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Anwendungen der Homologietheorie der Liealgebren auf
Zentralreihen und auf Prisentierungen

M. A. Knus und U. STAMMBACH!)
Forschungsinstitut fiir Mathematik der ETH, Ziirich

Einfiihrung

In Arbeiten von STALLINGS ([11]) und StAMMBACH ([12]) werden verschiedene
Anwendungen der Homologiegruppen einer beliebigen Gruppe diskutiert. Die Me-
thoden, die dort beniitzt werden, lassen sich auch auf Liealgebren iibertragen. Mit
dieser Ubertragung befasst sich die vorliegende Arbeit. Die Resultate, die wir er-
halten, sind analog zu denjenigen fiir Gruppen; sie betreffen einerseits Aussagen iiber
die absteigende, bzw. aufsteigende Zentralreihe von Liealgebren, anderseits eine
Formel fiir die zweite Homologiegruppe einer Liealgebra, die eine Prisentierung be-
niitzt, sowie ein Reduktionstheorem fiir die Homologie der Liealgebren. Wir danken
Prof. B. ECKMANN und F. SiGRisT fiir viele wertvolle Diskussionen.

Wir geben zuerst einen Uberblick iiber die Hauptresultate: Es sei L eine beliebige
Liealgebra iiber einem Korper K, L ein Lieideal von L. Mit H, (L) bezeichnen wir die
n-te Homologiegruppe von L mit Koeffizienten in K.

Aus der Spektralreihe von HoCHSCHILD-SERRE fiir die Homologie der Liealgebren
(s. [S5]) wird eine exakte Sequenz hergeleitet, welche die natiirlichen Homomorphismen
H, (L)-H, (L/L) und H,(L)-H,(L/L) miteinander verkniipft. Sie lautet

H, (L)~ H, (L|L)~ LJ[L, L]~ H, (L) > H, (L/L) » 0. (B)

Diese Sequenz wird auf Zentralreihen sowie auf Prasentierungen von Liealgebren
angewendet.

a) ABSTEIGENDE ZENTRALREIHE

Wir bezeichnen mit L, und M, die n-ten Glieder der absteigenden Zentralreihe der
Liealgebra L bzw. M.

Induziert der Homomorphismus ¢ : L— M einen Isomorphismus
@: L|[L, L1~ M/|[M, M) und einen Epimorphismus ¢: H,(L)—H,(M), so induziert
@ fiir jedes n=0 Isomorphismen ¢:L|L,~M|M,.

1) Wihrend der Niederschrift dieser Arbeit stand der erstgenannte Autor im Genuss eines
Battelle-Stipendiums und der zweite im Genuss eines Stipendiums des Schweiz. Nationalfonds zur
Forderung der wissenschaftlichen Forschung.
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Als Anwendung davon ergibt sich folgender Satz, dessen Analogen im Falle der
Gruppen von STALLINGS ([11]) bewiesen worden ist:

Es sei L eine Liealgebra mit H,(L)=0, (x,),.; eine Menge von Elementen aus L,
deren kanonische Bilder in H, (L)~ L/[L, L] linear unabhdngig iiber K sind. Dann ist
(x,)scs €in freies Erzeugendensystem einer freien Unteralgebra von L.

Daraus ergeben sich unmittelbar die Resultate von LEGER in [8], sowie einige
Sdtze liber endlich dimensionale bzw. halbeinfache Liealgebren.

b) AUFSTEIGENDE ZENTRALREIHE

Z,(L) und Z,(M) seien die n-ten Glieder der aufsteigenden Zentralreihe von L
bzw. M.

Der Homomorphismus ¢:L— M bilde fiir ein gewisses n=0 Z,(L) in Z,(M) ab.
Induziert dieser Homomorphismus einen Isomorphismus ¢:L[[L, Ll=M|[M, M],
einen Epimorphismus ¢:H,(L)->H,(M) und einen Isomorphismus ¢:L|Z,(L)=
M|Z, (M), so ist ¢ selbst ein Isomorphismus.

Ein Gegenbeispiel zeigt, dass die Voraussetzung liber die 2. Homologiegruppe not-
wendig ist.

¢) ERZEUGENDE UND RELATIONEN

Die Liealgebra L sei durch eine Prisentierung (R, F), d.h. als Quotient L= F/R
einer freien Liealgebra F gegeben. Aus der exakten Sequenz (B) erhilt man eine
Hopfsche Formel fiir die 2. Homologiegruppe:

H, (L) = ([F, F] n R)[[F, R].

Die exakte Sequenz (B) ergibt sich als Spezialfall einer allgemeineren Sequenz (A).
Nach HockscHILD-SERRE ([4]) ldsst sich diese allgemeinere Sequenz verwenden, um
ein Reduktionstheorem fiir die Homologie der Liealgebren zu beweisen:

Hn(L’ A) = Hn—2(L7 A ®KR/[R’ R])s

wobei L= F/R und A ein beliebiger rechts L-Modul ist.

Bemerkung: Ist L eine p-Liealgebra (p eine Primzahl) iiber einem Korper der
Charakteristik p, so kann man neben der gewOhnlichen Homologie auch die Homo-
logie betrachten, die mit Hilfe der eingeschrinkten Enveloppe definiert ist (siehe
HocHscHILD [3]). Ein Teil der Sitze ldsst sich auch auf diese Homologietheorie iiber-
tragen. Die (vor allem formalen) Anderungen haben wir am Schluss der Arbeit in
Abschnitt 7 zusammengestellt. Es ergibt sich dabei eine bemerkenswerte Analogie
zwischen der Homologie der p-Liealgebren und der Homologie der Gruppen mit
Koeffizienten im Primkorper Z, (s. [11], [12]).
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1. Notation

Es sei L eine Liealgebra iiber dem Korper K, U(L) die universelle Enveloppe von
L, A4 ein rechts-L-Modul, d.h. ein rechts-Modul iiber U(L). Dann sind bekanntlich
(s. [2]) Homologiegruppen definiert

H,(L, A) = Tory P(4, K).

Fiir ein Lieideal L in L bezeichnen wir mit [L, L] das Lieideal, das von allen Klammern
[/, I] mit le L und /e L in L erzeugt wird. Unter der durch L bestimmten absteigenden
Zentralkette von L verstehen wir die absteigende Folge von Lieidealen L, i >0, die
wie folgt definiert sind:

JL=L L=[L,, L]

Die durch L bestimmte absteigende Zentralkette von L heisst absteigende Zentral-
reihe von L (s. [1]); ihre Glieder werden mit L; bezeichnet. ,L ist der Durchschnitt
aller ;L fiir i>0; L, ist der Durchschnitt aller L; fiir i >0.

Unter dem Zentrum Z (L) von L verstehen wir (s. [1])

Z(L)={leL/[l,I'}=0 furalle [l'eL}.

Analog wie fiir Gruppen ist dann die aufsteigende Zentralreihe {Z,(L)} von L
definiert (s. [1]):

Zo(L)=0, Z(L)=Z(L),...,Z{(L)/Z;-,(L) = Z(L/Zi—l (L)) .

Eine Liealgebra L heisst nilpotent (s. [1]), wenn eine der beiden folgenden
(dquivalenten) Bedingungen erfiillt ist:

(i) Es existiert eine Zahl » mit L,=0.

(if) Es existiert eine Zahl m mit Z,,(L)=L.

2. Exakte Sequenzen

L sei ein Lieideal von L. Dann ist H,(L, 4) ein rechts-L/L-Modul. Nach
HocCHSCHILD-SERRE existiert dann eine Spektralreihe

H,(L/L, H,(L, A))= H,(L, 4),

die gegen die Homologie von L konvergiert.
Nach [4, 5] lasst sich daraus die folgende exakte Sequenz herleiten:

Satz 1: Ist H (L, A)=0 fiir 1 <q<m(m>1), dann ist folgende Sequenz (A) exakt:

Hm(Li A) - Hm(L/l—" AL) - Hm—2(L/1:: H, (E’ A)) - Hm—l(Ls A)—)
~Hy(LIL, Af)>0.  (A)
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Dabei verstehen wir unter 4y (= Ho(L, 4)) den Modul 4 modulo dem Untermodul,
der von allen Elementen der Form al mit ae 4 und /e L erzeugt wird.

Wir nehmen speziell A=K mit der trivialen L-Modulstruktur und schreiben fiir
H,(L, K) kurz H,(L).

SATZ 2: Ist L ein Lieideal von L, so ist die folgende Sequenz (B) exakt:
H, (L)~ H,(L/L)- L[L, L] - H, (L) - H,(L/L) >0 (B)

und diese Sequenz ist natiirlich beziiglich L und L.
Beweis: Fiir m=1 wird die Voraussetzung des obigen Satzes leer und man erhélt
wegen Ki=K

H, (L)~ H,(L/L) — Ho(L/L, H, (L)) ~ H, (L)~ H, (L/L) - 0.

Nach [2] ist H, (L)~ L/[L, L]. Die Operation von L/L auf H, (L)~ L/[L, L] ist indu-
ziert durch L:I+[L, L]-[], 1]+[L, L].
Daraus ergibt sich
Ho(L/L, H (L)) = (H, (D)), = L/[L, L].

Der Beweis fiir die Natiirlichkeit der Sequenz verlduft wie im Fall der Gruppen
(s. [12]). Wie lassen ihn deshalb weg.

Bemerkung: Die Homomorphismen L/[L, L]-H,(L)~L/[L, L] und H, (L)~
L/[L, L]-H,(L/L)=L/L/[L/L, L/L] lassen sich nach [5] mit den iiblicherweise in
den,,abelsch gemachten‘‘ Liealgebren durch die Einbettung L— L bzw. die Projektion
L— L/L induzierten Abbildungen identifizieren.

3. Anwendungen auf die absteigende Zentralreihe

SATZ 1: Der Liealgebrahomomorphismus ¢:L—M bilde das Ideal Lc L in das
Ideal M = M ab und erfiille folgende Voraussetzungen

1) ¢:H,(L)= H,(M),

2) ¢:H,(L)— H,(M) sei epimorph,

3) o:L/L=M|M.

Dann induziert @ fiir jedes n=0 Isomorphismen
o:L[,L=M|M.

Ferner ist ¢:L|,L—M]|,M monomorph.
(Ist @ : L— M selbst epimorph, so ist auch ¢:L|,L=M]|,M.)
Der Beweis des ersten Teils der Behauptung wird durch Induktion nach n gefiihrt:
Fiir n=0 ist dieser Teil der Behauptung identisch mit der Voraussetzung 3).
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Sei n>1. Die Induktionsvoraussetzung lautet
qD:L/n—IZ-‘;M/n—-IM' (4)

Durch ¢ wird die exakte Sequenz (B) fiir (,_,L, L) in diejenige fiir (,_,M, M) ab-
gebildet. Mit Hilfe des Fiinferlemmas folgt dann aus 1), 2) und 4)

(P:n-*ll-:/nz;n—lM/nM' (5)
Weiter wird die exakte Sequenz (von Liealgebren)
0— n——lZ/nE - L/nt - L/n—ll: -0

in die entsprechende Sequenz fiir die Liealgebra M abgebildet. Aus 4) und 5) folgt
dann mit Hilfe des Fiinferlemmas
o:L[,L=M|M.

Der Beweis fiir den zweiten Teil der Behauptung ist trivial.
Fiir L=L und M= M erhilt man:

KOROLLAR 1: Der Liealgebrahomomorphismus ¢:L— M erfiille folgende Voraus-
setzungen.

1) ¢: Hy (L) = H, (M),

2) ¢: H, (L) » H, (M) sei epimorph.

Dann induziert ¢ fiir jedes n=0 Isomorphismen

¢:L/L, = M|M,.

Ferner ist ¢:L|L,— M|M, monomorph.
(Ist ¢ :L— M selbst epimorph, so ist auch ¢:L|L,=~M|M,.)

KOROLLAR 2: Es seien L und M nilpotente Liealgebren. Induziert der Liealgebra-
homomorphismus @:L— M in den ersten Homologiegruppen einen Isomorphismus und
in den zweiten Homologiegruppen einen Epimorphismus, so ist ¢ selbst ein Isomorphis-
mus @: L= M.

Als Anwendung erhilt man folgenden

SATZ 2: Es sei L eine Liealgebra mit H,(L)=0, (X,), s eine Menge von Elementen
aus L, deren kanonischer Bilder in H,(L)=L|[L, L] linear unabhdngig iiber K sind.
Dann ist (x,),c; €in freies Erzeugendensystem einer freien Unteralgebra von L.

Beweis (siehe [11]): Da L— H, (L) epimorph ist, kann man die Menge (x,),, ver-
grossern, bis ihr Bild in H; (L) eine Vektorraumbasis von H; (L) ist.

Wir beweisen, dass diese grossere Menge (x,),s, €in freies Erzeugendensystem
einer freien Unteralgebra von L ist.

Sei F die freie Liealgebra erzeugt durch (y,),.;- und sei A: F— L die Abbildung,
die durch h(y,)=x, definiert wird. 4 induziert offensichtlich einen Isomorphismus
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H,(F)=H,(L) und wegen H,(L)=0 einen Epimorphismus H,(F)-H,(L). Nach
Korollar 1, ist h: F/F,— L/L, monomorph. Fiir eine freie Liealgebra ist aber F,=0
(s. [9]). Damit ist F—»L— L/L, monomorph, also auch A: F—L.

KOROLLAR 1: (LEGER [8]). Es sei eine L Liealgebra mit den Eigenschaften:
1) H,(L)=0
2) L besitzt einen Unterraum T mit T [L, L] =0 und T erzeugt L.
Dann ist L frei.
Ahnlich lasst sich auch das andere Resultat von LEGER in [8] beweisen.

KOROLLAR 2: Ist L eine endlich dimensionale Liealgebra mit H,(L)=0, so ist ent-
weder H, (L)=0, oder es gilt H, (L)~ K und [ L, L]=[[L, L], L].

Beweis: Wire dim H; (L)> 1, so wiirde L eine freie, von mindestens zwei Elemen-
ten erzeugte Unteralgebra enthalten. Dann wére L also unendlich dimensional. Folg-
lich ist entweder L/[L, L]=0 oder L/[L, L]=~K. Falls L/[L, L]~ K betrachtet man
die exakte Sequenz (B) fiir ([L, L], L)

H, (L)~ H,(L/[L, L]) - [L, LJ/[[L, L], L] - H,(L) > H,(L/[L, L]) > 0
Da H,(L/[L, L]) =0 und H, (L) = H, (L/[L, L)), ist [L, L] = [[L, L], L].

KOROLLAR 3: Ist L eine endlich dimensionale nilpotente Liealgebra mit H,(L)=0,
so ist dimL<1.

Beweis: Wir nehmen an L#0. Nach Korollar 2 ist [L, L]=[[L, L], L]. Da L nil-
potent ist, muss [ L, L]=0 und somit L= K sein.

Fiir den Rest dieses Abschnittes setzen wir speziell voraus, dass K ein Korper der
Charakteristik 0 ist und dass alle Liealgebren endlich dimensional sind.

Unter dem Radikal R einer Liealgebra L versteht man das grosste auflosbare
Ideal von L. Eine Liealgebra mit R=0 heisst halbeinfach (s. [1]). Fiir eine halbein-
fache Liealgebra L ist bekanntlich H; (L)=H,(L)=0 (s. [7], S. 96).

SATZ 3: Sei L eine Liealgebra mit H, (L)=0und H, (R)=0. Dann ist L halbeinfach.
Beweis: Da L=[L, L], ist R nilpotent (s. [1]), S. 64, 65). Nach Korollar 3 ist dann
dimR<1. Aus L=[L, L] und dim R<1 folgt leicht, dass [L, R]=0. In der exakten
Sequenz (B) fiir (R, L):
H,(L)— H,(L/R) - R/[L, R] > H,(L) - H,(L/R) -0
ist H,(L/R)=0, da L/R halbeinfach ist. Also ist R=[L, R]=0.

Bemerkung 1: Aus der Exaktheit der Sequenz (B) fiir (R, L) an der Stelle R/[L, R]
folgt, wegen H, (L/R)=0, dass [L, L]n R=[L, R] ([1], S. 81). [L, L] n R ist das nil-
potente Radikal von L.

Bemerkung 2: Falls H,(R)=0, ist die folgende Sequenz (A) fiir (R, L) exakt:

H, (L) - H3(L/R) — H, (L/R, H, (R)) — H, (L) - Hy(L/R) - ---.
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Da L/R halbeinfach ist, gilt H; (L/R, H;(R))=0, H,(L/R)=0. Aus H,(R)=0 folgt
also direkt H,(L)=0.

4. Anwendungen auf die aufsteigende Zentralreihe

Im folgenden betrachten wir wieder Liealgebren L iiber einem beliebigen Korper.
Eine Zentralkette heisst endlich, wenn sie nach endlich vielen Schritten mit O endigt.

LEMMA: Die durch L bestimmte absteigende Zentralkette von L ist genau dann end-
lich, wenn eine Zahl n existiert mit L= Z,(L).

Beweis: Es geniigt offenbar zu zeigen, dass L« Z, (L) dquivalent ist mit [L, L] <
Z,_((L). Diese Aussagen sind aber beide dquivalent zu der folgenden: Fiir alle /e L
und leL ist [1,[]=0 mod Z,_, (L).

SATZ: Das Ideal L von L sei fiir ein gewisses nin Z,(L),das Ideal M von M fiir ein
gewisses m in Z, (L) enthalten. Der Liealgebrahomomorphismus ¢:L—M bilde das
Ideal L in das Ideal M ab und erfiille folgende Voraussetzungen:

1) ¢:H, (L) = H, (M),

2) ¢: Hy (L) > H, (M) sei epimorph,

3) o: LIL =~ M|/M.

Dann ist bereits o: L= M.

Der Beweis ergibt sich direkt aus dem Satz in Abschnitt 3, wenn man beachtet,
das eine Zahl g existiert, sodass sowohl ,L=0 als auch ,M =0 ist.

Speziell erhalten wir folgendes

KOROLLAR: Der Homomorphismus ¢ : L— M mit ¢ (Z(L))cZ (M) erfiille folgende
Voraussetzungen:

1) ¢:LJ[L, L]= M/[M, M],

2) ¢:H,(L)— H,(M) sei epimorph,

3) o:L|Z(L)y= M|Z(M).

Dann ist bereits ¢: L= M.

Fiir reduktible Liealgebren (s. [1]) ist die Voraussetzung 2) iiber die 2. Homologie-
gruppe iiberfliissig. Es stellt sich die Frage, ob diese 2. Voraussetzung im allgemeinen
Fall notwendig ist. Diese Frage ist zu bejahen: Wir geben ein Beispiel, in dem die
Voraussetzungen 1) und 3) erfiillt sind, ¢ aber kein Isomorphismus ist.

Wir nehmen fiir L die Liealgebra S M, (K) der nxn Matrizen mit Spur 0 iiber
einem Korper K der Charakteristik p, wo # =0 (mod p) und nicht gleichzeitig n=2
und p=2. Fiir M nehmen wir L/Z(L)=PSM,(K). Das Zentrum von L besteht aus
allen Vielfachen der Einheitsmatrix. ¢ sei die kanonische Projektion. Es ist nun
(s. [14])) [L, L]=L und somit die erste Voraussetzung erfiillt. Weiter ist PSM,(K)
einfach (s. [14]), hat also insbesondere kein nichttriviales Zentrum. Somit ist auch
die dritte Voraussetzung erfiillt. ¢ besitzt aber einen nicht trivialen Kern.
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5. Hopfsche Formel fiir H, (L)

Die Liealgebra L sei durch eine Priasentierung (R, F), d.h. als Quotient F/R einer
freien Liealgebra F gegeben. Da H, (F)=0 ist, lautet unsere exakte Sequenz (B) fiir
(R, F):

0- H,(L) - R/[F, R]3F|[F, F]- H,(L)>0.
Man erhalt daraus H, (L) als Kern von eg:
H,(L) =~ ([F, F]nR)/[F, R].

Diese Formel fiir die 2. Homologiegruppe einer Liealgebra ist analog zur Formel
fiir die 2. Homologiegruppe einer Gruppe, die H. HoPF in [6] angegeben hat.

6. Reduktionstheorem

SATZ: Es seien F|R eine Prdsentierung der Liealgebra L und A ein rechts-L-Modul.
Dann ist fiir n>3
Hn (L’ A) = Hn—Z(L9 A ®KR/[R’ R]) .

Dabei ist AQ ¢ R/[ R, R] als L-Modul aufzufassen (siche unten).

Beweis: Nach Sirsov-WITT ([10], [13]) ist R eine freie Liealgebra; also ist fiir n>2
H, (R, A) = 0. Die exakte Sequenz (4) fiir (R, F, A) existiert also fiir alle m > 1. Mit
H, (F, A) =0 fiir n > 2 folgt daraus

H,(L, A) = H,,_,(L, H, (R, A)).

Da die Liealgebra R auf A trivial operiert, ist H, (R, )~ A®x R/[R, R]. Darauf
operiert L wie folgt:

(@®(r+[R,R])I=al®(r+[R,R]) —a®([y,r] + [R, R]);

yeF ist dabei ein Reprisentant von /e L.
Im Falle der Gruppen wurde das cup-Produkt-Reduktionstheorem von HoCH-
SCHILD-SERRE in [4] in analoger Weise bewiesen.

7. p-Liealgebren

In diesem Abschnitt bezeichnet L eine p-Liealgebra (p eine Primzahl) iiber einem
Korper der Charakteristik p mit der p-Abbildung [-I'P), Je L. U’ (L) ist ihre einge-
schriankte Enveloppe. Ferner ist 4 ein p-Modul iiber L. (Fiir die Definitionen ver-
weisen wir auf [1]).

Im weitern fithren wir noch folgende Notation ein: Ist L ein p-Lieideal in L, so
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verstehen wir unter L4 L die p-Lieunteralgebra von L, die von allen Elementen der
Form [/, I']+1"™ mit le L und I, I"€ L erzeugt wird. Es ldsst sich dann eine absteigen-
de p-Zentralreihe {L?} definieren:

=L, LP=L4ILP,.

Man verifiziert leicht, dass diese Reihe die am schnellsten absteigende Zentral-
reihe ist, deren sukzessive Quotienten triviale p-Abbildungen besitzen. Ferner zeigt
man, dass die L p-Lieideale von L sind und dass ein p-Liealgebrahomomorphismus
@:L— M fiir jedes i>0 L'” in M abbildet.

HocHscHILD definierte in [3] eine Homologie von p-Liealgebren durch

H,(L, A) = Tor? P(4, K).

Nach [2] ergibt sich daraus Hy (L, A)~ A, und H; (L)=H, (L, K)=I'/(I'*= L|L % L,
wobei I’ das Augmentierungsideal der eingeschrankten Enveloppe U’ (L) ist. Man zeigt
weiter, dass fiir ein p-Liealgebraideal L von L U'(L) eine normale Unteralgebra
(s. [2, S. 349]) von U’ (L) ist. Dann existiert nach [2, S. 349] eine Spektralreihe, analog
zuderjenigen von HOCHSCHILD-SERRE fiir die gewohnliche Homologie der Liealgebren:

H,(L/L, H)(L, A))= H, (L, 4).

p
Daraus ldsst sich wie in Abschnitt 2 eine exakte Sequenz herleiten:
H;(L)- Hy(L/L)-» L/L # L - H; (L)~ H;(L/L)—0. (B")

Mit Hilfe dieser exakten Sequenz ergeben sich dann zu Satz 1 und Korollar 1 aus
Abschnitt 3 analoge Sidtze. Wir erwiahnen speziell:

SATZ: Es sei ¢:L— M ein p-Liealgebrahomomorphismus mit den Eigenschaften:
1) ¢:Hj(L)= H; (M),
2) ¢@:H,(L)- Hy;(M) epimorph.
Dann induziert ¢ fiir jedes n=0 Isomorphismen:
@:LILP =~ MM .

Auch Satz und Korollar aus Abschnitt 4 iiber die aufsteigende Zentralreihe lassen sich
ubertragen. An Stelle des Zentrums einer Liealgebra tritt dabei

ZP(L)={leL|[l,I'1=0 firalle I'eL, =0},

wihrend die aufsteigende p-Zentralreihe Z P wie die gewdhnliche aufsteigende Zen-
tralreihe definiert ist, wenn man in deren rekursiven Definition (siche Abschnitt 1)
immer Z® an Stelle des Zentrums setzt.

Jede p-Liealgebra L lisst sich als Quotient einer freien p-Liealgebra F’ darstellen:
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F’|R' = L.?) Dabei gilt wiederum H,(F')=0. Analog wie in Abschnitt 6 ergibt sich
dann aus der Sequenz (B’) fiir (R’, F’) eine Hopfsche Formel fiir die 2. Homologie-

gruppe: Hy(L)=((F # F)nR)/F % R'.

Da ferner nach [13] R’ eine freie p-Liealgebra ist, folgt auch das Analogon des
Reduktionstheorems in Abschnitt 6.
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2) Eine freie p-Liealgebra lisst sich bekanntlich wie folgt erhalten: Ist T(V) die Tensoralgebra
iiber dem Vektorraum V und L’ T(V) die assoziierte p-Liealgebra ([x, ¥y] = xy — y x, x[P] = xP), s0 ist
die p-Lieunteralgebra, die von Vin L’'T(V)erzeugt wird, die freie p-Liealgebra iiber V.
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