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Zur Differentialrechnung in limitierten Vektorraumen

Von E. Binz und W. Meier-Solfrian in Zurich.

Einleitung

In [1] weist H. H. Keller auf die Schwierigkeiten hin, die bei der Begrûndung
einer Differentialrechnung in topologischen Vektorrâumen auftreten (Définition der
hôheren Ableitungen). Zur Oberwindung dieser Schwierigkeiten schlug er vor, eine

Differentialrechnung in der umfassenderen Kategorie der limitierten Vektorrâume [2]
aufzubauen, was in den vorliegenden Notizen versucht wird. Man vergleiche auch [7].

Die grundlegenden Begriffe unserer Betrachtungen sind erstens die Ableitung einer

Abbildung zwischen limitierten Vektorrâumen ûber dem Kôrper R der reellen Zahlen
[3], und zweitens die Limitierung Ac der stetigen Konvergenz von Funktionenrâumen
[3], [4], [7].

Im Falle von Abbildungen zwischen topologischen Vektorrâumen stimmt der
verwendete Differenzierbarkeitsbegriff mit demjenigen von S. Lang [5] ûberein,
welcher seinerseits eine Verallgemeinerung des von J. Dieudonné [6] verwendeten

Ableitungsbegriffes fur Abbildungen zwischen Banachrâumen darstellt.
Wir betonen, dass nach H. H. Keller [1] fur zwei Banachrâume E und F im

allgemeinen Ac auf dem Vektorraum ££V(E\ F) der />-fach linearen Abbildungen von
Ep=Ex~xE nach F grôber ist als die ûbliche Normtopologie.

Im ersten Paragraphen stellen wir die im folgenden verwendeten Begriffe und
Aussagen zusammen.

§ 1. Definitionen und Hilfssâtze

Seien Zund Y zwei Limesrâume. Auf der Menge fë(X; Y) der stetigen Abbildungen

von Xnach Ffûhren wir die Limitierung Ac der stetigen Konvergenz ein [4]. Sie

ist unter allen Limitierungen A auf ^(X; Y), fur welche die Evaluationsabbildung

(o:V(X; Y)A xX-+Y

stetig ist, die grôbste; dabei bedeudet ^(X; Y)AxXdie mit der Produktlimitierung
versehene Menge të(X; Y)xX. Daher ist Ac durch folgende universelle Eigenschaft
charakterisiert: Eine Abbildung/vom Limesraum S nach të(X; Y)Ac ist genau dann

stetig, wenn

û)°(/x idx):S xX-*Y
stetig ist.
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Der folgende in [4] bewiesene Satz wird fur die Théorie der hôheren Ableitungen von
Abbildungen zwischen limitierten Vektorrâumen wesentlich verwendet.

Satz 1. Die nachstehenden Abbildungsrâume seien mit der Limitierung Ac der

stetigen Konvergenz versehen. Dann sind die kanonischen Abbildungen

F) xEp-+F und k:&p(E;F) x <&(F; G)-+&P(E; G)

stetig. Ausserdem ist
a:J?p(E; F)-> i?(£; X*'l{E\ F)),

definiert durch u^oc(u) mit (a(w) (x)) (x29..., xp) u(x, x2,..., xp) fur aile p-Tupel
x, x2,..., xp aus Ex Ex ••• x E ein linearer Homôomorphismus.

Vermôge der zuletzt genannten Homôomorphie werden wir dièse Râume kùnftig
identifizieren.

Sei 93 die Kategorie der limitierten separierten Vektorrâume E, F, G,..., (siehe [2]);
die Menge ^(F; F) der Morphismen bestehe aus den stetigen Abbildungen von E
nach F. Fur die Objekte E, F, Eu..., Ene93 sind die Vektorrâume <#(E'9 F), &(E; F),
&P(E;F), <^(E1X'"XEn;F) und der Vektorraum &{Eu...9En\F) der stetigen
«-linearen Abbildungen von Et x • • • x En nach F, versehen mit A c, selbst Objekte von
S, [4].

Falls im folgenden dièse Funktionenrâume als Limesrâume aufgefasst werden,
seien sie, wenn nichts anderes vermerkt, stets mit Ac versehen.

Nach H. R. Fischer [2] bestimmen die bezûglich einer zulâssigen Limitierung A
auf dem Vektorraum E stetigen Seminormen von E nach R eine lokalkonvexe Topo-
logie \I/°A auf E. Dièse ist die feinste der lokalkonvexen Topologien, welche grôber
sind als A. Den Vektorraum E versehen mit il/°A bezeichnen wir mit Eo und nennen
ihn den zu E assoziierten lokalkonvexen Vektorraum. Aile Objekte aus 93, deren
assoziierte lokalkonvexe Vektorrâume separiert sind, bilden die Objekte einer neuen

Kategorie 930 mit den stetigen Abbildungen als Morphismen.

Lemma 1. Fur Fe930 gilt C)ie^(E;R) Kern l={®} (vergl. [3, Satz 2.2.15])

Lemma 2. Seien Fe93 und Fe93O/ der Vektorraum H<=.%>{E\ F) sei mit der von

Ac induzierten Limitierung versehen. Dann ist //e930-
Der Beweis verlâuft analog demjenigen von Satz 2.2.19 in [3].
Sorrrit sind fur Fe930 aile oben genannten Funktionenrâume ebenfalls Objekte

von 93O.

Définition. Eine Menge UczE heisst ojfen, wenn Ufurjedes xeU zu allen gegen x
konvergierenden Filtern auf E gehôrt.

Aus obigem folgt, dass jede in Eo offene Menge auch in F offen ist.

Wir bezeichnen die Filter auf einer nichtleeren Menge mit <P, W,.... Die untere
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Grenze zweier Filter <P und W bezeichnen wir mit # a W ; fur den Nullumgebungs-
filter in R schreiben wir <£>£.

Fur eineZahl <5>0 sei [ — ô, (5] {AeR| — Ô<À<Ô}. Die im folgenden auftretenden

o seien Abbildungen von [ — ô, ô] nach R mit lim A_>0 cr(A)/A=O und cr(O)=O.

Définition. Sei UczE eine den Nullpunkt enthaltende offerte Menge. Eine an der
Stelle OeE stetige Âbbildung r: U-*F heisst ein Restglied, faite es zujedem in E gegen
0 konvergenten Filter <P einen in F gegen 0 konvergenten Filter W gibt, welcher der

folgenden Bedingung (B) genugt:
(B) Zu jedem NeW existieren ein Me<P und ein a derart, dass r(Â- M)czcr(A)* N fur
alleXe[-ô,ô].

Lemma 3. Seien UczE eine den Nullpunkt enthaltende offene Menge und r: U-+F
ein Restglied. Fur eine stetige lineare Abbildung l:F-*G ist l°r: U^G ein Restglied.

Beweis siehe [3], Lemma 3.4.12.

Lemma 4. Eine Abbildung r=(ri,...9 rn) von einer ojfenen, den Nullpunkt ent-
haltenden Menge UaE in das Produkt Fx xF2 x ••• xFn=F von Hmitierten Vektorraumen

Ft ist genau dann ein Restglied, wenn aile rt: U^Ft Restglieder sind.

Beweis: Seien die rl(i=l,...,n) Restglieder; dann ist r=(ri9 r2,..., rn) stetig in
OeU. Zu jedem gegen OeE konvergenten Filter $ auf U existiert ein gegen OeF,

konvergenter Filter x¥l derart, dass die Bedingung (B) gilt; nach [3], Bemerkung
3.1.5, kônnen wir jedes ïFl in der Form W^T.a $£• *¥x annehmen.

Nun betrachten wir den Filter W Wt x <F2 x ••• x ¥„ auf F. Eine Menge MeV
umfasst ein Elément aus W von der Form (Nl u [ — ei, £i] * A^) x • • • x (Nn u [ — £„, en] • Nn)t

wobei der /-te Faktor je in Wt liegt. Setze a=min l=1> fB(e,, 1). Nach Définition
des Restgliedes finden wir zu jedem Elément Ntv[ — e, s]%Nt ein Mt aus 0 und eine

Abbildung ot : [- ôl9 <5J->R, so dass r (A • M,) co^) • (Nt u [- e, e] • JV.) fur aile Xe [ - ô, ô],
wobei [—(5, <5] der Durchschnitt aller Definitionsbereiche der at ist. Setze M f)"= xMr
Dann gilt

r{l-M) cz at(X) {Ntu[- s, c]-^) c ^(A)-^ u [- el9 eJ-JV.)

fur aile Àe[—ô, ô]. Wir definieren die Funktion cr(/l)=(l/e)-max crt(A) fur / 1,..., n

und Âef — ô, ô]. Daraus folgt

a%{X) (Nt u [- c,c]-JV.) c= a(X) (Nt u [- e^j-iV,) c: cr(A)-(JV, u [- e.,eJ-JV,)

fur aile i 1,...,«. Daher gilt

r(A-M): (r1,...,rB)(A-M)cr1(A-M)x... xrw(A-M)c=

c=a(A)-[(iV1u[-8,e]-iV1)x... x (Nn u [- e9 a] • iV.)] cz a (A) • AT,

also ist r ein Restglied.
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Sei umgekehrt r=(r1?..., rn) ein Restglied: Schreiben wir prt fur die /-te Projek-
tion, so folgt aus Lemma 2, dass rt =prt°r ein Restglied ist; q.e.d.

Définition. Sei UcE eine offerte Menge. Eine Abbildung f: U->F heisst differen-
zierbar an der Stelle xe U,falls es ein leJ?(E; F) undein Restgliedr:(U—x)-+ Fderart
gibt, dassf(x + h)-f(x) lh + r(h)fur aile heU-x gilt.

D/(x): =/ heisst die Ableitung von/an der Stelle xeU.
Wenn / in allen Punkten einer Teilmenge MaU differenzierbar ist, so heisst /

differenzierbar in M; ist M=U, so heisst/differenzierbar.
Fur eine an der Stelle x differenzierbare Abbildung / ist nach [3, Satz 4.1.2] die

Ableitung D/(x) eindeutig bestimmt. Daher induziert eine in MczE differenzierbare

Abbildung/: E->F eine Abbildung Df:M-^^(E; F). Wir nennen/stetig differenzierbar

in M, wenn D/ stetig ist.

Lemma 5. Fur eine offene Menge UaEseif: U-+F an der Stelle xe U differenzierbar.

Dann ist auch f:U-+F0 an der Stelle x differenzierbar und die Ableitungen sind
identisch.

Beweis: siehe [3, Lemma 3.1.4.].
Unmittelbar aus obiger Définition folgt

Lemma 6. Eine stetige lineare Abbildung I.E-+F ist stetig differenzierbar und es ist

D/(jc)=/ fur jedes xeE.

Lemma 7. Eine stetige n-lineare Abbildung u:Et x ••• x En-+Fist stetig differenzierbar

und es gilt
n

Du(xu...9xn)(/*!,...,/!„)= £ u(xl9...9xi-l9hi9xi+l9...9xn).

Der Beweis folgt leicht aus der Tatsache, dass jede stetige «-lineare Abbildung
fur n>2 ein Restglied ist.

Als Sâtze 4.4.4 und 4.4.5 werden in [3] folgende zwei Sâtze bewiesen:

Lemma 8 (Kettenregel). Fur die offenen Mengen UczE und Va F seien die Ab-

bildungenf:U-+Fmitf(U)cVundg:V-+G an der Stelle xeUbzw.f(x)eVdifferen¬
zierbar. Dann ist g°fan der Stelle x differenzierbar und es gilt

Lemma 9 (Mittelwertsatz). Sind x^xxeE feste Vektoren und f:E-+F stetig in

o + t(xi—xo)\0<t<l} und differenzierbar in {xo + t(x1 — xo)\0<t<\}f dann gilt
r le&(F; R) und ein gewisses x(9) aus {xo + t(xt -xo)\0<t< 1}

l(f(xt) -/(x0)) P«D/(x(J))] (x, - x0).

Zut Herleitung der Restgliedformel des Taylorschen Polynoms benôtigen wir den
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Begriff des bestimmten Intégrais

einer stetigen Abbildung q> von [a9b]aR nach einem lokalkonvexen separierten
Vektorraum F. Diesen Begriff ûbernehmen wir von H. H. Keller [8] und notieren
lediglich folgende Eigenschaften :

1) Falls F nicht vollstândig ist, liegt fa(p in der vollstândigen Huile F von F. Ist
(p:[a, b]-+F stetig differenzierbar, so gilt (p(b) — (p(a)=jbqD(peF.

2) Seien cp, \j/:[a,b]-+F stetig und AeR; dann gilt
U U V

J (<p + Àll/) J <p + *\ <

3) Seien (p:[a, b]^>F stetig und u eine stetige lineare Abbildung von F in einen

separierten lokalkonvexen Vektorraum G; dann gilt
U V

(u°<p) iï\ ç;

dabei bedeutet û.F^G die eindeutig bestimmte stetige Fortsetzung von u auf die

vollstândige Huile F von F.

§ 2. Hohere Ableitungen

2.1. Definitionen

Sei/: U-+F eine differenzierbare Abbildung einer offenen Menge UczE nach F;
es existiert somit die Abbildung D1f=Df: U-+&(E; F), definiert durch x^Df(x).

Sei Dp~if:U-^^p~i(E; F) definiert und differenzierbar im Punkte xeU. Dann
heisst die Ableitung von D^/im Punkte x die /?-te Ableitung Dpf(x)e&p(E\ F)
von/an der Stelle jc.

Existiert Dpf(x) fur aile xe U, so wird Dp/: U->&P(E; F) eine Abbildung definiert
durch x^Dpf(x). Die Abbildung/: (/-»F heisst p-fach differenzierbar, wenn Bpf(x)
existiert fur aile xeU. Ist zudem Dpf;U-*<&p(E; F) stetig, so heisst/stetig /?-fach

differenzierbar.
Es existiere fiir / die (p+q)-te Ableidung an der Stelle x. Man zeigt wie ûblich,
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Mit C€P(U\ F) bezeichnen wir die Menge der /?-fach stetig differenzierbaren Ab-
bildungen von U nach F. Eine Abbildung/e^p(£/; F) nennen wir auch eine ^p-
Abbildung oder von der Klasse ^p.

2.2. Symmetrie der hoheren Ableitungen

Lemma 10. Sei UczE eine konvexe offerte Umgebung von x und Fe330. Wenn

f: U-+F zwei-fach stetig differenzierbar ist, dann ist

B2f(x):E xE->F
eine bilineare symmetrische Abbildung.

Der Beweis verlâuft fast wôrtlich gleich wie derjenige von F. und R. Nevanlinna
[9, pp. 85/86], man hat lediglich anstelle der Aufgabe 4 in 1.3.10 unser Lemma 1 zu
benûtzen.

Satz 2. Sei UczE eine konvexe offene Umgebung von x und fetëp(U; F), wobei

Fe330. Dann ist Dpf(x) symmetrisch.
Der Satz folgt aus Lemma 10 durch vollstândige Induktion nach /?, siehe z.B.

[6, p. 177].

2.3. Satz 3. Sei f={f1,...,fn} eine stetige Abbildung einer offenen Menge UczE
in das Produkt F1xF2x~-xFn von limitierten Vektorrâumen Ft. Die Abbildung f ist

genou dann eine ^-Abbildung, wenn aile ft von der Klasse ^p sind, und es gilt T>pf=
{Dpfu...,Dpfn}.
Beweis: Seien aile ft von der Klasse tëp, also existieren Restglieder rt:(U— x)^>Ft

derart, dass
fi (x H- h) -ft (x) Dfi (x) h + rt (h)

fur aile heU—x und / 1,...,«. Weiter gilt

f(x + h) -/(x) {ft(x + h) -h{x\ ...Jn(x + h) -/„(*)}
{Df1(x)h + ri(h)9...,DfH(x)h + rn(h)}
{DMx),..., D/B(x)} h + (ru...9 rn){h)

Nach Lemma 4 ist r=(r1?..., rn) ein Restglied und daher/efé^t/; F).
Ist umgekehrt/e^71 (U; F), so ist jedes/f =prf°/nach Lemma 8 von der Klasse <^1,

und der Satz ist fur p 1 bewiesen. Aus einer nun leicht auszufùhrenden Induktion
nach p folgt die Aussage des Satzes.

Aus Lemma 7 folgert man mûhelos

Lemma 11. Seiu: E1xE2x~xEn-*F eine stetige n-lineare Abbildung. Dann ist u

beliebig oft stetig differenzierbar und es ist D"+1 w=0.
Weiter gilt der
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Satz 4. Seien UczE eine offene Menge, fe^p(U; F) und le^(F; G). Dann ist

l°f von der Klasse ^p und es gilt Dp(/°/) (jc) /°Dp/(x).
Beweis: Aus D(/°/)(x) D/(/(jc))°D/(x) /°D/(x) folgt die Behauptung fur

p l. Wir definieren c:U-*<S£{F\G) durch x~*l. Als Induktionsvoraussetzung sei

/°/von der Klasse ^p"1 und es gelte Dp~1(/°/)(jc)=/°Dp"1/(x), d.h. folgendes

Diagramm ist kommutativ:

c xDp~7
17,

D '""1

Dabei ist k(l, m) l°m; es gilt somit

Mit Hilfe der Kettenregel (Lemma 8) und Lemma 7 schliessen wir

D k (c (x), Dp" 7(x)) ° (De (x), Dp/(x)) A

k (c (x), Dp/(x) fc) / o Dp/(x) ft, q.e.d.

2.4. Satz 5. 5e/en UczE und VczF offene Mengen. Wenn die Abbildungen

f: U-+F mitf(U)c: V und g: V-+G von der Klasse <%p sind, dann ist auch g°f eine c€p-

Abbildung.
Beweis : Nach Lemma 8 haben wir zunàchst

D(go/)(x) Dg(/(x))° D/(x) fc((Dgo/) (x), D/(x)),

d.h. fur p — 1 ist der Satz richtig. Fur eine Induktion nach p setzen wir voraus : Sind

zwei Abbildungen / und j von der Klasse (€p~1, so ist die Abbildung i°j, falls sie

existiert, ebenfalls von der Klasse <^p~1. Mit i=T>g und j=f folgt, dass Dg°/eine
(^p~1 -Abbildung ist. Nach Satz 3 existiert somit Dp"1(Dg°/, D/). Die bilineare
Abbildung k (Komposition) ist nach Lemma 11 beliebig oft stetig differenzierbar, also

ist k(Dg°f, D/) D(g°/) nach Induktionsvoraussetzung eine ^p~^Abbildung. Dar-
aus folgt die Behauptung.

Mithilfe von Satz 5 und Lemma 11 beweist man leicht

Satz 6. Seien UcE offen undf: U-*+%(E; F) und g: U-+<&(F; G) von der Klasse

<#p; dann ist die Abbildung k(g,f): U->V(E; G), definiert durch k(gj) (x) =g(x)°f(x),
ebenfalls von der Klasse <€p.

Fur den festen Raum G betrachten wir die mit der Limitierung Ac der stetigen

Konvergenz versehenen Râume %P(G;E) und ^P(G; F). Fur die stetige lineare
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Abbildung /:£"->F definieren wir

durch

und fur die ^-Abbildung /:£->F sei

definiert durch f*(g)=g°f. Sowohl /* als auch/* sind stetige lineare Abbildungen
und daher gilt

Lemma 12. Die Abbildungen /* undf* sind von der Klasse %>p.

Mit 33P bezeichnen wir die Kategorie der limitierten separierten Vektorrâume
E, F, G,..., mit den ^-Abbildungen als Morphismen. Fur ein festes Ge3Sp zeigt
Lemma 12, dass folgende Zuordnung ein kontravarianter Funktor von 93P in sich ist:

; F) ^j*eVp(Vp(F; G),VP(E; G))

Lemma 13. Seien UczE und VcF offen,f\ U-+G und g: V-+H von der Klasse Vp,
dann ist auch (fxg):Ux V-+G x H eine tëp-Abbildung.

Beweis: Zunâchst ist UxV offen und es gilt

(/ x g) (x + h, y + k) - (f x g) (x, y) (/(x + h), g(y + k)) - (f(x),g(y))
(/(* + h) -/(x), g(^ + k)- g(y)) (D/(x) h, Dg(>0 k) +
+ (r,(h), rg{k)) (D/(x) x Dg(y))(*, k) + (r, x rg)(h, k).

Analog dem Beweis von Lemma 4 zeigt man, dass

(rf x rg):(U- x) x (V - y)-*G x H

ein Restglied ist. Die lineare Abbildung Df(x)xDg(y) kônnen wir daher mit
T>(fxg)(x, y) bezeichnen. Die Induktion nach/? liefert die Behauptung.

Daraus folgt mit Hilfe der Kettenregel (Lemma 8) der

Satz 7. Fur eine offene Menge UcG seif: U^^(E; F) eine ^p-Abbildung. Dann

ist auch

f= co o(/ x id): UxE-*F mit J(x, y) =/(x) (y)

von der Klasse ^p. Wobei <x>\££(E\ F) x E-+F die Evaluation bezeichnet.

Wir halten noch fest:

Satz 8. Fur eine offene Menge UczE ist VP(U; R) ein Ring und &P(U; F) ist ein

Modul iiber dem Ring VP(U; R).
Fur p 1 steht der Beweis in [3], die Induktion nach p ist trivial.
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§ 3. Die Taylorsche Formel

Seien E und F Objekte aus 93 0, der Kategorie der limitierten Vektorrâume, deren
assoziierte lokalkonvexe Vektorrâume separiert sind. Zudem habe E folgende Eigen-
schaft :

(A) Zujedem gegen OeE konvergenten Filter $ existiert ein grobérer {nicht notwendig

echt) gegen Null konvergenter Filter 4>' mit einer aus ausgeglichenen Mengen
bestehenden Basis.

Eine Teilmenge MczE heisst ausgeglichen, falls fur jede réelle Zahl # mit |#| < 1 die

Beziehung 9- MeM gilt.
Wir geben noch ein Beispiel eines limitierten nicht-topologischen Vektorraumes

in 930, der die Eigenschaft (A) besitzt. Dazu seien Ge930 ein lokalkonvexer und H
ein nicht-normierbarer lokalkonvexer Vektorraum. Dann ist <&(H; G) nach Lemma 2

in 93o und nach [1] nicht topologisch und, so behaupten wir, hat die Eigenschaft (A).
Beweis. Sei F ein gegen OeJ?(H;G) konvergenter Filter mit einer Basis, deren

Elemente den Nullpunkt enthalten. D.h. fur jeden gegen xoeH konvergenten Filter
0 konvergiert F(<P):=œ(Fx$) gegen Null in F; dabei bedeutet œ:&(H;G)x H-+G
die Evaluation. Sei TeF und f={3-/|SeR, |3|<l,/er}. f ist ausgeglichen. Sei f
der von der Filterbasis, bestehend aus den Tmit TeF, erzeugter Filter. Es gilt F<F.
Wir zeigen, dass F gegen Null konvergiert. Dazu wâhlen wir einen beliebigen in H
gegen x0 konvergenten Filter 4>, und der Nullumgebungsfilter in G sei W. Sei Pe W

ausgeglichen. Dann existieren ein TeF und Me<P derart, dass P^T(M). Fur jedes
SeR mit |d| < 1 und /eTist (S-/) (x)eP fur aile xeM. Daraus folgt P^T{M) und f
konvergiert gegen Null.

Fur einen festen Vektor xoeE sei i':R-»i£ definiert durch t^>t*x0. Dann folgt aus

[3, Satz 2.1.5], dass auf /(R) aE die natûrliche Topologie induziert wird.

Définition. Sei UcE eine den Nullpunkt enthaltende offene Menge. Eine an der

Stelle OeE stetige Abbildung rn\ U-+F heisst ein Restglied n-ter Ordnung, falls es zu

jedem in E gegen Null konvergenten Filter <P einen in F gegen Null konvergenten Filter
W gibt, welcher folgender Bedingung genugt:

Zu jedem Ne¥ existieren ein Me<P und eine Abbildung (t":[—ô, <5]->R mit

und
A->0 A

derart, dass

rn(À-M)ciGn(X)-N fur aile

Bemerkung. Falls E ein normierter und F ein limitierter separierter Vektorraum
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ist, so gilt fur ein Restglied rn der Ordnung n :

Der Beweis verlâuft wie fur « 1 in [3; (3.2.d)].
Fur das w-Tupel (h,..., h) schreiben wir im folgenden h{n).

Satz 9. Fur eine offerte konvexe Umgebung UaE von xeE sei f: U-+F eine

Abbildung. Dann gilt fiir heU—x

wobei
1

u\n— 1

berechnet in Fo, und die Abbildung Rn:(U—x)->F ist ein Restglied n-ter Ordnung. Die

T)lf(x) sindfur jedes xeU symmetrisch.
Beweis: Aus Fe%50 folgt nach Lemma 2, dass J?P(E; F)e580 und daher auch

^(E;^p(E;F))e3}0 furp \,2,...,n. Fur x, x + heUxmd [0, l]=/betrachten wir
die Abbildungen i:I-+E, definiert durch i(t)=x + th9 und cp=f°i:I-+F. Die Abbildung
(p ist stetig differenzierbar; sie ist aber auch als Abbildung in den assoziierten lokal-
konvexen Vektorraum Fo von der Klasse fé71, (Lemma 5). Nun gilt Dcp(t)dt
=Df(x + tti)hdt. In Fo ist somit

und

f(x + h) =/(*) + f D/(x + tfc) A dt.
o

Wir schliessen von p auf /?+1. Dazu gelte fur p<n — 1
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wobei das Intégral zunâchst in der vollstândigen Huile Fo von Fo existiert; aber aus
der Darstellung

folgt, das der Wert des Intégrais in Fo liegt. Nach Satz 2 sind die D'/(jt) fur jedes
xeU symmetrische multilineare Abbildungen. Sei leJ?(F; R), dann gilt

0 0
1

Dpf(x + th) h(p)dt '—- l[Dpf(x + th) h(p)] dt

i
f(1 - i1 _J_ I ;

J P '
0

1

Ç(l-t
J"7T

dt

und aus Lemma 1 folgt die Richtigkeit der ersten Behauptung.
Aus der Darstellung

Rn(h) =/(x + h) -/(»)—-P ^^
folgt, dass Rn:(U— x)-»i7eine ^"-Abbildung ist mit der Eigenschaft

Kw(0) DRn(0) D2KM(0) =-= D"«B(0) 0.

0) Di?M(0)=0und der Définition der Ableitung folgt, dass 7?n ein Restglied
erster Ordnung ist. Sei als Induktionsvoraussetzung Rn ein Restglied der Ordnung
p<n—\. Zunâchst folgt daraus wie fûr/? l, dass auch Y>Rn\(U— x)-+J£{E\ F) ein

Restglied /?-ter Ordnung ist. D.h. zu einem in E gegen Null konvergenten Filter 0
gibt es einen in J?(E; F) gegen Null konvergenten Filter W, so dass zu jedem NeW
ein Me<P und ein ap existieren mit der Eigenschaft

DRn(À-M)a(jp(X)rN fur aile Ae[-5,5].
Den Filter $ ersetzen wir durch den nach Voraussetzung existierenden grôberen
Filter $' mit einer aus ausgeglichenen und den Nullpunkt enthaltenden Mengen
bestehenden Basis. Wir denken uns obigen Filter W auf 3?{E\ F) derart bestimmt,
dass zu jedem TVe W ein M'e<P\ wobei M'aU—x, und ein ap existieren mit

DRn(ÀM') c ap(X)-N fur aile Ae[- ô\ <5'].

M' kann insbesondere als ausgeglichen angenommen werden. Nun wâhlen wir den
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gegen Null konvergenten Filter F in F als F œ(W x #'), wobei (o:^(E; F) x E-*F
die Evaluation bezeichnet.

Nach dem Mittelwertsatz (Lemma 9) und Lemma 1 gilt

mit 0<3<l.
Wir wâhlen ein Elément aus F von der Form

AT (M'): œ(N x M')

mit obigen Elementen NeW und M'e$f. Dann gilt fur jedes heM':

fur aile Àe[ — ô', ô']; dabei verwendeten wir fur die mittlere Relation die Ausge-
glichenheit von M'. Wir haben

Rn(A-Mf) c l'<jp(A)'N(M') fur aile Ae[- ô', <5'].

Zu M' e<Pf existiert ein Me<P mit Ma M' und damit gilt erst recht

Rn{XM) c À-(TP(X)-N(M') fur aile Ae[- ô', <5'].

Also ist Rn ein Restglied der Ordnung p+l und die Abbildungen crp:[ — ô, <5]-»R

haben die Form aip+1)(X)=ap(X)'À=a1(X)'Àp.
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