B, borné de E,

(1 3 2) Proposition (Et) famille d'elc d'ordres respectifs £, Alors E=@EV est

d'ordre Sup^
Démonstration V£, (E^ a la topologie induite par Êl9 donc la topologie somme

directe ® (Et)ç est induite par ® Êv= ©Et Ê II suffit de démontrer Ea= © (Et)a Va

ordinal, ce que nous ferons par induction transfinie.
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Eo E ® Et ® (£f)0

D'abord Et^®Et fournit (£,)a->(©£,)a d'où une application canonique:

©(£,).->(©£,).

Supposons inversement par induction que l'application

ait une image dans ©(E,^ Va<<2;.

Si £ admet un prédécesseur, l'égalité (®Et)^-i ®(El)^_l fournit directement

(®El)ç= ®(Et)^ les bornés de ®(El)^^1 étant déjà dans une somme directe finie. Si Ç

est ordinal limite

implique
(e E,)t U (e ex © U (ex © (£,)« •

(1.3.3) Construisant V«eN un espace £"„ d'ordre ^« d'après (1.2.6), leur somme
directe ®En sera donc d'ordre ^Sup« co0 premier ordinal infini.

(1.3.4) Proposition. E, F elc, E de dimension finie.
Alors Va ordinal L(E, F)a L(E9 Fa)

donc Ordre L(E, F) Ordre (F)
etL(E,F)~=L(E,F)

Démonstration. E étant de dimension finie, toutes les S-topologies sur L(E, F) sont
égales à LS(E, F) (convergence simple) E= ®K (somme finie) donc:

L(£, F) L(© K, F) © L(K, F)

et il suffit de faire la démonstration pour £=K, (induction transfinie) et comme:

L(K, U *"«) U MK. *"«)

il ne reste à démontrer que L(K, Fl) L(K, F)1=Fl9 ce qui est trivial vu l'isomor-
phisme vectoriel topologique :

(1.3.5) On pourrait espérer généraliser le résultat précédent à des E tonnelés

séparables, en prenant (xn) suite dense dans E et en approchant E par les sous-espaces
de dimension finie engendrés par les premiers xn.

Mais en général pour voir que <PaLs(E, F) est borné, il ne suffit pas de voir que
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<P(xn) {(p(xn)\(pe<P} est borné V«: E=RN (espace de Fréchet nucléaire) F=R9 cpn

définie par <pn((^)) Z^' <P« continue comme somme de projections $ {cpn\ne N} ;

V;ceR(N) on a: $(x)=\J<pn(x) borné de R, mais #((1, l,...)) {0, 1,2,...} N non
borné d'où $ non borné.

1.4 Fonctions à valeurs vectorielles

E elc. sur R, X espace complètement régulier, on note <px la fonction caractéristique

de xeX.
*€ (X, E) désigne l'espace des fonctions continues à valeurs dans E muni de la

topologie de la convergence simple.
(1.4.1) Proposition, a) a ordinal, feV(X, £)«=>/: X-*Ea

b) a ordinal ^ 1, eeEa, x€X=>(pxee^(X9 E\
Démonstration, a) La proposition est triviale pour a 0 et se démontre par induction

transfinie:
Si a a un prédécesseur a—1

)m=>fe{fi}9 {/J bornéde

fi:X^Ea^l et Vx€X9f(x)e{fi(x)} adh. d'un borné de Ea-l9 donc eEa
Si a est ordinal limite:

9 E)a= [J <g(X, E)ç et la proposition est triviale.

b)Casa=l.
VF ouvert, contenant x, soit %v\ X->[0,l] continue, 1 en x, nulle sur Qv. Soit

alors B un borné équilibré de E dont l'adhérence dans Ê contient eeEt donné. Il
suffit de voir que :

£% — {xv'et I etEB9V ouvert contenant x}
est un borné de *€ (X, E) dont l'adhérence dans Êx contient cpxe.

£8 est borné car Vjc, ^ (x) c B borné et si West un voisinage de 0 dans E,x9xl9...9xn
un ensemble fini de points distincts de X, il suffit de choisir V ne contenant pas les xt

pour que:
Xv(xk)- et - <px(xk) e OeW

-ei - <Px(x) e et-eeW
dès que ei~eeW9 possible par hypothèse: eeEi.

La démonstration se termine alors par induction transfinie:
Seul cas à examiner: a admet un prédécesseur a— 1 ; supposons eeB9 B borné de

{<Pxei I eiEB} est un borné de e$(X9 £)a-i contenant cpxe dans son adhérence:

(1.4.2) Proposition: Z#0, E d'ordre
a) a admet un prédécesseur =>^{X9 E) d'ordre a
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b) a ordinal limite =>^(X9 E) d'ordre a ou a+ 1.

Ey=Ëx=#r(X, E) dans tous les cas.

Démonstration, a) a— 1 ^ 1, donc on peut appliquer (1.4.1.b) à a — 1,/: X^E=Ea.
Vx soit Bx un borné de Ea^1 tel que f(x)eBx. Les sommes finies d'éléments

(px(f(x) + b) oi\f(x) + beBx forment un ensemble borné de ^(X, E\^1 auquel /est
adhérent.

b) &(X9 E) est manifestement d'ordre ^a(1.4.1) et d'ordre ^a+1 car sif:X->E=
Ea9 les sommes finies d'éléments (pxf(x) forment un ensemble borné de ^(X, E)a

auquel /est adhérent, donc fe^(X, E)a+l
Lorsque X est fini - par exemple - tf(X, E) est d'ordre a.

Lorsque X=E, l'application id. X-*E=Ea ne prend ses valeurs dans aucun Eç

({ <a limite), donc n'est pas dans ^(X, E)a ce qui montre que dans ce cas l'ordre est
effectivement a+1. D'après (1.3.3), on obtient ainsi un espace d'ordre ^a>0 +1. C'est
le résultat le plus fin obtenu dans cette direction.

(1.4.3) Donnons encore une caractérisation des éléments de ^(X, E)l dans le cas

où E est complet pour simplifier.
Proposition. X complètement régulier, E elc. complet.

^(X, E)t {f'.X-^E | Y/? semi-norme cont. 3gp semi-cont. inf. finie t.q.
Démonstration. Soient en effet feB où 2?={/} borné de ^(X9 E)

Inversement: xl9...9 xneX9 p semi-norme continue sur E, e>0 (on suppose les

x^O, sinon modifications triviales).
Choisissons Vh voisinages ouverts disjoints des xh cp^.X-^ [0, 1] continues, nulles

en dehors de Vt et telles que :

Alors :

pÇL<Pi(x)f (Xi))xsVi <Pi(x) pf (x,) < (pi(x) gp(x,.) < gp(x)

(1.4.4) Les démonstrations ci-dessus montrent que si E est complet *&{X9 E) est

d'ordre ^2 (et d'ordre 2 en général, par exemple lorsque X=R et ^{O})
Application. X localement compact, Y complètement régulier ® { [J Kx {y}\K

finie
relativement compact de X}.

Démonstration. © est saturé pour les opérations: adhérence, réunion finie, et

prendre une partie de.

Le complété de ?s(Ix Y;R) s'identifie à l'espace des fonctions dont les restric-
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tions aux ensembles de S sont continues, donc puisque ^est localement compact, aux
fonctions F telles que

Vy, F( y)continue.

On va simplement établir l'isomorphisme :

Ve(Xx Y;R)->VS(Y,VC(X;R))
F h—> F •, y) fonct. de y

1) Cette application est bien définie. Si F est continue, y\->fy est une application
continue Y-^(€c(X). En effet si K est un compact de X, VxeK,3 Vx voisinage ouvert de

x et Wx voisinage de j0 tels que :

(*', y')eVx x Wx=>\F(x'9 y') - F(x, yo)\ < c.

Les Vx forment un recouvrement de K duquel on extrait un sous-recouvrement
fini (VXt) et W=f)WXi est un voisinage de y0 tel que: y'eW=>\fy, (x)-fyo(x)\ <2e
VxeK.

2) Cette application est injective, et surjective car X est localement compact.
3) Cette application est un homéomorphisme linéaire par des principes généraux

(cf. par ex. [10] p. 10).

4) La proposition résulte alors de la remarque précédant l'énoncé (cf. aussi (1.4.3)).

2. Applications de la quasi-complétion

2.1 Caractérisation de Ex par dualité

La Proposition suivante joue un rôle clé dans tout ce chapitre.
(2.1.1) Proposition. E elc. © recouvrement de E par des bornés. Supposons la

<S-topologie sur E' compatible avec la dualité.

Alors:

ou % est la topologie sur E dont un système fondamental de voisinages de 0 est formé
des tonneaux de E.

Démonstration. On remarque d'abord que d'après le théorème de Grothendieck
/s

([13]) E'q s'identifie au sous-espace de E* formé des x* dont les restrictions à tous les

éléments de S> sont continues.

Puisque la <5-topologie sur E' est compatible avec la dualité, le dual de E& est

encore E, et l'adhérence dans E& d'un borné disque de E'^ est égale à son adhérence



•s
Quelques questions d'espaces vectoriels topologiques 327

•s /\
faible <ï(E'e9 E), donc coïncide avec sa bipolaire dans la dualité (E, E&}. {E'^)x est donc
engendré par les (B0)° T° où B borné de E'& ce qui équivaut kT B° tonneau de E

/s
(5-bornivore (polaires prises dans E&). Or tout TeX est <2>-bornivore, puisque les

ensembles de <S qu'on peut supposer fermés (o a(E, £")-fermés lorsqu'on les

suppose disques) sont a {E, Zs')-compacts (Th. de Mackey) donc complets pour cette

topologie et à fortiori complets pour la topologie de E (cf. [2] Prop. 8 p. 11). Finalement

les T° (polaires dans £"*) engendrent exactement (Ez)'.
(2.1.2) Corollaire, a) E tonnelé, E% compatible avec la dualité => E% quasi-complet.
b) E semi-réflexif, infratonnelé => E'b quasi-complet.

Démonstration, a) (E^)l=E^nE' Ef=>E^ quasi-complet, b) Les hypothèses
impliquent même E tonnelé et on applique a).

On retrouve ainsi des résultats classiques.
La proposition qui suit, découle de (2.1.1) par dualité et sera constamment utilisée

sans référence.

(2.1.3) Proposition. E elc, alors

Démonstration. Considérons E comme dual de E^ F, E=F&, où S est l'ensemble
des parties équicontinues disquées faiblement fermées de E'. Soit T un ensemble

disque faiblement fermé absorbant de E', T° est borné faible de E donc borné de E et
rp_rpoo ^ pO|ajre çj'mi borné de E (inversement, il est clair que la polaire d'un borné
de E est un tonneau de E'). La topologie X sur E' est ainsi la topologie forte et Et
s'identifie à l'intersection annoncée.

Remarque: On voit ici que Ex n'est en général pas tonnelé, par exemple {E'a)% E'b

n'est pas toujours tonnelé (si E est un espace (&) on a:
Eb' tonnelé oEb' bornologiqueoE distingué cf. [12] p. 73)

(2.1.4) Corollaire. Si E est infratonnelé, on a l'égalité topologique:

Et =E"nÊ

Démonstration. (E" dénote toujours le bidual fort). En effet dans ce dernier cas

Ê et E" induisent sur E la bonne topologie.
(2.1.5) Critère. E quasi-complet E=ÊnE" algébriquement

(resp. et infratonnlé) (resp. et topologiquement)

2.2 Topologie tonnelée associée à un elc.

(2.2.1) Rappelons la proposition suivante:
E elc, t la topologie de Mackey t(E, E')9 on a: Et tonnelé o E'a quasi-complet.

(Pour la partie directe, on peut utiliser (2.1.2) et réciproquement une partie disquée
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faiblement fermée bornée de E' est naturellement précompacte, donc compacte par
hypothèse, d'où équicontinue par définition de la topologie de Mackey.)

(2.2.2) Soit toujours E un elc, <XÎ % l'ensemble de ses tonneaux. On a vu que
l'espace EZl n'est pas toujours tonnelé. Cela suggère de poser Ï2= ensemble des

tonneaux de EZl et par induction transfinie, Va ordinal:

/ens. des tonneaux de EXgt_i si a a un prédécesseur

\ (J %ç si a est ordinal limite.

D'après (2.1.1) on a :

(E^^E+niE^-É^
et de façon générale:

(£*.)' (£;).

comme on le voit par induction transfinie (en remarquant que si a est ordinal limite,
une forme linéaire x*eE* est dans (EzJf si et seulement si elle est dans la polaire d'un
Te Za= [J I5 donc si et seulement si elle est déjà dans la polaire d'un Te %% (£, < a) ou

encore lorsque x*e(2sI?)' d'où:

Si a est l'ordre de quasi-complétion de E'a, on a donc

(E'X (E'X +l=>EXx et EZx+1 ont même dual.

EZgc+i est même tonnelé. En effet soit Tun tonneau de EXgc
+ l, c'est aussi un tonneau de

EXgc puisque ces deux espaces ont même dual, donc par définition un voisinage de 0 de

(Lorsque Ia est déjà la topologie de Mackey de la dualité

on a déjà E%u tonnelé et égal à EXoe+l.)

Avec les notations précédentes, on pose:
Définition. E9(t+i est appelé espace tonnelé associé à E et noté ici Et.

(2.2.3) Proposition. E, F elc, f:E-+F linéaire continue => Va ordinal f:EZgt-+F%ix

continue.
Démonstration. Clair pour a 0 et induction transfinie (standard).
(2.2.4) Propriété universelle de la topologie tonnelée.

Et jouit d'une propriété (co)universelle duale de (1.1) et que nous signalons:

Et—^E est la seule application (à isomorphisme unique près) d'un tonnelé dans E
jouissant de la propriété: VF tonnelé, f:F-+E linéaire continue, f se factorise uni-

voquement par iE en application continue.
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Démonstration. Si Fg^E a la propriété annoncée, prenant les applications linéaires
de K dans E, on voit que i doit être un isomorphisme algébrique. (On aurait aussi pu
voir la surjectivité en prenant id. E+ -+E où E+ désigne E muni de la topologie localement

convexe la plus fine, et l'application nulle E+^+E aurait fourni l'injectivité.)
Prenant ensuite Et-^->E on voit que FE est moins fin que Et et puisque FE est tonnelé
les applications id. FE-+EZge doivent être continues d'où id. FE-+Et continue, montrant
que FE coïncide avec Et. Le fait que id. Et-*E jouisse de la propriété résulte de

(2.2.3).
Si E est un elc, on peut bien entendu appliquer à Et tous les résultats des espaces

tonnelés. Signalons en deux :

Soit u:Et-*F une application linéaire où F est du type (^). Pour que u:Et->F soit
continue, il faut et il suffit qu'il existe une topologie (elc.) &~ sur F moins fine rendant

u:Et->Fr continue, (cf. [10] p. 217 Ex. 2.)
Si F est un espace de Ptak et s'il existe u:F-+E linéaire continue surjective, alors

Et est un espace de Ptak et u: F^Et est un homomorphisme. (cf. [10] p. 216 Ex. 1 et

[21] p. 162.)

2.3 Complétion d'un bidual

Ce court chapitre a pour but d'examiner la question de Bourbaki ([3] p. 96 note) :

« On ignore si, en général, le bidual E" d'un espace localement convexe (séparé) E
est complet pour la topologie forte P(E", Er), même lorsque E est supposé tonnelé».

Cette question est entièrement résolue par un exemple de Kômura, ([16]); en

effet il donne même un exemple d'espace de Montel (nécessairement quasi-complet
puisque les fermés bornés doivent être compacts) non complet (rappelons que d'après
les définitions, Montel => réflexif => tonnelé). Les remarques qui suivent ont été faites

indépendamment de cet exemple, et fournissent une quantité de cas dans lesquels E"
est non complet.

D'après (2.1.4) on voit que si E est infratonnelé et E" complet, alors E1 est complet.
Ainsi tout exemple d'espace infratonnelé quasi-complet non complet fournit un

exemple d'espace dont le bidual n'est pas complet. Cette remarque n'est pas très

féconde car les exemples habituels d'espaces quasi-complets non complets ne sont (en

général) pas infratonnelés:
E tonnelé => E'o quasi-complet et E'a infratonnelé => les bornés de {E'a)fb sont équi-

continus <=> les bornés de E sont équicontinus relativement à E'a o les bornés de E
sont de dimension finie. Puisque E étant tonnelé a la topologie de Mackey, cela se

passe pratiquement lorsque E est somme directe de droites : espace muni de la topologie

localement convexe la plus fine; dans ce cas 2^ J|K est même complet.
Par contre une remarque plus productive est la suivante: Tout espace infratonnelé

pour lequel E1 n'est pas complet fournit un exemple d'espace dont le bidual n'est pas

complet. Dans le cas de l'exemple (1.2.2), on remarque que E est infratonnelé:
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Eb a pour voisinages de 0 les parties de ® R x © R qui induisent un voisinage de 0
N Ao

sur une première tranche dénombrable, et qui sont grossières finalement. Ainsi les

bornés de E'b sont de dimension finie (sinon on pourrait trouver une suite infinité non
contenue dans une somme directe finie et construire un voisinage de 0 de Eb n'absorbant

pas cette suite) donc équicontinus, démontrant ainsi que E est infratonnelé.
Explicitement, l'élément de Ê:x ((0), (1)) considéré comme xeE'* est la forme

linéaire:

(bien définie car/'(>l) 0 sauf pour un nombre fini de X) non continue sur Eb car tout
voisinage de 0, V contient finalement un facteur R entier et x(F) R.

Les espaces de fonctions continues (munis de la topologie de la convergence
simple) ont aussi des biduals (forts) non complets. Donnons encore quelques applications

de la formule magique :

E1 Ef/nÊ.

(2.3.1) Proposition. E elc. infratonnelé.
E'h bornologique => E=Ê:le quasi-complété est complet.

Démonstration. E'b bornologique => E" complet => E"=>Ê=>El=Ê.
(2.3.2) Donnons quelques cas où le quasi-complété est le bidual:
Proposition, a) Eb semi-réflexif p_

E" quasi-complet ^

b) E'b réflexif=> E=E"
Démonstration, a) D'après [3] Ex. llb p. 94 on a E"c:ÊxczÊ, E1 E"=>Ë=E"

car E" est quasi-complet.
b) E'b réflexif o Eb semi-réflexif et tonnelé => Eb semi-réflexif et E" quasi-complet.

Il suffit alors d'appliquer a). Montrons comment on déduit le résultat suivant connu
(loc. cit.)

(2.3.3) Proposition. E elc.t Ex quasi-complet «,,,.,.-/ .'*•/• \ =* Er refleXlf
Eb semi-reflexif

Démonstration. E quasi-complet o Ex (Ex)i=E"n Ex égalité avec les topologies
car les hypothèses impliquent que Ex est infratonnelé (et tonnelé puisque quasi-
complet) donc d'après loc. cit. [3] EX E" avec les topologies, ce qui équivaut à Ex

réflexif car {Ex)rb Eb et £"

2.4 Complétion d'une limite inductive

Rappelons d'abord qu'une limite inductive (généralisée) peut ne pas être complète,
même si une suite de définition est formée d'espaces complets.

Par exemple si E et F sont («F), L£° (E, F) (espace des applications linéaires bornées
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muni de la topologie de la convergence bornée) est un espace (3?^) (cf. [10] ou bien

[11] p. 15). Si (Vn) est un système fondamental de voisinages de 0 disques dans E,
Lb (EVn, F) en est une suite de définition.

Même si E et F sont des {^) nucléaires, cet espace peut contenir un borné non
semi-complet: prenons E=F=RN, {/?„} l'ensemble des projecteurs unidimensionnels

sur les axes coordonnées, qui est manifestement équicontinu, mais on ne peut pas
trouver de Vm tel que tous \Qspn se factorisent par E^EVm (ce dernier est toujours de

dimension finie) donc {pn} n'est pas contenu dans un espace de définition et donc non
complétant (cf. [10] Cor. 2 p. 199).

Grothendieck a posé la question dans [11] (p. 137):
« Un espace (J£fF) quasi-complet est-il complet?».

Il semble que la réponse à cette question doive être négative (sans qu'on puisse
donner de contre-exemple).

On a retrouvé dans le cas des limites de suites de Banachs que la réponse est

affirmative (résultat figurant déjà dans [10] Cor. 2 p. 229 et [12] Cor. 2 p. 77).

Montrons comment on peut appliquer les techniques précédentes et ne faisant pas
intervenir la théorie des espaces (@^).

(2.4.1) Proposition. E elc. quasi-complet limite inductive d'une suite d'espaces de

Banach. Alors E est complet.
Démonstration. E est donc bornologique (=> infratonnelé) et tout borné de E est

image d'un borné d'un espace de définition. (On peut aussi voir pour ceci [11] Cor. 1

p. 16). E admet donc un système fondamental dénombrable de bornés, d'où E'b est

métrisable et bornologique et il suffit d'appliquer (2.3.1). On obtient aussi une
démonstration élémentaire de la proposition suivante (cf. [12] Cor. 2 p. 77).

(2.4.2) Proposition. E elc. (2&) infratonnelé quasi-complet. Alors E est complet.

Démonstration. E'b est un espace (JF) et E" est (&&) complet donc E=E1 Eff r\Ê
est complet.

De façon générale, on a la proposition suivante montrant, dans le cas des (£?&)
(qui sont tonnelés) que si E est quasi-complet et E" complet, alors E est complet.

(2.4.3) Proposition. E infratonnelé quasi-complet
„ => E complet

E complet
Démonstration. Comme toujours:

E Ei=E"nÊ Ê

(2.4.4) Remarque. Un cas dans lequel on peut affirmer qu'une limite inductive est

quasi-complète est celui où les applications de transition: t?i:is/->lsi+1 sont compactes

puisqu'alors la limite est un espace de Montel (cf. [10] Cor. 2 p. 230). C'est le cas

des espaces de fonctions holomorphes sur un compact de Crt: Jf(K). (qui sont même

complets: loc. cit. p. 231 exemple b.)
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2.5 Espaces de mesures et lim grossières

Rappelons encore qu'une limite inductive (non stricte) n'est en général pas séparée

(cf. par ex. [10] p. 195 Ex. 2).

Dans le cas où l'ensemble d'indices est non dénombrable des exemples ont été

donnés par Kômura [16], et Douady [8] (limites inductives strictes). Montrons dans

ce paragraphe comment on obtient facilement des limites inductives (même dénom-

brables) grossières. Il semble intéressant d'autre part de traduire en langage plus
moderne des propriétés bien connues des espaces de mesures.

(2.5.1) Faisceau des mesures d'un espace compact.
Pour toutes les définitions intervenant ici, cf. [9]. Soit X un espace compact et

V U ouvert de X posons :

Jt(TJ}\espace vectoriel des mesures (réelles) sur U (localement compact) et pour
V ouvert contenu dans U on a une application linéaire de restriction *df(V)-*^(U),
les propriétés de transitivité étant satisfaites pour qu'on puisse parler du préfaisceau
d'espaces vectoriels *Jt sur X. En vertu du principe de localisation (cf. [4] Prop. 1,

p. 65), ce préfaisceau est même un faisceau d'espaces vectoriels.
Si on munit les *dt{ U) des topologies vagues correspondantes - fournissant comme

dual 3f(U), espace des fonctions continues à support compact contenu dans U - les

restrictions

pour V -=>U

sont vaguement continues comme transposées des Jf(V)<-2f(U) (opération de

prolongement d'une fonction par 0!). On a donc un faisceau d'espaces vectoriels

topologiques.
On définit de la façon habituelle les fibres du faisceau Je comme limites inductives

suivant l'ordonné filtrant décroissant des voisinages de x (voisinages ouverts), de sorte

qu'on a des applications canoniques

> lim

x € U ouvert

et on peut munir Jtx de la topologie lim des topologies vagues.

(2.5.2) Proposition.
X compact.

x non isolé <=> <Jtx grossier.

Démonstration. La donnée d'une forme linéaire continue/: ~#JC-»R équivaut à la

donnée d'une famille de formes linéaires *£(U)->R vaguement continues
(«compatibles»), donc de fonctions fveJf(U) telles que si Uc V,fv prolonge fv par 0. Le

support de/K est ainsi contenu dans tout ouvert U de V contenant x. Le support de

fv est ainsi réduit au point x.
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Jtx non grossier o 3/#0:^x-+R linéaire continue <=> le support d'une f^ (U
ouvert, ax) n'est pas vide o fv multiple de la fonction caractéristique de x o x
isolé.

Dans le cas où X est métrisable, on obtient donc des limites inductives dénom-
brables grossières.

Signalons encore en passant quelques propriétés du faisceau Jt,
(2.5.3) Le faisceau Jt n'est en général pas flasque, i.e. une mesure \i sur U ouvert

c X ne se prolonge pas nécessairement à X entier (il faut qu'elle soit bornée puisque
X est compact; d'ailleurs ce faisceau ne serait pas flasque même si X n'avait été

supposé que localement compact.)
Remarquons que toute/c JT (X) %> (X) définit un homomorphisme de faisceaux

par:
hf:Jt->Jt

hf(U):Jt{U)->Jt(U)
-fi (plus précisément /1v• /z)

et si A et B sont deux fermés disjoints de X, il y a deux voisinages compacts de A et B

respectivement qui sont encore disjoints donc une fonction fe^(X) valant 0 au
voisinage de A et 1 au voisinage de B; pour cette fonction/, hf\Jt-+Jt est un endo-

morphisme induisant 0 au voisinage de A et 1 au voisinage de B. Ceci montre que le

faisceau Jt est fin et donc mou ([9] p. 157).

(Les germes de mesures sur un fermé A se définissent comme les éléments de la
limite inductive: Jt{A) \imJt{U){UzDA)\ on a naturellement une application

linéaire de restriction d( (X)-*Jt {À) puisque X est un tel ouvert contenant A\ Dire

que Jt est mou revient à dire que "iA fermé, cette application est surjective.)
On aurait aussi pu considérer le préfaisceau des mesures bornées *Jtl et l'homo-

morphisme canonique injectif de préfaisceaux i: Jtx-*Jt
(2.5.4) Proposition. Jt est le faisceau engendré par Jt1 (ou faisceau associé à Jt1,

ou encore image réciproque de Jt1 par \x: X-*X...)
Rappel: Cette proposition signifie que Jt jouit de la propriété universelle suivante

vis-à-vis de Jt1 :

V^" faisceau sur X, V homomorphisme de préfaisceaux Jtx-±!F, 3 homomorphisme
de faisceaux unique rendant le diagramme suivant commutatif:

i\/f

Démonstration. Il suffît de vérifier que toute mesure sur U (ouvert de X) peut être

obtenue par recollement de mesures bornées. Soit xe U, Kx un voisinage compact de



334 ALAIN ROBERT

x, y induit sur Kx une mesure fix bornée car elle peut être considérée comme restriction

de la restriction de \i à Kx compact. Les jxx sont bornées et se recollent en /x.

3. Quelques propriétés des espaces nucléaires

3.1 Espaces à dual nucléaire

Nous examinons dans ce paragraphe des conditions qui assurent que le dual fort
d'un elc. est nucléaire et parvenons à une démonstration plus intrinsèque (sans l'emploi

des suites sommables) du théorème de Pietsch ([20] (4.3.1)).
On suppose ici, en plus des conventions générales, les elc. infratonnelés et complets

(donc tonnelés) de sorte que la connaissance de la topologie forte sur E' permet de

retrouver la topologie de E; E sera un sous-espace fermé de E" (et semi-réflexif équivaut

ici à réflexif.)
(3.1.1) Introduisons les définitions commodes suivantes:
On appelle application binucléaire une application linéaire continue qui se

factorise en la composée de deux applications nucléaires (au moins) et multinucléaire une

application (lin. cont.) qui se factorise en un nombre arbitrairement grand d'applications

nucléaires.
Si E est nucléaire, on rappelle que toute application linéaire continue de E dans

un Banach est multinucléaire.
(3.1.2) A titre indicatif signalons la propriété suivante des applications multi-

nucléaires :

u:E-*H multinucléaire n „ f,
v r ,\=>u ui:E->H1 nucléaire

uyEjcHi sous-espace ferme
Même idée de démonstration que dans [22] exposé 18: on considère u comme

composée de 3 applications nucléaires et on factorise l'application centrale par un
espace pré-hilbertien :

V2

et puisque dans %Q tous les sous-espaces fermés ont un supplémentaire topologique,

vt v : E -> v± v (E) c jr)0 est nucléaire.

D'autre part wv2 se prolonge en application &Q-+H et par compacité elle envoie

$=vx v(E) dans u(E) et l'application composée

est nucléaire puisque v1 v l'est.

(3.1.3) Proposition. Les conditions suivantes sur E elc. sont équivalentes.
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a) Toute application linéaire continue d'un Banach dans E est multinucléaire.
b) Toute application linéaire continue d'un Banach dans E est nucléaire.

c) Toute partie bornée de E est nucléaire.

d) Efb est nucléaire.
Elles impliquent E Montel (donc réflexif)
Démonstration, a) => b) => c) Partieularisation. (Les bornés de E sont toujours

contenus dans des bornés disques fermés donc complétants.)
c) => d) Les bornés de E étant nucléaires sont relativement compacts, donc E est

un espace de Montel. Il suffit de montrer que les applications canoniques Eb-*E'V où V
est un voisinage de 0 de E'b - que l'on peut supposer polaire B° d'un borné disque
fermé de E, donc compact, faiblement fermé et B B00 - sont nucléaires. Par
transposition, on obtient les applications canoniques:

E E" <r- (JE^o)' {E")Boo EB

qui sont nucléaires par hypothèse.
d) => a) u:B-+E application linéaire continue d'un espace de Banach B. Sa transposée

tu\B'<r-E'h est multinucléaire puisque E'b est nucléaire, donc sa transposée nu sera

encore multinucléaire, d'où le résultat pour w:
ttu

u:B-*B'->E" E
(3.1.4) Proposition.

E réflexif et
E'b nucléaire o JE'b®nF-*Kb,e(E, F'a)

y isomorphisme topologique dans.

Démonstration, (cf. [11] Chap. II déf. 4 p. 34) II suffit de remarquer que E'b nucléaire
=> E réflexif => (£*); £, et que 33(£ff, F'ff) ©(£", F'a). La topologie (b, e) sur 93 est

celle de la convergence uniforme sur les parties bornées du premier facteur et équi-
continues du second.

(3.1.5) Proposition.
Eb nucléaire v^ _ ^ „„* <=> E®F^E®Fsurjective.F Banach

Démonstration. (Notations de Grothendieck [15]: (g) produit tensoriel complété
de ®£.) D'abord E est réflexif d'où E'x Eb

E®EF-> »«(£;,*•;) Le(E'x9 F) Le{E'btF) Lh{E'b9F)

(Pour la première égalité, cf. [22] exposé 8.) et comme E et F sont complets, il en est
s/

de même de l'espace Le(E'x, F) (cf. [10] p. 134). Les éléments de E®Fdéfinissent donc

des applications Eb-+F linéaires continues. Soit ueE®F,û:E'b-+F l'application
associée qui est nucléaire puisque Eb l'est (et F Banach) donc définie par un élément

d'un {Eb)fA®F. Où A équicontinu disque fermé, donc complétant, et à fortiori par un
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élément de E" ®F=E®F. C'est la surjectivité. (La démonstration est analogue à

celle de [22], exposé 18, mais si E est de plus du type («^") on conclut alors que

E®F-*E®F est un homomorphisme topologique.)
(3.1.6) Lorsque E est de plus supposé nucléaire, on a la caractérisation suivante

Pietsch :

Proposition. Si E est nucléaire\ alors les conditions suivantes sont équivalentes:

a) Eb nucléaire
/\ /s

b) V2? Banach, VueE®B, 3A borné disque complétant de E tel que ueEA®B.
/s

Démonstration, a) => b) ueE®BczLe(E'x, B) car E est nucléaire et comme précé-
/\

demment u:E'x~Eb-+B est continue donc nucléaire et ue{Efb)'A®B où A est équi-

continu disque fermé (donc complétant) et ueEA®B comme dans l'énoncé.

b) => a) E nucléaire, donc réflexif ici.

Montrons que toute application linéaire continue d'un Banach B dans E est

nucléaire (3.1.3): u:B-> Adonnée. £ étant nucléaire satisfait à la condition d'approxi-

mation ([11] Chap. I Cor. p. 170, Chap. II lemme 3 p. 37) et ueL(B, E) B' ®E
/\

(cf. [22] exposé 14, Th. 3 (B2)), d'où ueEA®Bf par hypothèse (A comme dans l'énoncé)

et u:B-+EA-+E nucléaire.

3.2 Quelques exemples

Donnons deux exemples d'espaces à dual nucléaire où l'on vérifie directement que
le dual est nucléaire, sans passer par le critère du paragraphe précédent.

(3.2.1) Proposition. Si ls lim En espace du type (^^) strict nucléaire, alors E'b

est nucléaire.

Démonstration. Les En s'identifiant à des sous-espaces de E sont des {^) nucléaires.

Par transposition, on obtient les applications: E'n<r-Eb où E'n est un espace {^^)
complet nucléaire. Montrons que Eb a la topologie initiale relative à ces applications
(donc est nucléaire). Soit B un borné disque de E, B° le voisinage de 0 correspondant
de Eb. Puisque B est déjà dans un En, la polaire de B dans E'n est un voisinage de 0dont
l'image réciproque par E'n+-Eb est B°.

(3.2.2) Proposition. E(&) séparable nucléaire, F(J^) nucléaire

alors LbE, F) et son dual fort sont nucléaires. Les bornés de Lb(E, F) sont métri-
sables et Lb(E, F) est dense dans LC(E, F) complet.

Démonstration. La première affirmation est classique ([11] Chap. II p. 48). La
métrisabilité des parties bornées de Lb(E,F) provient du fait qu'elles sont équi-
continues (Banach-Steinhaus) et que sur les parties équicontinues, la topologie de la

convergence simple sur une partie totale est équivalente à la topologie de la conver-
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gence précompacte (équivalente à la topologie (b) car E est nucléaire), (cf. [3] Prop. 5

p. 23.)
La densité de Lb (E, F) découle du fait que E étant nucléaire, satisfait à la condition

d'approximation et E' ®F est donc déjà dense dans LC(E, F).

3.3 Plongement d'un (6?) dans un produit de (&£?)

(3.3.1) Rappelons qu'on appelle espace de Schwartz ou du type Sf) un elc. tel que
toute application linéaire continue de cet espace dans un Banach est compacte, et

{&&) un Fréchet Schwartz.

(On comparera avec:
E nucléaire o Toute application de E dans un Banach est nucléaire

E=Ea(Ef £')<=> Toute application de E dans un Banach est de rang fini.
d'où les implications :

E muni d'une topologie faible => E nucléaire => E(S?).)
Pour qu'un elc. E soit du type (S?)9 il suffit que VF voisinage de 0 disque, l'ap-

plication canonique E-*EV soit compacte. (Pour tout ceci, cf. [12] ou [10] p. 244 et ss).

(3.3.2) Proposition. E du type (S?) (resp. nucléaire) F du type (J5") u:E-+F
linéaire continue,

alors il existe Ft (Jr y) (resp. {&) nucléaire) et v: FX^F linéaire continue injective
telle que u se factorise par v:

U '. h ~*¦ 11 —? F

Démonstration. En remplaçant E par £/ker(w) on se ramène au cas où u est injective.

Soient (Vn) les images réciproques par u d'un système fondamental dénombrable
de voisinages de 0 disques de F.

Puisque E-+Ev est compacte (resp. nucléaire), il existe V voisinage de 0 disque de

E tel que Eyf-*EVo soit compacte (resp. nucléaire). Construisons de même V" à

partir de F', V" à partir de Vu V"" à partir de F", etc..

Vo

/ \ / \y y" y'"
La topologie sur E dont un système fondamental de voisinages de 0 est donné par les

homothétiques des Vn et V(n) (et leurs intersections finies) est métrisable et en fait un
espace (6?) (resp. nucléaire).

(3.3.3) Proposition. E du type {&*) (resp. nucléaire).
Alors E est un sous-espace vectoriel topologique d'un produit de (!FSf) (resp. Sf)

nucléaires).
Démonstration. Il suffit d'appliquer la proposition précédente (3.3.2) aux applica-

•\
tions canoniques E->EV.



338 ALAIN ROBERT

Notons que cette proposition n'est nouvelle que dans le cas des espaces de Schwarz,
car on sait que tout espace nucléaire est isomorphe vectoriel-topologiquement à une
puissance convenable de (s) (dénombrable si métrisable) où (s) est l'espace des suites
à décroissance rapide muni de sa topologie habituelle qui en fait un espace du type (J5")

nucléaire.

3.4 Appendice: Remarques sur les espaces à bornés métrisables

II semble que tous les espaces nucléaires dans lesquels les bornés sont métrisables

ont un dual fort nucléaire. Donnons ici quelques remarques seulement sur ces espaces.
(3.4.1) Proposition. E elc. B borné disque métrisable de E.

Alors il existe sur E une topologie elc. éventuellement non séparée définie par un

systèmefondamental dénombrable de voisinages deO et induisant surB la topologie donnée.

Démonstration. En effet B étant métrisable, soit (Vn) une suite de voisinages de 0

(disques) de E telle que (VnnB) soit un système fondamental de voisinages de 0 de B,
et soit F' la topologie sur E définie par le système de voisinages de 0: (Vn). La
conclusion résulte du lemme de Grothendieck ([12]):

Une topologie localement convexe &~' sur un elc. E induit sur une partie disquée A de

E une topologie plusfine que celle induite par le topologie de E, &~, si et seulement si elle

donne un filtre de voisinages de 0 plus fin que $~.

(3.4.2) Corollaire. Si E elc. admet un système fondamental dénombrable de

bornés métrisables, il existe sur E une topologie métrisable moins fine que E, induisant

sur les bornés la même topologie que E.

(3.4.3) Remarques. 1) Si la topologie métrisable 3~ définie dans le corollaire précédent

est différente de la topologie de E, il y a un borné pour ZF non borné dans E. (En
effet, si tout borné pour 3~ est borné dans E, l'application E^-^E est bornée sur tout
borné donc continue puisque E est bornologique.)

2) Un espace infratonnelé (resp. réflexif) ayant une suite fondamentale dénom-

brable de bornés est du type (§«^) (resp. (@&r) complet).
(En effet si E est réflexif, il est le dual de son dual fort, qui sous les hypothèses de

l'énoncé est métrisable.)
(3.4.4) Proposition. E nucléaire, B disque borné métrisable de E. Alors il existe F

du type (&) nucléaire et u linéaire continue E-^F telle que u \ B soit un homéomorphisme.
Démonstration. D'après (3.4.1), construisons (Fw), suite fondamentale de voisinages

de 0 définissant une topologie F (éventuellement non séparée) induisant sur B la
bonne topologie. Soit N l'adhérence de 0 pour cette topologie: u:E-^(ErIN)A =F
l'application canonique (F est un espace de Fréchet). Il suffit alors d'appliquer (3.3.2).

(3.4.5) L'exemple suivant montre qu'un espace nucléaire complet dans lequel les

bornés sont métrisables n'est pas nécessairement bornologique.
Soit / un ensemble non dénombrable et munissons is R(/) de la topologie initiale

relative aux projections canoniques R(J)->R(/o) où Jo parcourt l'ensemble des parties
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dénombrables de /. E est un espace nucléaire complet comme limite projective de

nucléaires complets. Dans E les bornés sont de dimension finie, puisque sur un produit
dénombrable R(/o) la topologie est la topologie somme directe. E est donc non
infratonnelé (et donc non bornologique). E'b Era est nucléaire.

4. Divers
4.1 Bornés dans les métrisables

On va examiner ici la question de Grothendieck [12] p. 119:

«Une partie bornée du complété Ê dun elc. métrisable est-elle contenue dans

Vadhérence dans E d'une partie bornée de E?»
Grothendieck lui-même avait remarqué que c'était le cas si E était supposé

séparable ou du moins si le borné est séparable (cf. [10] p. 229). Amemiyah a donné

un contre-exemple dans le cas général (cf. [18] p. 407). Montrons comment à l'aide de

l'ensemble d'indices A défini en (1.2.1) on peut donner un contre-exemple plus simple.
(cf. [6].) •

(4.1.1) Soit F=Jf(yidiscret)x fIR ou #(A) est l'espace de Banach des familles
N

sur A tendant vers 0 (suivant le filtre des complémentaires des parties finies). F est un
espace de Fréchet. E: sous-espace vectoriel métrisable engendré par les

(<pA, (aj) (<px, a) où k (kn) eA et où 3N t.q. n^N=>an kn

E { Z (Xt((Pxl^ ad I ai — h finalement, a^R, kteA}.
finie

Ê=F. En effet, l'image par la première projection de E est Jf(A) et il est clair que E
est dense dans Jf(A) x J|R lui-même dense dans F.

(4.1.2) Proposition. BaE, BFz>{((p, 0)\(peJf(A), \\ (p \\ <l} Alors l'image de B

par la projection sur J~jR est non bornée (donc B est non borné).
Démonstration. On va voir que si 5d{((pAs 0) | XeA} alors la projection de B dans

le produit est non bornée.
En effet si (cpx, 0) est adhérent h B, B doit contenir un élément du type

Z 0Li{(Pxl^ ai)> K k (A arbitrairement grand), ao>0. La suite £ atat ayant une
finie
croissance comparable à celle de oijXj où Aj Sup Af Max X^X0 X donc par la

projection indiquée, l'image de B contient une suite ayant une croissance plus rapide
ou comparable à celle de a0A ou k. Ceci étant valable VkeA, cette projection est

non bornée d'après le lemme de (1.2.1).
(4.1.3) Kômura dans [16] a utilisé indépendamment l'ensemble d'indices Ao pour

fournir un exemple d'espace de Fréchet non séparable dans lequel tous les bornés

sont séparables. Dans sa démonstration, il semble utiliser le fait que Ao est cofinal
(pour la relation d'ordre partiel introduite dans 88) à l'ensemble de toutes les suites.

Cela n'est pas établi et montrons comment on peut se passer de ce résultat.
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Posons :

E {f:A0 ^R | pn{f)

muni des semi-normes (pn) qui en font un espace {^) non séparable, car il contient la

partie non séparable {(Px}xeAo- Soit alors B un borné de E, Mn Sup pn(f)(feB)
donc :

\f(X)\'Xn<pn(f)<Mn Vn(V/eB)

Choisissons N=(Nn)^>(Mn) d'où A<^N VA t.q. f(A)^0. Par maximalité de A
on voit que/(A) 0 VA$> AoeAo et les bornés sont donc contenus dans les sous-espaces
métrisables séparables EXo {feE \f(A) 0 VA$>A0} d'où le résultat.

4.2 Question du complété de L(S(E9 F)

(4.2.1) Le Théorème de Grothendieck ([13].) affirme que le complété de E'z (E elc.)
est l'ensemble des applications linéaires dont les restrictions aux Ae<S sont continues.

Il serait intéressant de connaître également le complété de Le(E, F) où E et F sont
des elc.

(4.2.2) Question. Le complété de Le(E, F) s'identifie-t-il à l'ensemble des applications

linéaires E^F dont les restrictions aux Ae<S sont continues, espace noté
Hom* (E9 F).

La réponse est-elle affirmative lorsque F est complet? Je ne le sais que dans des

cas particuliers. (L'espace candidat est manifestement complet, et le théorème de

Grothendieck donne une réponse affirmative dans le cas F=K. Nous verrons des

généralisations). La question est de savoir si Le(E, F) est dense dans Homls(E9 F).
La réponse est affirmative dans les cas suivants :

(4.2.3) Cas où ® {parties finies de E}
Cas où E (Qi^) et F complet (cf. [10] Cor 1 et 2 p. 234)

(4.2.4) Cas où E=Et9 E& complet et F complet.
En effet, on sait alors que Le(E9 F) est complet, de plus Le(E9 F) Homs(is, F)

car si u:E-+F9 uelJLom<s(E, F) Vx'eF', VAe<3, x'u \ A continue et (Th. de Grothendieck)

Vx'eF', x'ueEç E& qui implique u\Ea^Fa continue puis u:E=Et->Fx->F
continue, donc ueL(E, F).

(4.2.5) Cas où E satisfait à la propriété d'approximation et est bornologique.

LC(E, F) est dense dans LC(E, F) complet Homc(E, F) d'après le raisonnement de

(4.2.4).)
Ici, E a la topologie r puisqu'il est infratonnelé et E'c est complet puisque E est

bornologique.
E'®F est dense dans E'®Ê dense dans LC(E, Ê) puisque E jouit de la propriété

d'approximation d'où à fortiori, LC(E9 F) est dense dans LC(E9 F).
(4.2.6) Proposition. E, (Ft) elc.t F=]
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Si les complétés des L^{E, Ft) sont les Hom(S(E, Ft), alors le complété de L^{E, F)
est

En particulier, la réponse à (4.2.2) est affirmative si F est un produit de droites.

Démonstration. En effet, on a d'abord l'isomorphisme vectoriel topologique:

et il ne reste plus qu'à constater: Home(£, I"J/f) ]~lHoine(2s, Ft).

(4.2.7) Proposition. E, F elc, N sous-espace fermé de E admettant un supplémentaire

topologique. Si le complété de Le(E, F) est Homs(£, F), celui de Le(E9 N)est
Hom9(E9N).

Démonstration. Soit p un projecteur continu F-+N. La rétraction associée

p^:Hom^(E, F)->Home(E, N) est continue et envoie Le(E, F) sur Le(E, N), d'où la
densité de L@ (E, N) dans Homs (E, N) par l'hypothèse de densité de Ls (E, F) dans

4.3 Biduals d'espaces (&' &)
Dans certains cas particuliers, on peut affirmer que le bidual d'un (J5f^) est limite

inductive des biduals des espaces de définition, (cf. [12] question 8 p. 121 et p. 83 et ss.

pour des réponses partielles.)
Par exemple dans le cas des limites inductives (non strictes) on a:
(4.3.1) Proposition. 2s lim En espace (&&) quasi-complet nucléaire.

Alors E est réflexif, =E" \\m El
Démonstration. La nucléarité de E implique que les bornés sont précompacts donc

E est même Montel (car quasi-complet); l'égalité i^' lim2^' provient alors du

diagramme commutatif :

>E" E.

Le triangle étant commutatif car uEn E.

(4.3.2) Proposition. (En) suite d'espaces (#"), un:En-+En+l linéaire continue,

E=limEn quasi-complet. Si un(En) dense dans En+1 et si les applications canoniques
En-¥?->E sont injectives alors E" li

Démonstration. L'hypothèse d'injectivité n'est pas essentielle et on peut toujours
s'y ramener en remplaçant En par EJker((pn). Il est immédiat que (pn(En) est dense

dans E9 donc la transposée *<pn est injective, et par propriété universelle de £ on a

E' nE'n. Comme on l'a déjà vu dans (3.2.1) (l'hypothèse de quasi-complétion
remplaçant ici l'hypothèse que E est (J^J^) strict: tout borné est image d'un borné
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d'un En) E'h a la topologie initiale relativement aux rç>w, ou topologie intersection des

E'n. {E'b est complet comme dual d'un bornologique ou comme intersection de

complets, même (^^") complets). Toute forme linéaire continue sur E' provient d'une
forme linéaire continue sur un E'n (cf. [10] p. 104) donc les El engendrent E". Soit V
disque <=£"' tel que ses images réciproques dans les El soient des voisinages de 0

(V«); il contient donc la polaire d'un borné B'nc=E'n et la polaire de F est un ensemble

B' borné dans chaque E'n. Tout voisinage de 0 de E' étant déjà voisinage de 0 dans un
E'n absorbe B', d'où B' est borné dans E' et V voisinage de 0 dans E". Ceci montre
que E" a la topologie la plus fine rendant continues les applications:
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