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Zur Differentialrechnung in limitierten Vektorriumen

Von E. BiNz und W. MEIER-SOLFRIAN in Ziirich.

Einleitung

In [1] weist H. H. KeLLER auf die Schwierigkeiten hin, die bei der Begriindung
einer Differentialrechnung in topologischen Vektorrdumen auftreten (Definition der
héheren Ableitungen). Zur Uberwindung dieser Schwierigkeiten schlug er vor, eine
Differentialrechnung in der umfassenderen Kategorie der limitierten Vektorrdume [2]
aufzubauen, was in den vorliegenden Notizen versucht wird. Man vergleiche auch [7].

Die grundlegenden Begriffe unserer Betrachtungen sind erstens die Ableitung einer
Abbildung zwischen limitierten Vektorrdumen liber dem Korper R der reellen Zahlen
[3], und zweitens die Limitierung A . der stetigen Konvergenz von Funktionenrdumen
31, [41, [7].

Im Falle von Abbildungen zwischen topologischen Vektorrdumen stimmt der
verwendete Differenzierbarkeitsbegriff mit demjenigen von S. LANG [5] iiberein,
welcher seinerseits eine Verallgemeinerung des von J. DIEUDONNE [6] verwendeten
Ableitungsbegriffes fiir Abbildungen zwischen Banachrdumen darstelit.

Wir betonen, dass nach H. H. KeLLER [1] fiir zwei Banachrdume E und F im
allgemeinen A, auf dem Vektorraum #?(E; F) der p-fach linearen Abbildungen von
EP=FEx---x E nach F grober ist als die tibliche Normtopologie.

Im ersten Paragraphen stellen wir die im folgenden verwendeten Begriffe und
Aussagen zusammen.

§ 1. Definitionen und Hilfssiitze

Seien X und Y zwei Limesrdume. Auf der Menge € (X; Y) der stetigen Abbildun-
gen von X nach Y fiihren wir die Limitierung A . der stetigen Konvergenz ein [4]. Sie
ist unter allen Limitierungen A auf €(X; Y), fiir welche die Evaluationsabbildung

0C(X;Y), xX->Y

stetig ist, die grobste; dabei bedeudet € (X; Y), x X die mit der Produktlimitierung
versehene Menge € (X; Y) x X. Daher ist 4. durch folgende universelle Eigenschaft
charakterisiert: Eine Abbildung f vom Limesraum S nach €(X; Y),, ist genau dann
stetig, wenn

wo(f xidy):SxX->Y
stetig ist.
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Der folgende in [4] bewiesene Satz wird fiir die Theorie der hGheren Ableitungen von
Abbildungen zwischen limitierten Vektorrdumen wesentlich verwendet.

SATz 1. Die nachstehenden Abbildungsriume seien mit der Limitierung A . der
stetigen Konvergenz versehen. Dann sind die kanonischen Abbildungen

w:LP(E;F) x E°P>F und k:%?(E;F)x %(F;G)- ¥%"(E;G)

stetig. Ausserdem ist
a: ¥P(E; F)-» £ (E; £7" ' (E; F)),

definiert durch u~o(u) mit (a(u)(x)) (xs,..., x,)=u(x, x5,..., x,) fiir alle p-Tupel
Xy X25.00y Xp QUS EX EX +-- X E ein linearer Homéomorphismus.

Vermoge der zuletzt genannten Homéomorphie werden wir diese Rdume kiinftig
identifizieren.

Sei B die Kategorie der limitierten separierten Vektorrdume E, F, G, ..., (siehe [2]);
die Menge ¢ (E; F) der Morphismen bestehe aus den stetigen Abbildungen von E
nach F. Fiir die Objekte E, F, E,, ..., E,e B sind die Vektorrdume ¥(E; F), Z(E; F),
ZLP(E; F), €(Eyx---xE,; F) und der Vektorraum Z(E,,..., E,; F) der stetigen
n-linearen Abbildungen von E, X --- x E, nach F, versehen mit A ., selbst Objekte von
B, [4].

Falls im folgenden diese Funktionenrdume als Limesrdume aufgefasst werden,
seien sie, wenn nichts anderes vermerkt, stets mit A, versehen.

Nach H. R. FIscHER [2] bestimmen die beziiglich einer zuldssigen Limitierung A
auf dem Vektorraum E stetigen Seminormen von E nach R eine lokalkonvexe Topo-
logie Y° A auf E. Diese ist die feinste der lokalkonvexen Topologien, welche grober
sind als 4. Den Vektorraum E versehen mit y° A bezeichnen wir mit E, und nennen
ihn den zu E assoziierten lokalkonvexen Vektorraum. Alle Objekte aus B, deren
assoziierte lokalkonvexe Vektorrdume separiert sind, bilden die Objekte einer neuen
Kategorie B, mit den stetigen Abbildungen als Morphismen.

LEMMA 1. Fiir Ec B, gilt (e #(x;ry Kern I={0} (vergl. [3, Satz 2.2.15])

LEMMA 2. Seien E€ B und Fe B, der Vektorraum H<% (E; F) sei mit der von
A, induzierten Limitierung versehen. Dann ist He B,.

Der Beweis verlduft analog demjenigen von Satz 2.2.19 in [3].

Somit sind fiir Fe B, alle oben genannten Funktionenrdume ebenfalls Objekte
von B,.

DEFINITION. Eine Menge U c E heisst offen, wenn U fiir jedes xe U zu allen gegen x
konvergierenden Filtern auf E gehort.

Aus obigem folgt, dass jede in E, offene Menge auch in E offen ist.

Wir bezeichnen die Filter auf einer nichtleeren Menge mit @, ¥,.... Die untere
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Grenze zweier Filter @ und ¥ bezeichnen wir mit @ A ¥; fiir den Nullumgebungs-
filter in R schreiben wir &p.

Fiir eine Zahl >0 sei [— 6, 6]={AeR|—Jd <A< 4}. Die im folgenden auftretenden
o seien Abbildungen von [—6, ] nach R mit lim ;_, 6(4)/A=0 und ¢(0)=0.

DEFINITION. Sei Uc E eine den Nullpunkt enthaltende offene Menge. Eine an der
Stelle O E stetige Abbildung r: U— F heisst ein Restglied, falls es zu jedem in E gegen
0 konvergenten Filter @ einen in F gegen 0 konvergenten Filter ¥ gibt, welcher der
folgenden Bedingung (B) geniigt:

(B) Zu jedem NeV¥ existieren ein Me® und ein ¢ derart, dass r(A-M)<ao(1)-N fiir
alle J.e[— 0, d].

LemMA 3. Seien Uc E eine den Nullpunkt enthaltende offene Menge und r:U—F
ein Restglied. Fiir eine stetige lineare Abbildung I: F—G ist I°or: U—G ein Restglied.
Beweis siehe [3], Lemma 3.4.12.

LEMMA 4. Eine Abbildung r=(rq,...,r,) von einer offenen, den Nullpunkt ent-
haltenden Menge Uc E in das Produkt F, x F,x --- x F,=F von limitierten Vektor-
rdumen F; ist genau dann ein Restglied, wenn alle r;: U— F, Restglieder sind.

Beweis: Seien die r;(i=1,..., n) Restglieder; dann ist r=(ry, r,,..., r,) stetig in
0eU. Zu jedem gegen Oe E konvergenten Filter @ auf U existiert ein gegen O€F;
konvergenter Filter ¥; derart, dass die Bedingung (B) gilt; nach [3], Bemerkung
3.1.5, konnen wir jedes ¥, in der Form ¥,=¥; A @3- ¥, annehmen.

Nun betrachten wir den Filter Y =¥, x ¥, x --- x ¥, auf F. Eine Menge Me¥
umfasst ein Element aus ¥ von der Form (N; U [—g,&,]* Ny) X -+ X (N, U [—&,, &,]* N,),
wobei der i-te Faktor je in ¥; liegt. Setze e=min ;_ _ ,(&, 1). Nach Definition
des Restgliedes finden wir zu jedem Element N,u[—e¢, ¢]* N, ein M, aus @ und eine
Abbildung g;:[—§;,8;]>R,sodassr(A- M) = a;(1)(N;u [—¢, €]- N;) fiir alle Ae[—6,0],
wobei [— 8, 6] der Durchschnitt aller Definitionsbereiche der o; ist. Setze M =();- {M.,.
Dann gilt

r(A-M)co,(2) (Nyu[— ¢ €]"N) = 0,(A) (N, v [~ &, 6] N)

fiir alle Ae[— 4, §]. Wir definieren die Funktion o(4) =(1/¢)-max a;(2) fir i=1,...,n
und Ae[—d, é]. Daraus folgt

(D) (Nju[—¢&e]l'N)co(A)(Nyu[—&¢]'N)<a(A) (N, u[—&,8] N)
fir alle i=1,..., n. Daher gilt

r(AM):=(ry,..., ) (AM)cr, (A M) x - xr,(AM) <
co(A)[(Nyu[—¢ee]l'Ny) x -+ x (N,u[—¢,€]'N,)] =o(4):N,

also ist r ein Restglied.
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Sei umgekehrt r=(ry,..., r,) ein Restglied: Schreiben wir pr, fiir die i-te Projek-
tion, so folgt aus Lemma 2, dass r,=pr;°r ein Restglied ist; g.e.d.

DEFINITION. Sei Uc E eine offene Menge. Eine Abbildung f: U— F heisst differen-
zierbar an der Stelle xe U, falls es ein le £ (E; F) und ein Restglied r:(U—x)— F derart
gibt, dass f(x+h)—f(x)=Ih+r(h) fiir alle he U—x gilt.

Df(x): =/ heisst die Ableitung von f an der Stelle xe U.

Wenn f in allen Punkten einer Teilmenge M < U differenzierbar ist, so heisst f
differenzierbar in M ist M =U, so heisst f differenzierbar.

Fiir eine an der Stelle x differenzierbare Abbildung f ist nach [3, Satz 4.1.2] die
Ableitung Df(x) eindeutig bestimmt. Daher induziert eine in M < E differenzierbare
Abbildung f: E— F eine Abbildung Df: M— % (E; F). Wir nennen f stetig differenzier-
bar in M, wenn Df stetig ist.

LEMMA 5. Fiir eine offene Menge UcE sei f: U—F an der Stelle xe U differenzier-
bar. Dann ist auch f:U—F, an der Stelle x differenzierbar und die Ableitungen sind
identisch.

Beweis: siehe [3, Lemma 3.1.4.].

Unmittelbar aus obiger Definition folgt

LEMMA 6. Eine stetige lineare Abbildung l: E— F ist stetig differenzierbar und es ist
DI(x)=1 fiir jedes x€E.

LEMMA 7. Eine stetige n-lineare Abbildung u:E, x --- x E,— F ist stetig differenzier-
bar und es gilt

n

Dut(xq,y .00 Xp) (Byy ooy B) = ) u(Xqy ooy X— g5 By Xy 15 eees Xp)

i=1

Der Beweis folgt leicht aus der Tatsache, dass jede stetige n-lineare Abbildung
fiir n>2 ein Restglied ist.
Als Sitze 4.4.4 und 4.4.5 werden in [3] folgende zwei Sdtze bewiesen:

LemMA 8 (Kettenregel). Fiir die offenen Mengen UcE und V < F seien die Ab-
bildungen - U—F mit f(U)<V und g:V—G an der Stelle xeU bzw. f(x)eV differen-
zierbar. Dann ist g°f an der Stelle x differenzierbar und es gilt

D (g °f) (x) = Dg(f(x)) °Df (x).

LEMMA 9 (Mittelwertsatz). Sind x,, x,€E feste Vektoren und f.:E—F stetig in
{xo+t(x;—x0)|0<t<1} und differenzierbar in {x,+1t(x,—x,)|0<t<1}, dann gilt
fiir Ie £ (F; R) und ein gewisses x(9) aus {xo+1(x;—x,)[0<t<1}

1(f (x1) = f(x0)) = [1°Df (x(9))] (x1 — xo)-

Zur Herleitung der Restgliedformel des Taylorschen Polynoms benétigen wir den
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Begriff des bestimmten Integrals

}<p(t)dt=}<p

einer stetigen Abbildung ¢ von [a, b)J=R nach einem lokalkonvexen separierten
Vektorraum F. Diesen Begriff iibernehmen wir von H. H. KELLER [8] und notieren
lediglich folgende Eigenschaften:

1) Falls F nicht vollstindig ist, liegt jﬂ(p in der vollstindigen Hiille F von F. Ist
@:[a, b]>F stetig differenzierbar, so gilt ¢(b)—¢(a)=[.Dp€eF.

2) Seien @, Y :[a, b]—- F stetig und AeR; dann gilt

Jb.(¢+ll//)= bfqo +lbfl/f

3) Seien ¢:[a, b]—F stetig und u eine stetige lineare Abbildung von F in einen
separierten lokalkonvexen Vektorraum G; dann gilt

bf(u°<p)=ﬁ}<p;

dabei bedeutet ii: F—»G die eindeutig bestimmte stetige Fortsetzung von u auf die
vollstindige Hiille 7 von F.

§ 2. Hohere Ableitungen

2.1. Definitionen

Sei f: U—F eine differenzierbare Abbildung einer offenen Menge Uc E nach F;
es existiert somit die Abbildung D'f=Df: U-»Z(E; F), definiert durch x~Df(x).

Sei D?~1f: U»%?~!(E; F) definiert und differenzierbar im Punkte xe U. Dann
heisst die Ableitung von D?~!f im Punkte x die p-te Ableitung D?f(x)e £?(E; F)
von f an der Stelle x.

Existiert D?f(x) fiir alle xe U, so wird D?f: U-#?(E; F) eine Abbildung definiert
durch x~DP?f(x). Die Abbildung f: U— F heisst p-fach differenzierbar, wenn D?f(x)
existiert fir alle xeU. Ist zudem D?f: U-.£P(E; F) stetig, so heisst f stetig p-fach
differenzierbar.

Es existiere fiir f die (p+¢q)-te Ableidung an der Stelle x. Man zeigt wie iiblich,

dass D*(DPf)(x) = D**9f(x).
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Mit €?(U; F) bezeichnen wir die Menge der p-fach stetig differenzierbaren Ab-
bildungen von U nach F. Eine Abbildung fe¥?(U; F) nennen wir auch eine %”-
Abbildung oder von der Klasse %°.

2.2. Symmetrie der hoheren Ableitungen

LEMMA 10. Sei Uc E eine konvexe offene Umgebung von x und FeB,. Wenn
[+ U—F zwei-fach stetig differenzierbar ist, dann ist

D*f(x):E xE—>F

eine bilineare symmetrische Abbildung.

Der Beweis verlduft fast wortlich gleich wie derjenige von F. und R. NEVANLINNA
[9, pp. 85/86], man hat lediglich anstelle der Aufgabe 4 in 1.3.10 unser Lemma 1 zu
beniitzen.

SATZ 2. Sei UcE eine konvexe offene Umgebung von x und fe €?(U; F), wobei
Fe B,. Dann ist D?f(x) symmetrisch.

Der Satz folgt aus Lemma 10 durch vollstindige Induktion nach p, siehe z.B.
[6, p. 177].

2.3. SATZ 3. Sei f={f1,..., [} eine stetige Abbildung einer offenen Menge Uc E
in das Produkt F, X F, x --- X F,, von limitierten Vektorrdumen F,. Die Abbildung f ist
genau dann eine €°-Abbildung, wenn alle f; von der Klasse €° sind, und es gilt D?f=

={D?f,..., D’f,}.
Beweis: Seien alle f; von der Klasse %7, also existieren Restglieder r;:(U—x)—F;

derart, dass
fi(x + h) = fi(x) = Dfi(x) h + r;(h)
fiir alle he U—x und i =1, ..., n. Weiter gilt

fx+h) —f)={fi(x+h) = f1(x),... .u(c + h) = fu(x)} =
= {Dfy(x) h + ry(h), ..., Df,(x) b + 1, (h)} =
= {Dfl (X), tre Dfn(x)} h + (7‘1, tees rn) (h) =
= Df(x) h + r(h).

Nach Lemma 4 ist r=(ry,..., r,) ein Restglied und daher fe%*(U; F).

Ist umgekehrt fe € (U; F), so ist jedes f; =pr;°f nach Lemma 8 von der Klasse ¢,
und der Satz ist fiir p=1 bewiesen. Aus einer nun leicht auszufiihrenden Induktion
nach p folgt die Aussage des Satzes.

Aus Lemma 7 folgert man miihelos

LemMMA 11. Seiu: E; X E, x --- x E,— F eine stetige n-lineare Abbildung. Dann ist u
beliebig oft stetig differenzierbar und es ist D"*1u=0.
Weiter gilt der
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SATZ 4. Seien UcE eine offene Menge, fe6?(U; F) und le #(F; G). Dann ist
[of von der Klasse 6" und es gilt DP(I°f) (x)=1°DPf(x).

Beweis: Aus D(I°f) (x)=DI(f(x))°Df(x)=I°Df(x) folgt die Behauptung fiir
p=1. Wir definieren ¢:U—-#(F; G) durch x~/. Als Induktionsvoraussetzung sei
I°of von der Klasse €7~ und es gelte D?~!(/°f)(x)=I°D?"'f(x), d.h. folgendes
Diagramm ist kommutativ:

c x DPIf
U Z(F;G) x "' (E; F)
|
D (15f) €}
#"" ' (E; G)

Dabei ist k(I, m)=I>m; es gilt somit
P} (19f) (x) = k(e(x), D" 1f(x)).
Mit Hilfe der Kettenregel (Lemma 8) und Lemma 7 schliessen wir

DP 1 (1of) () h = D(DP* (1°f)) (x) h =
= Dk(c(x), D?"'f(x))°(Dc (x), D*f(x)) h =
=k(c(x), D?f(x) h) =1°DPf(x) h, q.e.d.

2.4. SA1Z2 5. Seien UcE und V< F offene Mengen. Wenn die Abbildungen
f[:U>F mit f(U)<V und g: V—G von der Klasse €” sind, dann ist auch g°f eine €"-
Abbildung.

Beweis: Nach Lemma 8 haben wir zunichst

D(gof) (x) = Dg(f(x))° Df(x) = k((Dg°f) (x), Df(x)),

d.h. fiir p=1 ist der Satz richtig. Fiir eine Induktion nach p setzen wir voraus: Sind
zwei Abbildungen i und j von der Klasse €771, so ist die Abbildung i°j, falls sie
existiert, ebenfalls von der Klasse €7~ 1. Mit i =Dg und j=f folgt, dass Dgef eine
#?~!-Abbildung ist. Nach Satz 3 existiert somit D?~!(Dgef, Df). Die bilineare Ab-
bildung & (Komposition) ist nach Lemma 11 beliebig oft stetig differenzierbar, also
ist k(Dgef, Df)=D(g°f) nach Induktionsvoraussetzung eine ¢~ '-Abbildung. Dar-
aus folgt die Behauptung.
Mithilfe von Satz 5 und Lemma 11 beweist man leicht

SATZ 6. Seien UcE offen und f:U—% (E; F) und g:U—>%(F; G) von der Klasse
€P; dann ist die Abbildung k(g,f): U~¥(E; G), definiert durch k(g, f) (x) =g (x)°f(x),
ebenfalls von der Klasse €”.

Fiir den festen Raum G betrachten wir die mit der Limitierung A . der stetigen
Konvergenz versehenen Ridume %?(G; E) und %?(G; F). Fiir die stetige lineare
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Abbildung /: E— F definieren wir
l,:€7(G; E) > %"(G; F)
durch
li(g)=1°g,
und fiir die €7-Abbildung f: E— F sei

f*:.¢"(F; G)>¢"(E; G)

definiert durch f*(g)=g°f. Sowohl /, als auch f* sind stetige lineare Abbildungen
und daher gilt

LEMMA 12. Die Abbildungen I, und f* sind von der Klasse €°.

Mit B? bezeichnen wir die Kategorie der limitierten separierten Vektorrdume
E,F, G,..., mit den €P-Abbildungen als Morphismen. Fiir ein festes Ge B? zeigt
Lemma 12, dass folgende Zuordnung ein kontravarianter Funktor von B? in sich ist:

E~%*(E; G)
fe®P(E; F) ~f*e¥?(¢"(F; G), €°(E; G))
LeEMMA 13. Seien UcE und V< F offen, f>U—G und g:V— H von der Klasse €”,

dann ist auch (fxg):Ux V-G x H eine €7-Abbildung.
Beweis: Zundchst ist U x V offen und es gilt

(fxx+hy+k)=(fxg)(xy)=(x+h),g(y+k)-(f(x),g()=
=(f(x+h)—f(x),g(y + k) — g()) = (Df(x) h, Dg(y) k) +
+ (rs(h), r,(k)) = (Df (x) x Dg(y)) (h, k) + (r; x 1,) (h, k).

Analog dem Beweis von Lemma 4 zeigt man, dass
(ry xr)):(U=x)x(V—-y)>GxH

ein Restglied ist. Die lineare Abbildung Df(x)x Dg(y) konnen wir daher mit
D(fxg) (x, y) bezeichnen. Die Induktion nach p liefert die Behauptung.
Daraus folgt mit Hilfe der Kettenregel (Lemma 8) der

SATZ 7. Fiir eine offene Menge UcG sei f: U-Z(E; F) eine €7-Abbildung. Dann
ist auch

f=ow°(fxid):UxE—~F mit f(x,y)=f(x)()
von der Klasse €°. Wobei w: L (E; F)x E—F die Evaluation bezeichnet.

Wir halten noch fest:

SATZ 8. Fiir eine offene Menge UcE ist €°(U; R) ein Ring und €*(U; F) ist ein
Modul iiber dem Ring €*(U; R).
Fiir p=1 steht der Beweis in [3], die Induktion nach p ist trivial.
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§ 3. Die Taylorsche Formel

Seien E und F Objekte aus B,, der Kategorie der limitierten Vektorrdume, deren
assoziierte lokalkonvexe Vektorrdume separiert sind. Zudem habe E folgende Eigen-
schaft:

(A) Zu jedem gegen O E konvergenten Filter @ existiert ein groberer (nicht notwendig
echt) gegen Null konvergenter Filter @' mit einer aus ausgeglichenen Mengen
bestehenden Basis.

Eine Teilmenge M < E heisst ausgeglichen, falls fiir jede reelle Zahl $§ mit |9| <1 die
Beziehung - M < M gilt.

Wir geben noch ein Beispiel eines limitierten nicht-topologischen Vektorraumes
in B, der die Eigenschaft (A) besitzt. Dazu seien Ge B, ein lokalkonvexer und H
ein nicht-normierbarer lokalkonvexer Vektorraum. Dann ist £ (H; G) nach Lemma 2
in B, und nach [1] nicht topologisch und, so behaupten wir, hat die Eigenschaft (A).

Beweis. Sei I' ein gegen 0. (H; G) konvergenter Filter mit einer Basis, deren
Elemente den Nullpunkt enthalten. D.h. fiir jeden gegen x,e H konvergenten Filter
@ konvergiert I'(®): =w(I" x ®) gegen Null in F; dabei bedeutet w: ¥ (H; G)x H-G
die Evaluation. Sei Tel’ und T={3-/|9€R, |3|<1, leT}. T ist ausgeglichen. Sei I'
der von der Filterbasis, bestehend aus den T mit Tel’, erzeugter Filter. Es gilt ' <T.
Wir zeigen, dass I’ gegen Null konvergiert. Dazu wihlen wir einen beliebigen in H
gegen Xx, konvergenten Filter @, und der Nullumgebungsfilter in G sei ¥. Sei Pe ¥
ausgeglichen. Dann existieren ein TeI’ und Me® derart, dass P> T(M). Fir jedes
9eR mit |9/ <1 und leT ist (3-1) (x)eP fiir alle xe M. Daraus folgt PoT(M) und I’
konvergiert gegen Null.

Fiir einen festen Vektor x,eE sei i:R— E definiert durch ¢~¢-x,. Dann folgt aus
[3, Satz 2.1.5], dass auf i(R)<= E die natiirliche Topologie induziert wird.

DEFINITION. Sei U< E eine den Nullpunkt enthaltende offene Menge. Eine an der
Stelle Oc E stetige Abbildung r,: U—F heisst ein Restglied n-ter Ordnung, falls es zu
jedem in E gegen Null konvergenten Filter ® einen in F gegen Null konvergenten Filter
V¥ gibt, welcher folgender Bedingung geniigt:

Zu jedem NeV¥ existieren ein Me® und eine Abbildung ¢":[—9, 6]-R mit

. 0"(4)
lim —
in0 A

=0 wund 6"(0)=0

derart, dass
ro(A-M)c 6"(A)'N  firalle Ae[—9,46].

Bemerkung. Falls E ein normierter und F ein limitierter separierter Vektorraum
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ist, so gilt fiir ein Restglied r, der Ordnung n:

h
lim rnh) _

=0,
iy ~o |A]]"

Der Beweis verlduft wie fiir n=1 in [3; (3.2.d)].
Fiir das n-Tupel (A, ..., h) schreiben wir im folgenden 4.

SATZ 9. Fiir eine offene konvexe Umgebung U< E von xeE sei f:U—F eine €"-
Abbildung. Dann gilt fiir he U—x

Df (x) h D"V f(x) h" =D
T PR Y

fx+h)=f(x)+ + R, (h),

wobei

1(1 —1)"!

D"f(x + th) k' dt,

berechnet in F,, und die Abbildung R,:(U—x)— F ist ein Restglied n-ter Ordnung. Die
D'f(x) sind fiir jedes xe U symmetrisch.

Beweis: Aus FeB, folgt nach Lemma 2, dass £?(E; F)e B, und daher auch
€(E; £LP(E; F))e DB, fir p=1, 2,...,n. Fir x, x+heU und [0, 1]=1 betrachten wir
die Abbildungen i: I— E, definiert durch i(¢) =x+th, und ¢ =f°i:I-F. Die Abbildung
o ist stetig differenzierbar; sie ist aber auch als Abbildung in den assoziierten lokal-
konvexen Vektorraum F, von der Klasse ¢', (Lemma 5). Nun gilt Do(¢)dt=
=Df(x+th) hdt. In F, ist somit

()= fo(x + th) hdt
und ’

f(x+h)=f(x)+fo(x+1:h)hd1:.

Wir schliessen von p auf p+ 1. Dazu gelte fiir p<n—1

Df (x) h D™ Vf (x) nP7 P
TR P TR

flx+h)=Ff(x)+

1

() ,
+Jme(x+th)h()dt,

0
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wobei das Integral zunichst in der vollstindigen Hiille F, von F, existiert; aber aus
der Darstellung

Ry(h) =f(x+h)—f(x) -

Df(x)h “._D”_lf(x) P~
(p—1)!

folgt, das der Wert des Integrals in F, liegt. Nach Satz 2 sind die D'f(x) fiir jedes
xe U symmetrische multilineare Abbildungen. Sei /e.Z(F; R), dann gilt

A= oy » =1(1“t)p—1 Pf(x ®
lu T D?f(x + th) h dt] J Y I[D’f(x + th) h'P] dt

(1 -

(1 B t)p +1 +1
. l[D" f(x + th) h?™ D] dt

e [

p (r) —_£\P
=1[D UL J(l Y D1 g(x + th) h(”“)dt]
p! p!

0

und aus Lemma 1 folgt die Richtigkeit der ersten Behauptung.
Aus der Darstellung
Dn— lf(x) h(n— 1)

R,(h)=f(x+h)—f(x) - (n —1)!

folgt, dass R,:(U—x)—F eine ¥"-Abbildung ist mit der Eigenschaft

R,(0)=DR,(0) = D’R,(0) =---=D"R,(0) = 0.

Aus R,(0)=DR,(0)=0und der Definition der Ableitung folgt, dass R, ein Restglied
erster Ordnung ist. Sei als Induktionsvoraussetzung R, ein Restglied der Ordnung
p<n-—1. Zundchst folgt daraus wie fiir p=1, dass auch DR,:(U—x)—> £ (E; F) ein
Restglied p-ter Ordnung ist. D.h. zu einem in E gegen Null konvergenten Filter ¢
gibt es einen in £ (E; F) gegen Null konvergenten Filter ¥, so dass zu jedem Ne ¥
ein Me® und ein o” existieren mit der Eigenschaft

DR,(A-M)<co6?(A):N firalle Ae[-,4].

Den Filter @ ersetzen wir durch den nach Voraussetzung existierenden groberen
Filter @’ mit einer aus ausgeglichenen und den Nullpunkt enthaltenden Mengen
bestehenden Basis. Wir denken uns obigen Filter ¥ auf #(E; F) derart bestimmt,
dass zu jedem Ne¥ ein M’'e®’, wobei M’ <= U—x, und ein ¢” existieren mit

DR,(A-M')c oP(4)'N fiiralle Ae[—d',0].

M’ kann insbesondere als ausgeglichen angenommen werden. Nun wahlen wir den
g
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gegen Null konvergenten Filter I' in F als I' =w(¥ x @'), wobei w:Z(E; F)x E-F
die Evaluation bezeichnet.
Nach dem Mittelwertsatz (Lemma 9) und Lemma 1 gilt

R,(h)=DR,(8-hH)h mit 0<I<l.
Wir wihlen ein Element aus I' von der Form
N(M'):=w(N x M')
mit obigen Elementen Ne¥ und M’'e®’. Dann gilt fir jedes he M’
R,(A-h) =DR,(3:A-h) A-he A-DR,(A-M')M' < A-6?(1)-N(M')

fir alle Ae[—0’, 6']; dabei verwendeten wir fiir die mittlere Relation die Ausge-
glichenheit von M’. Wir haben

R,(A*M")c A-0P(A)-N(M’) fiiralle Ae[—6',8'].
Zu M'ed’ existiert ein Me® mit M < M’ und damit gilt erst recht
R,(A*M) < A-6?(1)-N(M') firalle Ae[—d’,0].

Also ist R, ein Restglied der Ordnung p+1 und die Abbildungen ¢?:[—6, 6]-R
haben die Form ¢?* (1) =0?(1)- A=0"(1)" A~

LITERATUR

[1] H. H. KELLER, Rdume stetiger multilinearer Abbildungen als Limesriiume, Math. Ann. 159
(1965), 259-270.

[2] H. R. FiscHER, Limesrdume, Math. Ann. 137 (1959), 269-303.

[3]1 E. BiNz, Ein Differenzierbarkeitsbegriff in limitierten Vektorrdumen, Comment. Math. Helv. 41,
(1966), 137-156.

[4] E. Binz und H. H. KELLER, Funktionenrdume in der Kategorie der Limesrdume, Ann. Acad. Sci.
Fennicae [Ser. A] 383 (1966), 1-21.

[5]1 S. LaNG, Introduction to differentiable manifolds, Interscience Publ., N. Y. 1962.

[6] J. DIEUDONNE, Foundations of Modern Analysis, Academic Press, New York and London, 1960.

[71 A. BasTIANI, Applications différentiables et variétés différentiables de dimension infinie, J.d’Anal.
math. X1II (1965), 1-114.

[8] H. H. KELLER, Differentialrechnung in lokalkonvexen Vektorrdumen. Erscheint demnéchst.

[9] F. und R. NEVANLINNA, Absolute Analysis, Springer Verl., 1959

[10] H. H. KELLER, Differenzierbarkeit in topologischen Vektorrdumen, Comment. Math. Helv. 38

(1964), 308-320.

Eingegangen den 15. Aug. 1966



	Zur Differentialrechnung in limitierten Vektoräumen.

