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Quelques questions d’espaces vectoriels topologiques

par ALAIN ROBERT

0. Introduction et espaces semi-complets

0.1 Notations générales et conventions

Les espaces uniformes intervenant sont toujours supposés séparés sauf mention
explicite du contraire (Chap. 3).

Si E est un espace uniforme, on note toujours £ son complété (éventuellement
muni de structures additionnelles, par exemple espace vectoriel, ...).

Les espaces vectoriels seront toujours des espaces vectoriels sur K=R ou C.

Lorsqu’on parle d’elc. (espace localement convexe) on sous-entend toujours séparé
d’apres ce qui précede.

(F) (resp. (&), (£ F)) dénotera un espace de Fréchet (resp de Schwarz, limite
inductive non néc. stricte d’une suite d’espaces de Fréchet).

Sur L(E, F) (E, F elc., espace des applications E— F linéaires continues) lorsqu’on
parle de &-topologie, on sous-entend que & est un recouvrement de £ formé de
parties bornées. (On peut toujours supposer les A€ @ disqués — i.e. convexes et équi-
librés — fermés, que tout disque fermé B< Ae@ est encore dans & et que toute réunion
finie d’ensembles de & est contenue dans un ensemble de €.)

Si E, F sont des elc., on note B (E, F)’ensemble des formes bilinéaires séparément
continues sur E x F (avec différentes topologies en indice...) et B(E, F) ’espace des
formes bilinéaires continues sur E x F.

Les notations d’espaces normés associés a un E elc.: Eg (B borné disqué, espace
engendré par B muni de la norme jauge de B), E, (V voisinage de 0 disqué, espace
séparé associé a la semi-norme jauge de V), sont aujourd’hui courantes. On dit que
B est complétant lorsque Eg est complet (rappelons que B semi-complet = B com-
plétant).

Puisqu’une partie importante du travail qui suit consiste en I’étude de la quasi-
complétion d’un espace localement convexe séparé, il n’est peut-étre pas inutile de
rappeler les résultats classiques sur les espaces semi-complets d’abord, ou la situation
présente certaines analogies, et d’indiquer ensuite les raisons principales de 'intérét
des espaces quasi-complets.

0.2 Espaces semi-complets

(Pour de plus amples détails, cf. [19].)
Dans une optique constructive des mathématiques — ne faisant pas intervenir
I’axiome du choix — on est amené A définir et 4 utiliser les espaces semi-complets ou
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la convergence des filtres quelconques est remplacée par la convergence des seules
suites de Cauchy.

(0.2.1) DEFINITION. E espace uniforme.

E semi-complet <> Toute suite de Cauchy de E converge.
Les exemples d’espaces semi-complets (méme non complets) sont nombreux:
(0.2.2) Soit 7 un ensemble non dénombrable et soit:
[T R = {(x)); | x; =0 sauf pour un ensemble dénombrable au plus} = [[R
I I

muni de la topologie induite par le produit.

Cet espace est semi-complet puisqu’une réunion dénombrable d’ensembles
dénombrables est dénombrable, mais n’est pas complet: son complété est ’espace
produit [ R entier ('ensemble des suites & support au plus fini @ R étant déja dense

§ 1

dans le produit []R).
I

(0.2.3) Prenons encore:
E = {f:R—R | f mesurable pour la mesure de Lebesgue}
Cet espace est semi-complet en vertu du théoréme d’Egoroff (cf. [4] p. 175) pour
la topologie de la convergence simple.
Son complété, comme dans ’exemple précédent (0.2.2) s’identifie a I’ensemble de
toutes les fonctions réelles:
Z (R,R) =R",

(0.2.4) Les espaces semi-complets ont les propriétés de stabilité habituelles et
triviales a vérifier:

a) (E,) famille d’espaces uniformes non vides:

[ 1 E: semi-complet <> E; semi-complet Vi

b) E espace uniforme semi-complet, F sous-espace fermé = F semi-complet. (La
réciproque n’est pas vraie comme le montrent les exemples qui précédent.)

c) L’intersection d’une famille de sous-espaces semi-complets d’un espace est semi-
complete.
L’intérét de la semi-complétion en elc. provient des deux propriétés suivantes:

a) E elc. Les parties bornées disquées semi-complétes de E sont absorbées par tout
tonneau.

b) E semi-complet, F elc. Toute partie simplement bornée de L(E, F) est bornée
pour toute €-topologie. (cf. [3] p. 34 Ex. 10.)

0.3 Semi-complétés

Soit E un espace uniforme. On peut définir de plusieurs fagons le semi-compléte
E de E, plus petit sous-espace semi-complet contenant E. De fagon plus précise:
(0.3.1) L’intersection des sous-espaces semi-complets de E contenant E est appelé
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semi-complété de E (0.2.4.c). On peut aussi le définir comme solution d’un probléme
universel:

(0.3.2) 1l existe un espace uniforme E semi-complet et une application E—%>E
uniformément continue (uniques a isomorphisme unique prés) solution du probléme
universel suivant.

VX semi-complet et NV f: E— X uniformément continue, 3f unique, factorisation de f
par ig:

ELXx
e\ A ;
E

L’existence d’une telle solution découle des propriétés de permanence citées ci-
dessus (0.2.4), et du fait que ’adhérence d’une partie 4 d’un espace uniforme a un

cardinal majoré par:
2 2(Card A4)

(cf. BOURBAKI, Ens. Structures).
(0.3.3) De fagon constructive, on peut définir E,,=E,

E, = {xeE|x =limx, ou (x,) suite de Cauchy de E}

et comme E(;, n’est en général pas semi-complet, on est conduit & recommencer
I’opération par induction:
Ew+1y=(Emw)a) VneN

Il arrive encore parfois que la réunion des E, ne soit pas semi-compléte. On pose
alors par induction transfinie, Va ordinal

Eg) = (E(a,~ 1))(1) si o a un prédécesseur o — 1

E, = §L<J E,  siaest ordinal limite
-4

Le plus petit ordinal « tel que E,y=E.;, (Il y en a pour des raisons de cardinal
de E'!) est appelé ordre de semi-complétion de E.

De fagon plus précise, on a méme toujours E, ,=E,, +1) (ou ®; dénote le premier
ordinal non dénombrable). En effet si (x,) est une suite de Cauchy de E,,, on a
x,€E, et puisque la suite dénombrable d’ordinaux (£,) ne saurait &tre cofinale a
w4, il y a un ordinal ¢>¢, Vn, £ <w,; ot Vn X,€Eg et x=limx,€E ;1) E(,,).

0.4 Exemples de semi-complétion

(0.4.1) Prenons pour E I’espace des fonctions numériques réelles continues sur
R:E=%(R) muni de la topologie induite par le produit R® (fournissant donc la
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structure uniforme de la convergence simple). Dans la thése de BAIRE figure explicite-
ment — pour la premiere fois — une fonction feE,, f¢ E,, dite fonction de classe (de
Baire) 2. Dans un article ultérieur (Acta Math. 1906) il cite une fonction de classe 3.
(Ultérieurement, Melle. KELDYCH cite une fonction de classe 4.)

Pour son compte, LEBESGUE — dans son mémoire sur les fonctions représentables
analytiquement (1905) — donne I’existence de fonctions de toutes les classes <w, et
démontre donc par la que l’espace E considéré est d’ordre de semi-complétion
maximum @,. (Sa démonstration n’est plus constructive et utilise ’axiome du choix)
(cf. [5].

(0.4.2) BANACH en 1932, dans [1], donne une maniére inductive de construire des
parties de I} qui soient d’ordre de semi-complétion — pour la topologie faible de dual
de (co) arbitrairement grand <w, (cf. [1]: appendice).

0.5 Espaces localement convexes quasi-complets

La semi-complétion en elc. s’utilise assez peu, car elle ne se laisse pas caractériser
par dualité, de sorte que les techniques habituelles d’elc. ne s’appliquent pas. D’autre
part les espaces semi-complets habituels, ont des propriétés (de complétion) supplé-
mentaires. On introduit alors la notion plus forte (plus forte car les suites de Cauchy
d’un elc. sont toujours bornées)

(0.5.1) DEFINITION E elc.

E quasi-complet <> Tout fermé borné de E est complet.

(0.5.2) Donnons quelques propriétés principales des elc. quasi-complets.

Puisqu’un elc. quasi-complet est semi-complet, on a d’abord:

E quasi-complet = les bornés de Lg(E, F) sont les mémes pour toutes les S-topo-
logies. En particulier, on parle de borné du dual E’ sans précisier la topologie.

Propriétés de permanence:

a) (E,) famille d’elc.:

HEi quasi-complet <> E; quasi-complet Vi
@ E; quasi-complet <> E; quasi-complet Vi

b) Tout sous-espace fermé d’un espace quasi-complet est quasi-complet.

c) Toute intersection d’'une famille de sous-espaces quasi-complets d‘un elc. est
quasi-compleéte.

Signalons encore le théoréme: [3] p. 31

E tonnelé, F quasi-complet = Lg(E, F) quasi-complet YS-topologie.

En particulier les duals faibles de tonnelés (ou duals forts de tonnelés, mais ils
sont souvent complets) sont des exemples d’espaces quasi-complets. Plus particuliere-
ment, les duals faibles des espaces de Banach sont quasi-complets, et non complets
s’ils sont de dimension infinie.
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1. Quasi-complétion d’un elc

1.1 Existence et construction

Soit E un elc., on va montrer comme en (0.3.2) ’existence d’un «plus petit» quasi-
complet contenant E.

Soit X la structure d’elc. quasi-complet avec pour morphismes o, les applications
linéaires continues (automatiquement uniformément continues) et prenons pour
a-applications les applications linéaires continues d’un elc. dans un elc. quasi-complet.
Le probléme universel relatif a ces données admet une solution (unique a isomor-
phisme unique pres, comme on voit catégoriquement)

ESF
<PE\/ @
Fy

(L’adhérence de ¢ (E) est une partie Z-permise de F, de cardinal < 2°™"°%, et on
peut appliquer le résultat de théorie des ensembles cité en (0.3.2), grace aux propriétés
(0.5.2). (cf. [18] p. 298)

(1.1.1) PROPOSITION. @y est un homéomorphisme dans E et donc Fy s’identifie au
sous-espace de E, intersection des quasi-complets contenant E.

Démonstration. Prenant F=K, le théoréme de Hahn-Banach indique que ¢ est
injective, puis prenant F=E on voit que ¢, est un homéomorphisme dans.

Pour voir que F;; a bien la topologie induite par £, on remarque que E est aussi
le complété de Fy puisqu’on vérifie facilement qu’il jouit de la propriété universelle
le définissant.

(1.1.2) CoNsTRUCTION. On définit E,= E puis par induction transfinie, pour tout
o ordinal:

/ \J E; si a est ordinal limite
E = ¢=¢
\ réunion des adh. dans £ des bornés de E,_, siaaun prédécesseur oa—1

(On peut se borner a définir ar—E, sur le segment des ordinaux < un ordinal
plus grand que I’ordinal initial relatif au cardinal d’'une base algébrique de E.)

Il est clair — pour des raisons de cardinal — qu’on a finalement

Ea"_"EaH-l = UEa

et que: E,=E,, ,<>E, quasi-complet.
(1.1.3) PROPOSITION. E, F elc. f: E—F linéaire continue, o. ordinal, 3! f, continue
rendant commutatif le diagramme suivant:

E5SF

[
E,5F,
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Démonstration. Par induction transfinie. Le seul cas a examiner est celui ou «
admet un prédecesseur et dans ce cas on applique la Prop. 8 p. 10 de [3].

(1.1.4) ProposITION. | JE, est le quasi-complété de E.

Démonstration. On vient de dire que | JE, est quasi-complet, vérifions la propriété
universelle: soit F un elc. quasi-complet, f: E—F linéaire continue. Alors f fournit
univoquement f,: E,— F,=F d’ou la proposition.

Le plus petit ordinal « tel que E,=FE,, est appelé ordre de quasi-complétion de
E (ou simplement ordre dans ce travail)

E d’ordre 0<>E= E,= E,<E quasi-complet.

Les espaces métrisables sont tous d’ordre <1 (quasi-complété=complété, car les

suites de Cauchy fournissent déja la complété). Le quasi-complété d’un espace E sera
noté E.

(1.1.5) PROPOSITION. a) E elc infratonnelé = E tonnelé.

b) E bornologique = E ultrabornologique (donc tonnelé)

Démonstration. a) On remarque d’abord que si F est un sous-espace de £ con-
tenant E, et si E est infratonnelé, F est infratonnelé, d’ou le résultat car les bornés
faibles du dual de £ quasi-complet sont bornés forts.

b) Trivial d’aprés les définitions (cf. [3] p. 34 Ex. 11).

1.2 Exemples

(1.2.1) ENSEMBLE D’INDICES A.

Définissons un ensemble d’indices A qui va réapparaitre dans ce travail.
Considérons d’abord:

#B=1{(4,) | (4,) suite strictement croiss. d’entiers >0}
et munissons-le de la relation d’ordre (comparaison forte):
Vo >0,IN t.q. si n=N alors ad,<u,

G <000t )
On remarque que (4,) < (1,)=Va>0, a(4,)=(x4,) <(1,), ou bien (4,)=(u,)
Soit A une partie totalement ordonnée maximale de # (Zorn).
LEMME:
(02)iea Sfamille de R*} =>3/1= (A,)€B, neN arb. grand, t.q.
(ﬂn)Eg S | ot | An> pts

Par conséquent {«,-A | A€ A} n'est pas un ensemble borné de [ ] R.
N

Démonstration. Sinon on aurait | a, |-A,<p, Va=N,. On pourrait construire
v=(v,) telle que (u,) < (v,). Une telle suite satisferait alors | a, |-A<v, VA€ A contraire
a la maximalité de 4.

LEMME. A n’est pas dénombrable.
Démonstration. En effet un procédé diagonal judicieux (Th. de Du Bois-REYMOND)
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permet de construire pour toute famille dénombrable de suites A™=(4;), une suite
A>A™ Vm. En pratique on utilisera souvent une partie A, bien ordonnée cofinale a A,
partie qui a le type d’ordre de w,=~[0, w,[ si 'on admet ’hypothése du continu,
puisque w; n’a pas de partie cofinale dénombrable et que:

Card A, > Card NN = 2% = N,
(1.2.2) ORDRE 2. Soit F I’espace | [R x [ JR munidela topologie produit E, le sous-
N Ao

espace engendré par les ((@,), ¢;) ou ¢, dénote la suite égale a 0 sauf au point 4 ou
ellevaut 1,et (a,) une suite (variable) finissant comme A: AN a,=1,Vn= N (A=(4,)€ 4,).
Il est clair que E est un sous-espace vectoriel dense de F et que le point ((0), (1)) n’est
pas adhérent & une partie bornée de E (1.1.1).

Plus précisément:

El = {((an)9 f) ! 3;LOEAO t'q' f(}') =0Vi> ’103 leAO}

Tous les points de F sont adhérents a des bornés de E; donc E,=F, E=FE et E est
d’ordre 2.

Examinons maintenant quelques espaces de fonctions continues.

(1.2.3) PROPOSITION. X espace topologique complétement régulier. E=%,(X; R)=
€(X), espace des fonctions continues (réelles) sur X, muni de la topologie de la con-
vergence simple.

Alors E;={feR* | 3g semi-cont. inf. finiet.q. | f| <g}

E,=E=E=RX. E estdordre <2.

Démonstration. Si feE,, fe{f;} borné, f; continues et bornées dans leur ensemble
en chaque point, donc g=Sup | f; | satisfait aux conditions.

Inversément, il suffit de montrer qu’une fonction positive f<g semi-cont. inf.
finie, est dans E; (décomposition en partie positive et négative d’une fonction quel-
conque). Montrons qu’on peut approcher f par des fonctions continues positives <g.
Xq,-.., X,€X, €>0 donnés. On peut trouver f; continue positive égale a f en les x; et
des g, continues positives <g telles que g; (x,) =g (x;) —¢ (g est U'enveloppe supérieure
des fonctions continues qui lui sont inférieures) §=Supg, est continue, <g et donc
Inf(f;, ) est continue, <g, approche f a ¢ prés en les x;.

Pour la seconde affirmation, si feR*, soit I=ensemble des parties finies de x, et
posons Viel:

/f (x) si xei
fi(x) = |fi()I <If(x)] Vi
N 0 sioxéi

{fi} i€ est borné et |f;(x)|<Sup|f(x)|=Const <oo, semi-cont. inf. finie, donc

x€ei

fi€E, et comme évidemment fe {f,} on a feE,.
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Remarque: Lorsque X est localement compact et lorsqu’il existe une feRX non
majorée sur tout ouvert non vide, alors E; #R* (et plus précisément f¢ E,).
Par exemple pour X=R on peut prendre:

0 si x irrationnel
/
f(x)=
\q si x = p/q fraction réduite .

Soit en effet xe X, ¥ un voisinage compact de x; f non majorée dans V, donc, pour
approcher f simplement dans V, il faut prendre une fonction continue ¢,, > n+1 en
un point x,€ V. @, sera encore >n dans un V, < V, voisinage compact de x,. Par induc-
tion, on définit une suite de compacts emboités V,>V,,, o ... dont l'intersection
contient un point x en lequel on a Sup ¢,(x)= 0. Donc si @ est un ensemble de fonc-
tions continues et fe @, 3¢, P, xeX t.q. Sup ¢, (x)= 0o montrant que J est non borné.

(1.2.4) PROPOSITION. X complétement régulier.

E=%_(X) l'espace des fonctions continues (réelles) muni de la topologie de la con-
vergence compacte.

Alors E=E={f:X-R| YK compact f| g continue} et E est d’ordre <2.

Démonstration. Remarquons d’abord que si K est compact dans X et F fermé,
FnK=0, il existe /:X—[0,1] continue, égale & 1 sur K et nulle sur F. Toute fonction
continue sur K se prolonge en fonction continue sur X. (Il suffit de passer au compacti-
fi¢ de Stone-Cech BX de X et d’appliquer les résultats correspondants des espaces
compacts, car K sera encore compact dans fX et FF¥Xn K=0.) Ceci montre que
€.(X)" est bien ’espace annoncé.

1) Si fest positive, a des restrictions aux compacts continues et si f est majorée par
f continue, alors fe €, (X);.

En effet si K est un compact, ¢ continue positive, égale a f sur K, {Inf(¢, f)} est
un ensemble borné de €. (X) contenant f dans son adhérence.

2) Si f est positive et appartient & €.(X), VK compact choisissons ¢* continue
égalea f sur K. Alors {Inf( f, ¢*)} est un ensemble borné de ¥,(X), contenant f dans
son adhérence. Le théoréme est alors démontré puisqu’une fonction quelconque de
%.(X)" ases parties positives et négatives dans €,.(X),, donc est elle-méme dans cet
espace.

Ici, on n’a pas de caractérisation des éléments de %, (X),, mais on a néanmoins la
Proposition:

(1.2.5) PROPOSITION. X complétement régulier

f€€.(X)" positive. Les propriétés suivantes sont équivalentes:

1) Propriété (P):

Vge€(X), VK compact t.q. g|x<flx
3V, voisinage de K t.q. gly <flv«

ii) f est enveloppe supérieure de fonctions continues positives,
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iii) f est semi-cont. inf.
et toute f y satisfaisant est dans €.(X),

Démonstration. i)=>iii) Prendre K={x} et g=const.

iii)=>i) Raisonnement facile utilisant la compacité

ii)<>iii) Classique.

Quant a la derniére affirmation, il suffit de la vérifier comme précédemment pour
les fonctions positives, et d’utiliser par exemple ii) et la compacité.

(1.2.6) ORDRE n (eN).

Unexemple d’ordre 2, quoique légérement plus compliqué figure dans [18] p. 299.
L’idée sous-jacente nous a néanmoins permis de citer un exemple d’espace d’ordre
fini arbitrairement grand. (La question de trouver de tels espaces, sans figurer explic-
itement dans [18], se trouve néanmoins 2 la base de questions comme celle de p. 311).

PROPOSITION. E elc. d’ordre a. Le sous espace F de Ex @] [R, engendré par les
E n

(x, ey, n) (0wt e, , désigne la famille double nulle sauf a I'endroit (x, n) ot elle vaut 1) est
d’ordre =2 1+a (donc Z>a si a est o)

Démonstration. Un borné B de F a une seconde projection sur la somme directe,
contenue dans une somme directe finie, donc (& fortiori) sa projection sur le premier
facteur est de dimension finie (vu la liaison). La premiére projection de I’adhérence
B de B dans F sera encore de dimension finie et contenue dans E. D’autre part

(x, ex,,,)zi(x, 0)eF, et (0,e,,)eF; d’ouF;=Ex...,Ordre (F;)>Ordre (E)puis
Ordre(F)>1 + Ordre(E).

Partant d’un espace d’ordre >1, cette proposition permet de construire des espaces

d’ordre>n, VneN.

1.3 Propriétés générales de I’ordre

(1.3.1) ProposITION. (E;) famille d’elc. d’ordres respectifs &, &;<n ordinal fini.
Alors E=]|E; est d’ordre Sup & (fini)
Démonstration. Par induction (finie), il suffit de voir:

(HEi)l = H(Ei)l
Or: x=(x;)e[[(E;);<>Vix;e B; ou B; borné de E,
<(x)e[] B =]Bi=x = (x)e([] E):

(1.3.2) PROPOSITION. (E;) famille d’elc. d’ordres respectifs &;. Alors E=@ E; est
d’ordre Sup¢;
Démonstration. V&, (E;), a la topologie induite par E,, donc la topologie somme

-\
directe @ (E;); est induite par @ E,=® E,=E. 1l suffit de démontrer E,= ® (E;), Y
ordinal, ce que nous ferons par induction transfinie.
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Ey=E=0®E;= @(Ei)o
D’abord E;— @E; fournit (E;),—~(®E;), d’ou une application canonique:
® (E), — (@ E)),

Supposons inversément par induction que ’application

(®E),—~[I(E),

ait une image dans ®(E;), Va<{.

Si ¢ admet un prédécesseur, I'égalité (@E;).—; = ®(E;);-, fournit directement
(®E):= ®(E))., les bornés de @(E;),—, étant déja dans une somme directe finie. Si
est ordinal limite

(® E),=®(E), Va<(
implique

(@ Ei)é = U (@ Ei)a =@ U (Ei)a =@ (Ei)é'

a<é a<g

(1.3.3) Construisant YneN un espace E, d’ordre >n d’apres (1.2.6), leur somme
directe @ E, sera donc d’ordre >Supn=w, premier ordinal infini.

(1.3.4) PrROPOSITION. E, F elc., E de dimension finie.
Alors Yo ordinal L(E, F),=L(E, F,)
donc Ordre L(E, F)=Ordre (F)
et L(E, F)"=L(E, F)

Démonstration. E étant de dimension finie, toutes les &-topologies sur L (E, F)sont
égales & L (E, F) (convergence simple) E= @K (somme finie) donc:

L(E,F)=L(®K,F)=@®L(K,F)
L(E, F),= ® L(K, F),
et il suffit de faire la démonstration pour E=K, (induction transfinie) et comme:

£<a £<a
il ne reste a démontrer que L(K, F,)=L(K, F),=F,, ce qui est trivial vu 'isomor-
phisme vectoriel topologique:

L(K,F)>F

f—rQ)

(1.3.5) On pourrait espérer généraliser le résultat précédent a des E tonnelés
séparables, en prenant (x,) suite dense dans E et en approchant E par les sous-espaces
de dimension finie engendrés par les premiers x,,.

Mais en général pour voir que ® = L (E, F) est borné, il ne suffit pas de voir que
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@ (x,)={p(x,)lpe®} est borné ¥n: E=R" (espace de Fréchet nucléaire) F=R, ¢,
définie par ¢,((4;))=)Y.4;; ¢, continue comme somme de projections ®={¢,|ne N};

i<n

VxeR™ on a: @ (x)=Jg,(x) borné de R, mais &((1, 1,...))={0,1,2,...} =N non
borné d’ou @ non borné.

1.4 Fonctions a valeurs vectorielles

E elc. sur R, X espace complétement régulier, on note ¢, la fonction caractéris-
tique de xeX.

% (X, E) désigne I’espace des fonctions continues a valeurs dans E muni de la
topologie de la convergence simple.

(1.4.1) PROPOSITION. a) o ordinal, fe € (X, E),=f: X—E,

b) « ordinal >1, ecE,, xeX=>¢,ec ¥ (X, E),

Démonstration. a) La proposition est triviale pour a=0 et se démontre par induc-
tion transfinie:

Si o a un prédécesseur a—1

fe€€ (X, E),~f¢€ (fi}, {f;} borné de € (X, E),_,
fi:X—>E,_; et VxeX, f(x)e{f;(x)} adh. d’un borné de E,_,, donc €E,
Si o est ordinal limite:

fe€(X,E),= U ¢ (X, E); etla proposition est triviale.

¢<a

b) Cas a=1.

YV ouvert, contenant x, soit xy: X—[0,1] continue, =1 en x, nulle sur (V. Soit
alors B un borné équilibré de E dont ’adhérence dans £ contient ec E, donné. I
suffit de voir que:

B ={yye;| e€B,V ouvert contenant x}
est un borné de % (X, E) dont ’adhérence dans E£* contient ¢,e.

2% est borné car Vx, # (x)c Bborné et si W est un voisinagede OdansE, x, x,..., x,
un ensemble fini de points distincts de X, il suffit de choisir ¥ ne contenant pas les x;
pour que:

Xy (%) € — @ (x,) e =0e W
xw(x)e—o.(x)e=e—ecW

dés que e;—ee W, possible par hypothese: ec E;.
La démonstration se termine alors par induction transfinie:
Seul cas & examiner: « admet un prédécesseur a— 1; supposons e€ B, B borné de

Ea-19
{p.e; | e;€B} est un borné de € (X, E),_, contenant ¢.e dans son adhérence:
¢.e€€ (X, E),.

(1.4.2) PrROPOSITION: X#0, E d’ordre 0. >2
a) o admet un prédécesseur =€ (X, E) d'ordre a
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b) a ordinal limite =% (X, E) d’ordre o ou a+1.
€ (X, E)” =E*=% (X, E) dans tous les cas.

Démonstration. a) «—1>1, donc on peut appliquer (1.4.1.b)aa—1, f: X—»E=E,.
Vx soit B, un borné de E,_ ; tel que f(x)eB,. Les sommes finies d’éléments
o, (f(x)+b) ou f(x)+beB, forment un ensemble borné de ¥ (X, E),_, auquel f est
adhérent.

b) € (X, E) est manifestement d’ordre >a(1.4.1) et d’ordre <a+1carsif: X—E=
E,, les sommes finies d’éléments ¢, f(x) forment un ensemble borné de € (X, E),
auquel f est adhérent, donc f€€ (X, E),+,

Lorsque X est fini — par exemple — € (X, E) est d’ordre a.

Lorsque X=E, I'application id. X—E=E, ne prend ses valeurs dans aucun E,
(¢ <a limite), donc n’est pas dans € (X, E), ce qui montre que dans ce cas I’ordre est
effectivement a+ 1. D’aprées (1.3.3), on obtient ainsi un espace d’ordre >wq,+ 1. C’est
le résultat le plus fin obtenu dans cette direction.

(1.4.3) Donnons encore une caractérisation des éléments de € (X, E), dans le cas
ou E est complet pour simplifier.

PROPOSITION. X complétement régulier, E elc. complet.

€ (X, E);={f:X—>E | Vp semi-norme cont. g, semi-cont. inf. finie t.q. pf<g,}

Démonstration. Soient en effet fe B ot B={f;} borné de € (X, E)

pf(x)<Suppfi(x)<oo.

Inversément: x,,..., x,€X, p semi-norme continue sur E, ¢>0 (on suppose les
pf(x;)#0, sinon modifications triviales).

Choisissons V;, voisinages ouverts disjoints des x;, ¢;: X— [0, 1] continues, nulles
en dehors de V; et telles que:

€
pf(x)
0:i(x) g, (%) <gp(x) VxeX

P 0i(X) f (x))sevi = 0:(x) pf (x) < 0:(x) g, (x)) < g, (%)
P o;i(x)f(x)—fF(x))=(:s(x) =) pf(x)<e Vi.

(1.4.4) Les démonstrations ci-dessus montrent que si E est complet € (X, E) est
d’ordre <2 (et d’ordre 2 en général, par exemple lorsque X=R et E+{0})
APPLICATION. X localement compact, Y complétement régulier S={ ) Kx {y}|K

finie

(Pi(xi) 21—

Alors:

relativement compact de X }.

Démonstration. & est saturé pour les opérations: adhérence, réunion finie, et
prendre une partie de.

Le complété de €s(X x Y;R) s’identifie a I’espace des fonctions dont les restric-



326 ALAIN ROBERT

tions aux ensembles de & sont continues, donc puisque X est localement compact, aux
fonctions F telles que
Vy, F(, y) continue..

On va simplement établir 'isomorphisme:
Fs(X x Y;R)> €, (Y, €.(X;R))
F——>F(-,y) fonct.dey
y—F(,y)=1,.
1) Cette application est bien définie. Si F est continue, y+ f, est une application

continue Y- %, (X). En effet si K est un compact de X, Vxe K, 3V, voisinage ouvert de
x et W, voisinage de y, tels que:

(x', y)eV,x We=|F(x', y') — F(x, yo)l <.

Les V. forment un recouvrement de K duquel on extrait un sous-recouvrement
fini (V,,) et W=\ W,, est un voisinage de y, tel que: y'e W=|f,. (x)—f,,(x)| <2¢
VxeKk.

2) Cette application est injective, et surjective car X est localement compact.

3) Cette application est un homéomorphisme linéaire par des principes généraux
(cf. par ex. [10] p. 10).

4) La proposition résulte alors de la remarque précédant I’énoncé (cf. aussi (1.4.3)).

2. Applications de la quasi-complétion

2.1 Caractérisation de E, par dualité

La Proposition suivante joue un role clé dans tout ce chapitre.

(2.1.1) PrOPOSITION. E elc. € recouvrement de E par des bornés. Supposons la
@-topologie sur E’ compatible avec la dualité.

Alors:

’ /> 7 *k
(Eg) = Egn(Eg) < E

ot T est la topologie sur E dont un systéme fondamental de voisinages de O est formé
des tonneaux de E.
Démonstration. On remarque d’abord que d’aprés le théoréme de Grothendieck

VY
([13]) Eg s’identifie au sous-espace de E* formé des x* dont les restrictions a tous les
¢léments de € sont continues.

N\
Puisque la &-topologie sur E’ est compatible avec la dualité, le dual de Eg est
ey
encore E, et 'adhérence dans Eg d’un borné disqué de Eg est égale & son adhérence
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A A
faible o (Eg, E), donc coincide avec sa bipolaire dans la dualité {E, Eg). (Eg), est donc

engendré par les (B°)°=T° ol B borné de Eg ce qui équivaut 3 7=B° tonneau de E
VA
@-bornivore (polaires prises dans Eg). Or tout TeX est S-bornivore, puisque les

ensembles de € qu’on peut supposer fermés (<> o (E, E’)-fermés lorsqu’on les sup-
pose disqués) sont o (E, E')-compacts (Th. de Mackey) donc complets pour cette
topologie et a fortiori complets pour la topologie de E (cf. [2] Prop. 8 p. 11). Finale-
ment les 7° (polaires dans E*) engendrent exactement (Eg)’.
(2.1.2) COROLLAIRE. a) E tonnelé, Eq compatible avec la dualité = E; quasi-complet.
b) E semi-réflexif, infratonnelé = E, quasi-complet.

Ve
Démonstration. a) (Eg);=FEgnE'=E'=>Eg quasi-complet. b) Les hypothéses
impliquent méme E tonnelé et on applique a).
On retrouve ainsi des résultats classiques.
La proposition qui suit, découle de (2.1.1) par dualité et sera constamment utilisée
sans référence.
(2.1.3) PROPOSITION. E elc., alors

E,=(E)nE

Démonstration. Considérons E comme dual de E,=F, E=Fg, ou € est I’ensemble
des parties équicontinues disquées faiblement fermées de E’. Soit 7 un ensemble
disqué faiblement fermé absorbant de E’, T° est borné faible de E donc borné de E et
T=T"° est polaire d’un borné de E (inversément, il est clair que la polaire d’un borné
de E est un tonneau de E’). La topologie ¥ sur E’ est ainsi la topologie forte et E;
s’identifie & I'intersection annoncée.

Remarque: On voit ici que Eg n’est en général pas tonnelé, par exemple (E,);=E,
n’est pas toujours tonnelé (si £ est un espace (%) on a:

E, tonnelé <>E, bornologique<>E distingué cf. [12] p. 73)

(2.1.4) CorOLLAIRE. Si E est infratonnelé, on a I’égalité topologique:

El =E"ﬂE

Démonstration. (E”’ dénote toujours le bidual fort). En effet dans ce dernier cas
E et E" induisent sur E la bonne topologie.
(2.1.5) CrITERE. E quasi-complet E=ENE" algébriquement
(resp. et infratonnlé) e (resp. et topologiquement)

2.2 Topologie tonnelée associée a un elc.

(2.2.1) Rappelons la proposition suivante:
E elc., T la topologie de Mackey t(E, E’), on a: E, tonnelé < E, quasi-complet.
(Pour la partie directe, on peut utiliser (2.1.2) et réciproquement une partie disquee
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faiblement fermée bornée de E’ est naturellement précompacte, donc compacte par
hypothése, d’ou équicontinue par définition de la topologie de Mackey.)

(2.2.2) Soit toujours E un elc.,, T, =T ’ensemble de ses tonneaux. On a vu que
I’espace Eg, n’est pas toujours tonnelé. Cela suggere de poser I,= ensemble des
tonneaux de Eg, et par induction transfinie, Vo ordinal:

sens. des tonneaux de Eq__, si « a un prédécesseur
: —_

- 1

AN U T, si « est ordinal limite.

¢<a
D’apres (2.1.1) on a:
(E;); = E*n(Eg) = E:,zi
et de fagon générale:
(Eza)' = (E;)q

comme on le voit par induction transfinie (en remarquant que si « est ordinal limite,
une forme linéaire x*e E* est dans (Ey_)’ si et seulement si elle est dans la polaire d’un
TeX,=J T, doncssi et seulement si elle est déja dans la polaire d’un Te T, ({ <a) ou

$<a

encore lorsque x*€(Eg,)’ d’ou:

(Ez,)' = J (Ezg)' = §L<Ja (E;)é = (E:r)a)

{<a

Si a est ’ordre de quasi-complétion de E,, on a donc
(E)).=(E,);+1=Ey, et Eg ontméme dual.

E4_ . est méme tonnelé. En effet soit T un tonneau de Eg_, , c’est aussi un tonneau de
Eq_ puisque ces deux espaces ont méme dual, donc par définition un voisinage de 0 de
E Ta+1*

(Lorsque I, est déja la topologie de Mackey de la dualité

<EI¢’ (E:r)a>

on a déja E4_tonnelé et égal 4 Eg_, )

Avec les notations précédentes, on pose:

DEFINITION. Eg_, | est appelé espace tonnelé associé a E et noté ici E,.

(2.2.3) PROPOSITION. E, F elc., f: E-F linéaire continue = Va ordinal f: Eq,—Fy_
continue.

Démonstration. Clair pour «=0 et induction transfinie (standard).

(2.2.4) Propriété universelle de la topologie tonnelée.

E, jouit d’une propriété (co)universelle duale de (1.1) et que nous signalons:
E~E>E est la seule application (& isomorphisme unique prés) d’un tonnelé dans E
jouissant de la propriété: VF tonnelé, f: F—E linéaire continue, f se factorise uni-
voquement par ig en application continue.
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Démonstration. Si Fi>E a la propriété annoncée, prenant les applications linéaires
de K dans E, on voit que i doit €tre un isomorphisme algébrique. (On aurait aussi pu
voir la surjectivité en prenant id. E, — F ou E, désigne E muni de la topologie locale-
ment convexe la plus fine, et application nulle £,%E aurait fourni I’injectivité.)
Prenant ensuite E,—%>E on voit que F; est moins fin que E, et puisque Fj est tonnelé
les applications id. Fg— E_doivent €tre continues d’ou id. Fz— E, continue, montrant
que Fy coincide avec E,. Le fait que id. E,—FE jouisse de la propriété résulte de
(2.2.3).

Si E est un elc., on peut bien entendu appliquer a E, tous les résultats des espaces
tonnelés. Signalons en deux:

Soit u: E,— F une application linéaire ou F est du type (¥). Pour que u:E,~F soit
continue, il faut et il suffit qu’il existe une topologie (elc.) 9 sur F moins fine rendant
u: E,—~F4 continue. (cf. [10] p. 217 Ex. 2.)

Si F est un espace de Ptak et s’il existe u: F— E linéaire continue surjective, alors
E, est un espace de Ptak et u: F—E, est un homomorphisme. (cf. [10] p. 216 Ex. 1 et
[21] p. 162.)

2.3 Complétion d’un bidual

Ce court chapitre a pour but d’examiner la question de Bourbaki ([3] p. 96 note):

«On ignore si, en général, le bidual E'' d’un espace localement convexe (séparé) E
est complet pour la topologie forte B(E", E'), méme lorsque E est supposé tonnelé».

Cette question est entiérement résolue par un exemple de Komura, ([16]); en
effet il donne méme un exemple d’espace de Montel (nécessairement quasi-complet
puisque les fermés bornés doivent étre compacts) non complet (rappelons que d’apres
les définitions, Montel = réflexif = tonnelé). Les remarques qui suivent ont €t¢ faites
indépendamment de cet exemple, et fournissent une quantité de cas dans lesquels E”
est non complet.

D’apres (2.1.4) on voit que si E est infratonnelé et E'' complet, alors E; est complet.

Ainsi tout exemple d’espace infratonnelé quasi-complet non complet fournit un
exemple d’espace dont le bidual n’est pas complet. Cette remarque n’est pas trés
féconde car les exemples habituels d’espaces quasi-complets non complets ne sont (en
général) pas infratonnelés:

E tonnelé = E. quasi-complet et E, infratonnelé = les bornés de (E,), sont équi-
continus <> les bornés de E sont équicontinus relativement a E, < les bornés de E
sont de dimension finie. Puisque E étant tonnelé a la topologie de Mackey, cela se
passe pratiquement lorsque E est somme directe de droites: espace muni de la topo-
logie localement convexe la plus fine; dans ce cas E,=][K est méme complet.

Par contre une remarque plus productive est la suivante: Tout espace infratonnelé
pour lequel E; n’est pas complet fournit un exemple d’espace dont le bidual n’est pas
complet. Dans le cas de ’exemple (1.2.2), on remarque que E est infratonnelé:
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E; a pour voisinages de 0 les parties de @ R x @ R qui induisent un voisinage de 0
N Ao

sur une premiere tranche dénombrable, et qui sont grossiéres finalement. Ainsi les
bornés de E, sont de dimension finie (sinon on pourrait trouver une suite infinite non
contenue dans une somme directe finie et construire un voisinage de 0 de £, n’absor-
bant pas cette suite) donc équicontinus, démontrant ainsi que E est infratonnelé.
Explicitement, ’élément de E:x=((0), (1)) considéré comme %€E’* est la forme

linéaire:
:((x), SR> XS (D)

(bien définie car f' (1) =0 sauf pour un nombre fini de 4) non continue sur E, car tout
voisinage de 0, V contient finalement un facteur R entier et X(V)=R.

Les espaces de fonctions continues (munis de la topologie de la convergence
simple) ont aussi des biduals (forts) non complets. Donnons encore quelques applica-
tions de la formule magique:

E,=E'nE.

(2.3.1) PROPOSITION. E elc. infratonnelé.
E; bornologique = E=E:le quasi-complété est complet.

Démonstration. Ej;, bornologique = E’' complet = E" > E=E,=FE.

(2.3.2) Donnons quelques cas ou le quasi-complété est le bidual:

PROPOSITION. a) E, semi-.réﬂexzf ) L B

E" quasi-complet
b) E; réflexif = E=E"

Démonstration. a) D’aprés [3] Ex. 11b p. 94 ona E'cE,cE, E,=E"'=E=E"
car E" est quasi-complet.

b) E, réflexif <> E; semi-réflexif et tonnelé = E, semi-réflexif et £” quasi-complet.
11 suffit alors d’appliquer a). Montrons comment on déduit le résultat suivant connu
(loc. cit.)

(2.3.3) PROPOSITION. E elc., E, quasi-complet

o = FE_ réflexi
E, semi-réflexif o PSR

e
Démonstration. E quasi-complet < E,=(E,); =E" n E, égalité avec les topologies
car les hypothéses impliquent que E, est infratonnelé (et tonnelé puisque quasi-
complet) donc d’aprés loc. cit. [3] E,=FE"" avec les topologies, ce qui équivaut a E|
réflexif car (E,),=E, et E"'=(E,)".

2.4 Complétion d’une limite inductive

Rappelons d’abord qu’une limite inductive (généralisée) peut ne pas étre complete,
méme si une suite de définition est formée d’espaces complets.
Par exemple si E et Fsont (%), Ly’ (E, F)(espace des applications linéaires bornées
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muni de la topologie de la convergence bornée) est un espace (£ %) (cf. [10] ou bien
[11] p. 15). Si (V,) est un systéme fondamental de voisinages de 0 disqués dans E,
L,(Ey,, F) en est une suite de définition.

Méme si E et F sont des (&) nucléaires, cet espace peut contenir un borné non
semi-complet: prenons E=F=R", {p,} I'ensemble des projecteurs unidimensionnels
sur les axes coordonnées, qui est manifestement équicontinu, mais on ne peut pas
trouver de V, tel que tous les p, se factorisent par E—E),_(ce dernier est toujours de
dimension finie) donc {p,} n’est pas contenu dans un espace de définition et donc non
complétant (cf. [10] Cor. 2 p. 199).

Grothendieck a posé la question dans [11] (p. 137):

«Un espace (£ F) quasi-complet est-il complet?».

Il semble que la réponse a cette question doive €tre négative (sans qu’on puisse
donner de contre-exemple).

On a retrouvé dans le cas des limites de suites de Banachs que la réponse est
affirmative (résultat figurant déja dans [10] Cor. 2 p. 229 et [12] Cor. 2 p. 77).
Montrons comment on peut appliquer les techniques précédentes et ne faisant pas
intervenir la théorie des espaces (2 %).

(2.4.1) PROPOSITION. E elc. quasi-complet limite inductive d‘une suite d‘espaces de
Banach. Alors E est complet.

Démonstration. E est donc bornologique (= infratonnelé) et tout borné de E est
image d’un borné d’un espace de définition. (On peut aussi voir pour ceci [11] Cor. 1
p. 16). E admet donc un systéme fondamental dénombrable de bornés, d’ou E, est
métrisable et bornologique et il suffit d’appliquer (2.3.1). On obtient aussi une démon-
stration élémentaire de la proposition suivante (cf. [12] Cor. 2 p. 77).

(2.4.2) PROPOSITION. E elc. (2 F) infratonnelé quasi-complet. Alors E est complet.

Démonstration. Ej est un espace (%) et E”' est (2. ) complet donc E=E;=E" nE
est complet.

De fagon générale, on a la proposition suivante montrant, dans le cas des (£ %)
(qui sont tonnelés) que si E est quasi-complet et E” complet, alors E est complet.

(2.4.3) PROPOSITION. E infratonnelé quasi-complet )

E"" complet \

Démonstration. Comme toujours:

= E complet

E=E,=E'nE=E

(2.4.4) Remarque. Un cas dans lequel on peut affirmer qu’une limite inductive est
quasi-compléte est celui ou les applications de transition: v;: E;— E; , ; sont compactes
puisqu’alors la limite est un espace de Montel (cf. [10] Cor. 2 p. 230). Cest le cas
des espaces de fonctions holomorphes sur un compact de C": # (K). (qui sont méme
complets: loc. cit. p. 231 exemple b.)
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2.5 Espaces de mesures et lim grossiéres
—

Rappelons encore qu’une limite inductive (non stricte) n’est en général pas séparée
(cf. par ex. [10] p. 195 Ex. 2).

Dans le cas ou I’ensemble d’indices est non dénombrable des exemples ont été
donnés par KOGMURA [16], et DouaDY [8] (limites inductives strictes). Montrons dans
ce paragraphe comment on obtient facilement des limites inductives (méme dénom-
brables) grossiéres. Il semble intéressant d’autre part de traduire en langage plus
moderne des propriétés bien connues des espaces de mesures.

(2.5.1) FAISCEAU DES MESURES D’UN ESPACE COMPACT.

Pour toutes les définitions intervenant ici, cf. [9]. Soit X un espace compact et
VU ouvert de X posons: ,

A (U):espace vectoriel des mesures (réelles) sur U (localement compact) et pour
V ouvert contenu dans U on a une application linéaire de restriction # (V)—.# (U),
les propriétés de transitivité étant satisfaites pour qu’on puisse parler du préfaisceau
d’espaces vectoriels .# sur X. En vertu du principe de localisation (cf. [4] Prop. 1,
p. 65), ce préfaisceau est méme un faisceau d’espaces vectoriels.

Si on munit les .# (U)des topologies vagues correspondantes — fournissant comme
dual " (U), espace des fonctions continues a support compact contenu dans U — les
restrictions

M(V)—> A4(U) pour VoU

sont vaguement continues comme transposées des X (V)< (U) (opération de
prolongement d’une fonction par 0!). On a donc un faisceau d’espaces vectoriels
topologiques.

On définit de la fagon habituelle les fibres du faisceau .# comme limites inductives
suivant ’ordonné filtrant décroissant des voisinages de x (voisinages ouverts), de sorte
qu’on a des applications canoniques

AU)> lim  A(U)= A,
x € U ouvert

et on peut munir .#, de la topologie li_r)n des topologies vagues.

(2.5.2) PROPOSITION.
X compact.
X non isolé < M, grossier.

Démonstration. La donnée d’une forme linéaire continue f: .#,—R équivaut a la
donnée d’une famille de formes linéaires .#(U)—R vaguement continues («com-
patibles»), donc de fonctions fye X" (U) telles que si U<V, f,, prolonge fy par 0. Le
support de f} est ainsi contenu dans tout ouvert U de V contenant x. Le support de
[y est ainsi réduit au point x.
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A, non grossier <> 3f#0: .# —R linéaire continue <> le support d’une f, (U
ouvert, 3x) n’est pas vide < f; multiple de la fonction caractéristique de x <> x
isolé.

Dans le cas ou X est métrisable, on obtient donc des limites inductives dénom-
brables grossiéres.

Signalons encore en passant quelques propriétés du faisceau .#.

(2.5.3) Le faisceau # n’est en général pas flasque, i.e. une mesure p sur U ouvert
< X ne se prolonge pas nécessairement a X entier (il faut qu’elle soit bornée puisque
X est compact; d’ailleurs ce faisceau ne serait pas flasque méme si X n’avait été
suppos€¢ que localement compact.)

Remarquons que toute f = " (X) =% (X) définit un homomorphisme de faisceaux
par:

hy: M — M
h,(U): #(U)—> 4 (U)
p— f-u  (plus précisément f|;-u)

et si A et B sont deux fermés disjoints de X, il y a deux voisinages compacts de 4 et B
respectivement qui sont encore disjoints donc une fonction fe®%(X) valant 0 au
voisinage de 4 et 1 au voisinage de B; pour cette fonction f, 4,: .# —.# est un endo-
morphisme induisant 0 au voisinage de 4 et 1 au voisinage de B. Ceci montre que le
faisceau # est fin et donc mou ([9] p. 157).

(Les germes de mesures sur un fermé A4 se définissent comme les éléments de la
limite inductive: # (A)=1£_IPJ (U)(U>A); on a naturellement une application

linéaire de restriction .# (X)— .# (A) puisque X est un tel ouvert contenant 4! Dire
que # est mou revient a dire que YA fermé, cette application est surjective.)

On aurait aussi pu considérer le préfaisceau des mesures bornées .#' et ’homo-
morphisme canonique injectif de préfaisceaux i: #'—.#

(2.5.4) PROPOSITION. # est le faisceau engendré par M* (ou faisceau associé a M,
ou encore image réciproque de M* par 15: X—X...)

Rappel: Cette proposition signifie que .# jouit de la propriété universelle suivante
vis-a-vis de #1:

VF faisceau sur X, N homomorphisme de préfaisceaux M —F,3 homomorphisme

de faisceaux unique rendant le diagramme suivant commutatif:

M S F
N
M

Démonstration. 11 suffit de vérifier que toute mesure sur U (ouvert de X) peut étre
obtenue par recollement de mesures bornées. Soit xe U, K, un voisinage compact de
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x, u induit sur K, une mesure pu, bornée car elle peut &tre considérée comme restric-
tion de la restriction de p a K, compact. Les p, sont bornées et se recollent en p.

3. Quelques propriétés des espaces nucléaires

3.1 Espaces a dual nucléaire

Nous examinons dans ce paragraphe des conditions qui assurent que le dual fort
d’un elc. est nucléaire et parvenons & une démonstration plus intrinséque (sans I’em-
ploi des suites sommables) du théoréme de Pietsch ([20] (4.3.1)).

On suppose ici, en plus des conventions générales, les elc. infratonnelés et complets
(donc tonnelés) de sorte que la connaissance de la topologie forte sur E’ permet de
retrouver la topologie de E; E sera un sous-espace fermé de E”’ (et semi-réflexif équi-
vaut ici a réflexif.)

(3.1.1) Introduisons les définitions commodes suivantes:

On appelle application binucléaire une application linéaire continue qui se fac-
torise en la composée de deux applications nucléaires (au moins) et multinucléaire une
application (lin. cont.) qui se factorise en un nombre arbitrairement grand d’applica-
tions nucléaires.

Si E est nucléaire, on rappelle que toute application linéaire continue de E dans
un Banach est multinucléaire.

(3.1.2) A titre indicatif signalons la propriété suivante des applications multi-
nucléaires:

u:E—-H multinucléaire ) .
,c=>u=u:E— H, nucléaire
u(E)cH, sous-espace fermé \

Méme idée de démonstration que dans [22] exposé 18: on considére u comme
composée de 3 applications nucléaires et on factorise ’application centrale par un
espace pré-hilbertien:

ELSF->G3H
v;\/i v
Do

et puisque dans %o tous les sous-espaces fermés ont un supplémentaire topologique,
v0:E—>v,v(E)c $, estnucléaire.

D’autre part wv, se prolonge en application $,—H et par compacité elle envoie

$=0,v(E) dans u(E) et application composée

E'S$—>u(E)—H,
est nucléaire puisque v, v I’est.
(3.1.3) PROPOSITION. Les conditions suivantes sur E elc. sont équivalentes.
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a) Toute application linéaire continue d’un Banach dans E est multinucléaire.

b) Toute application linéaire continue d’un Banach dans E est nucléaire.

c) Toute partie bornée de E est nucléaire.

d) E, est nucléaire.

Elles impliquent E Montel (donc réflexif)

Démonstration. a) = b) = c) Particularisation. (Les bornés de E sont toujours
contenus dans des bornés disqués fermés donc complétants.)

c) = d) Les bornés de E étant nucléaires sont relativement compacts, donc E est
un espace de Montel. 1l suffit de montrer que les applications canoniques E;— Ej, ou V
est un voisinage de 0 de E; — que I’on peut supposer polaire B® d’un borné disqué
fermé de E, donc compact, faiblement fermé et B= B°° — sont nucléaires. Par trans-
position, on obtient les applications canoniques:

E = E” «— (E/BO), - (E”)Boo = EB
qui sont nucléaires par hypothese.
d) = a) u: B— E application linéaire continue d’un espace de Banach B. Sa trans-

posée ‘u: B’ « E; est multinucléaire puisque E, est nucléaire, donc sa transposée "u sera

encore multinucléaire, d’ou le résultat pour u:
tty

u:B—>B"—>E"=E
(3.1.4) PROPOSITION.
E réflexif et
E, nucléaire < { E;®,F~B, .(E, F,)
isomorphisme topologique dans.

Démonstration. (cf. [11] Chap. 11 déf. 4 p. 34) 1l suffit de remarquer que E, nucléaire
= E réflexif = (E;),=E, et que B(E,, F,)=B(E, F,). La topologie (b, e) sur B est
celle de la convergence uniforme sur les parties bornées du premier facteur et équi-
continues du second.

(3.1.5) PROPOSITION.

E, nucléaire ( A 2 o
F Banach 2 = E® F—EQ® F surjective.

A
Démonstration. (Notations de Grothendieck [15]: ® produit tensoriel complété

de ®,.) D’abord E est réflexif d’ou E.=E;
EQ.F- %e(Ec; F(‘;) = Le(E;’ F)= Le(EI;’ F)= Lb(El,n F)
(Pour la premiére égalité, cf. [22] exposé 8.) et comme E et F sont complets, il en est

A4
de méme de I’espace L, (E;, F)(cf. [10] p. 134). Les éléments de E ® F définissent donc

N
des applications E,—F linéaires continues. Soit ue EQ F, @i: E,—»F D’application
associée qui est nucléaire puisque E; I'est (et F Banach) donc définie par un élément

N\
d’un (E;) 4 ®F. Ou A4 équicontinu disqué fermé, donc complétant, et a fortiori par un
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N N
élément de E"" @ F=E® F. C’est la surjectivité. (La démonstration est analogue a

celle de [22], exposé 18, mais si E est de plus du type (%) on conclut alors que

N\ v

E® F->E® F est un homomorphisme topologique.)

(3.1.6) Lorsque E est de plus supposé nucléaire, on a la caractérisation suivante
PIETSCH:

PROPOSITION. Si E est nucléaire, alors les conditions suivantes sont équivalentes:

a) E, nucléaire

N PO
b) VB Banach, Vue E® B, 34 borné disqué complétant de E tel que uc E, ® B.

N
Démonstration. a) = b) ue E®Q Bc L, (E,, B) car E est nucléaire et comme précé-

N
demment u: E,=E,— B est continue donc nucléaire et ue(E,), ® B ou A4 est équi-

continu disqué fermé (donc complétant) et ue E A/Q?)B comme dans 1’énoncé.

b) = a) E nucléaire, donc réflexif ici.

Montrons que toute application linéaire continue d’un Banach B dans E est
nucléaire (3.1.3): u: B— E donnée. E étant nucléaire satisfait a la condition d’approxi-

ey
mation ([11] Chap. I Cor. p. 170, Chap. II lemme 3 p. 37) et ueL(B, E)=B'QE

VAN
(cf. [22] exposé 14, Th. 3 (B,)), d’ou ue E, ® B’ par hypothése (A comme dans I’énon-
cé) et u: B— E — E nucléaire.

3.2 Quelques exemples

Donnons deux exemples d’espaces & dual nucléaire ot I’on vérifie directement que
le dual est nucléaire, sans passer par le critére du paragraphe précédent.

(3.2.1) PROPOSITION. Si E=lim E, espace du type (£ F) strict nucléaire, alors E,
est nucléaire. -

Démonstration. Les E, s’identifiant & des sous-espaces de E sont des () nucléaires.
Par transposition, on obtient les applications: E,«E; ou E, est un espace (Z%)
complet nucléaire. Montrons que E} a la topologie initiale relative a ces applications
(donc est nucléaire). Soit B un borné disqué de E, B? le voisinage de 0 correspondant
de E;. Puisque B est déja dans un E,, la polaire de B dans E, est un voisinage de O dont
’image réciproque par E,« E; est B°.

(3.2.2) PROPOSITION. E (&) séparable nucléaire, F(F) nucléaire

alors L, E, F) et son dual fort sont nucléaires. Les bornés de L,(E, F) sont métri-
sables et L, (E, F) est dense dans L (E, F) complet.

Démonstration. La premiére affirmation est classique ([11] Chap. II p. 48). La
métrisabilité des parties bornées de L,(E, F) provient du fait qu’elles sont équi-
continues (BANACH-STEINHAUS) et que sur les parties équicontinues, la topologie de la
convergence simple sur une partie totale est équivalente a la topologie de la conver-
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gence précompacte (équivalente a la topologie (b) car E est nucléaire). (cf. [3] Prop. 5
p. 23.)

La densité de L, (E, F) découle du fait que E étant nucléaire, satisfait a la condi-
tion d’approximation et £’ ® F est donc déja dense dans L (E, F).

3.3 Plongement d‘un (&) dans un produit de (&)

(3.3.1) Rappelons qu’on appelle espace de Schwartz ou du type (%) un elc. tel que
toute application linéaire continue de cet espace dans un Banach est compacte, et
(#<) un Fréchet Schwartz.

(On comparera avec:

E nucléaire <> Toute application de E dans un Banach est nucléaire
E=E, g, gy<> Toute application de E dans un Banach est de rang fini.
d’ou les implications:
E muni d’une topologie faible = E nucléaire = E(¥).)
Pour qu’un elc. E soit du type (%), il suffit que YV voisinage de 0 disqué, 1’ap-

N
plication canonique E— E, soit compacte. (Pour tout ceci, cf. [12] ou [10] p. 244 et ss).

(3.3.2) PrROPOSITION. E du type (&) (resp. nucléaire) F du type (¥) u:E—-F
linéaire continue,

alors il existe F\(F &) (resp. (¥) nucléaire) et v: F,—F linéaire continue injective

tori. :

telle que u se factorise par v w:E—F, —F.

Démonstration. En remplagant E par E/ker (1) on se raméne au cas oU u est injec-

tive. Soient (V,) les images réciproques par u d’un systeme fondamental dénombrable

de voisinages de 0 disqués de F.
N\
Puisque E— E,_est compacte (resp. nucléaire), il existe V'’ voisinage de 0 disqué de
N VN
E tel que E, —Ey, soit compacte (resp. nucléaire). Construisons de méme V" a

partir de V', V" a partir de V;, V" & partir de V"', etc...

v, v, v,
N N SN NS
v’ |4 V"

La topologie sur E dont un systéme fondamental de voisinages de 0 est donné par les
homothétiques des V, et V™ (et leurs intersections finies) est métrisable et en fait un
espace (&) (resp. nucléaire).

(3.3.3) ProPosITION. E du type (&) (resp. nucléaire).

Alors E est un sous-espace vectoriel topologique d’un produit de (#%) (resp. (£)
nucléaires).

Démonstration. 11 suffit d’appliquer la proposition précédente (3.3.2) aux applica-
N
tions canoniques E— Ej,.
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Notons que cette proposition n’est nouvelle que dans le cas des espaces de Schwarz,
car on sait que tout espace nucléaire est isomorphe vectoriel-topologiquement a une
puissance convenable de (s) (dénombrable si métrisable) ou (s) est ’espace des suites
a décroissance rapide muni de sa topologie habituelle qui en fait un espace du type (%)
nucléaire.

3.4 Appendice: Remarques sur les espaces a bornés métrisables

Il semble que tous les espaces nucléaires dans lesquels les bornés sont métrisables
ont un dual fort nucléaire. Donnons ici quelques remarques seulement sur ces espaces.

(3.4.1) PROPOSITION. E elc. B borné disqué métrisable de E.

Alors il existe sur E une topologie elc. éventuellement non séparée définie par un
systéme fondamental dénombrable de voisinages de0 et induisant sur B la topologie donnée.

Démonstration. En effet B étant métrisable, soit (V,) une suite de voisinages de 0
(disqués) de E telle que (¥, N B) soit un syst¢éme fondamental de voisinages de 0 de B,
et soit 7' la topologie sur E définie par le systéme de voisinages de 0: (V,). La con-
clusion résulte du lemme de Grothendieck ([12]):

Une topologie localement convexe J' sur un elc. E induit sur une partie disquée A de
E une topologie plus fine que celle induite par le topologie de E, 7, si et seulement si elle
donne un filtre de voisinages de 0 plus fin que 7 .

(3.4.2) COROLLAIRE. Si E elc. admet un systéme fondamental dénombrable de
bornés métrisables, il existe sur E une topologie métrisable moins fine que E, induisant
sur les bornés la méme topologie que E.

(3.4.3) Remarques. 1) Si la topologie métrisable I définie dans le corollaire précé-
dent est différente de la topologie de E, il y a un borné pour 9 non borné dans E. (En
effet, si tout borné pour 7 est borné dans E, I’application E;— E est bornée sur tout
borné donc continue puisque E est bornologique.)

2) Un espace infratonnelé (resp. réflexif) ayant une suite fondamentale dénom-
brable de bornés est du type (2 F) (resp. (2F) complet).

(En effet si E est réflexif, il est le dual de son dual fort, qui sous les hypotheéses de
I’énonceé est métrisable.)

(3.4.4) ProPOSITION. E nucléaire, B disque borné métrisable de E. Alors il existe F
du type (F) nucléaire et u linéaire continue E— F telle que u| g soit un homéomorphisme.

Démonstration. D’aprés (3.4.1), construisons (V,), suite fondamentale de voisinages
de 0 définissant une topologie 7 (éventuellement non sé€parée) induisant sur B la
bonne topologie. Soit N I’adhérence de O pour cette topologie: u: E—~(E;/N)"=F
I’application canonique (F est un espace de Fréchet). Il suffit alors d’appliquer (3.3.2).

(3.4.5) L’exemple suivant montre qu’un espace nucléaire complet dans lequel les
bornés sont métrisables n’est pas nécessairement bornologique.

Soit 7 un ensemble non dénombrable et munissons E=R'? de la topologie initiale
relative aux projections canoniques R‘”?—RYo ou I, parcourt ’ensemble des parties



Quelques questions d’espaces vectoriels topologiques 339

dénombrables de 1. E est un espace nucléaire complet comme limite projective de
nucléaires complets. Dans E les bornés sont de dimension finie, puisque sur un produit
dénombrable RY? la topologie est la topologie somme directe. E est donc non
infratonnelé (et donc non bornologique). E,=E_ est nucléaire.

4. Divers
4.1 Bornés dans les métrisables

On va examiner ici la question de Grothendieck [12] p. 119:

«Une partie bornée du complété E dun elc. métrisable est-elle contenue dans

l’adhérence dans E d’une partie bornée de E?»

Grothendieck lui-méme avait remarqué que c’était le cas si E était supposé
séparable ou du moins si le borné est séparable (cf. [10] p. 229). AMEMIYAH a donné
un contre-exemple dans le cas général (cf. [18] p. 407). Montrons comment a I’aide de
I’ensemble d’indices A défini en (1.2.1) on peut donner un contre-exemple plus simple.
(cf. [6].) L

(4.1.1) Soit F=H"(Agiserer) X [[R o0 H# (A) est Pespace de Banach des familles

N

sur A tendant vers 0 (suivant le filtre des complémentaires des parties finies). F est un
espace de Fréchet. E: sous-espace vectoriel métrisable engendré par les

(¢1(a,)=(p;;a) o0 A=(4)ed etou 3INtgq.n=N=a,=A1,
E={)Y o;(p;,a;)|a; =24 finalement, «eR, LeAd}.
finie
E=F. En effet, I'image par la premiére projection de E est % (A) et il est clair que E
est dense dans o (A) x [[R lui-méme dense dans F.

(4.1.2) PROPOSITION. B E, B"5{(p, 0)loet (A), || ¢ || <1} Alors l'image de B
par la projection sur [ [R est non bornée (donc B est non borné).

Démonstration. On va voir que si Bo{(¢;, 0) | Ae A} alors la projection de B dans
le produit est non bornée.

En effet si (¢;,0) est adhérent a B, B doit contenir un élément du type
Y. «(@;, a;), lg=A (A arbitrairement grand), aq>0. La suite ), o,q; ayant une

finie

croissance comparable a celle de o;4; ol A;=Sup 4;=Max 4;>4,=4 donc par la
projection indiquée, ’'image de B contient une suite ayant une croissance plus rapide
ou comparable a celle de a4 ou A. Ceci étant valable VAeA, cette projection est
non bornée d’apres le lemme de (1.2.1).

(4.1.3) KoMURA dans [16] a utilisé indépendamment I’ensemble d’indices 4, pour
fournir un exemple d’espace de Fréchet non séparable dans lequel tous les bornés
sont séparables. Dans sa démonstration, il semble utiliser le fait que A, est cofinal
(pour la relation d’ordre partiel introduite dans %) a 'ensemble de toutes les suites.
Cela n’est pas établi et montrons comment on peut se passer de ce résultat.
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Posons:

E={f:4o~R|p(f) =T 1f W) 4 <0}

muni des semi-normes (p,) qui en font un espace (%) non séparable, car il contient la
partie non séparable {@;};.,. Soit alors B un borné de E, M,=Sup p,(f)(fe B)
donc:

|f (DI 4, < p(f) < M, Vn(VfeB)

Choisissons N=(N,)>(M,) dou A<N Vi tq. f(A)#0. Par maximalité de A
on voit que f(1)=0 Vi3> A e A, et les bornés sont donc contenus dans les sous-espaces
métrisables séparables E; ={feE | f(A)=0Vi> 1,} d’ou le résultat.

4.2 Question du complété de Lg(E, F)

(4.2.1) Le Théoréme de Grothendieck ([13].) affirme que le complété de E¢ (E elc.)
est ’ensemble des applications linéaires dont les restrictions aux 4 €& sont continues.
Il serait intéressant de connaitre également le complété de Lg(E, F) ou E et F sont
des elc.

(4.2.2) QUESTION. Le complété de Lg(E, F) s’identifie-t-il a I'ensemble des applica-
tions linéaires E—F dont les restrictions aux Ae@ sont continues, espace noté
Homg (E, F).

La réponse est-elle affirmative lorsque F est complet? Je ne le sais que dans des
cas particuliers. (L’espace candidat est manifestement complet, et le théoréme de
Grothendieck donne une réponse affirmative dans le cas F=K. Nous verrons des
généralisations). La question est de savoir si Lg(E, F) est dense dans Homg (E, F).

La réponse est affirmative dans les cas suivants:

(4.2.3) Cas oti @={parties finies de E}

Cas ot E (2 %) et F complet (cf. [10] Cor 1 et 2 p. 234)

(4.2.4) Cas ot E=E,, Eg complet et F complet.

En effet, on sait alors que Lg(E, F) est complet, de plus Lg(E, F)=Homg(E, F)
car si u: E~F, ueHomg(E, F)Vx'eF', VAe®, x'u| 4 continue et (Th. de Grothen-

N\
dieck) Vx'eF’, x'ue Eg=Eg qui implique u: E,—F, continue puis u:E=E,»F —F
continue, donc ue L (E, F).

(4.2.5) Cas ou E satisfait a la propriété d‘approximation et est bornologique.
L.(E, F) est dense dans L.(E, F) complet (=Hom,(E, F) d‘aprés le raisonnement de
(4.2.4).)

Ici, E a la topologie 7 puisqu’il est infratonnelé et E_ est complet puisque E est
bornologique.

E'Q®F est dense dans E’®F dense dans L. (E, F) puisque E jouit de la propriété
d’approximation d’ou a fortiori, L,(E, F) est dense dans L_(E, F).

(4.2.6) PROPOSITION. E, (F) elc., F=]]F.
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Si les complétés des L (E, F;) sont les Homg(E, F,), alors le complété de Ls(E, F)
est Homg (E, £)=Homg(E, [ F).

En particulier, la réponse a (4.2.2) est affirmative si F est un produit de droites.

Démonstration. En effet, on a d’abord I'isomorphisme vectoriel topologique:

Le¢(E, F)—> Lg(E, F)

et il ne reste plus qu’a constater: Homg (E, [ F;)=][]Homg(E, F)).

(4.2.7) PROPOSITION. E, F elc., N sous-espace fermé de E admettant un supplémen-
taire topologique. Si le complété de Lg(E, F) est Homg(E, F), celui de Lg(E, N) est
Homg(E, N).

Démonstration. Soit p un projecteur continu F—N. La rétraction associée
Py:Homg (E, F)—»Homg(E, N) est continue et envoie Lg(E, F) sur Lg(E, N), d’ou la
densité de Lg(E, N) dans Homg(E, N) par ’hypothése de densité de Lg(E, F) dans
Homg (E, F).

4.3 Biduals d’espaces (£ F)

Dans certains cas particuliers, on peut affirmer que le bidual d’un (£ %) est limite
inductive des biduals des espaces de définition. (cf. [12] question 8 p. 121 et p. 83 et ss.
pour des réponses partielles.)

Par exemple dans le cas des limites inductives (non strictes) on a:

(4.3.1) PROPOSITION. E= li_ril E, espace (£ F) quasi-complet nucléaire.

Alors E est réflexif, =E" =li{)n E,

Démonstration. La nucléarité de E implique que les bornés sont précompacts donc
E est méme Montel (car quasi-complet); I’égalité E;’=lirz1E;' provient alors du dia-
ramme commutatif’:
g uta E,—> E
Lol

E'—>limE! ~E' =E.
—.-)

Le triangle étant commutatif car U E,=FE.

(4.3.2) ProPOSITION. (E,) suite d’espaces (¥), u,:E,—E,,, linéaire continue,
E=lim E, quasi-complet. Si u,(E,) dense dans E, ., et si les applications canoniques
E,-22>E sont injectives alors E" =1i_r)n E, .

Démonstration. L’hypothése d’injectivité n’est pas essentielle et on peut toujours
s’y ramener en remplagant E, par E,/ker(¢,). Il est immédiat que ¢, (E,) est dense
dans E, donc la transposée ‘g, est injective, et par propriété universelle de E on a
E'=nE, Comme on I'a déja vu dans (3.2.1) (’hypothése de quasi-complétion
remplagant ici ’hypothése que E est (&£ %) strict: tout borné est image d’un borné
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d’un E,) E; a la topologie initiale relativement aux ‘¢,, ou topologie intersection des
E,. (E, est complet comme dual d’un bornologique ou comme intersection de com-
plets, méme (Z %) complets). Toute forme linéaire continue sur E’ provient d’une
forme linéaire continue sur un E, (cf. [10] p. 104) donc les E, engendrent E’’. Soit V'
disqué — E” tel que ses images réciproques dans les E, soient des voisinages de 0
(Vn); il contient donc la polaire d’'un borné B, < E, et la polaire de V est un ensemble
B’ borné dans chaque E,. Tout voisinage de 0 de E’ étant déja voisinage de 0 dans un
E, absorbe B’, d’ou B’ est borné dans E’ et V voisinage de 0 dans E”’. Ceci montre
que E" a la topologie la plus fine rendant continues les applications:

E, - E".
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